WO2018233129A1 - 一种宽温度烟气脱硝催化剂的制备方法及其应用 - Google Patents

一种宽温度烟气脱硝催化剂的制备方法及其应用 Download PDF

Info

Publication number
WO2018233129A1
WO2018233129A1 PCT/CN2017/103834 CN2017103834W WO2018233129A1 WO 2018233129 A1 WO2018233129 A1 WO 2018233129A1 CN 2017103834 W CN2017103834 W CN 2017103834W WO 2018233129 A1 WO2018233129 A1 WO 2018233129A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
catalyst
wide temperature
vanadium
denitration catalyst
Prior art date
Application number
PCT/CN2017/103834
Other languages
English (en)
French (fr)
Inventor
李俊华
甘丽娜
彭悦
于双江
王栋
陈建军
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to US16/332,984 priority Critical patent/US11161106B2/en
Publication of WO2018233129A1 publication Critical patent/WO2018233129A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/40Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
    • B01J2523/47Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/50Constitutive chemical elements of heterogeneous catalysts of Group V (VA or VB) of the Periodic Table
    • B01J2523/55Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/60Constitutive chemical elements of heterogeneous catalysts of Group VI (VIA or VIB) of the Periodic Table
    • B01J2523/69Tungsten

Definitions

  • the invention belongs to the technical field of nitrogen oxide control in environmental protection, and particularly relates to a preparation method and application of a wide temperature flue gas denitration catalyst.
  • Nitrogen oxides are one of the major pollutants in global air pollution, causing environmental problems such as photochemical smog, acid rain and ozone layer damage, which seriously affect people's living environment and quality of life, and have attracted widespread attention from all over the world.
  • countries are setting increasingly stringent emission standards for fixed and mobile source combustion emissions.
  • Ammonia selective catalytic reduction (NH 3 -SCR) with NH 3 as a reducing agent has been widely used in the removal of NOx from coal-fired power plants, industrial boilers, diesel exhaust, etc., where V 2 O 5 -WO 3 / TiO 2 is a widely used commercial SCR catalyst with an activity temperature window of 300-400 °C.
  • the object of the present invention is to provide a preparation method and application of a wide temperature flue gas denitration catalyst, which uses titanium dioxide or titanium tungsten powder as a carrier, and an organic vanadium compound as a vanadium precursor, through a machine.
  • Ammonia gas selective catalytic reduction (NH 3 -SCR) catalyst powder with wide active temperature window is prepared by ball milling method and special heat treatment method; the catalyst is suitable for flue gas conditions at a wide temperature (200-500 ° C), and high denitration rate is obtained.
  • NH 3 -SCR ammonia gas selective catalytic reduction
  • the invention discloses a preparation method of a wide temperature flue gas denitration catalyst, which adopts an organic vanadium compound as a vanadium precursor, titanium white powder or titanium tungsten powder as a carrier, and is prepared by mechanical ball milling and heat treatment.
  • the organic vanadium compound is one or both of vanadyl oxalate and vanadyl acetylacetonate.
  • the content of tungsten trioxide in the carrier titanium tungsten powder is 3-10 wt.%.
  • the active component of the denitration catalyst is vanadium pentoxide.
  • the vanadium precursor is used in an amount of from 1 to 10 wt.%, based on the vanadium pentoxide which can be produced, to ensure that the vanadium pentoxide is contained in the catalyst in an amount of from 1 to 10% by weight.
  • Step 1 preliminary mixing the carrier and the vanadium precursor, and then adding to the ball mill tank for ball milling, ball milling for 30-120 min, rotation speed of 20-80 rpm;
  • Step 2 obtaining a wide temperature denitration SCR catalyst powder by heat treatment, wherein the heat treatment refers to drying and roasting, and the procedure is as follows:
  • Rapid temperature rise rapid temperature rise to 110 ° C at 10 ° C / min at room temperature
