WO2018221522A1 - 超電導送電用断熱多重管 - Google Patents

超電導送電用断熱多重管 Download PDF

Info

Publication number
WO2018221522A1
WO2018221522A1 PCT/JP2018/020583 JP2018020583W WO2018221522A1 WO 2018221522 A1 WO2018221522 A1 WO 2018221522A1 JP 2018020583 W JP2018020583 W JP 2018020583W WO 2018221522 A1 WO2018221522 A1 WO 2018221522A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
zinc
pipe
plating layer
tube
Prior art date
Application number
PCT/JP2018/020583
Other languages
English (en)
French (fr)
Inventor
石黒 康英
昭夫 佐藤
重人 坂下
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2019140363A priority Critical patent/RU2719767C1/ru
Priority to JP2018552905A priority patent/JP6451917B1/ja
Priority to EP18810087.9A priority patent/EP3637441A4/en
Priority to US16/612,758 priority patent/US11486531B2/en
Priority to KR1020197037717A priority patent/KR102197335B1/ko
Priority to CN201880030311.9A priority patent/CN110612577B/zh
Publication of WO2018221522A1 publication Critical patent/WO2018221522A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/14Superconductive or hyperconductive conductors, cables, or transmission lines characterised by the disposition of thermal insulation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/075Arrangements using an air layer or vacuum the air layer or the vacuum being delimited by longitudinal channels distributed around the circumference of a tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/18Double-walled pipes; Multi-channel pipes or pipe assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0462Tubings, i.e. having a closed section
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/81Containers; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/2806Protection against damage caused by corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/884Conductor
    • Y10S505/885Cooling, or feeding, circulating, or distributing fluid; in superconductive apparatus
    • Y10S505/886Cable

