WO2018225872A1 - α化澱粉 - Google Patents
α化澱粉 Download PDFInfo
- Publication number
- WO2018225872A1 WO2018225872A1 PCT/JP2018/022239 JP2018022239W WO2018225872A1 WO 2018225872 A1 WO2018225872 A1 WO 2018225872A1 JP 2018022239 W JP2018022239 W JP 2018022239W WO 2018225872 A1 WO2018225872 A1 WO 2018225872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- starch
- pregelatinized starch
- enzyme
- treatment
- torque
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B30/00—Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
- C08B30/12—Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
- C08B30/14—Cold water dispersible or pregelatinised starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B30/00—Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/20—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
- A23L29/206—Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
- A23L29/212—Starch; Modified starch; Starch derivatives, e.g. esters or ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B30/00—Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
- C08B30/12—Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B31/00—Preparation of derivatives of starch
- C08B31/003—Crosslinking of starch
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/04—Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/14—Organic oxygen compounds
- A21D2/18—Carbohydrates
Definitions
- pregelatinized starch generally has a remarkably high water absorption rate, so that when it is dispersed or dissolved in water, it is easy to produce mushrooms (an aggregate of pregelatinized starch), and there is a drawback that the operability during food production is poor. . Therefore, techniques for improving the dispersibility of pregelatinized starch in water have been studied.
- Patent Document 1 discloses an alkali-soluble pregelatinized starch having a solubility in water of 70% by weight or less at 20 ° C. when the pH is 6 or less, and a solubility in water of 90% by weight or more when the pH is 12 or more. It has been reported that this occurrence can be suppressed as it is.
- Patent Document 1 it is assumed that it is used by being dissolved in an alkaline aqueous solution, which is difficult to use in the food field, and since the pregelatinized starch is in a completely dissolved state, the starch granules are disintegrated. Thus, there is a drawback that the viscosity of the original pregelatinized starch cannot be sufficiently imparted.
- Patent Document 2 reports that pregelatinized starch having excellent dispersibility can be obtained by mixing 0.1 to 10% of an emulsifier with respect to starch in a starch slurry and drum drying.
- an emulsifier is used as an auxiliary material, and when used in food, there is a drawback that the food may be affected by the emulsifier.
- Patent Document 3 reports that the dispersibility of pregelatinized starch can be improved by blending 3 to 19% by weight of fats and oils.
- the use of secondary materials (oils and fats) is indispensable, it cannot be applied to foods that do not use oils and fats, and there is a drawback that the types of usable foods are limited.
- the pregelatinized starch which has increased dispersibility and made it difficult to form mako is not sufficiently satisfactory when assumed to be used in the food field.
- the properties of the pregelatinized starch itself are modified to make it difficult to form mako, the viscosity that can be imparted tends to decrease.
- the modification of the properties of the pregelatinized starch itself has not been able to realize both suppression of formation of mako and expression of sufficient viscosity.
- An object of the present invention is to provide a pregelatinized starch that can be rapidly dispersed with the addition of water while suppressing the formation of mako, and can exhibit a sufficient viscosity, and a method for producing the same.
- the inventors of the present invention have made extensive studies to solve the above problems, and the pregelatinized starch obtained by pregelatinizing with a drum dry after performing a predetermined crosslinking treatment and enzyme treatment on the starch, It has been found that it is excellent in dispersibility in water, and even when water is added, formation of mako can be suppressed and a sufficient viscosity is exhibited.
- the present inventors have found that the pregelatinized starch satisfies the specific characteristics shown in the following (i) and (ii).
- the cold water swelling degree is 7-10.
- a middle line (moving average line) of torque (torque%) is obtained in a predetermined mixographic test method, t is the elapsed time (seconds) from the start of measurement, and torque (torque after t seconds obtained from the middle line) %) Is Y (t), and the consistency (torque%) after t + 0.1 seconds determined from the middle line is Y (t + 0.1), and t is in the range of 0 to 99.9 seconds. In this case, Y (t) ⁇ Y (t + 0.1) is satisfied.
- Item 3 The pregelatinized starch according to Item 1 or 2, which is a processed pregelatinized starch that has been subjected to crosslinking treatment and enzyme treatment. Item 4.
- Step 1 in which starch is subjected to a crosslinking treatment and an enzyme treatment to obtain a crosslinked enzyme-treated starch
- Step 2 in which the crosslinked enzyme-treated starch obtained in Step 1 is subjected to a pregelatinization to obtain a cross-linked enzyme-treated pregelatinized starch.
- Item 5. The production method according to Item 4, wherein the crosslinking treatment in Step 1 is a phosphoric acid crosslinking treatment.
- Item 6. Item 6.
- Item 7. Item 7.
- the pregelatinized starch of the present invention suppresses the formation of maco and can be quickly dispersed, and exhibits sufficient viscosity, thus improving the operability during the production of processed foods using pregelatinized starch. be able to.
- the pregelatinized starch of the present invention when blended with the bakery dough, the formation of gluten in the wheat flour is promoted at the time of production, and even if the amount of water added is increased, the dough is not sticky and workability can be improved. Furthermore, in the bakery compounded with the pregelatinized starch of the present invention, the pregelatinized starch of the present invention gives a sufficient viscosity, so that it has water retention and can have a soft and soft texture.
- the pregelatinized starch of the present invention when blended with the kneaded dough of the fishery product, the pregelatinized starch of the present invention provides sufficient viscosity, so that even if the amount of fish used is reduced by about 10 to 30%, it can be produced.
- the kneaded dough can be provided with an appropriate viscosity without affecting the texture of the marine product.
- the food texture after a heating can provide the food texture with the elasticity similar to a fish meat.
- FIG. 3 is a graph showing a middle line of torque (torque%) obtained by a mixographic test method for pregelatinized starches of Examples 1 to 4.
- the pregelatinized starch of the present invention has a cold water swelling degree of 7 to 10, and in a predetermined mixographic test, the elapsed time (seconds) from the start of measurement is t, and the consistency (torque%) after t seconds from the start of measurement. ) Is Y (t), and the consistency (torque%) after t + 0.1 second from the start of measurement is Y (t + 0.1), Y (t ) ⁇ Y (t + 0.1).
- the pregelatinized starch of the present invention will be described in detail.
- the pregelatinized starch of the present invention has a cold water swelling degree of 7-10.
- the degree of cold water swelling is preferably 7.5 to 9.5, more preferably 7 to 9.
- the degree of cold water swelling is a value measured according to the following method.
- ⁇ Method of measuring degree of cold water swelling In 100 ml of water at 25 ° C. contained in a 200 ml beaker, 1 g in terms of dry weight of the pregelatinized starch to be measured is dispersed, and stirred for 30 minutes at 25 ° C. to swell. Thereafter, centrifugation (300 rpm, 10 minutes) is performed to separate the gel layer and the supernatant layer. Subsequently, the weight of a gel layer is measured and this is set to A. Next, the weight-measured gel layer is dried (105 ° C., constant weight), and the weight is measured. The value of A / B is calculated as the cold water swelling degree.
- the torque (torque%) value has an amplitude at every measurement time.
- the middle line (moving average line) is calculated by averaging the amplitude of torque (torque%) at each measurement time, and the values of Y (t) and Y (t + 0.1) are calculated from the middle line.
