WO2018211952A1 - カーボネート誘導体の製造方法 - Google Patents

カーボネート誘導体の製造方法 Download PDF

Info

Publication number
WO2018211952A1
WO2018211952A1 PCT/JP2018/017348 JP2018017348W WO2018211952A1 WO 2018211952 A1 WO2018211952 A1 WO 2018211952A1 JP 2018017348 W JP2018017348 W JP 2018017348W WO 2018211952 A1 WO2018211952 A1 WO 2018211952A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
reaction
containing compound
carbonate
production method
Prior art date
Application number
PCT/JP2018/017348
Other languages
English (en)
French (fr)
Inventor
明彦 津田
Original Assignee
国立大学法人神戸大学
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 三菱瓦斯化学株式会社 filed Critical 国立大学法人神戸大学
Priority to EP18802405.3A priority Critical patent/EP3626702B1/en
Priority to RU2019138715A priority patent/RU2771748C2/ru
Priority to KR1020197034613A priority patent/KR102542131B1/ko
Priority to CN201880032021.8A priority patent/CN110637006B/zh
Priority to SG11201909670Y priority patent/SG11201909670YA/en
Priority to JP2019519162A priority patent/JP7041925B2/ja
Priority to US16/608,898 priority patent/US11130728B2/en
Priority to ES18802405T priority patent/ES2939475T3/es
Publication of WO2018211952A1 publication Critical patent/WO2018211952A1/ja
Priority to SA519410533A priority patent/SA519410533B1/ar

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/1809Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas with formation of the N-C(O)-N moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C329/00Thiocarbonic acids; Halides, esters or anhydrides thereof
    • C07C329/12Dithiocarbonic acids; Derivatives thereof
    • C07C329/14Esters of dithiocarbonic acids
    • C07C329/20Esters of dithiocarbonic acids having sulfur atoms of dithiocarbonic groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D317/48Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
    • C07D317/62Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to atoms of the carbocyclic ring
    • C07D317/64Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing a carbonate derivative safely and efficiently.
  • carbonate derivatives chain carbonate has been conventionally used as a solvent and the like, but in recent years, the production amount has increased as a non-aqueous solvent for an electrolyte solution of a lithium ion secondary battery.
  • Polycarbonate which is a condensate of carbonic acid and a bisphenol compound, is widely used as an engineering plastic having excellent transparency and impact resistance.
  • Urea resins are widely used as adhesives and tableware materials.
  • Polydithiocarbonate is expected to be used as a stable optical material with little coloration.
  • Carbonate derivatives are generally produced from phosgene and nucleophilic functional group-containing compounds.
  • phosgene is very toxic because it reacts easily with water to generate hydrogen chloride and has been used as a poisonous gas.
  • there is a method of reacting carbon monoxide, alcohol and oxygen but there is a problem that toxic carbon monoxide must be used at high pressure. Therefore, various methods for safe production of carbonates and polycarbonates have been studied.
  • Patent Document 1 describes a method for producing a target carbonate derivative by subjecting a carbonic ester to a transesterification reaction in the presence of a catalyst.
  • a problem remains as to how to produce a carbonate derivative as a raw material compound, and it does not constitute a fundamental solution.
  • an expensive catalyst has to be used and a reverse reaction or a side reaction due to a residual catalyst.
  • Patent Document 2 discloses a method for producing a carbonate derivative from an epoxy compound and carbon dioxide in the presence of a catalyst. Although it is not necessary to use phosgene or carbon monoxide in this method, it can be said that it is not suitable for industrial mass production because an expensive catalyst must be used and carbon dioxide must be at a high pressure.
  • the present inventor includes a method for producing a halogenated carboxylic acid ester by subjecting a halogenated hydrocarbon and an alcohol to an oxidative photoreaction (Patent Document 3), or light irradiation of chloroform in the presence of oxygen to contain phosgene.
  • Patent Document 3 oxidative photoreaction
  • Patent Document 4 A process for producing a halogenated formate comprising a step of obtaining a mixture to be reacted and a step of reacting an alcohol with the mixture without isolating phosgene has been developed (Patent Document 4).
  • phosgene is generally used for the production of carbonate derivatives, and even if the production method does not use phosgene, other toxic compounds or expensive catalysts are used, There was a problem that phosgene had to be used in the production of the compound. Then, this invention aims at providing the method for manufacturing a carbonate derivative safely and efficiently.