Definitions

  • the present invention relates to a thermal-insulated multiple pipe for superconducting power transmission, and more particularly, a heat-insulating multiplex tube for superconducting power transmission that has a high degree of thermal invasion from the outside due to radiation. About.
  • a vacuum heat insulating layer is provided by reducing the pressure between two adjacent tubes (inner tube and outer tube) among a plurality of tubes constituting the multiple tube.
  • a spacer made of a low thermal conductive material such as a resin is installed between the two adjacent tubes. By installing the spacer, it is possible to prevent adjacent pipes from coming into direct contact with each other, and external heat from entering from the contact portion by heat conduction.
  • the vacuum heat insulating layer and the spacer are used in combination, both heat penetration through air and heat penetration due to direct contact between tubes can be suppressed.
  • the heat intrusion into the heat insulating multiple tube is caused by radiation such as far infrared rays in addition to the above.
  • Super insulation As a method for reducing heat intrusion due to radiation, a method using a heat insulating material called Super Insulation (SI) is known.
  • Super insulation is also called a multi-layer insulation (MLI), and has a structure in which, for example, a resin film on which aluminum is deposited is laminated. By covering the surface of the inner tube with this super insulation, heat intrusion due to radiation from the outside can be suppressed.
  • the use of super insulation has the following problems.
  • the vacuum insulation layer is formed by depressurizing the space in which the super insulation is provided, the gas existing in the super insulation which is a multilayer film, moisture adsorbed on the film, and organic materials are used. Due to the “gas component” that comes out, there is a problem that the time required for decompression becomes longer.
  • Patent Document 1 it is proposed to provide a metal coating on the surface of the pipe constituting the heat insulating multiple pipe instead of the super insulation. By using a metal coating, the invasion of heat from the outside due to radiation can be suppressed.
  • the present invention has been made in view of the above circumstances, and provides a heat-insulating multi-tube for superconducting power transmission that has excellent heat insulation, in which heat intrusion from outside due to radiation is highly suppressed without using super-insulation. For the purpose.
  • the spangle is a pattern that appears in the hot-dip galvanized layer and is caused by solidified metal crystal grains.
  • a spangle pattern a photograph of the surface of a hot dip galvanized steel material is shown in FIG.
  • the spangle pattern grains having the same crystal orientation are observed as one spangle, and the size of the spangle depends on manufacturing conditions. Even hot-dipped layers having the same component composition have different appearances depending on the spangle size, and therefore the spangle size is generally selected from the viewpoint of design.
  • a heat insulating multiple tube for superconducting power transmission comprising a multiple tube for accommodating the superconducting cable,
  • the multiple tube is composed of a plurality of straight tubes,
  • the present invention it is possible to suppress the invasion of heat from the outside due to radiation without using super-insulation, and to improve the heat insulation of the heat insulating multiple tube for superconducting power transmission.
  • the heat insulating multiple tube for superconducting power transmission includes a superconducting cable and a multiple tube that accommodates the superconducting cable.
  • a superconducting cable and a multiple tube that accommodates the superconducting cable.
  • Superconducting cable Any superconducting cable can be used as long as it can be used for superconducting power transmission.
  • An example of a superconducting cable that can be suitably used is a superconducting cable having a core (former) made of a metal such as copper, an insulating layer, and a conductor made of a superconducting material. Any superconducting material can be used, but it is preferable to use a high-temperature superconducting material that takes a superconducting state in a liquid nitrogen environment.
  • the superconducting cable is accommodated in a multiple tube composed of a plurality of straight tubes.
  • the multiple tube may be a double tube formed of two straight tubes, or may be formed of three or more straight tubes.
  • the superconducting cable is usually accommodated in the innermost tube (hereinafter, also referred to as “innermost tube”) among the plurality of straight tubes constituting the multiple tube.
  • a cooling medium for cooling the superconducting cable is allowed to flow inside the pipe (usually the innermost pipe) containing the superconducting cable.
  • the multiple tube may further optionally include an additional tube.
  • a double pipe composed of an outer pipe and an inner pipe can further include an additional pipe independent of the inner pipe in the outer pipe.
  • the straight pipe refers to a pipe having a substantially constant sectional area, not a corrugated pipe or a flexible pipe such as a flexible pipe, and the straight pipe is bent. This is also included in the straight tube.
  • the shape of the straight tube in a cross section perpendicular to the longitudinal direction is preferably circular.
  • the material of the straight tube is not particularly limited, but is preferably made of metal.
  • metal it is preferable to use 1 or 2 or more selected from the group which consists of aluminum, aluminum alloy, iron, steel, Ni base alloy, and Co base alloy, for example.
  • a straight steel pipe it is preferable to use one or both of carbon steel and stainless steel.
  • the materials of the plurality of straight tubes constituting the multiple tube may be the same or different.
  • the volume fraction of the austenite phase is 80% or more. It is preferable to use a steel material. There are mainly two reasons for this. One is that a steel material having a structure mainly composed of austenite is excellent in elongation characteristics. For example, when winding on a reel barge to install a pipe, the inner pipe among the plurality of straight pipes constituting the multiple pipe is greatly deformed due to the difference in bending radius.
  • a steel material having an austenite phase volume fraction of 80% or more is excellent in elongation characteristics, and is therefore suitable as a material for a cable housing tube installed inside.
  • the other is that a steel material having a structure mainly composed of austenite is excellent in low temperature toughness. Since a cooling medium such as liquid nitrogen is flowed through the cable housing tube, a steel material having an austenite phase volume fraction of 80% or more is preferable from the viewpoint of strength and toughness at low temperatures.
  • any steel material having a volume fraction of the austenite phase of 80% or more can be used.
  • the volume fraction of austenite is preferably 90% or more.
  • the upper limit of the volume fraction of the austenite is not particularly limited, and may be 100%.
  • Examples of the steel material having an austenite phase volume fraction of 80% or more include austenitic stainless steel or austenitic steel material containing Mn (so-called high manganese steel).
  • the Mn content of the high manganese steel is preferably 11% by mass or more.
  • a steel pipe manufactured by an arbitrary method can be used as the straight steel pipe.
  • steel pipes that can be suitably used include electric resistance welded pipes, seamless pipes, UOE pipes, and the like.
  • the straight steel pipe can be optionally subjected to a surface treatment.
  • the surface treatment for example, one or more selected from the group consisting of pickling, electrolytic polishing, and chemical polishing is preferably performed.
  • the thickness of the plurality of straight tubes constituting the multiple tube can be set to any value independently, but the total thickness is preferably 10 mm or more, preferably 15 mm or more. More preferred. By setting the total thickness within the above range, the superconducting power transmission insulation multi-pipe is sunk by its own weight when laying on the sea floor, so it can be laid easily without using weights, etc. can get.
  • each of the plurality of straight tubes constituting the multiple tube is not particularly limited, but is preferably 3 mm or more. Further, it is more preferable that the outermost tube (hereinafter, also referred to as “outermost tube”) among the plurality of straight tubes constituting the multiple tube has a thickness of 8 mm or more.
  • a zinc-based plating layer having an average spangle size of 2.0 mm or less (hereinafter sometimes simply referred to as “zinc-based plating layer”) is provided on at least one surface of a plurality of straight tubes constituting the multiple tube.
  • the average size of spangles is set to 2.0 mm or less, the emissivity of the zinc-based plating layer, particularly the emissivity in the far infrared region can be reduced.
  • intrusion of heat from the outside due to radiation such as far-infrared rays can be suppressed, and the heat insulation of the heat insulating multiple tube for superconducting power transmission can be improved.
  • the average size of spangles is preferably 1.5 mm or less, more preferably 1.0 mm or less, and even more preferably 0.8 mm or less.
  • the emissivity is equal to the absorption rate in the local thermal equilibrium state.
  • the average size of spangle can be measured by the method described in the Examples.
  • the lower limit of the average spangle size is not particularly limited.
  • it may be a so-called zero spangle that is so fine that a spangle pattern cannot be visually confirmed.
  • a zinc-based plating layer having no spangle pattern can also be used as the zinc-based plating layer in the present invention.
  • any zinc-based plating layer can be used as long as the average spangle size does not exceed 2.0 mm.
  • the zinc-based plating layer include a hot-dip zinc-based plating layer formed by a hot-dip plating method, an alloyed hot-dip zinc-based plating layer obtained by alloying a hot-dip zinc-based plating layer, and an electric zinc generated by an electroplating method.
  • a system plating layer is mentioned.
  • the alloyed hot dip galvanized layer can be obtained by subjecting the plated layer to heat treatment (alloying treatment) after hot dip plating.
  • the alloyed hot-dip zinc-based plating layer and the electrozinc-based plating layer usually do not have observable spangles, and are therefore included in the zinc-based plating layer having an average spangle size of 2.0 mm or less in the present invention.
  • Both the zinc plating layer and the zinc alloy plating layer can be used as the zinc plating layer.
  • As the zinc-based alloy constituting the zinc-based alloy plating layer for example, an Al—Zn alloy can be used.
  • the zinc-based plating layer may be provided on at least one of the plurality of straight pipes constituting the multiple pipe, but may be provided on all of them.
  • Each straight tube can have a plating layer on one or both of the outer surface and the inner surface.
  • the corrosion resistance of the heat insulating multiple tube for superconducting power transmission can be effectively improved due to the sacrificial anticorrosive effect of zinc.
  • the method for controlling the average spangle size within the above range is not particularly limited, and any method can be used.
  • the spangle may be refined according to a conventional method in hot-dip plating, for example, the cooling rate after hot-dip plating is increased, that is, rapid cooling is performed after plating.
  • a method of refining spangles can be used.
  • the alloyed hot dip galvanized layer and the electrogalvanized layer do not have observable spangles, so that the average size of spangles is suppressed to 2.0 mm or less, The emissivity is kept low.
  • Zinc-based plating in which the average size of the spangle is 2.0 mm or less with respect to the surface area S1 of the entire surface of the straight pipe on which the zinc-based plating layer on which the average size of the spangle is 2.0 mm or less is provided.
  • the higher the covering area ratio the better, and the upper limit may be 100%.
  • the covering area ratio on at least one of the surfaces satisfies the above condition.
  • the covering area ratio on both surfaces satisfies the above conditions.