- the middle line can be obtained using known analysis means. Specifically, the middle line uses a software of MIX SMARTver 2.0.590 (manufactured by National Ceral Chemistry Equipment) with a Midcurve filter of 80, No. It can be obtained by setting Stages to 2, Mid slope window (%) to 7.5, and Mid peak fit window (%) to 5, respectively.
- the torque (torque%) value is 100% when the measured torque value is in a state of being shaken out.
- the characteristic of satisfying Y (t) ⁇ Y (t + 0.1) in the entire range of t from 0 to 99.9 seconds in the mixographic test is that a maximum peak is present in the middle line in the range of t from 0 to 99.9 seconds. It is synonymous with not being recognized.
- Y (t) ⁇ Y (t + 0.1) in the entire range of t from 0 to 99.9 seconds as shown in the results of Examples 1 and 2 in FIG.
- Viscosity characteristics When the pregelatinized starch of the present invention is added with water, it can exhibit sufficient viscosity.
- the viscosity measured under the following conditions is 1000 mPa ⁇ s or more, preferably 1000 to 20000 mPa ⁇ s, more preferably 1000 to 15000 mPa ⁇ s. ⁇ Measurement conditions for viscosity> While stirring 180 ml of water at 25 ° C.
- the processing characteristics raw alpha starch said can not be satisfied cold water swelling and Mikisogurafu properties, chemical treatment, by performing desired processing of the enzyme treatment or the like, alpha starches, and the cold water swelling It is possible to satisfy the mixograph characteristics.
- the applied processing is not particularly limited as long as the cold water swelling degree and the mixographic characteristics can be satisfied, but from the viewpoint of suitably satisfying the cold water swelling degree and the mixographic characteristics.
- pregelatinized starch that has been subjected to crosslinking treatment and enzyme treatment that is, cross-linked enzyme-treated pregelatinized starch
- crosslinking treatment and enzyme treatment that is, cross-linked enzyme-treated pregelatinized starch
- Crosslinking treatment is a process of crosslinking two or more hydroxyl groups in starch with a crosslinking agent.
- the type of crosslinking treatment used in the present invention is not particularly limited, and examples thereof include phosphoric acid crosslinking treatment and dicarboxylic acid crosslinking treatment.
- the phosphoric acid crosslinking treatment is more preferable, from the viewpoint of satisfactorily satisfying the above-mentioned cold water swelling degree and mixographic characteristics, and making the formation of mako and sufficient viscosity more compatible.
- a phosphoric acid crosslinking treatment using trimetaphosphate is more preferable, from the viewpoint of satisfactorily satisfying the above-mentioned cold water swelling degree and mixographic characteristics, and making the formation of mako and sufficient viscosity more compatible.
- the origin of these enzymes is not particularly limited.
- amyloglucosidase Aspergillus niger, Rhizopus niveus, Rhizopus oryzae, etc .
- ⁇ -glucosidase Aspergillus niger, Aspergillus or the like
- amylase Pseudomonas amyloderamosa, etc .
- cyclodextrin glucanotransferase Bacillus licheniformis, Paenibacillus macerans (Bacillus macerans), etc. are mentioned.
- amylolytic enzyme preferably a amylolytic enzyme, more preferably amylolytic enzyme.
- Glucosidase particularly preferably amyloglucosidase derived from Aspergillus niger is mentioned.
- the cross-linked enzyme-treated pregelatinized starch may be obtained by subjecting a raw material starch to a cross-linking treatment and then performing an enzymatic treatment, and also subjecting the raw material starch to a cross-linking. It may be obtained by performing processing. From the viewpoint of satisfactorily satisfying the cold water swelling degree and the mixographic characteristics, and better achieving both the suppression of mako formation and the expression of sufficient viscosity, it is preferable that the raw starch is subjected to a crosslinking treatment after the enzyme treatment.
- Cross-linked enzyme-treated pregelatinized starch obtained by performing the above.
- the cross-linked enzyme-treated pregelatinized starch may be subjected to other chemical treatment in addition to the cross-linking treatment and the enzyme treatment, as long as the cold water swelling degree and the mixographic characteristics are satisfied.
- chemical treatment include oxidation; esterification such as acetylation and phosphorylation; and etherification such as hydroxypropylation.
- one kind of treatment may be performed alone, or two or more kinds of treatments may be performed in combination. These chemical treatments can be performed according to known methods.
- the production method of the pregelatinized starch of the present invention is not particularly limited as long as the pregelatinized starch satisfying the cold water swelling degree and the mixographic characteristics is obtained, but as a suitable example, the following steps 1 and 2 are included.
- a manufacturing method is mentioned. Step 1 of subjecting starch to crosslinking treatment and enzyme treatment to obtain a crosslinked enzyme-treated starch. Step 2 in which the cross-linked enzyme-treated starch obtained in Step 1 is subjected to pregelatinization to obtain a cross-linked enzyme-treated pregelatinized starch.
- step 1 the starch is subjected to a crosslinking treatment and an enzyme treatment.
- the order of the crosslinking treatment and the enzyme treatment in step 1 is not particularly limited, and the enzyme treatment may be performed after the crosslinking treatment, or the crosslinking treatment may be performed after the enzyme treatment.
- step 1 is a crosslinking treatment. It is preferable to perform the enzyme treatment after the treatment.
- the types of starch used in Step 1 are as described in the above-mentioned “raw starch” column.
- the type of crosslinking treatment performed in step 1 is as described in the column of “Processing characteristics”.
- the cross-linking treatment to starch or enzyme-treated starch can be carried out by a known method.
- the phosphoric acid cross-linking treatment using trimetaphosphate is performed in Step 1, the following method may be mentioned.
- a starch dispersion containing starch or enzyme-treated starch and an inorganic salt is prepared.
- inorganic salt for example, chloride salts, such as sodium chloride and calcium chloride; Inorganic acid salts, such as sodium sulfate and calcium sulfate, etc. are mentioned, Preferably sodium chloride is mentioned.
- concentration of starch or enzyme-treated starch in the starch dispersion is not particularly limited, and examples thereof include 10 to 45% by mass, preferably 20 to 45% by mass, and more preferably 30 to 45% by mass.
- the concentration of the inorganic salt in the starch dispersion is not particularly limited, but the inorganic salt is 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass, more preferably 2 to 5 parts per 100 parts by mass of starch. What is necessary is just to set so that it may become a mass part.
- the pH of the starch dispersion may be set to a pH range in which a phosphoric acid crosslinking reaction with trimetaphosphate can proceed.
- Specific examples of the pH of the starch dispersion include 10.0 to 12.0, preferably 11.0 to 11.7, and more preferably 11.3 to 11.5.
- the pH of the starch dispersion can be adjusted using an alkali such as sodium hydroxide or potassium hydroxide.
- trimetaphosphate an alkali metal salt such as sodium salt or potassium salt
- the amount of trimetaphosphate added may be appropriately set in consideration of the degree of phosphoric acid crosslinking to be applied, etc., for example, 0.05 to 2.0 parts by mass of trimetaphosphate per 100 parts by mass of starch, The content is preferably set to 0.1 to 1.5 parts by mass, more preferably 0.2 to 1.0 parts by mass.
