WO2018225959A1 - 음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지 - Google Patents

음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2018225959A1
WO2018225959A1 PCT/KR2018/005406 KR2018005406W WO2018225959A1 WO 2018225959 A1 WO2018225959 A1 WO 2018225959A1 KR 2018005406 W KR2018005406 W KR 2018005406W WO 2018225959 A1 WO2018225959 A1 WO 2018225959A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
lithium
formula
Prior art date
Application number
PCT/KR2018/005406
Other languages
English (en)
French (fr)
Inventor
정동섭
채오병
김은경
정주호
이창주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to PL18813915T priority Critical patent/PL3534440T3/pl
Priority to CN201880004732.4A priority patent/CN110024186B/zh
Priority to US16/343,239 priority patent/US11165055B2/en
Priority to EP18813915.8A priority patent/EP3534440B1/en
Publication of WO2018225959A1 publication Critical patent/WO2018225959A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode and a lithium secondary battery including the same, and more particularly, to a negative electrode active material having improved stability at high temperature exposure or overcharge, a negative electrode and a lithium secondary battery comprising the same.
  • Lithium secondary batteries have been commercialized and widely used. However, lithium secondary batteries tend to explode or ignite when exposed to high temperatures or overcharge due to high energy density and output density, and in fact, recent battery explosion and ignition events of mobile phones have been reported.
  • the passivation film Solid Electrolyte Interphase, SEI
  • SEI Solid Electrolyte Interphase
  • Electrolyte is further decomposed at the electrode surface where the film is decomposed, and gas and heat are generated to further increase the internal temperature of the battery. If the internal temperature rises further, the electrolyte, conductive material, and binder constituting the battery may be decomposed and oxygen may be released from the anode to ignite or explode. In this case, there is a greater safety risk because the higher the state of charge (SOC) of the battery, i.e., the higher the charged energy, this is accelerated and the calorific value increases.
  • SOC state of charge
  • the cathode active material no longer releases lithium, and thus the cathode voltage increases, and thus heat may be generated together with elution of the active material, decomposition of the electrolyte, and collapse of the structure.
  • the lithium since the lithium is forcibly supplied with more than the amount of lithium that can be stored in the active material, lithium ions are not stored in the negative electrode active material and are electrodeposited on the surface to grow. Metal lithium may grow into a needle to promote side reactions with the electrolyte, as well as to cause internal short circuits through the separator and in contact with the positive electrode.
  • safety devices such as PCM (Protection Circuit Module), PTC (Positive Temperature Coefficient), CID (Current Interruption Device), which suppress overcharge, are used to improve the stability of lithium secondary batteries, or flame retardants may be used in electrolyte or electrode active materials.
  • PCM Process Circuit Module
  • PTC Pressure Temperature Coefficient
  • CID Current Interruption Device
  • Patent Document 1 KR10-2000-0051682 A
  • the present invention is to solve the above problems, to provide a negative electrode active material that can significantly improve the stability of the battery without reducing the battery performance, such as cycle characteristics, and to provide a negative electrode and a lithium secondary battery comprising the same .
  • the present invention is negative electrode active material particles including artificial graphite in the form of secondary particles and a carbon layer formed on the surface of the artificial graphite; And it is formed on the negative electrode active material particles, and provides a negative electrode active material comprising a coating layer containing a compound represented by the following formula (1).
  • X is a metal that is not reactive with lithium
  • Y is a metal or semimetal that is reactive with lithium
  • a is an integer of 1 to 5
  • b is an integer of 1 to 3.
  • the compound represented by the formula (1) may be a bond dissociation energy (bond dissociation energy) between X and Y is 160kJ / mol to 250kJ / mol.
  • X is at least one element selected from the group consisting of Cu, Ni, Co, Ti, Cr, Mn, Fe, V, Sc, Mo, W, Hg, and Ru
  • Y May be at least one element selected from the group consisting of Si, Sn, Al, Ga, Pb, Ge, In, Bi, Ag, Pd, Sb, Zn and Mg, and more specifically, represented by Chemical Formula 1
  • the compound may be Cu 3 Si or Cu 3 Sn.
  • the compound represented by Formula 1 may be included in an amount of 0.1% to 10% by weight, preferably 0.5% to 5% by weight based on the total weight of the negative electrode active material.
  • the compound represented by Formula 1 may be in the form of a powder having an average particle diameter (D 50 ) of 1 ⁇ m to 5 ⁇ m, secondary particles of the artificial graphite is 10 ⁇ m to 30 ⁇ m of the average particle diameter (D 50 ) Can be.
  • the present invention provides a negative electrode including the negative electrode active material according to the present invention as described above, and a lithium secondary battery including the negative electrode.
  • the negative electrode active material according to the present invention has a coating layer comprising a material having a high reactivity with lithium at high temperature on the surface of the negative electrode active material at room temperature, the negative electrode active material when the battery is exposed to high temperature or overcharged Lithium ions stored in the material react with the material in the coating layer to lower the state of charge of the negative electrode active material and to suppress the needle growth of metallic lithium, thereby suppressing ignition and explosion of the battery.
  • the negative electrode active material according to the present invention uses artificial graphite in the form of secondary particles having low expandability and orientation, and forms a carbon layer on the surface of the artificial graphite, thereby realizing a battery having excellent stability but not deteriorating life characteristics. Can be.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the negative electrode active material according to the present invention includes negative electrode active material particles including artificial graphite in the form of secondary particles and a carbon layer formed on the surface of the artificial graphite; And a coating layer formed on the negative electrode active material particles and including the compound represented by the following Chemical Formula 1.
  • X is a metal that is not reactive with lithium
  • Y is a metal or semimetal that is reactive with lithium
  • a is an integer of 1 to 5