  • the remaining portion that is, the portion where the average size of spangles is not provided with a zinc-based plating layer of 2.0 mm or less is described below as “other plating layer”. May be provided, or a plating layer may not be provided.
  • repair coating can be applied to a portion where the plating layer is not formed due to a plating defect or the like. From the viewpoint of improving the corrosion resistance, it is preferable to use a paint containing metal powder having sacrificial anticorrosive action, such as zinc rich paint, for the repair coating.
  • a plating layer having an average spangle size of 2.0 mm or less is provided on at least one surface of a plurality of straight tubes constituting the multiple tube, a plating layer is provided in other portions. It does not have to be. However, another plating layer can be provided in a portion where a zinc-based plating layer having an average spangle size of 2.0 mm or less is not provided.
  • the material of the other plating layer is not particularly limited and can be any metal.
  • the metal include zinc, zinc alloy, aluminum, and aluminum alloy.
  • a method for forming the other plating layer for example, hot dipping, electroplating, or the like can be used.
  • a zinc-based plating layer having an average spangle size of more than 2.0 mm can be used as the other plating layer.
  • a zinc plating layer is formed on the outer surface and inner surface of the outermost tube (outermost tube) among a plurality of straight tubes constituting the multiple tube, and provided on the outer surface and inner surface of the outermost tube.
  • the average size of spangles in either one or both of the plated layers is set to 2.0 mm or less.
  • corrosion resistance can also be improved by the sacrificial anticorrosion effect of zinc.
  • other plating layers such as a molten aluminum plating layer can be provided on the outer surface and the inner surface of the straight pipe other than the outermost pipe that do not come into contact with the external corrosive environment.
  • the aluminum plating layer has an effect equal to or higher than that of the zinc-based plating layer in terms of both the emissivity reduction effect and the sacrificial anticorrosion effect, but it is difficult to plate the steel pipe. Therefore, by using a zinc-based plating layer having an average spangle size of 2.0 mm or less in place of at least a part of the aluminum plating layer as described above, the emissivity reduction effect is improved and manufacturing is facilitated. be able to.
  • a resin coating layer can be further provided on the outer surface of the outermost straight pipe among the plurality of straight pipes. By covering the resin, the corrosion resistance of the heat insulating multiple tube for superconducting power transmission can be further improved. Therefore, it is preferable to provide the resin coating layer particularly when the heat insulation multiple tube for superconducting power transmission is buried in the ground.
  • the resin constituting the resin coating layer is not particularly limited, and any resin can be used.
  • any resin it is preferable to use 1 or 2 or more selected from the group which consists of a polyethylene resin, a urethane resin, an epoxy resin, and those mixtures, for example, and it is more preferable to use a polyethylene resin especially.
  • the polyethylene resin it is preferable to use one or both of an ethylene homopolymer and an ethylene / ⁇ -olefin copolymer.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene and the like.
  • the polyethylene resin it is preferable to use a high-density polyethylene resin having a density of 915 kg / m 3 or more.
  • the resin coating layer can be formed by any method without any particular limitation.
  • the outside of the steel pipe can be coated by extruding molten resin using a round die or a T die.
  • the resin can be coated by powder coating.
  • the thickness of the resin coating layer is preferably 0.1 mm or more, and more preferably 0.5 mm or more.
  • the thickness is preferably 3.0 mm or less, and preferably 2.0 mm or less.
  • the resin coating layer may be a coating layer made only of a resin.
  • spacer It is preferable that a spacer is provided between two adjacent straight pipes among a plurality of straight pipes constituting the multiple pipe. By providing the spacer, it is possible to prevent two adjacent pipes from directly contacting each other and transferring heat directly. It is preferable that a plurality of the spacers are installed at intervals in the longitudinal direction of the heat insulating multiple tube for superconducting power transmission.
  • the shape of the spacer is not particularly limited.
  • the spacer has a plate shape and has a through-hole penetrating in the thickness direction at the center.
  • the spacer can be stably disposed between the two adjacent straight pipes by passing an inner straight pipe through the through-hole among the two adjacent straight pipes.
  • the spacer has a polygonal cross-sectional shape in a plane perpendicular to the longitudinal direction of the superconducting power transmission multiple tube.
  • the polygon may be an arbitrary polygon having three or more vertices, and examples thereof include a triangle, a quadrangle, a pentagon, and a hexagon.
  • the polygon is not limited to a regular polygon.
  • as the quadrangle not only a square but also a rectangle having a longer side and a shorter side can be used.
  • the “polygon” in the present invention includes not only a geometrically perfect polygon but also a “substantial polygon” obtained by making a slight change to the perfect polygon. .
  • a geometrically perfect polygon obtained by making a slight change to the perfect polygon.
  • the shape of the spacer is included in the polygon.
  • any material can be used as the material of the spacer, but from the viewpoint of low thermal conductivity and low friction coefficient, it is preferably made of resin and more preferably made of fluororesin.
  • the fluororesin include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE), and the like.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • PVF polyvinyl fluoride
  • PCTFE polychlorotrifluoroethylene
  • FRP fiber reinforced plastic
  • the FRP include glass fiber reinforced plastic (GFRP).
  • GFRP glass fiber reinforced plastic
  • other arbitrary fillers can also be added. However, when a filler is added, the thermal conductivity of the spacer is increased, and the heat insulating property may be lowered. Therefore, from the viewpoint of heat insulation, it is preferable that the resin used for the space
  • the spacer can be installed at an arbitrary interval in the longitudinal direction of the heat insulating multiple tube for superconducting power transmission.
  • the intervals may be equal intervals or unequal intervals.
  • the interval is not particularly limited and may be an arbitrary value. However, if the interval is excessively large, contact between the tubes constituting the multiple tube may not be prevented. Therefore, the interval is preferably 10 m or less.
  • interval shall be 1 m or more. It should be noted that the position of the spacer is allowed to change with work such as laying.
  • a space between two adjacent straight tubes can be decompressed to form a vacuum heat insulating layer.
  • the vacuum heat insulating layer may be formed when the superconducting power transmission heat insulating multiple tube is laid. Therefore, it is not necessary to form the vacuum heat insulating layer on the superconducting power transmission heat insulating multiple tube before laying.
  • the vacuum heat insulating layer is preferably provided in a space where the spacer is installed.
  • the vacuum insulation layer is formed by evacuating (evacuating) the space between two adjacent straight tubes.
  • the exhaust can be performed once after the heat-insulated multiple tube for superconducting power transmission is laid, but can also be performed twice or more. For example, preliminary exhaust (temporary pulling) can be performed before laying, and exhausting (main pulling) can be performed until the final vacuum degree is reached after laying.
  • Example 1 In order to confirm the effect of the present invention, zinc-based plating layers having different spangle average sizes were prepared, and the emissivity was evaluated.
  • a plurality of 50 mm ⁇ 100 mm square test pieces made of the same steel material were prepared, and a hot dip galvanizing layer was formed on the plurality of test pieces under different conditions. Further, some test pieces were subjected to alloying treatment after plating to form an alloyed hot-dip galvanized layer. In addition, although the plate-shaped test piece was used here, the shape of a base material does not affect a radiation rate directly.
  • the average size of spangles and the emissivity were evaluated by the method described below.
  • the average size of spangles was evaluated by the line segment method. The specific procedure is as follows. First, an arbitrary straight line was drawn on the surface of the plating layer, the number of spangle grains crossing the straight line was counted, and the average length of spangles was obtained by dividing the length of the straight line by the number of spangle grains. If it is difficult to identify spangled grains, the crystal orientation is analyzed by EBSP (Electron Back Scattering Pattern) measurement, etc., and if there is a crystal orientation deviation of 15 ° or more between the two regions, another spangle Judged to be grains. Therefore, twin crystals exist in one spangled grain, and the color tone may be slightly different in the spangled grain, but such spangled grain was also considered as one spangled grain.
  • EBSP Electro Back Scattering Pattern
  • the emissivity of the obtained plating layer surface was measured using a far infrared spectroradiometer (JEOL Ltd., JIR-E500). The emissivity was measured in a wavelength range of 4 to 25 ⁇ m, and the emissivities at wavelengths of 8, 12, 16, and 20 ⁇ m excluding both ends including noise were used for evaluation. For reference, an example of the measurement result of the emissivity with a far-infrared spectroradiometer is shown in FIG.
  • the emissivity is based on the following evaluation criteria using the following first conditions (1) to (4), which are preferable conditions, and second conditions (5) to (8) which are more preferable conditions. evaluated.
  • Emissivity at a wavelength of 8 ⁇ m is less than 8%
  • Emissivity at a wavelength of 12 ⁇ m is less than 12%
  • Emissivity at a wavelength of 16 ⁇ m is less than 15%
  • Emissivity at a wavelength of 20 ⁇ m is less than 18%
  • Emissivity at a wavelength of 8 ⁇ m is less than 6%
  • Emissivity at a wavelength of 12 ⁇ m is less than 9%
  • Emissivity at a wavelength of 16 ⁇ m is less than 12%
  • Emissivity at a wavelength of 20 ⁇ m is less than 14%
  • the hot dip galvanized layer having an average spangle size of 2.0 mm or less had a radiation rate equal to or lower than that of conventional super insulation. Also, the smaller the spangle size, the lower the emissivity.
  • the alloyed hot-dip galvanized layer had a smooth appearance, extremely fine crystal grains, and a very low emissivity.
  • a resin coating layer made of polyethylene resin was formed on the surface of the hot dip galvanized layer.
  • the resin coating layer had an average film thickness of 2.8 mm.
  • a sample (No. 21) was prepared in which a plating layer was not provided and a resin coating layer made of polyethylene resin was directly provided on the surface of the base steel plate as the test piece (hereinafter referred to as “reference sample”). ").
  • the emissivity was measured by the method similar to Example 1.
  • the emissivity was evaluated based on the following evaluation criteria.
  • standard sample (No. 21) which does not have a plating layer was used as a reference
  • the evaluation results are also shown in Table 2.
  • Equivalent The difference between the emissivity (%) of the sample and the emissivity (%) of the reference sample is within 5 percentage points at all wavelengths of 8, 12, 16, and 20 ⁇ m.
  • the steel pipe surface can be shielded from the external corrosive environment, and the corrosion resistance can be improved extremely effectively.
  • the emissivity increases due to composite reflection of far-infrared energy.
  • the influence of the resin coating layer is offset by providing a zinc-based plating layer having an average spangle size of 2.0 mm or less as the base of the resin coating layer.
  • the emissivity can be reduced.
  • the emissivity was equivalent to that of a reference sample having no plating layer.