  • the wide temperature flue gas denitration catalyst prepared by the invention can be applied to the removal of fixed source flue gas nitrogen oxides.
  • the reaction conditions are preferably: temperature 150-450 ° C, atmospheric pressure, space velocity 60,000 h -1 , flue gas concentration: NO 500 ppm, NH 3 400 or 500 ppm, O 2 5 vol.%.
  • the vanadium precursor prepared by using the organic vanadium compound as a catalyst in the invention has higher surface atom concentration of vanadium on the surface of the catalyst, more vanadium species in the polymerization state and lower reduction temperature of vanadium oxide, thereby obtaining higher low temperature denitration activity, Excellent SCR denitration catalyst for sulfur and water resistance.
  • the wide temperature denitration catalyst of the invention has little change to the traditional vanadium tungsten titanium catalyst system, but adopts mechanical ball milling method, and the activity and sulfur resistance and water resistance are obviously improved, providing a green, high efficiency, low cost, operation.
  • a simple SCR denitration powder catalyst preparation technique is a simple SCR denitration powder catalyst preparation technique.
  • the ammonia-selective catalytic reduction (NH 3 -SCR) catalyst powder of the wide active temperature window obtained by the invention is suitable for denitration of fixed source flue gas at a wide temperature (200-450 ° C).
  • a wide temperature 200-450 ° C.
  • the denitration catalyst has high activity at 200-450 ° C, and has good anti-sulfur and anti-poisoning performance.
  • FIG. 1 is a schematic view showing the denitration efficiency of a powder catalyst obtained in an example of the present invention.
  • Step 1 98g titanium tungsten powder and 3.4g vanadyl oxalate are initially mixed, then added to the ball mill tank for ball milling, ball milling for 30min, rotation speed 40 rev / min;
  • Step 2 The ball mill mixture is taken out and dried at 110 ° C for 8 h, and calcined in an air atmosphere: rapid temperature rise to 110 ° C at 10 ° C / min at room temperature; ramp up to 300 ° C at a slow rate of 2 ° C / min; rapid temperature rise to 10 ° C / min to 500 ° C, and kept at 500 ° C for 4 h; Finally, with the furnace cooling, a wide temperature denitration SCR catalyst powder was obtained.
  • Figure 1 shows the results of catalyst denitration activity test.
  • the test conditions are: tableting, crushing and sieving the catalyst powder, selecting 50-100 mesh catalyst particles for denitration activity evaluation, 1.0 g catalyst, NO 500 ppm, NH 3 400 ppm, O 2 5vol .%, N 2 balance, total flue gas flow rate is 1 L/min, gas airspeed GHSV 60,000 h -1 (standard condition).
  • Step 1 98g titanium tungsten powder and 6.0g acetylacetonate vanadium are initially mixed, and then added to the ball mill tank for ball milling, ball milling 40min, rotation speed 30rev / min;
  • Step 2 The ball mill mixture is taken out and dried at 110 ° C for 8 h, and calcined in an air atmosphere: rapid temperature rise to 110 ° C at 10 ° C / min at room temperature; ramp up to 300 ° C at a slow rate of 2 ° C / min; rapid temperature rise to 10 ° C / min to 500 ° C, and kept at 500 ° C for 4 h; Finally, with the furnace cooling, a wide temperature denitration SCR catalyst powder was obtained.
  • Figure 1 shows the results of catalyst denitration activity test.
  • the test conditions are: tableting, crushing and sieving the catalyst powder, selecting 50-100 mesh catalyst particles for denitration activity evaluation, 1.0 g catalyst, NO 500 ppm, NH 3 400 ppm, O 2 5vol .%, N 2 balance, total flue gas flow rate is 1 L/min, gas airspeed GHSV 60,000 h -1 (standard condition).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

一种宽温度烟气脱硝催化剂的制备方法及其应用,采用有机钒化合物为钒前驱体,钛白粉或钛钨粉为载体,通过机械球磨法和热处理制备,所得催化剂适用于宽温度的固定源烟气脱硝,与现有技术相比,采用机械球磨法,活性和抗硫抗水中毒性能明显提高,且不使用溶剂及其他添加剂,提供了一种绿色、高效率、低成本、操作简单的SCR脱硝粉体催化剂的制备技术;通过有机钒前驱体与载体的相互作用,催化剂的钒表面原子浓度更高、聚合态钒物种较多、钒氧化物更容易被还原,从而获得更高低温脱硝活性,宽温度烟气脱硝催化剂在200-450℃具有较高活性,且抗硫抗水中毒性能良好。