  • b is an integer of 1 to 3.
  • the negative electrode active material according to the present invention uses artificial graphite in the form of secondary particles, wherein the secondary particles mean particles formed by agglomeration, bonding, or granulation of a plurality of primary particles.
  • Primary particles refer to individual particles that are not aggregated.
  • natural graphite having a large capacity per unit weight is mainly used as a carbon-based negative electrode active material.
  • the degree of orientation during rolling of the electrode decreases the ingress and egress characteristics of lithium ions, thereby resulting in resistance and lifespan characteristics. There is a problem of falling.
  • artificial graphite has a relatively small orientation when rolling the electrode and has low expandability, thus showing long life characteristics.
  • the artificial graphite in the form of secondary particles used in the present invention has an advantage that the orientation is smaller than the artificial graphite in the form of primary particles, has a low expandability and excellent in long life and rapid charging performance.
  • the negative electrode active material according to the present invention uses negative electrode active material particles having a carbon layer formed on the surface of artificial graphite in the form of secondary particles.
  • the carbon layer is formed by pyrolyzing at least one gaseous or liquid carbon source selected from the group consisting of, for example, methane, ethane, ethylene, butane, acetylene, carbon monoxide, propane, polyvinyl alcohol and propylene, or After the liquid or solid pitch is mixed with artificial graphite, it may be formed by firing at a temperature range of 300 ° C to 1400 ° C.
  • the pitch may be a coal-based pitch or a petroleum-based pitch.
  • the carbon layer may be included in an amount of 1 to 10 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of artificial graphite.
  • the content of the carbon layer satisfies the above range, it is possible to implement excellent output characteristics and rapid charging performance while minimizing the capacity and initial efficiency degradation of the negative electrode active material.
  • the negative electrode active material particles composed of artificial graphite in the form of secondary particles having a carbon layer as described above may be included in an amount of 90% by weight to 99.9% by weight, preferably 95% by weight to 99.5% by weight, based on the total weight of the negative electrode active material. Can be.
  • the negative electrode active material particles may have an average particle diameter (D 50 ) of 10 ⁇ m to 30 ⁇ m, preferably 15 ⁇ m to 25 ⁇ m.
  • D 50 average particle diameter
  • the negative electrode active material according to the present invention includes a coating layer containing the compound represented by the following formula 1 on the surface of the negative electrode active material particles, that is, the negative electrode active material particles composed of artificial graphite in the form of secondary particles having a carbon layer do.
  • X is a metal that is not reactive with lithium
  • Y is a metal or semimetal that is reactive with lithium
  • a is an integer of 1 to 5
  • b is an integer of 1 to 3.
  • the compound represented by Chemical Formula 1 may have a bond dissociation energy between X and Y of 160 kJ / mol to 250 kJ / mol.
  • bond dissociation energy of the compound represented by Formula 1 satisfies the above range, reactivity with lithium ions may be selectively shown depending on temperature, thereby effectively igniting and exploding when the battery is exposed to high temperature or overcharge occurs. It can be suppressed.
  • the bond dissociation energy is not satisfied at room temperature, so that the bond between X and Y is maintained, and thus the reactivity with lithium is hardly shown.
  • the bond dissociation energy is satisfied, and thus, the chemical bond between XY is broken, resulting in reactivity with lithium.
  • the Y element is dissociated with lithium to lower the state of charge of the negative electrode active material and to suppress the needle growth of metallic lithium, thereby suppressing ignition and explosion of the battery.
  • X may be at least one element selected from the group consisting of Cu, Ni, Co, Ti, Cr, Mn, Fe, V, Sc, Mo, W, Hg, and Ru.
  • Cu, Ni, and Fe are more preferable, since Cu is excellent in price, workability, and electrical conductivity, and Cu is the most preferable.
  • Y may be at least one element selected from the group consisting of Si, Sn, Al, Ga, Pb, Ge, In, Bi, Ag, Pd, Sb, Zn, and Mg, preferably Si , Sn and Al.
  • Si and Sn which are relatively excellent in reactivity with lithium are especially preferable.
  • the compound represented by Formula 1 may be Cu 3 Si or Cu 3 Sn.
  • the compound represented by Chemical Formula 1 may be included in an amount of 0.1 wt% to 10 wt%, preferably 0.5 wt% to 5 wt%, based on the total weight of the negative electrode active material.
  • the content of the compound represented by Formula 1 is less than 0.1% by weight, the effect of improving stability is insignificant, and when it exceeds 10% by weight, the battery capacity may be lowered.
  • the compound represented by Formula 1 may be in the form of a powder having an average particle diameter (D 50 ) of 1 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m.
  • D 50 average particle diameter of the compound represented by Formula 1 satisfies the above range
  • the coating property on the artificial graphite is excellent, and XY bonds may be smoothly generated at high temperatures or overcharge.
  • the coating layer may be formed by mixing the negative electrode active material particles made of artificial graphite with a carbon layer and the compound of Formula 1, and then heat treatment at a temperature range of 400 °C to 800 °C, preferably 500 °C to 700 °C. . At this time, the heat treatment is preferably performed under an inert atmosphere.
  • the negative electrode according to another embodiment of the present invention may include a negative electrode active material, wherein the negative electrode active material is the same as the negative electrode active material described above.
  • the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector.
  • the negative electrode active material layer may include the negative electrode active material.
  • the negative electrode active material layer may further include a binder and / or a conductive material.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidene fluoride (PVDF)), polyacrylonitrile, polymethylmethacrylate (polymethylmethacrylate) , Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM) , Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid (poly acrylic acid) and hydrogen may be included at least one selected from the group consisting of substances substituted with Li, Na or Ca and the like. And also various copolymers thereof.
