WO2013088823A1 - 電磁ブレーキ状態診断装置およびその方法 - Google Patents
電磁ブレーキ状態診断装置およびその方法 Download PDFInfo
- Publication number
- WO2013088823A1 WO2013088823A1 PCT/JP2012/076122 JP2012076122W WO2013088823A1 WO 2013088823 A1 WO2013088823 A1 WO 2013088823A1 JP 2012076122 W JP2012076122 W JP 2012076122W WO 2013088823 A1 WO2013088823 A1 WO 2013088823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brake
- current
- pressing force
- stroke
- state
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0006—Monitoring devices or performance analysers
- B66B5/0037—Performance analysers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
- B60T13/748—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on electro-magnetic brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/88—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means
- B60T8/885—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration with failure responsive means, i.e. means for detecting and indicating faulty operation of the speed responsive control means using electrical circuitry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D49/00—Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D65/00—Parts or details
- F16D65/14—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
- F16D65/16—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
- F16D65/18—Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D66/00—Arrangements for monitoring working conditions, e.g. wear, temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/40—Failsafe aspects of brake control systems
- B60T2270/406—Test-mode; Self-diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2121/00—Type of actuator operation force
- F16D2121/14—Mechanical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2121/00—Type of actuator operation force
- F16D2121/18—Electric or magnetic
- F16D2121/20—Electric or magnetic using electromagnets
- F16D2121/22—Electric or magnetic using electromagnets for releasing a normally applied brake
Definitions
- the present invention relates to an electromagnetic brake state diagnosis apparatus and method for diagnosing the state of an electromagnetic brake that obtains a braking force by pressing a movable piece against a brake drum.
- a core that generates electromagnetic force a movable piece that is attracted by supplying electric current to the core, a lining that releases the disk by suction of the movable piece and allows rotation of the drive shaft, and a movable piece that is a disk
- the conventional technique calculates a stroke from the suction time and diagnoses an abnormality, and a current difference when the suction of the movable piece is started
- a brake abnormality diagnosing apparatus having an abnormality diagnosing unit (for example, Patent Document 1 below).
- Patent Document 1 stroke diagnosis is performed by utilizing the fact that the electromagnetic attractive force flowing through the brake coil and the spring force of the braking spring are equal when the movable piece starts to be attracted.
- Patent Document 1 it is not considered that the pressing force of the braking spring changes due to deterioration of the spring or the like. Further, since the suction time and the magnitude of the current drop also change depending on the pressing force, the stroke cannot be calculated if the pressing force changes. Therefore, Patent Document 1 cannot cope with a change in pressing force due to a secular change of a spring or the like.
- This invention is for solving the above-mentioned problems, and an object thereof is to obtain an electromagnetic brake state diagnosis apparatus and method capable of more accurately detecting a brake state.
- a brake shoe that generates a braking force by sliding against a brake drum installed on a drive shaft is pressed against the brake drum by a spring, and the brake shoe is against the pressing force of the spring.
- the electromagnetic brake that controls the control voltage supplied to the brake coil of the electromagnet to be attracted by the control unit
- the current detector that detects the current flowing through the brake coil, the current change of the brake coil when the brake is dropped
- the brake State diagnosis means for diagnosing the state of the brake from the current change of the brake coil
- the state diagnosis means detects the drop start current when the brake is dropped and the suction start current when the brake is sucked, and the detected drop start
- the relationship between the pressing force and the brake stroke is estimated from the current, and the magnet is attracted from the detected suction start current.
- the brake stroke is detected using the estimated relationship between the pressing force and the brake stroke and the relationship between the suction force and the brake stroke.
- the state of the brake can be detected more accurately from the change in the current of the brake coil when the brake is dropped and the change in the current of the brake coil when the brake is sucked.
- FIG. 1 is a configuration diagram showing an entire brake system including an electromagnetic brake state diagnosis device according to Embodiment 1-3 of the present invention.
- FIG. It is a block diagram which shows the state diagnostic apparatus of the electromagnetic brake state diagnostic apparatus which concerns on Embodiment 1 of this invention with a brake coil. It is a timing chart for demonstrating operation
- FIG. 1 is a block diagram showing an entire brake system including an electromagnetic brake state diagnosis apparatus according to Embodiment 1-3 of the present invention.
- the brake drum 1 is installed on the drive shaft A, and a braking force is obtained by a frictional force when the brake shoe 3 is pressed against the brake drum 1 by the pressing force of the spring 2.
- the controller 5 applies a control voltage to the brake coil 4a of the DC electromagnet 4 including the brake coil 4a and the core 4b during the brake suction, thereby energizing the brake shoe 3 with a pressing force by the spring 2. (The pressing force of the brake shoe 3 toward the brake drum 1 side) is overcome and attracted to the brake coil 4a side (for convenience of explanation, the DC electromagnet 4 may be used as the brake coil 4a).