Abstract

スーパーインシュレーションを用いずとも輻射による外部からの熱の侵入が高度に抑制された、断熱性に優れる超電導送電用断熱多重管を提供する。 超電導ケーブルと、前記超電導ケーブルを収容する多重管とを備える超電導送電用断熱多重管であって、前記多重管が複数のストレート管からなり、前記複数のストレート管の少なくとも1つが、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層を表面に備える、超電導送電用断熱多重管。

Description

超電導送電用断熱多重管
 本発明は、超電導送電用断熱多重管(thermal-insulated multiple pipe for superconducting power transmission)に関し、特に、輻射による外部からの熱の侵入が高度に抑制された、断熱性に優れる超電導送電用断熱多重管に関する。
 金属や合金などを冷却したときに、ある特定の温度で電気抵抗が急激に低下してゼロになる超電導現象は、様々な分野において応用が研究されている。中でも、超電導状態のケーブルを用いて送電を行う超電導送電は、送電時の電力ロスがない送電方法として実用化が進められている。
 超電導送電においては、ケーブルを超電導状態に維持するために該ケーブルを常に冷却する必要があり、そのために断熱多重管を用いることが提案されている。断熱多重管では、多重管の最も内側の管(内管)の中に超電導材料のケーブルが設置され、前記内管の中に液体窒素等の冷却媒体が流される。その際、断熱多重管が設置されている外部環境から断熱多重管の内部へ侵入する熱量が大きいと、超電導状態を維持するために必要な冷却設備が大型化するとともに、ランニングコストが増大する。そのため、このような断熱多重管においては、外部からの熱の侵入を防ぐために様々な工夫が施される。
 まず、多重管を構成する複数の管のうち隣接する2つの管(内管および外管)の間を減圧することにより、真空断熱層が設けられる。前記真空断熱層を設けることにより、管内部の空気を介して熱が侵入することを防止できる。
 さらに、特許文献1に記載されているように、前記隣接する2つの管の間に樹脂などの低熱電導性材料からなるスペーサを設置することも行われている。スペーサを設置することにより、隣接する管同士が直接接触し、その接触部分から熱伝導によって外部の熱が侵入することを防止できる。
 上記真空断熱層とスペーサを併用すれば、空気を介した熱の侵入と、管同士の直接接触による熱の侵入の両者を抑制することができる。しかし、断熱多重管への熱の侵入は、前記以外に、遠赤外線などの輻射によっても生じることが知られている。
 輻射による熱の侵入を低減する方法としては、スーパーインシュレーション(Super Insulation、SI)と呼ばれる断熱材を用いる方法が知られている。スーパーインシュレーションは、多層断熱材(Multi-Layer Insulation、MLI)とも呼ばれ、例えば、アルミニウムが蒸着された樹脂フィルムを積層した構造を有している。このスーパーインシュレーションで内管の表面を覆うことにより、外部からの輻射による熱の侵入を抑制することができる。
 しかし、スーパーインシュレーションの使用には次のような問題があった。まず、実際の送電のために超電導送電用断熱多重管を敷設する際には、断熱多重管の長さを調節するために溶接や切断を行うことが一般的である。その際に発生した火花がスーパーインシュレーションに引火し、火災や超電導送電用断熱多重管の損傷を招くという問題がある。また、スーパーインシュレーションが設けられている空間を減圧して真空断熱層を形成する場合、多層のフィルムであるスーパーインシュレーション内に存在しているガスやフィルムに吸着している水分、有機材料から出る「ガス成分」のため、減圧にかかる時間が長くなるという問題がある。
 そこで、特許文献1では、スーパーインシュレーションに代えて、断熱多重管を構成する管の表面に金属コーティングを設けることが提案されている。金属コーティングを用いることにより、輻射による外部からの熱の侵入を抑制することができる。
特開2007-080649号公報
 特許文献1で提案されている金属コーティングを用いる方法によれば、輻射による外部からの熱の侵入を抑制し、超電導送電用断熱多重管の断熱性をある程度改善することができる。しかし、超電導送電の実用化のためにはさらなる断熱性の向上が求められており、そのためには、輻射による外部からの熱の侵入をより高い水準で抑制する方法の開発が求められている。
 本発明は、上記事情に鑑みてなされたものであり、スーパーインシュレーションを用いずとも輻射による外部からの熱の侵入が高度に抑制された、断熱性に優れる超電導送電用断熱多重管を提供することを目的とする。
 上記課題を解決するために本発明者等が検討を行った結果、亜鉛系めっき層のスパングルサイズが、輻射率(emissivity)に影響することを見出した。
 スパングルとは、溶融亜鉛系めっき層に現れる模様であり、凝固した金属結晶粒に起因する。スパングル模様の一例として、溶融亜鉛めっき鋼材表面の写真を図1に示す。スパングル模様においては、同じ結晶方位を有するグレインが1つのスパングルとして観察され、スパングルのサイズは製造条件に依存する。同じ成分組成を有する溶融めっき層であっても、スパングルのサイズによって外観が大きく異なるため、スパングルのサイズは意匠性の観点から選択されることが一般的である。しかし、意外にも、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層を用いることにより輻射率を低減し、超電導送電用断熱多重管の断熱性を向上できることが分かった。
 本発明は上記知見に基づくものであり、その要旨構成は以下のとおりである。
1.超電導ケーブルと、
 前記超電導ケーブルを収容する多重管とを備える超電導送電用断熱多重管であって、
 前記多重管が複数のストレート管からなり、
 前記複数のストレート管の少なくとも1つが、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層を表面に備える、超電導送電用断熱多重管。
2.前記複数のストレート管のうち最も外側のストレート管の外表面に、樹脂被覆層を有する、上記1に記載の超電導送電用断熱多重管。
 本発明によれば、スーパーインシュレーションを用いることなく、輻射による外部からの熱の侵入を抑制し、超電導送電用断熱多重管の断熱性を向上させることができる。
スパングル模様の一例を示す写真である。 遠赤外線分光放射計による輻射率の測定結果の一例を示す図である。
 次に、本発明を実施する方法について具体的に説明する。なお、以下の説明は、本発明の好適な実施態様を示すものであり、本発明は以下の説明によって何ら限定されるものではない。
 本発明の超電導送電用断熱多重管は、超電導ケーブルと前記超電導ケーブルを収容する多重管とを備えている。以下、前記各部の構成について説明する。
[超電導ケーブル]
 前記超電導ケーブルとしては、超電導送電に用いることができるものであれば任意のものを用いることができる。好適に用いることができる超電導ケーブルの一例としては、銅などの金属からなる芯材(フォーマ)と、絶縁層と、超電導材料からなる導体とを有する超電導ケーブルが挙げられる。前記超電導材料としては任意のものを用いることができるが、液体窒素環境において超電導状態をとる高温超電導材料を用いることが好ましい。
[多重管]
 上記超電導ケーブルは、複数のストレート管で構成された多重管に収容される。前記多重管は、2つのストレート管で構成された2重管であってもよく、3以上のストレート管で構成されていてもよい。前記超電導ケーブルは、通常、前記多重管を構成する複数のストレート管のうち、最も内側の管(以下、「最内管」という場合がある)の内部に収容される。本超電導送電用断熱多重管を実際の送電に使用する際には、超電導ケーブルを収容した管(通常、最内管)の内部に、超電導ケーブルを冷却するための冷却媒体を流す。前記冷却媒体としては、例えば、液体窒素を用いることができる。また、前記多重管は、さらに任意に追加の管を含むこともできる。例えば、外管と内管からなる二重管が、さらに前記内管とは独立した追加の管を外管の中に備えることができる。