- the reaction temperature when the trimetaphosphate is subjected to a crosslinking reaction may be appropriately set within a range where the phosphoric acid crosslinking reaction can proceed, but is usually 30 to 50 ° C., preferably 35 to 45 ° C., more preferably 40 to 40 ° C. An example is 43 ° C.
- the reaction time when the trimetaphosphate is subjected to a crosslinking reaction may be appropriately set according to the degree of phosphoric acid crosslinking to be applied, etc., but is usually 1 to 10 hours, preferably 2 to 9 hours, more preferably 3 to 3 hours. 8 hours.
- the degree of crosslinking of the starch after the crosslinking treatment is not particularly limited, and the pregelatinized starch can be produced which has both the cold water swelling degree and the mixographic characteristics, and can achieve both better suppression of mako formation and sufficient expression of viscosity.
- the amylo viscosity in the following amylogram measurement satisfies 300 BU or less, preferably 10 to 300 BU, more preferably 10 to 200 BU.
- the amylo viscosity is a physical property value that serves as an index of the degree of crosslinking of the crosslinked starch, and indicates that the lower the amylo viscosity, the higher the degree of crosslinking.
- the said range of amylo viscosity can be satisfied by adjusting suitably the addition amount of the crosslinking agent (trimetaphosphate etc.) to be used, the time of a crosslinking reaction, etc. (Conditions for amylogram measurement)
- a slurry is prepared by adding water to the cross-linked starch to be measured to adjust the starch concentration to 10% by mass. The measurement is started at 50 ° C., the temperature is raised to 95 ° C. at 1.5 ° C./min, and the viscosity when the temperature reaches 95 ° C. is measured.
- Enzyme treatment of starch or cross-linked starch may be performed by a known method depending on the type of enzyme used, as long as the enzyme is allowed to act on starch or cross-linked starch under pH conditions where the enzyme can react.
- the kind of the enzyme used for the enzyme treatment is as described in the column “Processing characteristics”.
- the concentration of starch or cross-linked starch at the time of enzyme treatment is not particularly limited as long as an enzyme reaction is possible.
- the concentration of starch or cross-linked starch at the start of enzyme treatment is preferably 10 to 45% by mass, preferably Is 20 to 45 mass%, more preferably 30 to 45 mass%.
- the concentration of the enzyme during the enzyme treatment is not particularly limited as long as the enzyme reaction is possible, and may be set as appropriate according to the degree of enzyme treatment to be performed, the activity of the enzyme used, the reaction temperature, the reaction time, etc.
- the concentration of the enzyme added at the start of the enzyme treatment is 0.05 to 5.0% by mass, preferably 0.1 to 3.0% by mass, more preferably 0.2 to 1.0%. % By weight.
- the concentration of the enzyme may be an amount sufficient for the enzymatic reaction to proceed, and if it is within the above range, sufficient enzymatic reaction can be confirmed, and it is necessary to examine the enzyme activity (number of units) in detail. There is no.
- the pH at the time of the enzyme treatment is not particularly limited as long as the enzyme reaction is possible, and may be set as appropriate according to the type of enzyme used, for example, pH 3.5 to 5.0, preferably The pH is 3.7 to 4.7, more preferably 4.0 to 4.5.
- the temperature during the enzyme treatment is not particularly limited as long as the enzyme reaction is possible and the starch or crosslinked starch is in a temperature range where no gelatinization occurs, and it may be appropriately set according to the type of enzyme used, etc. For example, it may be 40 to 60 ° C., preferably 42 to 55 ° C., and more preferably 45 to 50 ° C.
- the reaction time of the enzyme treatment may be appropriately set according to the degree of enzyme treatment to be applied, the activity of the enzyme used, the reaction temperature, etc., for example, 1 to 16 hours, preferably 1 to 8 hours, more preferably One to four hours can be mentioned.
- the degree of enzyme treatment is not particularly limited, but from the viewpoint of suitably producing pregelatinized starch that satisfies the cold water swelling degree and mixographic characteristics, the enzyme treatment is performed on 100 parts by mass of starch or cross-linked starch subjected to enzyme treatment.
- the amount of sugar that is cut out and eluted by 3 to 40 parts by mass, preferably 5 to 30 parts by mass, and more preferably 10 to 20 parts by mass.
- Step 1 when starch is processed in the order of crosslinking treatment and enzyme treatment, the dispersion after crosslinking treatment may be subjected to enzyme treatment as it is, and the dispersion after crosslinking treatment may be adjusted to pH as necessary. You may use for an enzyme treatment after performing. Furthermore, the dispersion liquid after the crosslinking treatment may be concentrated and subjected to an enzyme treatment after adjusting the pH as necessary. Also, the crosslinked starch may be recovered from the dispersion liquid after the crosslinking treatment, if necessary. After washing, it may be subjected to enzyme treatment. After the enzyme treatment, the enzyme contained in the dispersion liquid after the enzyme treatment may be deactivated as necessary.
- the dispersion liquid after the enzyme treatment may be subjected to the crosslinking treatment as it is or after pH adjustment, or the dispersion liquid after the enzyme treatment.
- the pH After performing the process of inactivating the enzyme contained in, it may be subjected to a crosslinking process by adjusting the pH as necessary.
- the pH after deactivation of the enzyme contained in the dispersion liquid after enzyme treatment and / or concentration of the dispersion liquid, the pH may be adjusted as necessary to be subjected to a crosslinking treatment.
- the enzyme starch may be recovered from the dispersion liquid after the enzyme treatment and washed as necessary to be subjected to the enzyme treatment.
- the cross-linked enzyme-treated starch obtained in step 1 is subjected to step 2 described later.
- the dispersion after completion of step 1 may be used as it is for step 2, or the dispersion after completion of step 1 may be concentrated for use in step 2.
- the cross-linked enzyme-treated starch may be recovered from the dispersion liquid after the completion of step 1, and may be subjected to step 2 after washing the cross-linked enzyme-treated starch as necessary.
- step 2 the cross-linked enzyme-treated starch obtained in step 1 is subjected to pregelatinization.
- the ⁇ -treatment of the cross-linked enzyme-treated starch can be performed by a known method by heating at a temperature equal to or higher than the gelatinization start temperature in a state where the starch is dispersed in water and drying.
- the cross-linked enzyme-treated starch is pregelatinized by dispersing the cross-linked enzyme-treated starch in water at a concentration of 10 to 50% by mass, preferably 20 to 45% by mass, more preferably 30 to 40% by mass.
- a method of heating at a temperature of 80 to 500 ° C., preferably 85 to 450 ° C., more preferably 90 to 400 ° C. to make a semi-gelatin or a gelatin, and then drying can be mentioned.
- the heating method is not particularly limited, but in general, in the case of industrial production, for example, a continuous production method using a drum dryer or an extruder may be mentioned.
- a drum dryer or an extruder When a drum dryer or an extruder is used, it is heated at a high temperature, so that there is an advantage that a drying step is not generally required.
- Step 2 from the viewpoint of producing a pregelatinized starch that preferably has the cold water swelling degree and the mixographic characteristics, and can better achieve the formation of Mamako and sufficient viscosity, ⁇ using drum drying Is preferable.
- the cross-linked enzyme-treated starch was dispersed in water at a concentration of 20 to 45% by mass, preferably 30 to 45% by mass, more preferably 40 to 45% by mass.