- the control unit 5 deenergizes the brake coil 4a when the brake is dropped, the current value of the brake coil 4a decreases according to a time constant determined by the resistance value and inductance value of the brake coil 4a. Accordingly, when the suction force decreases and becomes smaller than the urging force (pressing force) of the spring 2, the brake coil 4 a and the brake shoe 3 are separated from each other, and the brake shoe 3 is moved toward the brake drum 1 by the pressing force of the spring 2. Fall.
- the brake drum 1, the spring 2, the brake shoe 3, and the brake coil 4a constitute a brake.
- a state diagnosis device 6 is connected to the brake (brake coil 4a).
- FIG. 2 is a block configuration diagram showing the state diagnosis device of the electromagnetic brake state diagnosis device according to the first embodiment of the present invention together with the brake coil.
- the state diagnosis device 6 includes a current detector 7, a fall current detection unit 8, an attraction current detection unit 9, and a state estimation unit 10 that form a state diagnosis unit configured by a computer, for example.
- the current detector 7 detects a coil current i that flows through the brake coil 4a.
- FIG. 3 is a timing chart for explaining the operation of the control unit 5 and the state diagnosis device 6 in the present invention, and shows the change of the brake coil current i when the brake is dropped.
- the operation of the drop current detection unit 8 when the brake is dropped (T1 to T3) will be described with reference to FIG.
- the horizontal axis indicates time
- the vertical axis indicates the current i flowing through the brake coil 4 a obtained from the current detection unit 7.
- the drop current detection unit 8 is a drop that is a current value when the brake starts to drop from the waveform (change) of the coil current i at the time of the brake drop shown in FIG. The starting current id is detected.
- the control unit 5 decreases the voltage applied to the brake coil 4a. As a result, the coil current i flowing to the brake coil 4a starts to decrease. As the coil current i decreases, the attractive force starts to decrease accordingly.
- the brake shoe 3 starts to fall toward the brake drum 1 (that is, starts to move).
- the brake shoe 3 starts to fall, a counter electromotive force is generated and the coil current i increases. From this, it can be detected that the brake shoe 3 has started to fall from the change in the coil current i.
- the brake shoe 3 collides with the brake drum 1 at time T3 and the dropping operation is completed, the brake shoe 3 is stopped, so that the counter electromotive force is eliminated. Therefore, the increase of the coil current i stops, and the coil current i starts decreasing again after the dropping operation is completed.
- the fall current detector 8 detects that the brake shoe 3 starts moving from the change in the coil current i at time T2
- the drop current detector 8 detects a drop start current id that is a current value at the start of the drop.
- FIG. 4 is a timing chart for explaining the operation of the control unit 5 and the state diagnosis device 6 according to the present invention, and shows a change in the brake coil current i during brake suction.
- the operation of the attraction current detector 9 during brake attraction (T4 to T6) will be described with reference to FIG.
- the horizontal axis indicates time
- the vertical axis indicates the current i flowing through the brake coil 4 a obtained from the current detection unit 7.
- the suction current detection unit 9 is a suction value that is a current value when the brake starts suction from the waveform (change) of the coil current i during brake suction shown in FIG. The starting current iu is detected.
- the control unit 5 applies a voltage to the brake coil 4a, thereby causing a current to flow through the brake coil 4a.
- the attractive force starts to increase.
- the brake shoe 3 starts suction (that is, starts to move) toward the brake coil 4a.
- the brake shoe 3 starts to be attracted, a counter electromotive force is generated and the coil current i decreases. From this, it can be detected from the change of the coil current i that the brake shoe 3 has started suction.
- the suction current detection unit 9 detects that the brake shoe 3 has started to move from the change in the coil current i at time T5, the suction current detection unit 9 detects a suction start current iu that is a current value at the start of suction.
- the state estimation unit 10 calculates the brake stroke Xs and the pressing force Fs acting on the brake drum 1 from the drop start current id detected by the drop current detection unit 8 and the suction start current iu detected by the suction current detection unit 9. presume.
- the drop start current id which is the current value when the brake shoe 3 starts moving at time T2, is the value of the coil current i when the attractive force of the electromagnet 4 and the pressing force Fh in the attractive state are balanced.
- the drop start current id also changes.
- FIG. 5 shows the relationship between the drop start current id and the pressing force Fh in the suction state. As shown in FIG. 5, when the pressing force Fh during suction decreases from Fha to Fhb, the drop start current id also changes from ida to idb.
- the state estimation unit 10 stores the relationship between the pressing force Fh and the drop start current id in the suction state in advance in, for example, a memory (not shown: a memory shared by the state diagnosis unit).
- the pressing force Fh in the suction state can be detected from the drop start current id.
- the state estimation unit 10 corrects the relationship between the gap x and the pressing force F (x) using the pressing force Fh in the detected suction state.
- the pressing force F (x) acting on the brake shoe 3 by the spring 2 is expressed by the equation (1) using the gap x between the brake shoe 3 and the brake coil 4a and the pressing force Fh in the suction state.