 本発明においては、コルゲート管やフレキシブル管ではなく、ストレート管のみを用いて多重管を構成することが重要である。ストレート管は、コルゲート管およびフレキシブル管に比べて、単位長さ当たりの表面積が小さいため、外部からの熱の侵入を抑制することができる。なお、ここでストレート管とは、コルゲート管やフレキシブル管のように波形に加工された管ではなく、実質的に一定の断面積を有する管を指すものとし、ストレート管に対して曲げ加工を施したものもストレート管に包含するものとする。前記ストレート管の、長手方向に垂直な断面における形状は円形とすることが好ましい。
 前記ストレート管の材質は特に限定されないが、金属製とすることが好ましい。前記金属としては、例えば、アルミニウム、アルミニウム合金、鉄、鋼、Ni基合金、およびCo基合金からなる群より選択される1または2以上を用いることが好ましい。中でも、強度、耐食性、コストなどの観点からは、前記ストレート管としてストレート鋼管を用いることが好ましい。また、前記ストレート鋼管の材質としては、炭素鋼およびステンレス鋼の一方または両方を用いることがより好ましい。多重管を構成する複数のストレート管の材質は、同じであってもよく、また、異なってもよい。
 前記多重管を構成する複数のストレート管のうち、超電導ケーブルを直接収容しているストレート管(以下、「ケーブル収容管」という)の素材としては、オーステナイト相の体積分率が80%以上である鋼材を用いることが好ましい。その理由としては、主に次の2つが挙げられる。1つは、オーステナイトを主体とする組織を有する鋼材が伸び特性に優れるためである。例えば、管を敷設するためにリールバージに巻取る際には、曲げ半径の違いから前記多重管を構成する複数のストレート管のうち内側の管ほど大きく変形を受ける。オーステナイト相の体積分率が80%以上である鋼材は伸び特性に優れているため、内側に設置されるケーブル収容管の材質として好適である。もう1つは、オーステナイトを主体とする組織を有する鋼材が低温靭性に優れるためである。ケーブル収容管には液体窒素などの冷却媒体が流されるため、低温における強度および靭性の観点からも、オーステナイト相の体積分率が80%以上である鋼材が好適である。
 前記オーステナイト相の体積分率が80%以上である鋼材としては、任意のものを用いることができる。前記オーステナイトの体積分率は90%以上とすることが好ましい。また、前記オーステナイトの体積分率の上限は特に限定されず、100%であってもよい。オーステナイト相の体積分率が80%以上である鋼材としては、例えば、オーステナイト系ステンレス鋼またはMnを含有するオーステナイト系鋼材(いわゆる高マンガン鋼)が挙げられる。前記高マンガン鋼のMn含有率は、11質量%以上とすることが好ましい。また、前記オーステナイト系ステンレス鋼としては、SUS316Lを用いることが好ましい。
 前記ストレート管としてストレート鋼管を用いる場合、該ストレート鋼管としては、任意の方法で製造される鋼管を用いることができる。好適に用いることができる鋼管の例としては、電気抵抗溶接管、シームレス管、UOE管などが挙げられる。前記ストレート鋼管には、任意に表面処理を施すことができる。前記表面処理としては、例えば、酸洗、電解研磨、および化学研磨からなる群より選択される1または2以上を行うことが好ましい。
・肉厚の合計
 上記多重管を構成する複数のストレート管の肉厚は、それぞれ独立に、任意の値とすることができるが、合計で10mm以上とすることが好ましく、15mm以上とすることがより好ましい。肉厚の合計を上記範囲とすることにより、超電導送電用断熱多重管を海底に敷設する場合に自重で沈むため、重りなどを用いることなく容易に敷設でき、また、水圧などに耐え得る強度が得られる。
 なお、多重管を構成する複数のストレート管それぞれの肉厚は特に限定されないが、3mm以上とすることが好ましい。また、前記多重管を構成する複数のストレート管のうち最も外側の管(以下、「最外管」という場合がある)については、肉厚を8mm以上とすることがより好ましい。
[亜鉛系めっき層]
 上記多重管を構成する複数のストレート管の少なくとも1つの表面に、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層(以下、単に「亜鉛系めっき層」という場合がある)を設ける。スパングルの平均サイズを2.0mm以下とすることにより、当該亜鉛系めっき層の輻射率、特に、遠赤外域における輻射率を低減することができる。その結果、遠赤外線などの輻射による外部からの熱の侵入を抑制し、超電導送電用断熱多重管の断熱性を向上させることができる。スパングルの平均サイズは、1.5mm以下とすることが好ましく、1.0mm以下とすることがより好ましく、0.8mm以下とすることがさらに好ましい。なお、輻射率は局所熱平衡状態において吸収率に等しい。また、スパングルの平均サイズは、実施例に記載した方法で測定することができる。
 スパングルの平均サイズを2.0mm以下とすることによって輻射率が低下するメカニズムは明らかではないが、スパングルが粗大な場合には光が乱反射し、結果的に遠赤外線などの吸収が増大すると考えられる。したがって、スパングルを微細化することによって遠赤外線などの輻射による熱の侵入を抑制できる。
 一方、輻射率低減の観点からは、スパングルサイズは小さければ小さいほど好ましい。したがって、スパングルの平均サイズの下限は特に限定されない。例えば、目視ではスパングル模様を確認できないほど微細なスパングル、いわゆるゼロスパングルであってもよい。また、後述するように、スパングル模様を有さない亜鉛系めっき層も、本発明における亜鉛系めっき層として使用することができる。
 前記亜鉛系めっき層としては、スパングルの平均サイズが2.0mmを超えないものであれば任意の亜鉛系めっき層を用いることができる。前記亜鉛系めっき層としては、例えば、溶融めっき法によって形成される溶融亜鉛系めっき層、溶融亜鉛系めっき層を合金化した合金化溶融亜鉛系めっき層、および電気めっき法により生成される電気亜鉛系めっき層が挙げられる。前記合金化溶融亜鉛系めっき層は、溶融めっき後に、めっき層に熱処理(合金化処理)を施すことによって得ることができる。合金化溶融亜鉛系めっき層および電気亜鉛系めっき層は、通常、観察可能なスパングルを有さないため、本発明におけるスパングルの平均サイズが2.0mm以下である亜鉛系めっき層に含むものとする。
 前記亜鉛系めっき層としては、亜鉛めっき層と亜鉛系合金めっき層のいずれも用いることができる。前記亜鉛系合金めっき層を構成する亜鉛系合金としては、例えば、Al-Zn合金を用いることができる。
 前記亜鉛系めっき層は、多重管を構成する複数のストレート管の少なくとも1つに設ければよいが、すべてに設けることもできる。また、各ストレート管は、外表面および内表面のいずれか一方または両方にめっき層を有することができる。特に、前記亜鉛系めっき層を外部環境と接する最外管の外表面に設けた場合には、亜鉛が有する犠牲防食効果により超電導送電用断熱多重管の耐食性を効果的に向上させることができる。
 スパングルの平均サイズを上記範囲に制御する方法は特に限定されず、任意の方法とすることができる。前記亜鉛系めっき層が溶融亜鉛系めっき層である場合、溶融めっきにおける常法にしたがってスパングルを微細化すればよく、例えば、溶融めっき後の冷却速度を速くする、すなわち、めっき後に急冷を行うことによってスパングルを微細化する方法等を用いることができる。また、上述したように、合金化溶融亜鉛系めっき層および電気亜鉛めっき層は観察可能なスパングルを有さないため、スパングルの平均サイズを2.0mm以下に抑制した溶融亜鉛系めっき層と同様、輻射率が低く抑えられている。