  • PVDF-co-HFP polyvinylid
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may include a positive electrode active material.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y 1 Mn 2-y 1 O 4 (0 ⁇ y 1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-y2 M y2 O 2 , wherein M is Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and satisfies 0.01 ⁇ y
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • Cu: Si was mixed in an atomic ratio of 3: 1, and it melt
  • the molten alloy was quenched by a gas atomization method using argon gas at 80 kg / cm 2 pressure to prepare an alloy powder having an average particle diameter of about 100 ⁇ m. At this time, the quenching speed was 1 ⁇ 10 5 K / sec.
  • the alloy powder was subjected to a ball mill process at 1000 rpm for 15 hours to prepare Cu 3 Si having a particle size of 1 ⁇ m.
  • the Cu 3 Si prepared as described above was subjected to a ball mill with artificial graphite (average particle diameter: 21 ⁇ m) in the form of secondary particles coated with carbon, and then heat-treated at 600 ° C. for 6 hours in an Ar atmosphere to form secondary particles.
  • An anode active material A having an artificial graphite / carbon layer / Cu 3 Si coating layer was prepared.
  • the negative electrode active material A prepared by the above-described method Super C65 (conductive material), styrene butadiene rubber (binder) and carboxymethylcellulose (thickener) were respectively mixed in a weight ratio of 96.8: 1: 1: 1.2, and water was added to prepare a negative electrode slurry.
  • the negative electrode slurry was applied to a copper foil, and vacuum dried at about 130 ° C. for 10 hours to prepare a negative electrode.
  • a negative electrode active material B was prepared in the same manner as in Example 1, except that Cu: Sn was mixed at an atomic ratio of 3: 1 instead of Cu: Si was mixed at an atomic ratio of 3: 1.
  • a negative electrode was manufactured in the same manner as in Example 1 except for using the negative electrode active material B instead of the negative electrode active material A.
  • a negative electrode active material C was prepared in the same manner as in Example 1, except that artificial graphite (average particle diameter: 20 ⁇ m) in the form of secondary particles not coated with carbon was used.
  • a negative electrode was manufactured in the same manner as in Example 1 except for using the negative electrode active material C instead of the negative electrode active material A.
  • a negative electrode was manufactured in the same manner as in Example 1, except that artificial graphite (average particle diameter: 21 ⁇ m) (called a negative electrode active material D) in the form of carbon-coated secondary particles instead of the negative electrode active material A was used as the negative electrode active material.
  • artificial graphite average particle diameter: 21 ⁇ m
  • a negative electrode active material E was prepared in the same manner as in Example 1, except that Cu 3 Si and artificial graphite (average particle diameter: 21 ⁇ m) in the form of carbon coated secondary particles were simply mixed without heat treatment.
  • a negative electrode was manufactured in the same manner as in Example 1, except that the negative electrode active material E was used.
  • Examples 1, 2 and Comparative Examples for the negative electrode prepared by 1 to 3 was cut into a size of 1.4875cm 2
  • the negative electrode and the electrode assembly via a polyethylene separator between the positive electrode 1.8cm using a metal lithium foil having a size of 2 was prepared.
  • 1M LiPF 6 is added to a nonaqueous electrolyte solvent in which ethylene carbonate and diethylene carbonate are mixed at a volume ratio of 1: 2 to prepare a nonaqueous electrolyte, and then injected into the electrode assembly to prepare a coin-type half-cell secondary battery. It was.
  • the first half cycle of the secondary battery manufactured as described above was performed at a rate of 0.2 C for the first three cycles, and the charging was performed at 5 mV, 0.005 C current cut-off in CC / CV method, and discharge at 1.0 V in CC method. After that, it was again charged to 80% SOC at a rate of 1.5C.
  • the discharge capacity of the negative electrode active material measured in the first cycle was measured at 25 ° C. and 120 ° C. and is shown in Table 1 below.
  • the negative electrode profile during charging at 1.5C was differentiated to be represented by a dV / dQ curve, and then measured by the point at which lithium is deposited by measuring the depth of charge (SOC) at the point where the inflection point of the curve occurs. It is shown in Table 1 below.
  • the discharge capacity at a high temperature of 120 °C increased significantly than the discharge capacity at 25 °C, room temperature, which is It shows that the compound of Formula 1 included in the coating layer reacted with lithium ions while dissociated.
  • the negative electrode using the negative electrode active material of Examples 1 and 2 even when charged up to 80% SOC, lithium did not precipitate.
  • lithium may be deposited at the SOC 65% point, indicating that the effect of improving stability at the time of overcharging is inferior.
  • the negative electrode active material of Comparative Example 2 without a coating layer containing the compound of Formula 1 had almost no difference in discharge capacity at room temperature and high temperature, and was simply mixed with the compound of Formula 1 without coating of the negative electrode active material of Comparative Example 3 In this case, although the discharge capacity at a high temperature is slightly increased, it can be seen that the increase is significantly smaller than that of Examples 1 and 2.
  • LiCoO 2 positive electrode active material
  • Super C65 conductive material
  • PVDF binder
  • An electrode assembly was prepared through a polyethylene separator between the positive electrode prepared as described above and the negative electrode prepared by Examples 1 and 2 and Comparative Examples 1 to 3. Next, 1M LiPF 6 was added to a nonaqueous electrolyte solvent in which ethylene carbonate and diethylene carbonate were mixed at a volume ratio of 1: 2 to prepare a nonaqueous electrolyte, and then injected into the electrode assembly to prepare a polymer type secondary battery.
  • the first three cycles of the polymer-type secondary battery manufactured as described above were performed at a current of 200 mA, charging was performed at 4.4 V in a CC / CV method, 50 mA cut-off, and discharge at 3 V in a CC method. Thereafter, the battery was charged to 6.6V with 1C charge and the overcharge experiment was conducted.
  • the charged cell capacity and the overcharge result in the first one cycle are shown in Table 2 below.
  • the polymer type secondary battery was charged and discharged 500 times at 25 ° C. under the charging and discharging conditions, and the discharge capacity of 500 times the first cycle discharge capacity is shown in Table 2 below.