Description

一种宽温度烟气脱硝催化剂的制备方法及其应用 技术领域
本发明属于环境保护中的氮氧化物控制技术领域,特别涉及一种宽温度烟气脱硝催化剂的制备方法及其应用。
背景技术
氮氧化物(NOx)是全球大气污染主要污染物之一,引起光化学烟雾、酸雨、臭氧层破坏等环境问题,严重影响人们的生存环境和生活质量,引起了世界各国的广泛关注。针对固定源和移动源燃烧排放,各国制定了日益严格的排放标准。氨气选择性催化还原技术(NH3-SCR)以NH3作为还原剂,已经广泛应用于燃煤电厂、工业锅炉、柴油车尾气等NOx的脱除,其中,V2O5-WO3/TiO2是应用广泛的商业SCR催化剂,活性温度窗口为300-400℃。与发达国家不同,中国有30%工业锅炉的尾气排放温度为150-300℃,例如,垃圾焚烧炉、供暖锅炉、水泥窑和烧结窑等;且电厂锅炉低负荷工作时,烟气出口温度通常低于300℃,利用现有的商业催化剂进行脱硝无法满足排放标准。由于这一原因,来自这些工业锅炉低温烟气中的NOx实际上没有得到有效脱除和监管。
但这样的排放问题已经不容忽视,我国已经制定了愈来愈严格的排放标准,2012年1月1日开始实施《火电厂大气污染物排放标准》(GB13223-2011),国标规定,2014年7月1日起,现有火力发电锅炉的NOx最高允许排放浓度限值为100mg/Nm3。值得注意的是,更新和取代这些具有高NOx排放量的燃煤工业锅炉代价很高,并不现实。因此,为了降低上述工业锅炉的NOx排放量,一种可行的解决方案是开发具有宽工作温度窗口、低成本的SCR脱硝催化剂。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种宽温度烟气脱硝催化剂的制备方法及其应用,采用钛白粉或钛钨粉为载体,有机钒化合物为 钒前驱体,通过机械球磨法和特殊热处理方法制备得到宽活性温度窗口的氨气选择性催化还原(NH3-SCR)催化剂粉体;该催化剂适用于宽温度(200-500℃)的烟气条件,获得高脱硝率,同时不使用溶剂和其他添加剂,更加绿色环保,有效降低生产成本,是一种更利于工业化生产的脱硝催化剂制备技术。
为了实现上述目的,本发明采用的技术方案是:
一种宽温度烟气脱硝催化剂的制备方法,采用有机钒化合物为钒前驱体,钛白粉或钛钨粉为载体,通过机械球磨法和热处理制备。
所述有机钒化合物为草酸氧钒、乙酰丙酮氧钒中的一种或两种。
所述载体钛钨粉中三氧化钨的含量为3-10wt.%。
所述脱硝催化剂的活性组分为五氧化二钒。
所述钒前驱体的用量以所能产生的五氧化二钒计,保证五氧化二钒在催化剂中的含量为1-10wt.%。
所述制备步骤具体如下:
步骤一:将载体和钒前驱体初步混合,然后加入球磨罐中进行球磨,球磨30-120min,转速20-80转/min;
步骤二:经热处理得到宽温度脱硝SCR催化剂粉体,所述热处理是指干燥、焙烧,程序如下:
(1)干燥:至于烘箱内110℃下干燥8h;
(2)马弗炉中焙烧:
快速升温,室温下10℃/min快速升温至110℃;
慢速升温,以2℃/min慢速升温至300℃;
快速升温,以10℃/min快速升温至500℃,并在500℃保温4h;
最后,随炉冷却,得到宽温度脱硝SCR催化剂成品。
本发明制备所得宽温度烟气脱硝催化剂可应用于固定源烟气氮氧化物脱除。应用时,反应条件最好为:温度150-450℃,常压,空速60,000h-1,烟气浓度:NO 500ppm,NH3 400或500ppm,O2 5vol.%。
与现有技术相比,本发明的有益效果是:
1.本发明采用有机钒化合物作为催化剂制备的钒前驱体,催化剂表面的钒表面原子浓度更高、聚合态钒物种较多以及钒氧化物的还原温度更低,获得具有更高低温脱硝活性、优异的抗硫抗水中毒性能的SCR脱硝催化剂。
2.本发明的宽温度脱硝催化剂对传统钒钨钛催化剂体系改动不大,但采用机械球磨法,活性和抗硫抗水中毒性能明显提高,提供了一种绿色、高效率、低成本、操作简单的SCR脱硝粉体催化剂的制备技术。
综上,本发明所得宽活性温度窗口的氨气选择性催化还原(NH3-SCR)催化剂粉体适用于宽温度(200-450℃)的固定源烟气脱硝。通过有机钒前驱体与载体的相互作用,催化剂的钒表面原子浓度更高、聚合态钒物种较多、钒氧化物更容易被还原,从而获得更高低温脱硝活性,本发明的宽温度烟气脱硝催化剂在200-450℃具有较高活性,且抗硫抗水中毒性能良好。
附图说明
图1是本发明实施例所得粉体催化剂的脱硝效率示意图。
具体实施方式
下面结合具体实例,对本发明进行进一步阐述说明。
实施例一
一种宽温度烟气脱硝粉体催化剂的制备
步骤一:将98g钛钨粉和3.4g草酸氧钒初步混合,然后加入球磨罐中进行球磨,球磨30min,转速40转/min;
步骤二:将球磨混合物取出于110℃干燥8h,空气氛围下焙烧:室温下10℃/min快速升温至110℃;以2℃/min慢速升温至300℃;以10℃/min快速升温至500℃,并在500℃保温4h;最后,随炉冷却,得到宽温度脱硝SCR催化剂粉体。
图1为催化剂脱硝活性测试结果,测试条件:将催化剂粉末压片、破碎、筛分,选取50-100目的催化剂颗粒用于脱硝活性评价,1.0g催化剂,NO 500ppm,NH3 400ppm,O2 5vol.%,N2平衡,烟气总流量为1L/min,气体空速GHSV 60,000h-1(标况)。
从测试结果可以看出,随着反应温度的升高,草酸氧钒催化剂的脱硝效率先升高然后保持在80%,脱硝效率高于传统偏钒酸铵催化剂,在低温反应窗口(<300℃)优势尤为明显。
实施例二
一种宽温度烟气脱硝粉体催化剂的制备
步骤一:将98g钛钨粉和6.0g乙酰丙酮氧钒初步混合,然后加入球磨罐中进行球磨,球磨40min,转速30转/min;
步骤二:将球磨混合物取出于110℃干燥8h,空气氛围下焙烧:室温下10℃/min快速升温至110℃;以2℃/min慢速升温至300℃;以10℃/min快速升温至500℃,并在500℃保温4h;最后,随炉冷却,得到宽温度脱硝SCR催化剂粉体。
图1为催化剂脱硝活性测试结果,测试条件:将催化剂粉末压片、破碎、筛分,选取50-100目的催化剂颗粒用于脱硝活性评价,1.0g催化剂,NO 500ppm,NH3 400ppm,O2 5vol.%,N2平衡,烟气总流量为1L/min,气体空速GHSV 60,000h-1(标况)。
从测试结果可以看出,乙酰丙酮氧钒催化剂的脱硝活性高于其他催化剂,具有优异的脱硝性能。