 上記ストレート管の、上記スパングルの平均サイズが2.0mm以下である亜鉛系めっき層が設けられている側の面全体の表面積S1に対する、前記スパングルの平均サイズが2.0mm以下である亜鉛系めっき層の当該面における面積S2の割合(S2/S1)(以下、「被覆面積率」という)が高いほど輻射率低減効果および亜鉛による犠牲防食効果が高くなる。そのため、前記被覆面積率は50%以上とすることが好ましく、70%以上とすることがより好ましく、90%以上とすることがさらに好ましく、95%以上とすることが最も好ましい。一方、前記被覆面積率は高ければ高いほどよく、その上限は100%であってよい。なお、1つのストレート管の両面、すなわち、外側表面と内側表面の両方に前記亜鉛系めっき層が設けられている場合には、それらの面の少なくとも一方における被覆面積率が上記条件を満たすことが好ましく、両面における被覆面積率が上記条件を満たすことがより好ましい。
 前記被覆面積率が100%未満である場合、残りの部分、すなわち、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層が設けられていない部分には、後述する「他のめっき層」を設けてもよく、めっき層を設けなくてもよい。また、めっきの欠陥などによりめっき層が形成されていない部分には、補修塗装を施すこともできる。耐食性向上の観点から、前記補修塗装にはジンクリッチペイントなどの、犠牲防食作用を有する金属粉末を含有する塗料を用いることが好ましい。
[他のめっき層]
 多重管を構成する複数のストレート管の少なくとも1つの表面に、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層が設けられていれば、それ以外の部分にはめっき層が設けられていなくてもよい。しかし、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層が設けられていない部分に、他のめっき層を設けることもできる。
 前記他のめっき層の材質は、特に限定されず、任意の金属とすることができる。前記金属としては、例えば、亜鉛、亜鉛合金、アルミニウム、アルミニウム合金などが挙げられる。前記他のめっき層の形成方法としては、例えば、溶融めっき、電気めっきなどを用いることができる。例えば、前記他のめっき層として、スパングルの平均サイズが2.0mm超である亜鉛系めっき層を用いることもできる。
 例えば、多重管を構成する複数のストレート管のうち最も外側の管(最外管)の外表面と内表面には亜鉛系めっき層を形成し、前記最外管の外表面と内表面に設けられためっき層のいずれか一方または両方におけるスパングルの平均サイズを2.0mm以下とする。これにより、輻射率を低減するとともに、亜鉛の犠牲防食効果によって耐食性を向上させることもできる。一方、外部の腐食環境と接触しない、最外管以外のストレート管の外表面と内表面には溶融アルミニウムめっき層など、他のめっき層を設けることができる。アルミニウムめっき層は、輻射率低減効果および犠牲防食効果のいずれの観点でも、亜鉛系めっき層と同等またはそれ以上の効果を有しているが、鋼管へのめっきが困難である。そのため、上記のように少なくとも一部のアルミニウムめっき層に代えてスパングルの平均サイズが2.0mm以下である亜鉛系めっき層を用いることにより、輻射率低減効果を向上させつつ、製造も容易にすることができる。
[樹脂被覆層]
 前記複数のストレート管のうち最も外側のストレート管の外表面には、さらに樹脂被覆層を設けることができる。樹脂を被覆することにより、超電導送電用断熱多重管の耐食性をさらに向上させることができる。したがって、特に、超電導送電用断熱多重管を地中に埋設する場合には前記樹脂被覆層を設けることが好ましい。
 前記樹脂被覆層を構成する樹脂としては、特に限定されることなく任意の樹脂を用いることができる。前記樹脂としては、例えば、ポリエチレン樹脂、ウレタン樹脂、エポキシ樹脂、およびそれらの混合物からなる群より選択される1または2以上を用いることが好ましく、中でもポリエチレン樹脂を用いることがより好ましい。
 前記ポリエチレン樹脂としては、エチレンの単独重合体、およびエチレンとα-オレフィンの共重合体の一方または両方を用いることが好ましい。前記α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセンなどが挙げられる。また、前記ポリエチレン樹脂としては、密度915kg/m以上の高密度ポリエチレン樹脂を用いることが好ましい。
 前記樹脂被覆層は、特に限定されることなく任意の方法で形成することができる。例えば、溶融した樹脂を丸ダイやTダイを用いて押出すことによって鋼管の外側に被覆することができる。また、粉体塗装により樹脂を被覆することもできる。前記樹脂被覆層の厚さは、0.1mm以上とすることが好ましく、0.5mm以上とすることがより好ましい。また、前記厚さは、3.0mm以下とすることが好ましく、2.0mm以下とすることが好ましい。
 前記樹脂被覆層が金属粉末を含有すると、該金属粉末によって赤外線などが乱反射し、その結果、断熱管内部へのエネルギーの流入量が増大する。そのため、前記樹脂被覆層は、金属粉末を含有しないことが好ましい。前記樹脂被覆層は、樹脂のみからなる被覆層とすることができる。
[スペーサ]
 前記多重管を構成する複数のストレート管のうち、隣接する2つのストレート管の間には、スペーサを設置することが好ましい。前記スペーサを設けることにより、隣接する2つの管が直接接触し、熱が直接伝わることが防止できる。前記スペーサは、超電導送電用断熱多重管の長手方向に間隔を開けて複数設置することが好ましい。
 前記スペーサの形状は特に限定されないが、例えば、板状であり、中心に厚み方向に貫通する貫通孔を有するスペーサとすることが好ましい。前記隣接する2つのストレート管のうち、内側のストレート管を前記貫通孔に通すことにより、前記隣接する2つのストレート管の間に該スペーサを安定して配置することができる。
 また、鋼管とスペーサとの接触面積を減らすという観点からは、前記超電導送電用断熱多重管の長手方向に垂直な面におけるスペーサの断面形状を多角形とすることが好ましい。前記多角形は、頂点の数3以上の任意の多角形であってよく、例えば、三角形、四角形、五角形、六角形などが挙げられる。前記多角形は、正多角形に限定されない。例えば、前記四角形としては、正方形だけでなく、長辺と短辺の長さが異なる長方形も用いることができる。なお、本発明における「多角形」には、幾何学的に完全な多角形のみならず、完全な多角形に対して軽微な変更を加えた「実質的な多角形」も含まれるものとする。例えば、摩耗や変形などによってスペーサの頂点が丸みを帯びている場合や平坦となっている場合であっても、当該スペーサの形状は前記多角形に含まれる。
 前記スペーサの材質としては任意の材質を用いることができるが、熱伝導性の低さや摩擦係数の低さといった観点からは、樹脂製とすることが好ましく、フッ素樹脂製とすることがより好ましい。前記フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ポリクロロトリフルオロエチレン(PCTFE)などが挙げられる。また、スペーサの強度を向上させるために、前記樹脂に繊維状のフィラーを添加した繊維強化プラスチック(FRP)を用いることができる。前記FRPとしては、例えば、ガラス繊維強化プラスチック(GFRP)が挙げられる。また、他の任意のフィラーを添加することもできる。しかし、フィラーを添加するとスペーサの熱伝導性が高くなり、断熱性が低下する場合がある。そのため、断熱性の観点からは、前記スペーサに用いる樹脂がフィラーを含有しないことが好ましい。