  • a carbonate derivative can be safely produced by subjecting a hydrocarbon compound substituted with a halogeno group to a specific nucleophilic functional group-containing compound to a photoreaction.
  • the present invention has been completed by finding that it can be produced efficiently.
  • organic bases form dyes by photoreactions, act as antioxidants to trap radicals, quench the fluorescence of compounds by mechanisms such as electron transfer, and lead to pyridine with glutaconaldehyde by ultraviolet rays.
  • Non-Patent Documents 1 to 3 are known to be disadvantageous for photoreactions such as the inventions of Patent Document 3 and Patent Document 4 developed by the present inventors. On the other hand, it was very surprising that a carbonate derivative was efficiently produced by a photoreaction in the presence of a specific base. Hereinafter, the present invention will be described.
  • a method for producing a carbonate derivative In the presence of oxygen in a composition comprising a C 1-4 halogenated hydrocarbon having one or more halogen atoms selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom, a nucleophilic functional group-containing compound and a base Irradiate with light,
  • the nucleophilic functional group-containing compound is a compound represented by the following formula (i) and the carbonate derivative is a chain carbonate derivative represented by the following formula (I):
  • the nucleophilic functional group-containing compound is a compound represented by the following formula (ii) and the carbonate derivative contains a unit represented by the following formula (II-1) or the following formula (II-2)
  • a cyclic carbonate derivative represented by: A method for producing a carbonate derivative, wherein at least one base selected from the group consisting essentially of a heterocyclic aromatic amine, a non-nucleophilic strong base, and an inorganic base
  • R 1 -AH (Ii) HAR 2 -AH (I) R 1 —AC ( ⁇ O) —A R 1 (II-1) [—AR 2 -AC ( ⁇ O) —]
  • A is O, S or NR 3 (R 3 is H or a C 1-4 alkyl group, or together with R 1 and N may form a nitrogen-containing heterocyclyl group);
  • R 1 is a C 6-14 aryl group, a C 4-14 heteroaryl group or a C 2-24 alkylpolyoxyalkylene group
  • R 2 is a C 2-10 alkylene group, a C 6-14 arylene group, a C 4-14 heteroarylene group or a C 2-24 polyoxyalkylene group.
  • the non-nucleophilic strong base is 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4. 4.0] dec-5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene or 1,1,
  • the method of the present invention it is not necessary to use a highly toxic compound such as phosgene or carbon monoxide or an expensive catalyst as a raw material compound. Therefore, the method of the present invention is extremely useful industrially as a technique capable of producing a useful carbonate derivative safely and efficiently.
  • FIG. 1 is a schematic diagram showing an example of the configuration of a reaction apparatus used in the method of the present invention.
  • a C 1-4 halogenated hydrocarbon having one or more halogen atoms selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom, a nucleophilic functional group-containing compound
  • a composition containing a specific base is irradiated with light in the presence of oxygen.
  • C 1-4 halogenated hydrocarbon In the reaction according to the present invention, the C 1-4 halogenated hydrocarbon is probably decomposed by irradiation light and oxygen and converted into a carbonyl halide or a carbonyl halide-like compound, and a hydroxyl group-containing compound It is considered that a carbonate derivative is produced by reacting with. Even if harmful carbonyl halide is generated, carbonyl halide reacts with the hydroxyl group-containing compound immediately because it is extremely reactive, and does not leak out of the reaction solution, or even if it leaks, the amount of leakage is small. It is.
  • phosgene which is a carbonyl halide
  • C 1-4 halogenated hydrocarbons are of course not so dangerous.
  • the reaction according to the present invention proceeds even in the presence of an aqueous inorganic base solution as described later, there is a possibility that the reaction according to the present invention is not mediated by a carbonyl halide or a carbonyl halide-like compound. .
  • C 1-4 halogenated hydrocarbons which are liquid at normal temperature and pressure, are consumed in large quantities as organic solvents and the like, but if released into the atmosphere, they cause environmental pollution such as air pollution and ozone layer destruction.
  • the present invention is a technique for producing a useful compound by photodecomposing such a C 1-4 halogenated hydrocarbon, and greatly contributes industrially and environmentally.