Claims (9)

  1. 一种宽温度烟气脱硝催化剂的制备方法,其特征在于,采用有机钒化合物为钒前驱体,钛白粉或钛钨粉为载体,通过机械球磨法和热处理制备。
  2. 根据权利要求1所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述有机钒化合物为草酸氧钒、乙酰丙酮氧钒中的一种或两种。
  3. 根据权利要求1所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述载体钛钨粉中三氧化钨的含量为3-10wt.%。
  4. 根据权利要求1所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述脱硝催化剂的活性组分为五氧化二钒。
  5. 根据权利要求1所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述钒前驱体的用量以所能产生的五氧化二钒计,保证五氧化二钒在催化剂中的含量为1-10wt.%。
  6. 根据权利要求1所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述制备步骤具体如下:
    步骤一:将载体和钒前驱体初步混合,然后加入球磨罐中进行球磨,球磨30-120min,转速20-80转/min;
    步骤二:经热处理得到宽温度脱硝SCR催化剂粉体。
  7. 根据权利要求6所述宽温度烟气脱硝催化剂的制备方法,其特征在于,所述热处理是指干燥、焙烧,程序如下:
    (1)干燥:至于烘箱内110℃下干燥8h;
    (2)马弗炉中焙烧:
    快速升温,室温下10℃/min快速升温至110℃;
    慢速升温,以2℃/min慢速升温至300℃;
    快速升温,以10℃/min快速升温至500℃,并在500℃保温4h;
    最后,随炉冷却,得到宽温度脱硝SCR催化剂成品。
  8. 权利要求1制备所得宽温度烟气脱硝催化剂在固定源烟气氮氧化物脱除中的应用。
  9. 根据权利要求8所述应用,其特征在于,反应条件为:温度150-450℃,常压,空速60,000h-1,烟气浓度:NO 500ppm,NH3400或500ppm,O25vol.%。
PCT/CN2017/103834 2017-06-22 2017-09-28 一种宽温度烟气脱硝催化剂的制备方法及其应用 WO2018233129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,984 US11161106B2 (en) 2017-06-22 2017-09-28 Preparation method of denitration catalyst with wide operating temperature range for flue gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710481159.3A CN107282034A (zh) 2017-06-22 2017-06-22 一种宽温度烟气脱硝催化剂的制备方法及其应用
CN201710481159.3 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018233129A1 true WO2018233129A1 (zh) 2018-12-27

Family

ID=60097310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103834 WO2018233129A1 (zh) 2017-06-22 2017-09-28 一种宽温度烟气脱硝催化剂的制备方法及其应用

Country Status (3)