 前記スペーサは、超電導送電用断熱多重管の長手方向に任意の間隔を開けて設置することができる。前記間隔は、等間隔であってもよいし、不等間隔であってもよい。前記間隔は特に限定されず、任意の値とすることができるが、過度に間隔が大きいと多重管を構成する管同士の接触を防止できなくなる場合がある。そのため、前記間隔は10m以下とすることが好ましい。一方、前記間隔が小さすぎるとスペーサの設置コストが増加するため、前記間隔は1m以上とすることが好ましい。なお、敷設などの作業にともなってスペーサの位置が変わることは許容される。
[真空断熱層]
 前記多重管を構成する複数のストレート管のうち、隣接する2つのストレート管の間の空間を減圧して、真空断熱層とすることができる。真空断熱層を設けることにより、外部からの熱の侵入をさらに抑制することができる。真空断熱層の形成は、超電導送電用断熱多重管を敷設する際に行えばよく、したがって、敷設前の超電導送電用断熱多重管には真空断熱層が形成されている必要は無い。前記真空断熱層は、上記スペーサが設置されている空間に設けることが好ましい。
 真空断熱層の形成は、隣接する2つのストレート管の間の空間を排気(真空引き)して行う。前記排気は、超電導送電用断熱多重管を敷設した後に1回で行うこともできるが、2回以上に分けて行うこともできる。例えば、敷設前に予備的な排気(仮引き)を行っておき、敷設後に最終的な真空度に到達するまで排気(本引き)を行うことができる。
(実施例1)
 本発明の効果を確認するために、スパングルの平均サイズが異なる亜鉛系めっき層を作成し、輻射率を評価した。
 まず、同じ鋼材からなる50mm×100mm角の試験片を複数作成し、前記複数の試験片に異なる条件で溶融亜鉛めっきを施して溶融亜鉛めっき層を形成した。さらに、一部の試験片については、めっき後に合金化処理を施して、合金化溶融亜鉛めっき層を形成した。なお、ここでは板状の試験片を使用したが、基材の形状は輻射率に直接影響しない。
 得られためっき層のそれぞれについて、以下に述べる方法でスパングルの平均サイズの測定と輻射率の評価を行った。
(スパングルの平均サイズ)
 スパングルの平均サイズを線分法で評価した。具体的な手順は次のとおりである。まず、めっき層の表面に任意の直線を引き、前記直線を横切ったスパングル粒の数を数え、前記直線の長さをスパングル粒の数で除したものをスパングルの平均サイズとした。なお、スパングル粒の識別が困難である場合には、EBSP(Electron BackScattering Pattern)測定などによって結晶方位を解析し、2つの領域間に15°以上の結晶方位のずれが存在する場合は別のスパングル粒と判断した。したがって、1つのスパングル粒内に双晶結晶が存在し、スパングル粒内でわずかに色調が異なる場合があるが、そのようなスパングル粒についても1つのスパングルと見なした。
(輻射率)
 得られためっき層表面の輻射率を、遠赤外線分光放射計(日本電子株式会社、JIR-E500)を使用して測定した。輻射率の測定は、4~25μmの波長範囲で行い、ノイズが含まれる両端を除いた波長8、12、16、および20μmにおける輻射率を評価に用いた。なお、参考のため、遠赤外線分光放射計による輻射率の測定結果の一例を図2に示す。
 輻射率は、好ましい条件である下記第1の条件(1)~(4)と、より好ましい条件である第2の条件(5)~(8)とを使用し、以下の評価基準に基づいて評価した。
[第1の条件]
(1)波長8μmにおける輻射率が8%未満
(2)波長12μmにおける輻射率が12%未満
(3)波長16μmにおける輻射率が15%未満
(4)波長20μmにおける輻射率が18%未満
[第2の条件]
(5)波長8μmにおける輻射率が6%未満
(6)波長12μmにおける輻射率が9%未満
(7)波長16μmにおける輻射率が12%未満
(8)波長20μmにおける輻射率が14%未満
[評価基準]
・前記第1の条件(1)~(4)をすべて満足しない場合:×
・前記第1の条件(1)~(4)の一部を満足する場合:△
・前記第1の条件(1)~(4)のすべてを満足する場合:○
・前記第1の条件(1)~(4)のすべてを満足し、かつ、前記第2の条件(5)~(8)の一部を満足する場合:○○
・前記第2の条件(5)~(8)をすべて満足する場合:◎
 評価結果を表1に示す。なお、No.1および2においては、スパングルサイズが目視で1cm以上であったため、「粗大」とした。一方、No.8および9においては、スパングルが目視確認できないほど微細であり、2.0μm以下であることが明らかであったため、「微細」とした。また、比較のために、従来用いられているスーパーインシュレーションの反射率を同様の方法で評価した結果を合わせて示す(No.10)。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果から分かるように、スパングルの平均サイズが2.0mm以下である溶融亜鉛系めっき層は、従来のスーパーインシュレーションと同等かさらに低い輻射率を備えていた。また、スパングルサイズが小さいほど輻射率は低かった。また、合金化溶融亜鉛めっき層は、平滑な外観で、結晶粒が極めて微細であり、輻射率も極めて低い値であった。
(実施例2)
 次に、樹脂被覆層を設けた場合の影響を確認するために、以下の実験を行った。
 まず、同じ鋼材からなる50mm×100mm角の試験片を複数作成し、前記複数の試験片に異なる条件で溶融亜鉛めっきを施して溶融亜鉛めっき層を形成した。次いで、前記溶融亜鉛系めっき層のスパングルの平均サイズを、実施例1と同様の方法で測定した。測定結果を表2に示す。
 次いで、前記溶融亜鉛めっき層の表面にポリエチレン樹脂からなる樹脂被覆層を形成した。前記樹脂被覆層の平均膜厚は2.8mmとした。また、比較のために、めっき層を設けず、前記試験片としての母材鋼板の表面に直接ポリエチレン樹脂からなる樹脂被覆層を設けたサンプル(No.21)を作成した(以下、「基準サンプル」と呼ぶ)。
(輻射率)
 得られたサンプルのそれぞれについて、実施例1と同様の方法で輻射率を測定した。前記測定は、n=3で行った。得られた波長8、12、16、および20μmにおける輻射率の平均値を用いて、以下の評価基準に基づいて輻射率を評価した。前記評価では、めっき層を有さない基準サンプル(No.21)における輻射率の測定値を基準として用いた。評価結果を表2に併記する。
[評価基準]
・同等(○):サンプルの輻射率(%)と基準サンプルの輻射率(%)との差が、8、12、16、および20μmのすべての波長において5ポイント(5 percentage point)以内。
・良好(◎):サンプルの輻射率(%)が、8、12、16、および20μmの少なくとも1つの波長において基準サンプルの同波長における輻射率よりも5ポイント(5 percentage point)より多く減少している。
Figure JPOXMLDOC01-appb-T000002
 樹脂被覆層を設けることにより、外部の腐食環境から鋼管表面を遮断して、極めて効果的に耐食性を向上させることができる。しかし、樹脂被覆層を設けると遠赤外エネルギーの複合反射によって輻射率が増加する。これに対して、表2に示した結果から分かるように、樹脂被覆層の下地として、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層を設けることにより、樹脂被覆層の影響を相殺し、輻射率を低減することができる。一方、スパングルの平均サイズが2.0mmより大きい亜鉛系めっき層を設けた場合には、めっき層を有さない基準サンプルと同等の輻射率であった。
 このように、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層と樹脂被覆層とを組み合わせることによって、輻射率を低減しつつ、極めて優れた耐食性を実現することができる。
 