- the cross-linked enzyme-treated pregelatinized starch obtained in Step 2 has the cold water swelling degree and the mixographic characteristics, and can be used as it is as the pregelatinized starch of the present invention.
- the cross-linked enzyme-treated pregelatinized starch obtained in step 2 may be subjected to a pulverization process, a sizing process, or the like, if necessary.
- the cross-linked enzyme-treated pregelatinized starch obtained in (1) may be further subjected to processing (chemical modification treatment) or the like, if necessary.
- the pregelatinized starch of the present invention is used as a raw material for various foods.
- the pregelatinized starch of the present invention can be rapidly dispersed while suppressing the formation of mako, and can exhibit sufficient viscosity, facilitating the processing of food, and the flavor and texture of food. Can be improved.
- the type of food containing the pregelatinized starch of the present invention is not particularly limited and may be any food in which conventional pregelatinized starch is used, and examples thereof include gel food and paste food.
- the type of gel food is not particularly limited, but for example, noodles such as udon, buckwheat, cold wheat, somen, Chinese noodles, pasta, spaghetti, macaroni; bread, pizza dough, pie dough, ice cream corn cup, monaca Bakery products such as jelly skin, cream puff skin, etc .; confectionery such as jelly, mousse, pudding, yogurt, water bun, crumb crab, sea bream; fish products such as salmon, fish sausage, fish ham, fish surimi, bamboo rings, hampen, fried fish Paste products such as kneaded products; biscuits, cookies, crackers, rice crackers, rice crackers, puffed snacks, etc .; Chinese side dishes such as skin and dumpling skin It is below.
- noodles such as udon, buckwheat, cold wheat, somen, Chinese noodles, pasta, spaghetti, macaroni; bread, pizza dough, pie dough, ice cream corn cup, monaca Bakery products such as jelly skin, cream puff skin, etc .
- confectionery such as jelly, mousse, pudding
- a processed flour food is food processed from wheat flour.
- Specific examples of processed flour foods include those in which flour is used among the gel foods described above.
- the pregelatinized starch of the present invention has a property of being slow in water absorption and unlikely to cause mako, so when used in processed flour foods, it is difficult to inhibit water absorption of the flour during production. As a result, gluten in the flour is sufficiently formed, and even if the amount of water added is increased, the dough is not sticky and workability is improved.
- the pregelatinized starch of the present invention when used for bakery products, a sufficient viscosity is produced, so that it has water retention and can impart a soft and soft texture. Further, for example, in the case of French bread, the structure of crumb is large, and the improvement in shelf life is remarkably improved; in the case of Danish bread, the effect of increasing the volume can be given.
- the pregelatinized starch of the present invention and gluten are used in a bakery food product, the above effects can be further improved.
- the bakery food is a sandwich
- the pregelatinized starch of the present invention and gluten are used in combination, it is possible to effectively suppress the moisture of the ingredients from transferring to bread.
- gluten includes raw gluten, flash dried gluten and the like, and further includes gluten treated with an acid, alkali, enzyme, oxidizing agent, reducing agent and the like and dried. Moreover, gluten may contain auxiliary materials, such as fats and oils and an emulsifier.
- the ratio of the two is not particularly limited.
- gluten is 10 to 500 parts by mass, preferably 100 to 100 parts by mass of the pregelatinized starch of the present invention. Is 15 to 250 parts by mass, more preferably 20 to 150 parts by mass.
- the ratio of the two is not particularly limited.
- gluten is preferably 10 to 500 parts by mass, preferably 100 to 100 parts by mass of the pregelatinized starch of the present invention. Is 15 to 300 parts by mass, more preferably 25 to 200 parts by mass.
- the noodles containing the pregelatinized starch of the present invention it is possible to impart an effect of preventing elongation and boiled with boil, and even when heated in a microwave oven, it can be boiled while preventing boiled elongation.
- a pace-like food containing the pregelatinized starch of the present invention in the case of a pace-like food containing the pregelatinized starch of the present invention, it can be dispersed without forming mako due to pregelatinized starch, and it is also possible to develop a highly shape-retaining viscosity. Furthermore, the pace-like food containing the pregelatinized starch of the present invention also has good flavor release. In particular, in the case of a pace-like food in which solid content is dispersed, such as wasabi paste, the dispersibility of solid content such as wasabi is also improved, and the operability during production is further improved.
- the food containing the pregelatinized starch of the present invention can be produced by a technique known in the art depending on the type of food.
- Example 1 Production of pregelatinized starch
- the tapioca starch was subjected to the following phosphoric acid crosslinking treatment, enzyme treatment, and pregelatinization treatment to obtain a phosphoric acid crosslinking enzyme-treated pregelatinized starch.
- Phosphoric acid crosslinking treatment Tapioca starch was dispersed in water at 40% by mass to prepare a starch dispersion. Next, sodium chloride was added to the starch dispersion so as to be 0.8% by mass.
- the heat drying with a drum dryer uses a double drum dryer having a diameter of 2 m and a width of 1 m, the supply amount of the dispersion solution of the phosphate cross-linked enzyme-treated pregelatinized starch is 450 kg / set temperature, 130 ° C., and the processing time is 2 hours It was carried out by operating while rotating at 8 rpm.
- the obtained phosphate cross-linked enzyme-treated pregelatinized starch was pulverized and subjected to the test described below.
- Example 2 A phosphate cross-linked enzyme-treated pregelatinized starch was obtained under the same conditions as in Example 1 except that sodium trimetaphosphate was added at 0.28% by mass during the phosphoric acid cross-linking treatment.
- the amylo viscosity was 13 BU.
- the obtained phosphate cross-linked enzyme-treated pregelatinized starch was pulverized and subjected to the test described below.
- Comparative Example 4 A pregelatinized starch was obtained under the same conditions as in Comparative Example 1 except that the set temperature was changed to 70 ° C. The obtained pregelatinized starch was pulverized and subjected to the test described below.
- pregelatinized starch 2-1 Evaluation method (cold water swelling degree) In 100 ml of water at 25 ° C. contained in a 200 ml beaker, 1 g in terms of dry weight of pregelatinized starch was dispersed. Subsequently, it stirred for 30 minutes using a stirrer bar
- the middle line (moving average line) was obtained by averaging the amplitude of torque (torque%) appearing in the measurement.
- the middle line (moving average line) is MIX SMARTver 2.0.590 (manufactured by National Cerial Chemistry Equipment Co., Ltd.). It was determined by setting Stages to 2, Mid slope window (%) to 7.5, and Mid peak fit window (%) to 5, respectively.
- FIG. 1 and FIG. 2 show graphs showing the consistency (torque%) (calculated from the middle line) for each measurement time in the mixographic test method for each pregelatinized starch. Table 1 shows the evaluation results of each pregelatinized starch.
- the phosphate-crosslinked enzyme-treated pregelatinized starch of Examples 1 and 2 has a cold water swelling degree in the range of 7 to 10, and the mixing characteristics of Y ( t) ⁇ Y (t + 0.1) was satisfied, and when water was added, formation of maco was suppressed and it was possible to rapidly disperse and to exhibit a sufficient viscosity.
- the pregelatinized starch of Comparative Example 4 satisfied Y (t) ⁇ Y (t + 0.1) in the entire range of t from 0 to 99.9 seconds as a mixographic characteristic, but the water swelling degree was less than 7. Yes, formation of mako could be suppressed, but it was insufficient in terms of imparting viscosity.