Country Link
US (1) US11161106B2 (zh)
CN (1) CN107282034A (zh)
WO (1) WO2018233129A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111672504A (zh) * 2020-06-03 2020-09-18 北京海顺德钛催化剂有限公司 一种用于移动床和/或流化床脱硝装置的催化剂及其制备方法和应用
CN113600232A (zh) * 2021-08-12 2021-11-05 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN114247440A (zh) * 2021-11-26 2022-03-29 华电青岛环保技术有限公司 一种scr脱硝催化剂的制备方法
CN114534703A (zh) * 2022-03-21 2022-05-27 福建朝旭新能源科技有限公司 一种可用于燃煤烟气脱硝的脱硝剂的制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108607538A (zh) * 2018-03-30 2018-10-02 南京师范大学 一种以高钛渣为载体的脱硝催化剂的制备方法及其所得催化剂和应用
CN108636430B (zh) * 2018-04-20 2020-10-13 华东理工大学 一种钒修饰的磷酸锆多相催化剂的制备方法及其应用
CN108568296A (zh) * 2018-04-23 2018-09-25 中国科学院生态环境研究中心 一种钒钛氧化物催化剂及其制备方法和应用
CN109529812A (zh) * 2018-12-05 2019-03-29 北京工业大学 一种适用于中高温高湿烟气条件的scr催化剂及制备方法
CN109731593B (zh) * 2019-02-01 2020-07-31 山东大学 Scr催化剂粉体及其制备方法和应用
CN110124677A (zh) * 2019-06-24 2019-08-16 江苏浩日朗环保科技有限公司 脱硝催化剂及其制备方法
CN110721701B (zh) * 2019-10-16 2020-08-18 山东大学 钴-铬改性催化剂及其制备方法和应用
CN111036251B (zh) * 2019-11-22 2022-07-08 大唐南京环保科技有限责任公司 一种高耐磨平板式脱硝脱汞催化剂及制备方法
CN111266005A (zh) * 2020-03-23 2020-06-12 安徽锦科环保科技有限公司 一种利用Mn基低温SCR催化剂对污泥烧结处理过程中尾气的处理方法
CN112516995A (zh) * 2020-12-09 2021-03-19 安徽艾可蓝环保股份有限公司 一种新型钒基scr催化剂及其制备方法和应用
CN112495368B (zh) * 2020-12-21 2022-03-01 中节能万润股份有限公司 一种高效脱硝活性催化剂的制备方法
CN113244908A (zh) * 2021-06-07 2021-08-13 中国科学院城市环境研究所 一种钒基scr催化剂及其制备方法和用途
CN113447614B (zh) * 2021-06-21 2022-08-09 中国原子能科学研究院 放射性废液煅烧过程中脱硝率测量方法
CN113680354B (zh) * 2021-08-27 2022-10-04 浙江大学 一种硫酸氧钛负载五氧化二铌的高温脱硝催化剂
CN113769534B (zh) * 2021-10-18 2023-04-25 美埃(中国)环境科技股份有限公司 去除空气中一氧化氮和二氧化氮气体的活性炭改性方法
CN116135304A (zh) * 2021-11-16 2023-05-19 宝山钢铁股份有限公司 一种脱硝催化剂及其制备方法和应用
CN114505066B (zh) * 2022-01-27 2023-09-29 中国建筑材料科学研究总院有限公司 脱硝催化剂及其制备方法以及脱硝方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125286A (en) * 1977-04-08 1978-11-01 Ngk Insulators Ltd Catalyst for removing nitrogen oxide from exhaust gas
US20090060810A1 (en) * 2006-04-03 2009-03-05 Sung Ho Hong Preparation Method of Vanadium/Titania-Based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Winow Through Introduction of Ball Milling, and Use Thereof