Abstract

본 발명은 사이클 특성 등 전지 성능을 저하시키지 않으면서도 전지의 안정성을 획기적으로 개선할 수 있는 음극 활물질과, 이를 포함하는 음극 및 리튬 이차 전지를 제공하기 위한 것으로, 본 발명의 음극 활물질은 2차 입자 형태의 인조 흑연 및 상기 인조 흑연 표면에 형성된 탄소층을 포함하는 음극 활물질 입자; 및 상기 음극 활물질 입자 상에 형성되며, 화학식 1로 표시되는 화합물을 포함하는 코팅층을 포함한다.

Description

음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지
관련출원과의 상호인용
본 출원은 2017월 6월 9일 자 한국 특허 출원 제10-2017-0072586호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지에 관한 것으로, 보다 상세하게는 고온 노출시 또는 과충전시의 안정성이 향상된 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지에 관한 것이다.
모바일 기기, 전기 자동차 등의 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차 전지에 대한 수효가 급격히 증가하고 있으며, 이차 전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자가 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다. 그러나, 리튬 이차 전지는 높은 에너지 밀도와 출력 밀도 때문에 고온에 노출되거나 과충전 시에 전지가 폭발 또는 발화되기 쉽고, 실제로 최근 휴대전화의 배터리 폭발 및 발화 사건 등이 보고되고 있다.
리튬 이차전지가 고온에 노출되면 70℃ 내지 100℃ 범위에서 음극활물질 표면의 부동태 피막(Solid Electrolyte Interphase, SEI)이 용해되거나 분해된다. 피막이 분해된 전극표면에서는 전해질이 추가적으로 분해되며 가스 및 열이 발생하여 전지 내부온도가 더 상승하게 된다. 내부온도가 더 상승하게 되면 전지를 구성하고 있는 전해액, 도전재, 바인더 등이 분해되고 양극으로부터 산소가 방출되어 발화 또는 폭발을 유도할 수 있다. 이 경우에 전지의 충전상태 (SOC, state of charge)가 높을수록, 즉 충전된 에너지가 높을수록 이러한 현상은 가속화되고 발열량이 증가하기 때문에 더 큰 안전성 위험이 있다.
또한, 리튬 이차전지가 과충전되면 양극활물질에서는 더 이상 리튬을 내어놓지 못하므로 양극 전압이 증가하고, 따라서 활물질의 용출, 전해액 분해, 구조의 붕괴와 함께 열이 발생할 수 있다. 한편, 음극에서도 활물질에 저장될 수 있는 양 이상의 리튬이 강제적으로 공급되므로, 리튬이온이 음극활물질에 저장되지 못하고 표면에 금속상태로 전착되어 성장하게 된다. 금속 리튬은 침상으로 성장되어 전해액과의 부반응을 촉진시킬 뿐 아니라, 분리막을 뚫고 양극과 접촉되는 내부단락을 유발할 수 있다. 내부단락이 일어나면 순간적으로 많은 양의 전류가 흐르게 되어 열이 발생하고 이는 전지 내부온도의 상승으로 이어져 결국 발화 또는 폭발로 이어질 수 있다. 특히, 금속 리튬은 공기 또는 수분과 폭발적으로 반응하여 전지의 안전성에 큰 문제를 야기한다.
종래에는 리튬 이차전지의 안정성을 개선하기 위해 과충전을 억제하는 PCM(Protection Circuit Module), PTC(Positive Temperature Coefficient), CID(Current Interruption Device) 등의 안전장치가 장착하거나, 전해액 또는 전극 활물질에 난연제 등의 첨가제를 첨가하는 방법, 분리막에 무기물 입자를 코팅하여 내부 단락을 억제하는 방법 등이 시도되었다.
그러나 전해액 또는 전극활물질에 난연제 등과 같은 첨가제를 사용할 경우에는 첨가제에 의해 부반응이 발생하거나, 사이클 특성과 같은 전지 성능이 저하되는 문제점이 있으며, 분리막 코팅의 경우에는 내부 단락을 방지할 수는 있으나, 전지 내부에 저장되는 에너지가 근본적으로 제거되는 것이 아니기 때문에, 고온에 노출되거나, 과충전될 경우에 발열, 발화 등을 지연시킬 수는 있어도 이를 완전히 억제할 수 없다는 한계가 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR10-2000-0051682 A
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 사이클 특성 등 전지 성능을 저하시키지 않으면서도 전지의 안정성을 획기적으로 개선할 수 있는 음극 활물질과, 이를 포함하는 음극 및 리튬 이차 전지를 제공하기 위한 것이다.
일 측면에서, 본 발명은 2차 입자 형태의 인조 흑연 및 상기 인조 흑연 표면에 형성된 탄소층을 포함하는 음극 활물질 입자; 및 상기 음극 활물질 입자 상에 형성되며, 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층을 포함하는 음극 활물질을 제공한다.
<화학식 1>
XaYb
상기 화학식 1에서, X는 리튬과 반응성이 없는 금속, Y는 리튬과 반응성이 있는 금속 또는 반금속, a는 1 내지 5인 정수, b는 1 내지 3인 정수이다.
이때, 상기 화학식 1로 표시되는 화합물은 X와 Y간의 결합해리에너지(bond dissociation energy)가 160kJ/mol 내지 250kJ/mol인 것일 수 있다.
구체적으로는, 상기 화학식 1에서, 상기 X는 Cu, Ni, Co, Ti, Cr, Mn, Fe, V, Sc, Mo, W, Hg 및 Ru으로 이루어진 군으로부터 선택된 1종 이상의 원소이고, 상기 Y는 Si, Sn, Al, Ga, Pb, Ge, In, Bi, Ag, Pd, Sb, Zn 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있으며, 보다 구체적으로는, 상기 화학식 1로 표시되는 화합물은 Cu3Si 또는 Cu3Sn일 수 있다.
한편, 상기 화학식 1로 표시되는 화합물은 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 10중량%, 바람직하게는 0.5중량% 내지 5중량%의 함량으로 포함될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 평균 입경(D50)이 1㎛ 내지 5㎛인 분말 형태일 수 있으며, 상기 인조 흑연의 2차 입자는 평균 입경(D50)이 10㎛ 내지 30㎛일 수 있다.
다른 측면에서, 본 발명은 상기와 같은 본 발명에 따른 음극 활물질을 포함하는 음극과, 상기 음극을 포함하는 리튬 이차 전지를 제공한다.
본 발명에 따른 음극 활물질은 그 표면에 상온에서는 리튬과의 반응성이 거의 없으나, 고온에서 리튬과의 반응성이 높은 물질을 포함하는 코팅층을 구비하여, 전지가 고온에 노출되거나 과충전되는 경우에 음극 할물질에 저장된 리튬 이온과 코팅층 내의 물질이 반응하여 음극 활물질의 충전 상태를 낮추고, 금속성 리튬의 침상 성장을 억제함으로써 전지의 발화 및 폭발을 억제할 수 있다.
또한, 본 발명에 따른 음극 활물질은 팽창성 및 배향성이 낮은 2차 입자 형태의 인조 흑연을 사용하고, 상기 인조 흑연의 표면에 탄소층을 형성함으로써, 안정성이 우수하면서도 수명 특성이 저하되지 않은 전지를 구현할 수 있다.
이하, 본 발명에 대해 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
음극 활물질