- FIG. 6 shows the relationship between the gap x and the pressing force F (x). As shown in FIG. 6, when the pressing force Fh in the detected suction state decreases from Fha to Fhb, the pressing force F (x) changes from Fa (x) to Fb (x). Therefore, the relationship between the gap x and the pressing force F (x) can be corrected by detecting the pressing force Fh in the suction state from the drop start current id.
- the state estimation unit 10 detects the brake stroke Xs from the relationship between the corrected gap x and the pressing force F (x) and the suction start current iu shown in FIG. 4, and the corrected gap x and the pressing force.
- the pressing force Fs acting on the brake drum 1 is detected from the relationship of F (x) and the detected stroke Xs.
- the suction start current iu which is a current value when the brake shoe 3 starts to move, is a value of the coil current i when the attractive force of the electromagnet 4 and the pressing force Fs acting on the brake drum 1 are balanced.
- the suction start current iu varies depending on the pressing force F (x) and the stroke Xs.
- the attractive force Fm (x, i) acting on the brake shoe 3 by the brake coil 4a is expressed by the equation (2) using the gap x between the brake shoe 3 and the brake coil 4a and the coil current i.
- FIG. 7 shows the relationship between the pressing force F (x) and the suction force Fms (x) of the brake coil.
- the gap x where the attractive force Fms (x) and the pressing force F (x) at the time of the suction start current iu are balanced is the stroke Xs.
- the state estimation unit 10 calculates the stroke Xs from equation (4).
- the state estimation unit 10 calculates the pressing force Fs acting on the brake drum 1 from the equation (5) using the corrected relationship between the gap x and the pressing force F (x) and the detected stroke Xs. .
- the state diagnosing means including the state estimating unit 10 stores in advance data necessary for state diagnosis such as the known spring constant k, the attractive force coefficient p, the value Xm determined from the leakage flux of the coil, and the like (not shown). ) (And so on).
- the state diagnosis device can detect the pressing force Fs acting on the brake drum 1 in response to the change of the pressing force due to the secular change of the spring and the like, so that the stroke Xs can be accurately detected. Further, the stroke Xs can be easily detected from the waveform (change) of the coil current i without using a measuring instrument such as a displacement sensor or a gap gauge.
- FIG. 8 is a block diagram showing a state diagnosis device for an electromagnetic brake state diagnosis device according to Embodiment 2 of the present invention, together with a brake coil.
- the state diagnosis device 6 has a state determination unit 11 added to the state diagnosis means.
- the state determination unit 11 detects a brake abnormality from the brake stroke Xs obtained from the state estimation unit 10 and the pressing force Fs acting on the brake drum 1. The state determination unit 11 determines whether or not the brake stroke Xs obtained from the state estimation unit 10 satisfies the expression (6).
- X Xs min and Xs max are the range (allowable range) of the normal stroke Xs specified in advance (stored in memory). If the stroke Xs is small (Xs min> Xs), it is considered that the brake shoe 3 is stiff, and conversely, if the stroke Xs is large (Xs> Xs max), the brake shoe 3 is worn. Therefore, when the expression (6) is not satisfied, the state determination unit 11 determines that the stroke Xs is abnormal.
- the state determination unit 11 determines whether or not the pressing force Fs acting on the brake drum 1 obtained from the state estimation unit 10 satisfies the expression (7).
- FFs ⁇ ⁇ min and Fs max are the range (allowable range) of the pressing force Fs under normal conditions (stored in the memory).
- Fs min> Fs the pressing force Fs acting on the brake drum 1
- Fs max the deceleration becomes large. Therefore, when the expression (7) is not satisfied, the state determination unit 11 determines that the pressing force Fs is abnormal.
- FIG. 9 is a block diagram showing a state diagnosis device for an electromagnetic brake state diagnosis device according to Embodiment 3 of the present invention, together with a brake coil.
- the state diagnosis device 6 is provided with a state determination unit 11 ⁇ / b> A instead of the state estimation unit 10 and the state determination unit 11 in the state diagnosis unit.
- the state determination unit 11A detects a brake abnormality from the drop start current id detected by the drop current detection unit 8 and the suction start current iu detected by the suction current detection unit 9.
- FIG. 10 shows the relationship between the stroke Xs and the attractive force Fms (x) of the drop start current id.
- the pressing force F (x, id) varies with the drop start current id.
- the range of the suction start current iu that satisfies the expression (6) for judging the abnormality of the brake stroke Xs is expressed by the expression (8).
- the range of the suction start current iu when the brake stroke Xs is normal varies depending on the drop start current id.
- the state determination unit 11A obtains the relationship between the drop start current id and ix min (id) and ix max (id) through experiments and analysis in advance (stored in the memory), so that the drop start current id and the suction start are obtained.
- An abnormality in the brake stroke Xs can be determined from the current iu. For example, the relationship (based on FIG.
- FIG. 11 shows the relationship between the pressing force Fs acting on the brake drum and the attractive force Fms (x) of the drop start current id.