- the state of the dough at the time of mixing, the texture of bread 1 day after production, and the degree of starch aging in bread 4 days after production were evaluated according to the following criteria.
- -Criteria for determining the state of fabric during mixing ⁇ : No stickiness. ⁇ : Although it adheres to the hand, the fabric can be removed from the hand without cutting (Control state).
- X A state in which the fabric is cut and adhered to the hand.
- XX The state where the fabric cannot be handled by hand.
- -Criteria for texture (sensory evaluation) of bread 1 day after production ⁇ : Moist, soft and crisp. ⁇ : Moist and sharp, but slightly heavy.
- X The water is floating and heavy, and the mouth is bad.
- XX The texture is wet and clogged. -Criteria for determining the degree of starch aging (sensory evaluation) in bread 4 days after production ⁇ : Good texture with almost no change from 1 day after production. ⁇ : Soft but slightly puffy. X: The crispness is poor and it is puffy. XX: Hard, dry and crumbled.
- Table 4 shows the evaluation results.
- the pregelatinized starches of Examples 1 and 2 were used, the bread dough was not sticky and easy to gather, so that the operability during production was improved.
- the texture after the first day of production was good, the good texture was maintained even after the fourth day of production, and starch aging could be suppressed.
- the state of the bread dough is poor, the operability during production is reduced, and also in terms of texture after 1 day of production and starch aging after 4 days of production, It was not satisfactory.
- Table 7 shows the evaluation results.
- the pregelatinized starch of Example 1 was blended (test products 1 and 2), the operability at the time of production was improved, and a more excellent texture was recognized.
- the pregelatinized starch of Example 1 and gluten were used in combination (test product 1), the transfer of moisture from the ingredients to the bread could be sufficiently suppressed.
- pregelatinized starch was not blended but only gluten was blended (Comparative Test Product 1), the moisture content of the ingredients could be suppressed from being transferred to the bread, but drying after slicing progressed and the texture was We were not satisfied with point.
- Table 10 shows the evaluation results.
- the pregelatinized starch of Example 1 was blended (test products 3 and 4), the workability at the time of production was improved, and a more excellent texture was recognized.
- the pregelatinized starch of Example 1 and gluten were used in combination (Test Product 3), water transfer to the Chinese husk after hot bender was sufficiently suppressed.
- Comparative Test Product 2 water transfer to the Chinese husk after hot bender was suppressed, but drying after cooking in the oven progressed. It was not satisfactory in terms of feeling.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Polymers & Plastics (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Food Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Nutrition Science (AREA)
- Grain Derivatives (AREA)
- Bakery Products And Manufacturing Methods Therefor (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Seeds, Soups, And Other Foods (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
(i)冷水膨潤度が7~10である。
(ii)所定のミキソグラフ試験法においてトルク(torque%)のミドルライン(移動平均線)を求め、測定開始からの経過時(秒)をt、当該ミドルラインから求められるt秒後のトルク(torque%)をY(t)、当該ミドルラインから求められるt+0.1秒後の粘稠度(torque%)をY(t+0.1)とした場合に、tが0~99.9秒の全範囲においてY(t)≦Y(t+0.1)を満たす。
項1. 冷水膨潤度が7~10であり、
下記ミキソグラフ試験法においてトルク(torque%)のミドルライン(移動平均線)を求め、測定開始からの経過時(秒)をt、当該ミドルラインから求められるt秒後のトルク(torque%)をY(t)、当該ミドルラインから求められるt+0.1秒後の粘稠度(torque%)をY(t+0.1)とした場合に、tが0~99.9秒の全範囲においてY(t)≦Y(t+0.1)を満たす、α化澱粉。
<ミキソグラフ試験法>
対象となるα化澱粉5g及び強力粉25gの混合物に25mlの水を加えて、AACC(American Association of Cereal Chemists)の定めるAACC method 54-40.02に準拠して、15℃の条件でミキソグラフ試験法によりトルク(torque%)の変化を100秒間測定する。
項2. 下記条件測定される粘度が、1000mPa・s以上である、項1に記載のα化澱粉。
<粘度の測定条件>