본 발명에 따른 음극 활물질은 2차 입자 형태의 인조 흑연과, 상기 인조 흑연 표면에 형성된 탄소층을 포함하는 음극 활물질 입자; 및 상기 음극 활물질 입자 상에 형성되며, 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층;을 포함한다.
<화학식 1>
XaYb
상기 화학식 1에서, X는 리튬과 반응성이 없는 금속, Y는 리튬과 반응성이 있는 금속 또는 반금속, a는 1 내지 5인 정수, b는 1 내지 3인 정수이다.
본 발명에 따른 음극 활물질은 2차 입자 형태의 인조 흑연을 사용하는데, 이때, 상기 2차 입자(secondary paricles)는 복수개의 1차 입자들이 응집, 결합, 또는 조립화하여 형성된 입자를 의미한다. 1차 입자(primary particle)는 응집되지 않은 상태의 개별 입자를 의미한다.
종래에는 탄소계 음극 활물질로 단위 무게당 용량이 큰 천연 흑연이 주로 사용되었으나, 천연 흑연의 경우, 전극 압연 시 배향도가 높아져 리튬 이온의 입, 출입 특성이 저하되고, 이로 인해 저항 특성 및 수명 특성이 떨어진다는 문제점이 있다. 이에 비해 인조 흑연은 전극 압연 시 배향도가 상대적으로 작고, 팽창성이 낮아 장수명 특성을 나타낸다.
또한, 본 발명에서 사용하는 2차 입자 형태의 인조 흑연은, 1차 입자 형태의 인조 흑연에 비해 배향도가 더 작고, 팽창성이 낮아 장수명 및 급속 충전 성능이 우수하다는 장점이 있다.
한편, 본 발명에 따른 음극 활물질은 상기 2차 입자 형태의 인조 흑연 표면 상에 탄소층이 형성된 음극 활물질 입자를 사용한다. 이때, 상기 탄소층은, 예를 들면, 메탄, 에탄, 에틸렌, 부탄, 아세틸렌, 일산화탄소, 프로판, 폴리비닐알코올 및 프로필렌으로 이루어진 군으로부터 선택된 1종 이상의 기상 또는 액상 탄소 공급원을 열분해하여 형성하거나, 또는 액상 또는 고상의 핏치를 인조 흑연과 혼합한 후, 300℃ 내지 1400℃의 온도범위에서 소성함으로써 형성될 수 있다. 이때, 상기 핏치는 석탄계 피치 또는 석유계 피치일 수 있다.
이와 같이 표면에 탄소층이 형성된 2차 입자 형태의 인조 흑연을 사용할 경우, 보다 우수한 출력 특성 및 급속충전성능을 나타낸다.
이때, 상기 탄소층은 인조흑연 100중량부에 대하여 1중량부 내지 10중량부, 바람직하게는 2중량부 내지 5중량부의 함량으로 포함될 수 있다. 탄소층의 함량이 상기 범위를 만족할 경우, 음극 활물질의 용량 및 초기 효율 저하를 최소화하면서 우수한 출력 특성 및 급속 충전 성능을 구현할 수 있다.
상기와 같이 탄소층이 형성된 2차 입자 형태의 인조 흑연으로 구성된 음극 활물질 입자는 음극 활물질 전체 중량을 기준으로, 90중량% 내지 99.9중량%, 바람직하게는 95중량% 내지 99.5중량%의 함량으로 포함될 수 있다.
한편, 상기 음극 활물질 입자는 평균 입경(D50)이 10㎛ 내지 30㎛, 바람직하게는 15㎛ 내지 25㎛일 수 있다. 음극 활물질 입자의 평균 입경이 상기 범위를 만족할 때, 슬러리 내에서의 분산성이 충분히 확보되고, 우수한 충전 특성 및 수명 특성을 가질 수 있다.
한편, 본 발명에 따른 음극 활물질은 상기와 같은 음극 활물질 입자, 즉, 탄소층이 형성된 2차 입자 형태의 인조 흑연으로 구성된 음극 활물질 입자의 표면에 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층을 포함한다.
<화학식 1>
XaYb
상기 화학식 1에서, X는 리튬과 반응성이 없는 금속, Y는 리튬과 반응성이 있는 금속 또는 반금속, a는 1 내지 5인 정수, b는 1 내지 3인 정수이다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은 X와 Y간의 결합해리에너지(bond dissociation energy)가 160kJ/mol 내지 250kJ/mol인 것일 수 있다. 화학식 1로 표시되는 화합물의 결합해리에너지가 상기 범위를 만족할 경우, 온도에 따라 선택적으로 리튬 이온과의 반응성이 나타날 수 있으며, 이를 통해 전지가 고온에 노출되거나 과충전이 발생한 경우에 발화 및 폭발을 효과적으로 억제할 수 있다.
구체적으로는, 화학식 1로 표시되는 화합물인 상기와 같은 결합해리에너지를 가질 경우, 상온에서는 결합해리에너지를 만족하지 못하기 때문에 X-Y 사이의 결합이 유지되고, 따라서 리튬과의 반응성이 거의 나타나지 않는다. 그러나, 고온 노출 또는 과충전에 의해 전지 내부의 온도가 50℃ 이상, 예를 들면 60℃ 이상으로 상승하면 결합해리에너지를 충족하게 되기 때문에, X-Y 사이의 화학 결합이 깨지게 되고, 그 결과, 리튬과 반응성이 있는 Y 원소가 해리되면서 리튬과 반응하여 음극 활물질의 충전 상태를 낮추고, 금속성 리튬의 침상 성장을 억제함으로써 전지의 발화 및 폭발을 억제할 수 있도록 해준다.
바람직하게는, 상기 화학식 1에서 상기 X는 Cu, Ni, Co, Ti, Cr, Mn, Fe, V, Sc, Mo, W, Hg 및 Ru으로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있다. 이 중에서도 Cu, Ni 및 Fe가 가격, 가공성 및 전기전도성이 우수하기 때문에 보다 바람직하고, Cu가 가장 바람직하다.
한편, 화학식 1에서 상기 Y는 Si, Sn, Al, Ga, Pb, Ge, In, Bi, Ag, Pd, Sb, Zn 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 원소일 수 있으며, 바람직하게는 Si, Sn 및 Al일 수 있다. 이 중에서도 리튬과의 반응성이 상대적으로 우수한 Si, Sn이 특히 바람직하다.
보다 구체적으로는, 상기 화학식 1로 표시되는 화합물은 Cu3Si 또는 Cu3Sn일 수 있다.
상기 화학식 1로 표시되는 화합물은 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 10중량%, 바람직하게는 0.5중량% 내지 5중량%의 함량으로 포함될 수 있다. 상기 화학식 1로 표시되는 화합물의 함량이 0.1중량% 미만인 경우에는 안정성 향상 효과가 미미하고, 10중량%를 초과할 경우, 전지 용량이 낮아질 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 평균 입경(D50)이 1㎛ 내지 5㎛, 바람직하게는 1㎛ 내지 3㎛인 분말 형태일 수 있다. 화학식 1로 표시되는 화합물의 평균 입경이 상기 범위를 만족할 경우, 인조 흑연 상의 코팅성이 우수하며, 고온 또는 과충전 시에 X-Y 결합이 깨짐이 원활하게 발생할 수 있다.
한편, 상기 코팅층은 탄소층이 형성된 인조 흑연으로 이루어진 음극 활물질 입자와 화학식 1의 화합물을 혼합한 후, 400℃ 내지 800℃, 바람직하게는 500℃ 내지 700℃의 온도 범위에서 열처리함으로써 형성될 수 있다. 이때, 상기 열처리는 불활성 분위기 하에서 수행되는 것이 바람직하다.
음극
다음으로 본 발명에 따른 음극에 대해 설명한다.
본 발명의 또 다른 실시예에 따른 음극은 음극 활물질을 포함할 수 있으며, 여기서 상기 음극 활물질은 상술한 음극 활물질과 동일하다. 구체적으로, 상기 음극은 집전체 및 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
리튬이차전지
다음으로, 본 발명에 따른 리튬이차전지에 대해 설명한다. 본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명을 생략한다.