- the shape of the pressing force F (x, id) is determined by the drop start current id, an abnormality of the pressing force Fs acting on the brake drum 1 is determined.
- the range of is represented by equation (9).
- the range of the suction start current iu when the pressing force Fs acting on the brake drum 1 is normal varies depending on the drop start current id.
- the state determination unit 11A obtains the relationship between the drop start current id and if min (id) and if max (id) by experiments and analysis in advance (stored in a memory), so that the drop start current id and the suction start current iu Therefore, the abnormality of the pressing force Fs acting on the brake drum 1 can be determined. For example, the relationship (based on FIG.
- the abnormality of the pressing force Fs and the stroke Xs is detected from the drop start current id and the suction start current iu.
- the abnormality of the pressing force Fs and the stroke Xs may be detected using. This can be similarly applied to the other embodiments described above and thereafter.
- Embodiment 4 FIG.
- the state determination unit 11 detects the brake abnormality from the brake stroke Xs estimated by the state estimation unit 10 and the value of the pressing force Fs acting on the brake drum 1. May be detected.
- FIG. 12 is a block diagram showing the entire brake system including an electromagnetic brake state diagnosis device according to Embodiment 4 of the present invention.
- the brake system has a torque detector 12 that detects torque information corresponding to the braking torque T generated by the frictional force when the brake shoe 3 is pressed against the brake drum 1.
- the torque detector 12 may detect a braking torque T generated by a frictional force when the brake shoe 3 is pressed against the brake drum 1 using a torque sensor, or may be a brake drum driven at a predetermined speed.
- the braking torque T may be estimated from the braking distance from the start of braking when the frictional force is applied to the brake shoe 3 to 1 until the brake drum 1 stops.
- the braking torque T may be estimated from the braking time from the start of braking when the friction force is applied to the brake drum 1 driven at a predetermined speed by the brake shoe 3 until the brake drum 1 stops.
- FIG. 13 is a block diagram showing a state diagnosis device for an electromagnetic brake state diagnosis device according to Embodiment 4 of the present invention, together with a brake coil and a torque detector.
- the state determination unit 11 ⁇ / b> B detects an abnormality of the brake shoe 3 from the brake stroke Xs obtained from the state estimation unit 10, the pressing force Fs acting on the brake drum 1, and the braking torque T obtained from the torque detector 12. .
- the state determination unit 11B detects the friction coefficient ⁇ of the brake shoe 3 from the pressing force Fs acting on the brake drum 1 obtained from the state estimation unit 10 and the braking torque T obtained from the torque detector 12.
- the braking torque T is expressed by equation (10) using the radius r of the brake drum 1.
- the state determination unit 11B calculates the friction coefficient ⁇ of the brake shoe 3 using the equation (11).
- the state determination unit 11B determines whether the calculated friction coefficient ⁇ of the brake shoe 3 satisfies the expression (12).
- ⁇ min is a range of the normal friction coefficient ⁇ defined in advance ( ⁇ min, r is stored in the memory in advance), and when the expression (12) is not satisfied ( ⁇ min> ⁇ ), the state determination unit 11B It is determined that the brake is abnormal.
- the state determination unit 11B determines whether or not the stroke Xs obtained from the state estimation unit 10 satisfies the equation (6).
- the stroke Xs is normal (Xs min ⁇ Xs ⁇ Xs max) based on the determination result of equation (6), the state determination unit 11B has oil or the like adhering to the brake drum 1 and the friction coefficient ⁇ decreases ( ⁇ min> ⁇ ). It is determined that Further, when the stroke Xs is increased from the result of the expression (6) (Xs> Xs max), it is determined that the friction coefficient ⁇ has decreased due to wear of the brake shoe 3.