200ml容ビーカーに収容した25℃の水180mlを撹拌機にて1200rpmの条件で撹拌しながら、測定対象となるα化澱粉の乾燥重量換算1gを素早く投入し、1分間撹拌する。その後、B型粘度計(VISCOMETER TV-20、東機産業製)を用いて、ローター:5番、25℃、回転速度30rpm、1分後の条件で粘度を測定する。
項3. 架橋処理及び酵素処理が施された加工α化澱粉である、項1又は2に記載のα化澱粉。
項4. 下記工程1及び2を含む、α化澱粉の製造方法:
澱粉に架橋処理及び酵素処理を行い、架橋酵素処理澱粉を得る工程1、及び
前記工程1で得られた架橋酵素処理澱粉にα化処理を行い、架橋酵素処理α化澱粉を得る工程2。
項5. 前記工程1における架橋処理がリン酸架橋処理である、項4に記載の製造方法。
項6. 前記工程1における酵素処理が、澱粉分解酵素を用いた処理である、項4又は5に記載の製造方法。
項7. 前記工程1において、架橋処理を行った後に酵素処理を行う、項4~6のいずれかに記載の製造方法。
項8. 前記工程2におけるα化処理が、ドラムドライヤーを用いたα化処理である、項4~7のいずれかに記載の製造方法。
本発明のα化澱粉は、冷水膨潤度が7~10である。このような冷感膨潤度と共に後述するミキソグラフ特性を充足することにとって、ママコの形成抑制と十分な粘性の発現を両立させることが可能になる。より一層効果的に、ママコの形成抑制と十分な粘性の発現を両立させるという観点から、冷水膨潤度として、好ましくは7.5~9.5、更に好ましくは7~9が挙げられる。
<冷水膨潤度の測定方法>
200ml容ビーカーに収容した25℃の水100mlに、測定対象となるα化澱粉の乾燥重量換算1gを分散させて、25℃の条件下で30分間撹拌して膨潤させる。その後、遠心処理(300rpm、10分間)を行い、ゲル層と上澄層に分ける。次いで、ゲル層の重さを測定し、これをAとする。次に、重量測定したゲル層を乾固(105℃、恒量)して重量を測定し、これをBとする。A/Bの値を冷水膨潤度として算出する。
本発明のα化澱粉は、下記ミキソグラフ試験法においてトルク(torque%)のミドルライン(移動平均線)を求め、測定開始からの経過時(秒)をt、当該ミドルラインから求められるt秒後のトルク(torque%)をY(t)、当該ミドルラインから求められるt+0.1秒後のトルク(torque%)をY(t+0.1)とした場合に、tが0~99.9秒の全範囲においてY(t)≦Y(t+0.1)を満たす。
<ミキソグラフ試験法>
対象となるα化澱粉5g及び強力粉25gの混合物に25mlの水を加えて、AACC(American Association of Cereal Chemists)の定めるAACC method 54-40.02に準拠して、15℃の条件でミキソグラフ試験法(35-g model)によりトルク(torque%)の変化を100秒間測定する。
本発明のα化澱粉は、水を加えると、十分な粘性を発現させることができる。本発明のα化澱粉が有する粘度特性の好適な例として、下記条件測定される粘度が、1000mPa・s以上、好ましくは1000~20000mPa・s、更に好ましくは1000~15000mPa・sが挙げられる。
<粘度の測定条件>
200ml容ビーカーに収容した25℃の水180mlを撹拌機にて1200rpmの条件で撹拌しながら、測定対象となるα化澱粉の乾燥重量換算1gを素早く投入し、1分間撹拌する。その後、B型粘度計(VISCOMETER TV-20、東機産業製)を用いて、ローター:5番、25℃、回転速度30rpm、1分後の条件で粘度を測定する。
本発明のα化澱粉の由来となる原料澱粉の種類については、特に制限されないが、例えば、タピオカ澱粉、小麦澱粉、米澱粉、もち米澱粉、トウモロコシ澱粉、ワキシーコーンスターチ、サゴ澱粉、馬鈴薯澱粉、緑豆澱粉、甘藷澱粉、ワキシー馬鈴薯澱粉、ワキシータピオカ澱粉、ワキシー小麦澱粉等が挙げられる。これらの原料澱粉の中でも、前記冷水膨潤度、ミキソグラフ特性及び粘度特性を好適に具備させて、ママコの形成抑制と十分な粘性の発現を一層良好に両立させるという観点から、好ましくはタピオカ澱粉が挙げられる。
未加工のα化澱粉では、前記冷水膨潤度とミキソグラフ特性を満たすことができないが、化学的処理、酵素処理等の所望の加工を施すことによって、α化澱粉は、前記冷水膨潤度とミキソグラフ特性を満たすことが可能になる。
本発明のα化澱粉の製造方法については、前記冷水膨潤度とミキソグラフ特性を満たすα化澱粉が得られることを限度として特に制限されないが、好適な例として、下記工程1及び2を含む製造方法が挙げられる。
澱粉に架橋処理及び酵素処理を行い、架橋酵素処理澱粉を得る工程1。
前記工程1で得られた架橋酵素処理澱粉にα化処理を行い、架橋酵素処理α化澱粉を得る工程2。
工程1では、澱粉に対して架橋処理及び酵素処理を行う。工程1における架橋処理及び酵素処理の順番については、特に制限されず、架橋処理を行った後に酵素処理を行ってもよく、また、酵素処理を行った後に架橋処理を行ってもよい。前記冷水膨潤度とミキソグラフ特性を好適に充足させて、ママコの形成抑制と十分な粘性の発現を一層良好に両立させたα化澱粉を効率的に得るという観点から、工程1は、架橋処理を行った後に酵素処理を行うことが好ましい。
(アミログラム測定の条件)
測定対象となる架橋処理後の澱粉に水を加えて澱粉濃度を10質量%に調整したスラリーを調製する。50℃で測定を開始し、1.5℃/分で95℃まで昇温させ、95℃に到達した際の粘度を測定する。
工程2では、前記工程1で得られた架橋酵素処理澱粉にα化処理を行う。
本発明のα化澱粉は、各種食品の原料として使用される。本発明のα化澱粉は、水を加えると、ママコの形成を抑制して速やかに分散でき、しかも十分な粘度を呈することができるので、食品の加工を容易にしたり、食品の風味や食感を向上させたりすることができる。
[実施例1]
タピオカ澱粉に対して、以下に示すリン酸架橋処理、酵素処理、及びα化処理を行い、リン酸架橋酵素処理α化澱粉を得た。
(リン酸架橋処理)
タピオカ澱粉を水に40質量%となるように分散し、澱粉分散液を調製した。次いで、澱粉分散液に、塩化ナトリウムを0.8質量%となるように添加した。その後、42℃に加温し、3.75質量%の水酸化ナトリウム水溶液を滴下し、pH11.3に調整して維持しながら、トリメタリン酸ナトリウムを0.12質量%となるように添加し、6時間反応させることにより、リン酸架橋澱粉を生成させた。当該リン酸架橋処理によって得られたリン酸架橋澱粉を前記条件のアミログラム測定に供したところ、アミロ粘度は121BUであった。
リン酸架橋処理後の分散液を45℃に加温し、25質量%の硫酸水溶液を用いて、pH4.2に調整した。次いで、45℃に加温した状態で、Aspergillus niger由来のグルコアミラーゼ(OPTIDEX-L400 GENENCOR製)を0.04重量%となるように添加し、4時間反応させることにより、リン酸架橋酵素処理澱粉を生成させた。当該酵素処理では、リン酸架橋澱粉100重量部当たり10重量部の糖が溶出されている。
酵素処理後の分散液をpH5.5に調整し、十分に洗浄脱水し、リン酸架橋酵素処理澱粉を回収した。次いで、リン酸架橋酵素処理澱粉を水に45質量%となるように分散させて、ドラミドライヤーにて加熱乾燥し、リン酸架橋酵素処理α化澱粉を得た。なお、ドラムドライヤーによる加熱乾燥は、直径2m、横幅1mのダブルドラムドライヤーを使用し、リン酸架橋酵素処理α化澱粉の分散液の供給量450Kg/、設定温度130℃、処理時間2時間で、8rpmで回転させながら運転することによって実施した。
リン酸架橋処理時に、トリメタリン酸ナトリウムを0.28質量%となるように添加したこと以外は、前記実施例1と同条件でリン酸架橋酵素処理α化澱粉を得た。なお、リン酸架橋処理後に得られたリン酸架橋澱粉を前記条件のアミログラム測定に供したところ、アミロ粘度は13BUであった。得られたリン酸架橋酵素処理α化澱粉を粉砕し、後述する試験に供した。
タピオカ澱粉(未加工)を水に45質量%となるように分散させて、ドラミドライヤーにて加熱乾燥し、α化澱粉を得た。ドラミドライヤーによる加熱乾燥の条件は、設定温度を150℃にしたこと以外は、実施例1の場合と同様である。得られたα化澱粉を粉砕し、後述する試験に供した。
タピオカ澱粉を水に40質量%となるように分散し、澱粉分散液を調製した。次いで、前記実施例1の場合と同条件で酵素処理を行い、酵素処理澱粉を生成させた。次いで、ドラムドライヤーの設定温度を150℃にしたこと以外は、実施例1の場合と同条件で、α化処理を行い、酵素処理α化澱粉を得た。得られた酵素処理α化澱粉を粉砕し、後述する試験に供した。
リン酸架橋処理時にトリメタリン酸ナトリウムを0.28質量%となるように添加したこと以外は、実施例1の場合と同条件でリン酸架橋処理を行い、リン酸架橋澱粉を生成させた。次いで、実施例1の場合と同条件でα化処理を行い、リン酸架橋α化澱粉を得た。得られたリン酸架橋α化澱粉を粉砕し、後述する試験に供した。
設定温度を70℃に変更したこと以外は、比較例1と同条件でα化澱粉を得た。得られたα化澱粉を粉砕し、後述する試験に供した。
2-1.評価方法
(冷水膨潤度)