CN101433837A (zh) * 2008-12-17 2009-05-20 天津大学 宽活性温度窗口的scr催化剂及其制备方法和应用
CN103596680A (zh) * 2011-06-27 2014-02-19 韩国电力技术株式会社 使用干法球磨制备去除氮氧化物的催化剂的方法
CN106111135A (zh) * 2016-06-24 2016-11-16 北京工业大学 一种低温耐硫钒钛系脱硝催化剂及制备方法
CN106423143A (zh) * 2016-05-30 2017-02-22 南京大学扬州化学化工研究院 一种低温脱除烟气中氮氧化物的催化剂及其制法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171347A (en) * 1975-08-18 1979-10-16 Union Oil Company Of California Catalytic incineration of hydrogen sulfide from gas streams
KR100686381B1 (ko) * 2005-09-27 2007-02-22 한국전력기술 주식회사 넓은 활성온도 대역에서 질소산화물 및 다이옥신을제거하기 위한 천연망간광석을 포함하는 바나듐/티타니아계촉매 및 이의 사용방법
JP2015147165A (ja) * 2014-02-05 2015-08-20 イビデン株式会社 ハニカム触媒及びハニカム触媒の製造方法
CN105126813A (zh) * 2015-10-09 2015-12-09 清华大学 高比表面脱硝催化剂及其制备和应用
CN106140327A (zh) * 2016-08-23 2016-11-23 成都万里蓝环保科技有限公司 用废弃钒基scr催化剂制备的再生催化粉体及其方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125286A (en) * 1977-04-08 1978-11-01 Ngk Insulators Ltd Catalyst for removing nitrogen oxide from exhaust gas
US20090060810A1 (en) * 2006-04-03 2009-03-05 Sung Ho Hong Preparation Method of Vanadium/Titania-Based Catalyst Showing Excellent Nitrogen Oxide-Removal Performance at Wide Temperature Winow Through Introduction of Ball Milling, and Use Thereof
CN101433837A (zh) * 2008-12-17 2009-05-20 天津大学 宽活性温度窗口的scr催化剂及其制备方法和应用
CN103596680A (zh) * 2011-06-27 2014-02-19 韩国电力技术株式会社 使用干法球磨制备去除氮氧化物的催化剂的方法
CN106423143A (zh) * 2016-05-30 2017-02-22 南京大学扬州化学化工研究院 一种低温脱除烟气中氮氧化物的催化剂及其制法和应用
CN106111135A (zh) * 2016-06-24 2016-11-16 北京工业大学 一种低温耐硫钒钛系脱硝催化剂及制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111672504A (zh) * 2020-06-03 2020-09-18 北京海顺德钛催化剂有限公司 一种用于移动床和/或流化床脱硝装置的催化剂及其制备方法和应用
CN111672504B (zh) * 2020-06-03 2024-03-19 北京海顺德钛催化剂有限公司 一种用于移动床和/或流化床脱硝装置的催化剂及其制备方法和应用
CN113600232A (zh) * 2021-08-12 2021-11-05 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN113600232B (zh) * 2021-08-12 2023-09-19 北京华电光大环境股份有限公司 一种用于富砷高灰烟气脱硝的平板式scr催化剂及其制备方法
CN114247440A (zh) * 2021-11-26 2022-03-29 华电青岛环保技术有限公司 一种scr脱硝催化剂的制备方法
CN114534703A (zh) * 2022-03-21 2022-05-27 福建朝旭新能源科技有限公司 一种可用于燃煤烟气脱硝的脱硝剂的制备方法
CN114534703B (zh) * 2022-03-21 2023-09-19 福建朝旭新能源科技有限公司 一种可用于燃煤烟气脱硝的脱硝剂的制备方法