- the electromagnetic brake condition diagnosis device can be applied to various electromagnetic brakes.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Braking Arrangements (AREA)
- Cage And Drive Apparatuses For Elevators (AREA)
Abstract
Description
図1はこの発明の実施の形態1-3による電磁ブレーキ状態診断装置を含むブレーキシステム全体を示す構成図である。図1においてブレーキドラム1は駆動軸A上に設置されており、ばね2の押付力によってブレーキシュー3がブレーキドラム1に押付けられたときの摩擦力によって、制動力を得るようになっている。
上記実施の形態1では、ブレーキのストロークXs及びブレーキドラム1に作用する押付力Fsの検出をおこなったが、状態診断装置としては次のようにブレーキの異常を検出してもよい。
図8はこの発明の実施の形態2に係る電磁ブレーキ状態診断装置の状態診断装置を、ブレーキコイルとともに示すブロック構成図である。図8において状態診断装置6は状態診断手段に状態判定部11が追加されている。
上記実施の形態2では、状態判定部11は状態推定部10で推定したブレーキのストロークXs及びブレーキドラム1に作用する押付力Fsの値から、ブレーキの異常を検出したが、次のようにコイル電流iの値からブレーキの異常を検出してもよい。
図9はこの発明の実施の形態3に係る電磁ブレーキ状態診断装置の状態診断装置を、ブレーキコイルとともに示すブロック構成図である。図9において状態診断装置6は状態診断手段に状態推定部10と状態判定部11の代わりに状態判定部11Aが設けられている。
上記実施の形態2では、状態判定部11は状態推定部10で推定したブレーキのストロークXs及びブレーキドラム1に作用する押付力Fsの値から、ブレーキの異常を検出したが、次のようにブレーキの状態を検出してよい。
なお、μ maxとして摩擦係数μの範囲の上限を設定してもよい。
Claims (6)
- 駆動軸上に設置されたブレーキドラムに対し摺動することで制動力を発生するブレーキシューをばねで前記ブレーキドラムに押付けると共に、前記ブレーキシューを前記ばねの押付力に抗して吸引する電磁石のブレーキコイルに供給する制御電圧を制御部で制御する電磁ブレーキにおいて、
前記ブレーキコイルに流れる電流を検出する電流検出器と、
ブレーキ落下時のブレーキコイルの電流変化及びブレーキ吸引時のブレーキコイルの電流変化よりブレーキの状態を診断する状態診断手段と
を備え、
前記状態診断手段が、ブレーキ落下時の落下開始電流及びブレーキ吸引時の吸引開始電流を検出するとともに、
検出した落下開始電流より押付力とブレーキストロークの関係を推定し、検出した吸引開始電流より電磁石の吸引力とブレーキストロークの関係を推定し、推定した押付力とブレーキストロークの関係及び吸引力とブレーキストロークの関係を用いてブレーキストロークと押付力を検出することを特徴とする電磁ブレーキ状態診断装置。 - 前記状態診断手段が、検出したブレーキの押付力及びブレーキストロークの少なくとも一つを用いてそれぞれの所定の許容範囲との比較からブレーキの異常診断をおこなうことを特徴とする請求項1に記載の電磁ブレーキ状態診断装置。
- ブレーキシューがブレーキドラムに与える制動トルクを検出するトルク検出器をさらに備え、前期状態診断手段が、検出したブレーキの押付力及びブレーキストロークと制動トルクよりブレーキの異常診断をおこなうことを特徴とする請求項2に記載の電磁ブレーキ状態診断装置。
- 駆動軸上に設置されたブレーキドラムに対し摺動することで制動力を発生するブレーキシューをばねで前記ブレーキドラムに押付けると共に、前記ブレーキシューを前記ばねの押付力に抗して吸引する電磁石のブレーキコイルに供給する制御電圧を制御部で制御する電磁ブレーキにおいて、
前記ブレーキコイルに流れる電流を検出する電流検出器と、
ブレーキ落下時のブレーキコイルの電流変化及びブレーキ吸引時のブレーキコイルの電流変化よりブレーキの状態を診断する状態診断手段と
を備え、
前記状態診断手段が、ブレーキ落下時の落下開始電流及びブレーキ吸引時の吸引開始電流を検出するとともに、
ブレーキ落下時の落下開始電流の変化に対するブレーキ吸引時の吸引開始電流の許容範囲の変化の関係を予め格納し、検出した落下開始電流により正常時の吸引開始電流の許容範囲を補正し、補正した吸引開始電流の許容範囲と検出した吸引開始電流を比較しブレーキの異常診断をおこなうことを特徴とする電磁ブレーキ状態診断装置。 - 前記状態診断手段が、ブレーキ落下時の落下開始電流及びブレーキ吸引時の吸引開始電流の代わりに、ブレーキ落下時の落下開始時間及びブレーキ吸引時の吸引開始時間を検出して使用することを特徴とする請求項4に記載の電磁ブレーキ状態診断装置。
- 駆動軸上に設置されたブレーキドラムに対し摺動することで制動力を発生するブレーキシューをばねで前記ブレーキドラムに押付けると共に、前記ブレーキシューを前記ばねの押付力に抗して吸引する電磁石のブレーキコイルに供給する制御電圧を制御部で制御する電磁ブレーキにおいて、
ブレーキ落下時の落下開始電流及びブレーキ吸引時の吸引開始電流を検出し、
検出した落下開始電流より押付力とブレーキストロークの関係を推定し、検出した吸引開始電流より電磁石の吸引力とブレーキストロークの関係を推定し、推定した押付力とブレーキストロークの関係及び吸引力とブレーキストロークの関係を用いてブレーキストロークと押付力を検出することを特徴とする電磁ブレーキ状態診断方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112012005188.2T DE112012005188B4 (de) | 2011-12-12 | 2012-10-09 | Diagnosevorrichtung des Bremsenzustands für elektromagnetische Bremse und zugehöriges Verfahren |
CN201280015012.0A CN103459880B (zh) | 2011-12-12 | 2012-10-09 | 电磁制动器状态诊断装置及其方法 |
JP2013549149A JP5653537B2 (ja) | 2011-12-12 | 2012-10-09 | 電磁ブレーキ状態診断装置およびその方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-271032 | 2011-12-12 | ||
JP2011271032 | 2011-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013088823A1 true WO2013088823A1 (ja) | 2013-06-20 |