200ml容ビーカーに収容した25℃の水100mlに、α化澱粉の乾燥重量換算1gを分散させた。次いで、25℃の恒温槽(TAITEC THEAMO MINDER)の中で、500rpm(2Mag magnetic motion)でスターラ―バーを用いて30分間撹拌した。その後、50ml容遠沈管2本に溶液を移し、遠心分離(3000rpm、10分間:KOKUSAN社製H-26/ローターRF110)して、ゲル層と上澄層に分けた。次いでゲル層の重さを量りこれをAとした。更に、このゲル層を乾固(105℃、恒量)して、重量を測定してこれをBとした。A/Bを算出し冷水膨潤度を求めた。
α化澱粉5g及び強力粉25gの混合物に25mlの水を加えて、ミキソグラム(35-g Mixograph, National Manufacturing Division、TMCO、USA:10番にバネ)を用いて、AACC(American Association of Cereal Chemists)の定めるAACC method 54-40.02に準拠して、15℃の条件でミキソグラフ試験法によりトルク(torque%)の変化を100秒間測定した。
200ml容ビーカーに収容した25℃の水180mlを撹拌機にて1200rpmの条件で撹拌しながら、α化澱粉の乾燥重量換算1gを素早く投入し、1分間撹拌した。その後、B型粘度計(VISCOMETER TV-20、東機産業製)を用いて、ローター5番、25℃、回転速度30rpm、1分後の条件で粘度を測定した。
200ml容ビーカーに収容した25℃の水180mlを撹拌機にて1200rpmの条件で撹拌しながら、α化澱粉の乾燥重量換算7gを素早く投入し、1分間撹拌を継続した。その後、ママコの形成具合を目視にて観察し、以下の判定基準に従って評価した。
・ママコの形成具合の判定基準
◎ :全くママコが全く見られず、均一に分散されている。
○ :小さいママコが1~2個程度みられる。
× :大きいママコが数個みられる。
××:ほとんど分散せず、表面に大きなママコとして存在している。
各α化澱粉について、ミキソグラフ試験法における測定時間毎の粘稠度(torque%)(ミドルラインから算出)を表したグラフを図1及び2に示す。また、各α化澱粉の評価結果を表1に示す。
表2に示す組成の生地を用いて、表3に示す工程を経て食パンを製造した。
・ミキシング時の生地の状態の判定基準
◎ :べたつきが全くない状態。
○ :手に付着するが、生地が切れずに手から取れる状態(Controlの状態)。
× :手に多少生地が切れて付着する状態。
××:手で生地を扱えない状態。
・製造1日後の食パンの食感(官能評価)の判定基準
◎ :しっとり、ふんわり、歯切れる。
○ :しっとり歯切れるが、やや重たい。
× :水が浮いてきていて重たく、口どけが悪い。
××:濡れていて、詰まった食感、ネチャつく。
・製造4日後の食パンにおける澱粉の老化の度合い(官能評価)の判定基準
◎ :製造1日後とほとんど変化がなく良好な食感。
○ :ふんわりしているがややパサついている。
× :歯切れが悪くパサついている。
××:硬く、乾燥し、もろもろと崩れる。
表5に示す組成の生地を用いて、表6に示す工程を経てサンドイッチを製造した。
・スライス後のサンドイッチの食感(官能評価)の判定基準
◎ :しっとりして、ふんわりして歯切れがよい。
○ :しっとりしているが、歯切れが悪い。
× :しっとり感がなく歯切れも悪い。
××:パサつきがあり、表面が乾いている。
・水分移行(官能評価)の判定基準
◎ :具材の水分がパンに浸透していない。
○ :具材の水分がパンに僅かにだけ浸透している。
× :具材の水分がパンに浸透しているが、パンの外側には到達していない。
××:具材の水分がパンの浸透し、パンの外側にまで到達している。
表8に示す組成の生地を用いて、表9に示す工程を経て中華まんを製造した。
・レンジ加熱後の食感(官能評価)の判定基準
◎ :しっとりして、ふんわりしている。
○ :しっとりしているが、咀嚼時に僅かにだけ団子状になる。
× :ふんわりしているが、硬くなっている。
××:パサつきがあり、硬くなっている。
・ホットベンダー後の中華まん皮への水分移行(官能評価)の判定基準
◎ :蒸気の水分が中華まん皮に浸透していない。
○ :蒸気の水分が中華まん皮に僅かにだけ浸透している。
× :蒸気が水分に中華まん皮に浸透しているが、中華まんの形状は保持している。
××:蒸気が水分に中華まん皮に浸透し、中華まんの形状が崩れている。
Claims (8)
- 冷水膨潤度が7~10であり、
下記ミキソグラフ試験法においてトルク(torque%)のミドルライン(移動平均線)を求め、測定開始からの経過時(秒)をt、当該ミドルラインから求められるt秒後のトルク(torque%)をY(t)、当該ミドルラインから求められるt+0.1秒後の粘稠度(torque%)をY(t+0.1)とした場合に、tが0~99.9秒の全範囲においてY(t)≦Y(t+0.1)を満たす、α化澱粉。
<ミキソグラフ試験法>
対象となるα化澱粉5g及び強力粉25gの混合物に25mlの水を加えて、AACC(American Association of Cereal Chemists)の定めるAACC method 54-40.02に準拠して、15℃の条件でミキソグラフ試験法によりトルク(torque%)の変化を100秒間測定する。 - 下記条件測定される粘度が、1000mPa・s以上である、請求項1に記載のα化澱粉。
<粘度の測定条件>
200ml容ビーカーに収容した25℃の水180mlを撹拌機にて1200rpmの条件で撹拌しながら、測定対象となるα化澱粉の乾燥重量換算1gを素早く投入し、1分間撹拌する。その後、B型粘度計(VISCOMETER TV-20、東機産業製)を用いて、ローター:5番、25℃、回転速度30rpm、1分後の条件で粘度を測定する。 - 架橋処理及び酵素処理が施された加工α化澱粉である、請求項1又は2に記載のα化澱粉。
- 下記工程1及び2を含む、α化澱粉の製造方法:
澱粉に架橋処理及び酵素処理を行い、架橋酵素処理澱粉を得る工程1、及び
前記工程1で得られた架橋酵素処理澱粉にα化処理を行い、架橋酵素処理α化澱粉を得る工程2。 - 前記工程1における架橋処理がリン酸架橋処理である、請求項4に記載の製造方法。
- 前記工程1における酵素処理が、澱粉分解酵素を用いた処理である、請求項4又は5に記載の製造方法。
- 前記工程1において、架橋処理を行った後に酵素処理を行う、請求項4~6のいずれかに記載の製造方法。
- 前記工程2におけるα化処理が、ドラムドライヤーを用いたα化処理である、請求項4~7のいずれかに記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18814393.7A EP3636673A4 (en) | 2017-06-09 | 2018-06-11 | GELATINATED STARCH |
JP2019524000A JP7285775B2 (ja) | 2017-06-09 | 2018-06-11 | α化澱粉 |
KR1020197034275A KR102700387B1 (ko) | 2017-06-09 | 2018-06-11 | α화 전분 |
JP2023027610A JP7478868B2 (ja) | 2017-06-09 | 2023-02-24 | α化澱粉 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-114628 | 2017-06-09 | ||
JP2017114628 | 2017-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018225872A1 true WO2018225872A1 (ja) | 2018-12-13 |
Family
ID=64565978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022239 WO2018225872A1 (ja) | 2017-06-09 | 2018-06-11 | α化澱粉 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3636673A4 (ja) |
JP (2) | JP7285775B2 (ja) |
KR (1) | KR102700387B1 (ja) |
WO (1) | WO2018225872A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158244A1 (ja) * | 2019-02-01 | 2020-08-06 | 日清食品ホールディングス株式会社 | 難消化性でん粉組成物およびその製造方法 |
WO2023090396A1 (ja) * | 2021-11-17 | 2023-05-25 | グリコ栄養食品株式会社 | ソフトな食感を付与するための食感改良剤 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251486A (ja) * | 1987-04-07 | 1988-10-18 | Nippon Koonsutaac Kk | 段ボ−ル用接着剤 |