상기 양극은 양극 활물질을 포함할 수 있다. 상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+y1Mn2-y1O4 (0≤y1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-y2My2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 0.01≤y2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-y3My3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 또는 Ta 이고, 0.01≤y3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 또는 Zn 이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 1
Cu : Si를 3:1의 원자비로 혼합하고, 아르곤 분위기 하에서 고주파 가열법에 의해 용융시켜 합금 용탕을 얻었다. 상기 합금 용탕을 80kg/cm2 압력의 아르곤 가스를 이용한 가스 아토마이즈법에 의해 급냉하여 평균 입경이 약 100㎛인 합금 분말을 제조하였다. 이때 급냉 속도는 1×105K/sec로 하였다. 제조된 합금 분말을 1000rpm으로 15시간동안 볼밀 공정을 수행하여 입자 크기가 1㎛인 Cu3Si를 제조하였다.
상기와 같이 제조된 Cu3Si를 탄소 코팅된 2차 입자 형태의 인조흑연(평균 입경: 21㎛)과 함께 볼밀을 진행한 후, Ar 분위기에서 600℃, 6시간 동안 열처리 하여, 2차 입자 형태의 인조 흑연/탄소층/Cu3Si 코팅층이 형성된 음극 활물질 A를 제조하였다.
상기와 같은 방법으로 제조된 음극 활물질 A와, Super C65(도전재), 스티렌 부타디엔 고무(바인더) 및 카르복시메틸셀룰로우스(증점제)를 각각 96.8 : 1: 1: 1.2의 중량비로 혼합하고, 물을 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 구리 호일에 도포하고, 약 130℃에서 10시간 동안 진공 건조한 후 음극을 제조하였다.
실시예 2
Cu : Si를 3:1의 원자비로 혼합하는 대신 Cu : Sn을 3 : 1의 원자비로 혼합한 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질 B를 제조하였다. 또한, 음극 활물질 A 대신 음극 활물질 B를 이용한 점을 제외하고는 실시예 1과 동일한 방법으로, 음극을 제조하였다.
비교예 1
탄소가 코팅되지 않은 2차 입자 형태의 인조흑연(평균 입경: 20㎛)을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질 C를 제조하였다. 또한, 음극 활물질 A 대신 음극 활물질 C를 이용한 점을 제외하고는 실시예 1과 동일한 방법으로, 음극을 제조하였다.
비교예 2
음극 활물질 A 대신 탄소 코팅된 2차 입자 형태의 인조흑연(평균 입경: 21㎛)(음극활물질 D라 함)을 음극 활물질로 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
비교예 3
Cu3Si와 탄소 코팅된 2차 입자 형태의 인조흑연(평균 입경: 21㎛)을 열처리 없이 단순 혼합한 점을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질 E를 제조하였으며, 음극 활물질 A 대신 음극 활물질 E를 사용한 점을 제외하고는 실시예 1과 동일한 방법으로 음극을 제조하였다.
실험예 1
실시예 1, 2 및 비교예 1 ~ 3에 의해 제조된 음극을 1.4875cm2의 크기로 절단한 다음, 상기 음극과 1.8cm2 크기의 금속 리튬 호일을 이용한 양극 사이에 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하였다. 다음으로, 에틸렌 카보네이트와 디에틸렌 카보네이트가 1:2의 부피비로 혼합된 비수 전해액 용매에 1M의 LiPF6를 첨가하여 비수 전해액을 제조한 후, 상기 전극 조립체에 주입하여 코인 타입의 반쪽 이차 전지를 제조하였다.
상기와 같이 제조된 반쪽 이차 전지를 첫 3회 사이클은 0.2C의 속도로, 충전은 CC/CV 방식으로 5mV, 0.005C Current cut-off, 방전은 CC 방식으로 1.0V까지 진행하였다. 그 후, 다시 1.5C의 속도로 SOC 80%까지 충전하였다. 첫 1회 사이클에서 측정된 음극활물질의 방전 용량을 25℃ 및 120℃에서 측정하여 하기 표 1에 나타내었다.
또한, 1.5C의 충전 시의 음극 프로파일을 미분하여 dV/dQ 곡선으로 나타낸 후, 상기 곡선의 변곡점이 발생하는 지점의 충전심도(SOC)를 측정하여 리튬이 석출되는 지점으로 측정하고, 그 결과를 하기 표 1에 나타내었다.
Figure PCTKR2018005406-appb-T000001
상기 [표 1]에 나타난 바와 같이, 본 발명에 따른 실시예 1 및 2의 음극활물질의 경우, 고온인 120℃에서의 방전 용량이 상온인 25℃에서의 방전 용량보다 크게 증가하였으며, 이는 고온에서 코팅층에 포함된 화학식 1의 화합물이 해리되면서 리튬 이온과 반응하였음을 보여준다. 또한, 실시예 1 및 2의 음극활물질을 사용한 음극의 경우, SOC 80%까지 충전하여도 리튬이 석출되지 않았다.
이에 비해, 탄소층이 없는 비교예 1의 음극 활물질은 SOC 65% 지점에서 리튬이 석출되어 과충전시의 안정성 향상 효과가 떨어짐을 확인할 수 있다.
한편, 화학식 1의 화합물을 포함하는 코팅층이 없는 비교예 2의 음극 활물질은 상온과 고온에서의 방전 용량의 차이가 거의 없었고, 화학식 1의 화합물을 코팅하지 않고 단순 혼합한 비교예 3의 음극 활물질의 경우, 고온에서의 방전용량이 다소 증가하기는 하였으나, 그 증가폭이 실시예 1 및 2에 비해 현저히 작음을 확인할 수 있다.
실험예 2
LiCoO2(양극활물질), Super C65(도전재), 및 PVDF(바인더)를 각각 94 : 3: 3의 중량비로 혼합하고, NMP를 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 알루미늄 호일에 도포하고, 약 130℃에서 10시간동안 진공 건조한 후 양극을 제조하였다.
상기와 같이 제조된 양극과, 실시예 1 ~ 2 및 비교예 1 ~ 3에 의해 제조된 음극 사이에 폴리에틸렌 분리막을 개재하여 전극 조립체를 제조하였다. 다음으로, 에틸렌 카보네이트와 디에틸렌 카보네이트가 1:2의 부피비로 혼합된 비수 전해액 용매에 1M의 LiPF6를 첨가하여 비수 전해액을 제조한 후, 상기 전극 조립체에 주입하여 폴리머 타입 이차 전지를 제조하였다.
상기와 같이 제조된 폴리머 타입 이차 전지를 첫 3회 사이클은 200mA의 전류로, 충전은 CC/CV 방식으로 4.4V, 50mA cut-off, 방전은 CC 방식으로 3V까지 진행하였다. 그 후, 1C 충전으로 6.6V까지 충전을 하여 과충전 실험을 진행하였다. 첫 1회 사이클에서 충전된 셀 용량과 과충전 결과를 하기 표 2에 나타내었다.
또한, 이와 함께, 상기 폴리머 타입 이차 전지를 상기 충방전 조건으로 25℃에서, 500회 충방전을 진행하여, 첫 사이클 방전 용량 대비 500회 방전 용량을 비율을 하기 표 2에 나타내었다.
Figure PCTKR2018005406-appb-T000002
상기 [표 2]에 나타난 바와 같이, 실시예 1 및 2의 음극을 사용한 전지의 경우, 과충전 시에도 폭발이 발생하지 않았으며, 500회 충방전 후 용량 유지율도 우수하였다.
이에 비해 비교예 1 내지 3의 음극을 사용한 전지의 경우, 과충전 시에 폭발이 발생하였다. 또한, 비교예 1의 음극을 사용한 전지의 경우, 500회 충방전 후 용량 유지율이 현저하게 저하됨을 확인할 수 있다.