Also Published As

Publication number Publication date
US11161106B2 (en) 2021-11-02
CN107282034A (zh) 2017-10-24
US20190224663A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018233129A1 (zh) 一种宽温度烟气脱硝催化剂的制备方法及其应用
CN104162349B (zh) 一种抑制低温脱硝催化剂so2中毒的方法
CN102274723B (zh) 基于介孔TiO2载体的SCR烟气脱硝催化剂及制备方法
WO2015161627A1 (zh) 一种用于400℃~600℃烟气蜂窝脱硝催化剂及其制备方法
WO2015158139A1 (zh) 一种有效抑制so2氧化的脱硝催化剂的制备方法
CN103816799B (zh) 提高sncr脱硝效率的脱硝剂及其制备方法
CN102259009B (zh) 基于硫酸根促进的TiO2载体的SCR烟气脱硝催化剂及制备方法
CN103962126B (zh) 一种用于氮氧化合物选择性催化还原的催化剂及制备方法
CN103769083B (zh) 一种高效脱硝复合氧化物催化剂及其制备方法和应用
CN110354843A (zh) 一种薄壁蜂窝式低温抗硫scr脱硝催化剂及其制备方法
CN109821531B (zh) 一种基于氧化铈载体的平板式高温抗硫scr脱硝催化剂及其制备方法
CN111659413A (zh) 一种低温稀土基抗硫耐水脱硝催化剂及其制备方法
CN105879879A (zh) 一种高抗硫超低温scr脱硝催化剂及其制备方法
CN102205240A (zh) 基于TiO2-SnO2复合载体的SCR烟气脱硝催化剂及制备方法
CN105413677A (zh) 一种电厂除尘后用低温脱硝催化剂及其制备方法
CN105148954A (zh) 一种低温高效scr脱硝催化剂及其制备方法
CN103084166A (zh) 一种具有多级大孔-介孔结构的低温scr脱硝催化剂及其制备方法
CN106475108B (zh) 一种多效脱硝催化剂及其制备方法
CN108579731A (zh) 一种低温脱硝碳基催化剂的制备方法
CN101367046B (zh) 一种用于去除氮氧化物的阴离子修饰催化剂的制备方法
CN113244908A (zh) 一种钒基scr催化剂及其制备方法和用途
CN103537273B (zh) 一种协同脱汞的脱硝催化剂及其制备方法
CN107537514A (zh) 锰铁钴整体式scr低温催化剂制备方法、产品和其应用
CN107262110B (zh) 一种三元复合型脱硝脱汞催化剂及其制备方法
CN115672312A (zh) 一种中空结构无钒稀土基宽温脱硝催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914691

Country of ref document: EP

Kind code of ref document: A1