Family
ID=48612280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076122 WO2013088823A1 (ja) | 2011-12-12 | 2012-10-09 | 電磁ブレーキ状態診断装置およびその方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5653537B2 (ja) |
CN (1) | CN103459880B (ja) |
DE (1) | DE112012005188B4 (ja) |
WO (1) | WO2013088823A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015118746A1 (ja) * | 2014-02-06 | 2015-08-13 | 三菱電機株式会社 | エレベータ制御装置およびエレベータ制御方法 |
CN105905729A (zh) * | 2016-06-30 | 2016-08-31 | 天津市特种设备监督检验技术研究院 | 基于大数据的电梯曳引机制动力监测方法 |
KR20170000412A (ko) * | 2015-06-23 | 2017-01-03 | 자동차부품연구원 | 엔진 성능 측정 장치 및 방법 |
CN106276672B (zh) * | 2015-06-03 | 2018-04-06 | 上海三菱电梯有限公司 | 电梯松闸装置 |
JP2018521262A (ja) * | 2015-07-02 | 2018-08-02 | エスエスベー・ヴィント・ズュステームス・ゲーエムベーハー・ウント・コムパニー・カーゲー | ローターブレード調整デバイスを制御するための方法 |
JP2018205117A (ja) * | 2017-06-05 | 2018-12-27 | マツダ株式会社 | 電磁機構の状態診断方法及び状態診断装置 |
CN110650911A (zh) * | 2017-05-25 | 2020-01-03 | 三菱电机株式会社 | 电梯的控制装置 |
WO2021149172A1 (ja) * | 2020-01-22 | 2021-07-29 | 株式会社日立製作所 | エレベータ用ブレーキ制御装置、並びにエレベータ装置 |
KR20220006624A (ko) * | 2019-06-28 | 2022-01-17 | 콘티넨탈 테베스 아게 운트 코. 오하게 | 회전 부재를 위한 전기 드럼 브레이크 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104791402B (zh) * | 2015-05-05 | 2017-05-10 | 魏伯卿 | 紧急刹车包拉线系统 |
DE102015013611A1 (de) * | 2015-10-21 | 2017-04-27 | Liebherr-Aerospace Lindenberg Gmbh | Stellantrieb für ein Hochauftriebssystem eines Luftfahrzeuges |
CN109641585B (zh) * | 2016-09-22 | 2021-08-27 | 索尤若驱动有限及两合公司 | 用于监控能电磁操纵的制动器的方法和具有能电磁操纵的制动器的车辆 |
CN108203033A (zh) * | 2016-12-19 | 2018-06-26 | 日立电梯(中国)有限公司 | 一种智能电梯制动控制系统 |
DE102017202813A1 (de) | 2017-02-22 | 2018-08-23 | Audi Ag | Verfahren zum Betreiben eines Bremssystems eines Kraftfahrzeugs sowie entsprechendes Bremssystem |
JP6368007B1 (ja) * | 2017-05-26 | 2018-08-01 | 東芝エレベータ株式会社 | ブレーキ故障予兆診断装置 |
CN110857084B (zh) * | 2018-08-22 | 2022-02-01 | 瀚德万安(上海)电控制动系统有限公司 | 电磁制动器的诊断方法、装置以及电子机械制动系统 |
CN109444517B (zh) * | 2018-10-22 | 2020-09-29 | 中国石油集团渤海钻探工程有限公司 | 钻井用电磁刹车故障报警系统的报警方法 |
DE102018131563A1 (de) | 2018-12-10 | 2020-06-10 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Detektion des Lüftens einer elektromagnetischen Sicherheitsbremse |
CN110498312B (zh) * | 2019-08-21 | 2021-08-20 | 日立电梯(中国)有限公司 | 一种电梯抱闸的预诊断方法及其装置 |
CN112744735B (zh) * | 2019-10-30 | 2024-02-06 | 奥的斯电梯公司 | 用于电梯系统的制动装置及其检测方法 |
CN110950261B (zh) * | 2019-11-19 | 2021-06-04 | 日立电梯(中国)有限公司 | 电梯抱闸控制参数生成方法、装置、系统和计算机设备 |
EP4129779A1 (de) * | 2021-08-04 | 2023-02-08 | Siemens Aktiengesellschaft | Verfahren zur zustandsüberwachung eines elektromechanischen bauteils und vorrichtung |
CN115108489B (zh) * | 2022-07-15 | 2024-02-27 | 苏州汇川控制技术有限公司 | 抱闸制动器控制方法、电子设备及存储介质 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139745U (ja) * | 1981-02-26 | 1982-09-01 | ||
JPS616437A (ja) * | 1984-06-20 | 1986-01-13 | Hitachi Ltd | エレベ−タ−電磁ブレ−キの動作状態検出装置 |
JPS61287684A (ja) * | 1985-06-13 | 1986-12-18 | 日立エレベ−タサ−ビス株式会社 | エレベ−タ−電磁ブレ−キの動作状態検出装置 |
JPH07144889A (ja) * | 1993-11-24 | 1995-06-06 | Hitachi Building Syst Eng & Service Co Ltd | 電磁ブレーキ動作判定装置 |