Claims (9)

  1. 2차 입자 형태의 인조 흑연과, 상기 인조 흑연 표면에 형성된 탄소층을 포함하는 음극 활물질 입자; 및
    상기 음극 활물질 입자 상에 형성되며, 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층을 포함하는 음극 활물질.
    <화학식 1>
    XaYb
    상기 화학식 1에서, X는 리튬과 반응성이 없는 금속, Y는 리튬과 반응성이 있는 금속 또는 반금속, a는 1 내지 5인 정수, b는 1 내지 3인 정수임.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물에 있어서, X와 Y간의 결합해리에너지(bond dissociation energy)가 160kJ/mol 내지 250kJ/mol인 음극 활물질.
  3. 제1항에 있어서,
    상기 X는 Cu, Ni, Co, Ti, Cr, Mn, Fe, V, Sc, Mo, W, Hg 및 Ru으로 이루어진 군으로부터 선택된 1종 이상의 원소이고,
    상기 Y는 Si, Sn, Al, Ga, Pb, Ge, In, Bi, Ag, Pd, Sb, Zn 및 Mg으로 이루어진 군으로부터 선택된 1종 이상의 원소인 음극 활물질.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 Cu3Si 또는 Cu3Sn인 음극 활물질.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 10중량%로 포함되는 것인 음극 활물질.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 평균 입경(D50) 1㎛ 내지 5㎛의 분말 형태인 음극 활물질.
  7. 제1항에 있어서,
    상기 인조 흑연의 2차 입자는 평균 입경(D50)이 10㎛ 내지 30㎛인 음극 활물질.
  8. 청구항 1 내지 7 중 어느 한 항의 음극 활물질을 포함하는 음극.
  9. 청구항 8의 음극을 포함하는 리튬 이차 전지.
PCT/KR2018/005406 2017-06-09 2018-05-10 음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지 WO2018225959A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL18813915T PL3534440T3 (pl) 2017-06-09 2018-05-10 Materiał czynny anody i anoda oraz zawierający ją akumulator litowy
CN201880004732.4A CN110024186B (zh) 2017-06-09 2018-05-10 负极活性材料以及包含其的负极和锂二次电池
US16/343,239 US11165055B2 (en) 2017-06-09 2018-05-10 Negative electrode active material, and negative electrode and lithium secondary battery which include the same
EP18813915.8A EP3534440B1 (en) 2017-06-09 2018-05-10 Anode active material and anode and lithium secondary battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170072586A KR102171095B1 (ko) 2017-06-09 2017-06-09 음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지
KR10-2017-0072586 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225959A1 true WO2018225959A1 (ko) 2018-12-13