Claims (2)

  1.  超電導ケーブルと、
     前記超電導ケーブルを収容する多重管とを備える超電導送電用断熱多重管であって、
     前記多重管が複数のストレート管からなり、
     前記複数のストレート管の少なくとも1つが、スパングルの平均サイズが2.0mm以下である亜鉛系めっき層を表面に備える、超電導送電用断熱多重管。
  2.  前記複数のストレート管のうち最も外側のストレート管の外表面に、樹脂被覆層を有する、請求項1に記載の超電導送電用断熱多重管。
     
     
PCT/JP2018/020583 2017-05-31 2018-05-29 超電導送電用断熱多重管 WO2018221522A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2019140363A RU2719767C1 (ru) 2017-05-31 2018-05-29 Теплоизолированная многослойная труба для передачи электроэнергии в условиях сверхпроводимости
JP2018552905A JP6451917B1 (ja) 2017-05-31 2018-05-29 超電導送電用断熱多重管
EP18810087.9A EP3637441A4 (en) 2017-05-31 2018-05-29 HEAT-INSULATED MULTIPLE TUBE FOR SUPERCONDUCTIVE POWER TRANSMISSION
US16/612,758 US11486531B2 (en) 2017-05-31 2018-05-29 Thermal-insulated multi-walled pipe for superconducting power transmission
KR1020197037717A KR102197335B1 (ko) 2017-05-31 2018-05-29 초전도 송전용 단열 다중관
CN201880030311.9A CN110612577B (zh) 2017-05-31 2018-05-29 超导输电用绝热多重管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107843 2017-05-31
JP2017-107843 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221522A1 true WO2018221522A1 (ja) 2018-12-06

Family

ID=64455456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020583 WO2018221522A1 (ja) 2017-05-31 2018-05-29 超電導送電用断熱多重管

Country Status (7)

Country Link
US (1) US11486531B2 (ja)
EP (1) EP3637441A4 (ja)
JP (1) JP6451917B1 (ja)
KR (1) KR102197335B1 (ja)
CN (1) CN110612577B (ja)
RU (1) RU2719767C1 (ja)
WO (1) WO2018221522A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096262A (ja) * 1998-09-24 2000-04-04 Sumitomo Metal Ind Ltd 耐黒変性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2007080649A (ja) 2005-09-14 2007-03-29 Jfe Steel Kk 超電導送電用断熱多重配管

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU803725A1 (ru) * 1979-07-24 1982-10-07 Ostrenko V Ya Заготовка дл изготовлени сверхпровод щего кабельного издели
IT1201945B (it) * 1982-05-20 1989-02-02 Getters Spa Tubazione per il trasporto di fluidi isolata a vuoto e metodo per la sua produzione
JPH101765A (ja) * 1996-06-10 1998-01-06 Kobe Steel Ltd 表面外観に優れた溶融亜鉛めっき鋼板
JP3159135B2 (ja) * 1997-07-18 2001-04-23 住友金属工業株式会社 微小スパングル溶融亜鉛合金めっき鋼板と製造方法
JP3287351B2 (ja) 2000-03-15 2002-06-04 住友金属工業株式会社 加工性に優れた溶融Zn−Al系合金めっき鋼板とその製造方法
JP3496637B2 (ja) 2000-11-20 2004-02-16 住友金属工業株式会社 意匠性に優れた溶融Al−Zn系合金めっき鋼板とその製造方法
JP3580258B2 (ja) 2001-02-14 2004-10-20 住友金属工業株式会社 意匠性に優れた溶融Al−Zn系合金めっき鋼板とその製造方法
JP2005253204A (ja) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd 多相超電導ケーブルの端末構造
JP4880229B2 (ja) * 2005-01-31 2012-02-22 株式会社ワイ・ワイ・エル 超伝導送電ケーブル及び送電システム
CN101253280B (zh) * 2005-09-01 2010-12-01 新日本制铁株式会社 弯曲加工性优异的热浸镀Zn-Al系合金钢材及其制造方法
RU2379777C2 (ru) * 2006-04-10 2010-01-20 Сумитомо Электрик Индастриз, Лтд. Сверхпроводящий кабель
JP5780626B2 (ja) * 2010-09-07 2015-09-16 学校法人中部大学 超伝導送電システム
KR101353701B1 (ko) 2011-12-23 2014-01-21 주식회사 포스코 극저온 접합성이 우수한 용융아연도금강판 및 그 제조방법
JP2016095896A (ja) * 2013-02-28 2016-05-26 住友電気工業株式会社 超電導ケーブル、被覆付き断熱管、及び被覆付き断熱管の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096262A (ja) * 1998-09-24 2000-04-04 Sumitomo Metal Ind Ltd 耐黒変性に優れた溶融亜鉛めっき鋼板およびその製造方法
JP2007080649A (ja) 2005-09-14 2007-03-29 Jfe Steel Kk 超電導送電用断熱多重配管

Also Published As

Publication number Publication date
EP3637441A4 (en) 2020-05-13
CN110612577A (zh) 2019-12-24
US11486531B2 (en) 2022-11-01
JP6451917B1 (ja) 2019-01-16
JPWO2018221522A1 (ja) 2019-06-27
CN110612577B (zh) 2021-04-20
US20200200316A1 (en) 2020-06-25
KR102197335B1 (ko) 2020-12-31
RU2719767C1 (ru) 2020-04-23
KR20200010420A (ko) 2020-01-30
EP3637441A1 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP5092220B2 (ja) 超電導送電用断熱多重配管
RU120183U1 (ru) Многослойная труба
JP7474741B2 (ja) 電力伝送ケーブル
JP6451917B1 (ja) 超電導送電用断熱多重管
US10971286B2 (en) Thermal-insulated multi-walled pipe for superconducting power transmission
OA11879A (en) Lagged pipe for transporting fluids.
RU2719362C1 (ru) Теплоизолированная многослойная труба для передачи электроэнергии в условиях сверхпроводимости и способ ее укладки
JP3506267B2 (ja) 鋼心アルミ撚線
JPH08111122A (ja) 耐食性増容量架空送電線
JPH0749439A (ja) 光ファイバ−ケーブル
JPH0831234A (ja) 増容量架空送電線
JP2018131689A (ja) 熱交換器用アルミニウム合金管の製造方法
JP2000340040A (ja) 波付き鋼管外装ケーブル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018552905

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197037717

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018810087

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018810087

Country of ref document: EP

Effective date: 20200102