JPH07285750A (ja) * | 1994-04-18 | 1995-10-31 | Mitsubishi Denki Bill Techno Service Kk | 電磁制動装置 |
JPH0842613A (ja) * | 1994-08-02 | 1996-02-16 | Hitachi Building Syst Eng & Service Co Ltd | 電磁ブレーキの良否判定装置 |
JP2008115993A (ja) * | 2006-11-07 | 2008-05-22 | Mitsubishi Electric Corp | 電磁ブレーキ装置、エレベータ用巻上機 |
JP2008168981A (ja) * | 2007-01-10 | 2008-07-24 | Hitachi Ltd | エレベーターブレーキ制御装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0236518A (ja) * | 1988-07-27 | 1990-02-06 | Matsushita Electric Ind Co Ltd | 油浸コンデンサ |
US5546268A (en) * | 1994-07-28 | 1996-08-13 | Eaton Corporation | Electromagnetic device with current regulated closure characteristic |
JPH1160099A (ja) * | 1997-08-28 | 1999-03-02 | Hitachi Building Syst Co Ltd | マグネットブレーキの異常診断装置 |
GB2360335B (en) * | 2000-03-17 | 2004-06-02 | Lansing Linde Ltd | Method for operating a brake which has an electromagnet and electronic controller therefor |
JP3861609B2 (ja) * | 2001-02-28 | 2006-12-20 | 株式会社日立製作所 | ブレーキ倍力装置の制御装置 |
DE10149604A1 (de) * | 2001-10-09 | 2003-04-10 | Pintsch Bamag Gmbh | Verfahren und Vorrichtung zur Überwachung des Betriebszustands einer elektromagnetisch betätigbaren Bremse |
DE10314390B4 (de) * | 2003-03-28 | 2012-11-22 | Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh | Verfahren und Vorrichtung zum Überwachen einer elektromagnetisch betätigbaren Bremse |
KR100973881B1 (ko) * | 2006-07-27 | 2010-08-03 | 미쓰비시덴키 가부시키가이샤 | 엘리베이터 장치 |
FI120986B (fi) * | 2008-11-03 | 2010-05-31 | Kone Corp | Järjestely ja menetelmä jarrun toiminnan valvomiseksi ja hissijärjestelmä |
-
2012
- 2012-10-09 DE DE112012005188.2T patent/DE112012005188B4/de active Active
- 2012-10-09 WO PCT/JP2012/076122 patent/WO2013088823A1/ja active Application Filing
- 2012-10-09 CN CN201280015012.0A patent/CN103459880B/zh active Active
- 2012-10-09 JP JP2013549149A patent/JP5653537B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139745U (ja) * | 1981-02-26 | 1982-09-01 | ||
JPS616437A (ja) * | 1984-06-20 | 1986-01-13 | Hitachi Ltd | エレベ−タ−電磁ブレ−キの動作状態検出装置 |
JPS61287684A (ja) * | 1985-06-13 | 1986-12-18 | 日立エレベ−タサ−ビス株式会社 | エレベ−タ−電磁ブレ−キの動作状態検出装置 |
JPH0236518B2 (ja) * | 1985-06-13 | 1990-08-17 | Hitachi Elevator & Service | |
JPH07144889A (ja) * | 1993-11-24 | 1995-06-06 | Hitachi Building Syst Eng & Service Co Ltd | 電磁ブレーキ動作判定装置 |
JPH07285750A (ja) * | 1994-04-18 | 1995-10-31 | Mitsubishi Denki Bill Techno Service Kk | 電磁制動装置 |
JPH0842613A (ja) * | 1994-08-02 | 1996-02-16 | Hitachi Building Syst Eng & Service Co Ltd | 電磁ブレーキの良否判定装置 |
JP2008115993A (ja) * | 2006-11-07 | 2008-05-22 | Mitsubishi Electric Corp | 電磁ブレーキ装置、エレベータ用巻上機 |
JP2008168981A (ja) * | 2007-01-10 | 2008-07-24 | Hitachi Ltd | エレベーターブレーキ制御装置 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015118746A1 (ja) * | 2014-02-06 | 2015-08-13 | 三菱電機株式会社 | エレベータ制御装置およびエレベータ制御方法 |
CN105683077A (zh) * | 2014-02-06 | 2016-06-15 | 三菱电机株式会社 | 电梯控制装置和电梯控制方法 |
JP6029777B2 (ja) * | 2014-02-06 | 2016-11-24 | 三菱電機株式会社 | エレベータ制御装置、エレベータシステム、およびエレベータ制御方法 |
CN106276672B (zh) * | 2015-06-03 | 2018-04-06 | 上海三菱电梯有限公司 | 电梯松闸装置 |