JPH0515296A (ja) * | 1991-07-03 | 1993-01-26 | Matsutani Kagaku Kogyo Kk | 加工澱粉及びそれを利用したベーカリー食品 |
JPH05155901A (ja) | 1991-12-03 | 1993-06-22 | Honshu Paper Co Ltd | アルカリ可溶性α化澱粉、その製造方法及び澱粉接着剤 |
JPH08154606A (ja) | 1994-12-08 | 1996-06-18 | Kunoole Shokuhin Kk | 分散性に優れたα化澱粉顆粒 |
JP2000038401A (ja) | 1998-07-24 | 2000-02-08 | Nippon Starch Chemical Co Ltd | 分散性に優れたα化澱粉およびその製造方法 |
WO2012111326A1 (ja) * | 2011-02-16 | 2012-08-23 | グリコ栄養食品株式会社 | 老化しにくい澱粉粒及びその製造方法 |
WO2016052712A1 (ja) * | 2014-10-02 | 2016-04-07 | グリコ栄養食品株式会社 | 食感改良組成物 |
JP2016103992A (ja) * | 2014-08-08 | 2016-06-09 | グリコ栄養食品株式会社 | 加工食品の品質改良剤 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2032385A1 (en) * | 1990-12-17 | 1992-06-18 | Chung Wai-Chiu | Enzymatically debranched starches as tablet excipients |
JP2013198479A (ja) * | 2012-02-21 | 2013-10-03 | Glico Ham Co Ltd | 膨潤抑制酵素処理タピオカ澱粉含有食品 |
-
2018
- 2018-06-11 KR KR1020197034275A patent/KR102700387B1/ko active IP Right Grant
- 2018-06-11 JP JP2019524000A patent/JP7285775B2/ja active Active
- 2018-06-11 WO PCT/JP2018/022239 patent/WO2018225872A1/ja unknown
- 2018-06-11 EP EP18814393.7A patent/EP3636673A4/en active Pending
-
2023
- 2023-02-24 JP JP2023027610A patent/JP7478868B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63251486A (ja) * | 1987-04-07 | 1988-10-18 | Nippon Koonsutaac Kk | 段ボ−ル用接着剤 |
JPH0515296A (ja) * | 1991-07-03 | 1993-01-26 | Matsutani Kagaku Kogyo Kk | 加工澱粉及びそれを利用したベーカリー食品 |
JPH05155901A (ja) | 1991-12-03 | 1993-06-22 | Honshu Paper Co Ltd | アルカリ可溶性α化澱粉、その製造方法及び澱粉接着剤 |
JPH08154606A (ja) | 1994-12-08 | 1996-06-18 | Kunoole Shokuhin Kk | 分散性に優れたα化澱粉顆粒 |
JP2000038401A (ja) | 1998-07-24 | 2000-02-08 | Nippon Starch Chemical Co Ltd | 分散性に優れたα化澱粉およびその製造方法 |
WO2012111326A1 (ja) * | 2011-02-16 | 2012-08-23 | グリコ栄養食品株式会社 | 老化しにくい澱粉粒及びその製造方法 |
JP2016103992A (ja) * | 2014-08-08 | 2016-06-09 | グリコ栄養食品株式会社 | 加工食品の品質改良剤 |
WO2016052712A1 (ja) * | 2014-10-02 | 2016-04-07 | グリコ栄養食品株式会社 | 食感改良組成物 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020158244A1 (ja) * | 2019-02-01 | 2020-08-06 | 日清食品ホールディングス株式会社 | 難消化性でん粉組成物およびその製造方法 |
JP2020124133A (ja) * | 2019-02-01 | 2020-08-20 | 日清食品ホールディングス株式会社 | 難消化性でん粉組成物およびその製造方法 |
JP7329930B2 (ja) | 2019-02-01 | 2023-08-21 | 日清食品ホールディングス株式会社 | 難消化性でん粉組成物およびその製造方法 |
WO2023090396A1 (ja) * | 2021-11-17 | 2023-05-25 | グリコ栄養食品株式会社 | ソフトな食感を付与するための食感改良剤 |
Also Published As
Publication number | Publication date |
---|---|
KR102700387B1 (ko) | 2024-08-29 |
JP2023062190A (ja) | 2023-05-02 |
EP3636673A1 (en) | 2020-04-15 |
JP7478868B2 (ja) | 2024-05-07 |
KR20200018417A (ko) | 2020-02-19 |
EP3636673A4 (en) | 2021-02-24 |
JPWO2018225872A1 (ja) | 2020-04-09 |
JP7285775B2 (ja) | 2023-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4682117B2 (ja) | ベーカリー食品用小麦粉代替物及びベーカリー食品 | |
JP6147688B2 (ja) | ベーカリー製品及びその製造方法 | |
JP7478868B2 (ja) | α化澱粉 | |
JP6592460B2 (ja) | ベーカリー食品用加工澱粉及びベーカリー食品用ミックス | |
JPH0515296A (ja) | 加工澱粉及びそれを利用したベーカリー食品 | |
JP5175425B2 (ja) | スポンジケーキまたはギョウザの皮の食感の保存性向上剤 | |
WO2014002573A1 (ja) | 膨潤抑制澱粉及びその用途 | |
JP7564116B2 (ja) | α化穀粉類の製造方法 | |
JP3700015B2 (ja) | パン類及びその製造法 | |
JP2012254071A (ja) | アセチル化アジピン酸架橋タピオカ澱粉及びその製造方法 | |
WO2016052712A1 (ja) | 食感改良組成物 | |
JP4995769B2 (ja) | 食感の優れたベーカリー製品及びその製造法 | |
JP6712536B2 (ja) | 小麦粉含有生地の製造方法 | |
JPWO2017037756A1 (ja) | シューパフ及びその製造方法 | |
JP4957379B2 (ja) | 加工澱粉の製造方法、食品及び飼料 | |
JP5726623B2 (ja) | クルトンの製造方法 | |
JP6998297B2 (ja) | 澱粉を含む食品組成物 | |
WO2022230839A1 (ja) | ベーカリーミックスの製造方法 | |
JP3688447B2 (ja) | マイクロ波加熱用のパン | |
JP6646507B2 (ja) | 麺皮類の製造方法 | |
JP2000106825A (ja) | 餅菓子の製造法 | |
KR20220061136A (ko) | 즉석면용 고 아세틸화 완두콩 전분 | |
JP6646506B2 (ja) | 麺類の製造方法 | |
JP5740770B2 (ja) | シュー生地及びもちもちシューパフ | |
WO2023238730A1 (ja) | α化穀粉類及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18814393 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197034275 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019524000 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018814393 Country of ref document: EP Effective date: 20200109 |