Family

ID=64566744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005406 WO2018225959A1 (ko) 2017-06-09 2018-05-10 음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US11165055B2 (ko)
EP (1) EP3534440B1 (ko)
KR (1) KR102171095B1 (ko)
CN (1) CN110024186B (ko)
PL (1) PL3534440T3 (ko)
WO (1) WO2018225959A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530597A (zh) * 2022-01-26 2022-05-24 内蒙古斯诺新材料科技有限公司 一种改性天然石墨及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051682A (ko) 1999-01-25 2000-08-16 김순택 리튬 이차 전지
JP2014139942A (ja) * 2007-10-17 2014-07-31 Hitachi Chemical Co Ltd リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
KR20150008327A (ko) * 2013-07-12 2015-01-22 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20160038540A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
KR20160081689A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지
KR20170048210A (ko) * 2015-10-26 2017-05-08 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252846C (zh) 2003-09-10 2006-04-19 武汉大学 一种硅合金和碳基材料复合物的制备方法
CN101322266B (zh) 2005-12-01 2011-09-28 3M创新有限公司 基于具有高硅含量的非晶态合金的电极组合物
KR100869806B1 (ko) 2007-04-24 2008-11-21 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR101057162B1 (ko) 2008-12-01 2011-08-16 삼성에스디아이 주식회사 음극활물질, 이를 구비하는 음극 및 리튬이차전지
CN101527358A (zh) 2009-04-08 2009-09-09 西安交通大学 铝硅基三元合金作为锂离子电池负极材料的应用
WO2011059251A2 (ko) 2009-11-12 2011-05-19 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이를 구비하는 리튬 이차전지
KR101073223B1 (ko) * 2009-11-18 2011-10-12 주식회사 엘지화학 리튬 이차전지용 음극 합제 및 이를 사용한 리튬 이차전지
KR101445692B1 (ko) * 2010-06-17 2014-10-02 쇼와 덴코 가부시키가이샤 리튬 이차 전지용 음극 활물질 및 이를 음극으로 포함하는 리튬 이차 전지
CN101969111B (zh) 2010-09-30 2013-09-04 湛江市聚鑫新能源有限公司 锂离子电池硅碳合金负极材料及其制备方法
JP5520782B2 (ja) 2010-11-08 2014-06-11 古河電気工業株式会社 非水電解質二次電池
WO2012138152A2 (ko) 2011-04-05 2012-10-11 주식회사 엘지화학 리튬 이차전지용 음극 활물질 및 이의 제조방법
CN102844918B (zh) 2011-04-21 2014-05-28 昭和电工株式会社 石墨材料、电池电极用碳材料和电池
KR20130065371A (ko) 2011-12-09 2013-06-19 서울대학교산학협력단 이차전지의 안전성 개선제 및 그를 사용하여 안전성이 향상된 이차전지
JP2014063658A (ja) * 2012-09-21 2014-04-10 Mitsubishi Materials Corp リチウムイオン二次電池用負極材およびその製造方法
KR101708363B1 (ko) 2013-02-15 2017-02-20 삼성에스디아이 주식회사 음극 활물질, 및 이를 채용한 음극과 리튬 전지
JP6307317B2 (ja) 2013-03-30 2018-04-04 国立大学法人東北大学 リチウムイオン二次電池用負極活物質およびその製造方法並びに負極および電池
US20150017527A1 (en) 2013-07-12 2015-01-15 Posco Chemtech Co., Ltd. Negative electrode active material for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery using the same
KR101785268B1 (ko) * 2013-12-10 2017-10-16 삼성에스디아이 주식회사 음극 활물질, 이를 포함하는 리튬 전지 및 상기 음극 활물질의 제조방법
CN105576221B (zh) 2014-10-14 2019-11-08 比亚迪股份有限公司 一种锂离子电池负极活性材料前驱体和锂离子电池负极活性材料及其制备方法
KR101766020B1 (ko) * 2015-07-07 2017-08-08 한국과학기술원 미세기공을 포함하는 고전도성 탄소와 금속 초박막이 코팅된 전도성 단결정 실리콘 입자, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
CN105489840B (zh) 2016-01-13 2018-06-19 哈尔滨工业大学深圳研究生院 一种锂离子电池硅基负极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051682A (ko) 1999-01-25 2000-08-16 김순택 리튬 이차 전지
JP2014139942A (ja) * 2007-10-17 2014-07-31 Hitachi Chemical Co Ltd リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
KR20150008327A (ko) * 2013-07-12 2015-01-22 (주)포스코켐텍 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR20160038540A (ko) * 2014-09-30 2016-04-07 주식회사 엘지화학 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
KR20160081689A (ko) * 2014-12-31 2016-07-08 삼성전자주식회사 복합 음극 활물질, 그 제조방법, 이를 포함하는 음극 및 리튬이차전지
KR20170048210A (ko) * 2015-10-26 2017-05-08 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534440A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114530597A (zh) * 2022-01-26 2022-05-24 内蒙古斯诺新材料科技有限公司 一种改性天然石墨及其制备方法

Also Published As

Publication number Publication date
EP3534440A4 (en) 2019-10-09
CN110024186B (zh) 2022-10-14
EP3534440A1 (en) 2019-09-04
PL3534440T3 (pl) 2021-04-19
KR102171095B1 (ko) 2020-10-28
US11165055B2 (en) 2021-11-02
US20190260019A1 (en) 2019-08-22
KR20180134614A (ko) 2018-12-19
EP3534440B1 (en) 2020-12-16
CN110024186A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
WO2015041450A1 (ko) 다공성 실리콘계 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2010123269A2 (ko) 안전성 향상을 위한 전기화학 소자 첨가제
WO2019172661A1 (ko) 음극의 제조 방법
WO2019054729A1 (ko) 고체 전해질을 포함하는 전고체 전지용 전극
WO2020149622A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018088735A1 (ko) 음극 및 상기 음극의 제조방법
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019078544A1 (ko) 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
WO2018203599A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2018062882A1 (ko) 리튬 이차전지
WO2015199384A1 (ko) 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2015016568A1 (ko) 안전성이 강화된 리튬 이차전지
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2018147558A1 (ko) 장수명에 적합한 이차전지용 전극의 제조방법
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019017617A1 (ko) 집전체가 없는 전극 및 이를 포함하는 이차전지
KR20070097864A (ko) 안전성 및 고온 특성이 향상된 리튬 이차전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2019221450A1 (ko) 음극, 및 상기 음극을 포함하는 리튬 이차 전지
WO2019103498A1 (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질
WO2018225959A1 (ko) 음극 활물질 및 이를 포함하는 음극 및 리튬 이차 전지
WO2022025506A1 (ko) 이차 전지용 전극 및 이를 포함하는 이차 전지
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018813915

Country of ref document: EP

Effective date: 20190527

NENP Non-entry into the national phase

Ref country code: DE