KR20170000412A (ko) * | 2015-06-23 | 2017-01-03 | 자동차부품연구원 | 엔진 성능 측정 장치 및 방법 |
KR102373628B1 (ko) | 2015-06-23 | 2022-03-15 | 한국자동차연구원 | 엔진 성능 측정 장치 및 방법 |
JP2018521262A (ja) * | 2015-07-02 | 2018-08-02 | エスエスベー・ヴィント・ズュステームス・ゲーエムベーハー・ウント・コムパニー・カーゲー | ローターブレード調整デバイスを制御するための方法 |
CN105905729A (zh) * | 2016-06-30 | 2016-08-31 | 天津市特种设备监督检验技术研究院 | 基于大数据的电梯曳引机制动力监测方法 |
CN110650911A (zh) * | 2017-05-25 | 2020-01-03 | 三菱电机株式会社 | 电梯的控制装置 |
CN110650911B (zh) * | 2017-05-25 | 2021-11-16 | 三菱电机株式会社 | 电梯的控制装置 |
JP2018205117A (ja) * | 2017-06-05 | 2018-12-27 | マツダ株式会社 | 電磁機構の状態診断方法及び状態診断装置 |
KR20220006624A (ko) * | 2019-06-28 | 2022-01-17 | 콘티넨탈 테베스 아게 운트 코. 오하게 | 회전 부재를 위한 전기 드럼 브레이크 |
CN114026347A (zh) * | 2019-06-28 | 2022-02-08 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 用于可旋转元件的电动鼓式制动器 |
CN114026347B (zh) * | 2019-06-28 | 2023-12-05 | 大陆汽车科技有限公司 | 用于可旋转元件的电动鼓式制动器 |
KR102641599B1 (ko) | 2019-06-28 | 2024-03-20 | 콘티넨탈 테베스 아게 운트 코. 오하게 | 회전 부재를 위한 전기 드럼 브레이크 |
WO2021149172A1 (ja) * | 2020-01-22 | 2021-07-29 | 株式会社日立製作所 | エレベータ用ブレーキ制御装置、並びにエレベータ装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5653537B2 (ja) | 2015-01-14 |
DE112012005188T5 (de) | 2014-09-18 |
DE112012005188B4 (de) | 2017-04-27 |
CN103459880A (zh) | 2013-12-18 |
JPWO2013088823A1 (ja) | 2015-04-27 |
CN103459880B (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5653537B2 (ja) | 電磁ブレーキ状態診断装置およびその方法 | |
JP6029777B2 (ja) | エレベータ制御装置、エレベータシステム、およびエレベータ制御方法 | |
JP4574636B2 (ja) | エレベーター装置 | |
JP6603483B2 (ja) | 異常検出装置、および異常検出方法 | |
US10520054B2 (en) | Motor brake system | |
CN107624092A (zh) | 自动化的停车制动器和用于运行自动化的停车制动器的方法 | |
US11078978B2 (en) | Motor brake system | |
US10994412B2 (en) | Robot control device and robot provided with the same | |
JP2017192267A (ja) | ブレーキ検査装置およびブレーキ検査方法 | |
US20200319045A1 (en) | Brake inspection apparatus and numerical control apparatus for inspecting brake device | |
WO2018092322A1 (en) | Diagnosis device for electromagnetic brake | |
CN113260542B (zh) | 获知机电制动器的气隙的方法及相关的制动器和控制器 | |
JP6368007B1 (ja) | ブレーキ故障予兆診断装置 | |
EP3053866A1 (en) | Elevator brake release monitoring | |
WO2012140945A1 (ja) | エレベータ用ブレーキ装置およびエレベータのブレーキ制動方法 | |
JP5920054B2 (ja) | エレベータ用ブレーキ装置及びエレベータ | |
JP4974745B2 (ja) | 乗客コンベア用マグネットブレーキの診断装置 | |
KR20160032630A (ko) | 터치 포인트 학습 장치 및 방법 | |
JP6117622B2 (ja) | エレベータ制動装置の診断装置 | |
WO2018173539A1 (ja) | 診断システム | |
JP7108394B2 (ja) | モータの保持ブレーキ寿命判定システム、モータの保持ブレーキ寿命判定装置及びモータの保持ブレーキ寿命判定方法 | |
JP2020185656A (ja) | ロボットの診断方法 | |
WO2023170873A1 (ja) | エレベーターシステム | |
JP2018205117A (ja) | 電磁機構の状態診断方法及び状態診断装置 | |
JP2004338863A (ja) | エレベータの異常検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280015012.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12858375 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013549149 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120051882 Country of ref document: DE Ref document number: 112012005188 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12858375 Country of ref document: EP Kind code of ref document: A1 |