  • the C 1-4 halogenated hydrocarbon is an alkane, alkene or alkyne having 1 to 4 carbon atoms, which is substituted with one or more halogen atoms selected from the group consisting of chlorine atom, bromine atom and iodine atom. .
  • the C 1-4 halogenated hydrocarbon is considered to be decomposed by irradiation light and oxygen and to function in the same manner as the carbonyl halide. Therefore, C 1-2 halogenated hydrocarbon compounds are preferred, and halogenated methane is more preferred.
  • C 1-4 halogenated hydrocarbons are preferably C 1-4 halogenated alkanes, C 2-4 halogenated alkenes or C 2-4 halogenated alkynes, and easily produce a halogenated carbonyl-like compound.
  • halogenated methane, halogenated ethene or halogenated acetylene is more preferable, polyhalogenated methane having 2 or more halogen atoms, polyhalogenated ethene or polyhalogenated acetylene is particularly preferable, and polyhalogenated methane is the most. preferable.
  • C 1-4 halogenated hydrocarbons include, for example, halomethanes such as dichloromethane, chloroform, dibromomethane, bromoform, iodomethane, diiodomethane; 1,1,2-trichloroethane, 1,1,1-trichloroethane, 1,1,2 , Haloethanes such as 1,1,1,2-tetrachloroethane; halopropanes such as 1,1,1,3-tetrachloropropane; tetrachloromethane, tetrabromomethane, tetraiodomethane, hexachloroethane, Perhaloalkanes such as hexabromoethane; perhaloethenes such as 1,1,2,2-tetrachloroethene and 1,1,2,2-tetrabromoethene.
  • halomethanes such as dichloromethane, chloroform, di
  • the C 1-4 halogenated hydrocarbon may be appropriately selected according to the intended chemical reaction and desired product, and may be used alone or in combination of two or more. May be. Preferably, only one type of C 1-4 halogenated hydrocarbon is used depending on the compound to be produced. Among C 1-4 halogenated hydrocarbons, compounds having a chloro group are preferred.
  • the C 1-4 halogenated hydrocarbon used in the method of the present invention may be, for example, a recovered C 1-4 halogenated hydrocarbon once used as a solvent. At that time, if a large amount of impurities or water is contained, the reaction may be inhibited. Therefore, it is preferable to purify to some extent. For example, it is preferable to dehydrate with anhydrous sodium sulfate or anhydrous magnesium sulfate after removing water and water-soluble impurities by washing with water. However, since the reaction is considered to proceed even if water is contained, excessive purification that reduces productivity is not necessary.
  • the water content is more preferably 0.5% by volume or less, further preferably 0.2% by volume or less, and further preferably 0.1% by volume or less.
  • the recycled C 1-4 halogenated hydrocarbon may contain a decomposition product of C 1-4 halogenated hydrocarbon.
  • nucleophilic functional group-containing compound is a compound containing a nucleophilic functional group containing a nucleophilic oxygen atom, sulfur atom, and / or nitrogen atom.
  • the nucleophilic functional group-containing compound used in the present invention does not have a fluorine atom as a substituent.
  • the carbonate derivative produced by the method of the present invention does not have a fluorine atom as a substituent.
  • the use of a specific nucleophilic functional group-containing compound allows the reaction to proceed to the carbonate derivative.
  • the carbonate derivative obtained may be abbreviated as a chain carbonate represented by the formula (I) (hereinafter, “chain carbonate (I)”).
  • chain carbonate (I) a chain carbonate represented by the formula (I)
  • the resulting carbonate derivative is abbreviated as a polycarbonate derivative containing a unit represented by the formula (II-1) (hereinafter referred to as “polycarbonate derivative (II-1)”).
  • a cyclic carbonate derivative represented by the formula (II-2) hereinafter sometimes abbreviated as “cyclic carbonate derivative (II-2)”).
  • Nucleophilic functional group-containing compound (i) and nucleophilic functional group-containing compound (ii) used as a raw material compound in the production method of the present invention, and chain carbonate derivative (I) and polycarbonate derivative (II) as target compounds -1) and the cyclic carbonate derivative (II-2) are as follows.
  • R 1 -AH (Ii) HAR 2 -AH
  • A is O, S or NR 3 (R 3 is H or a C 1-4 alkyl group, or together with R 1 and N may form a nitrogen-containing heterocyclyl group);
  • R 1 is a C 6-14 aryl group, a C 4-14 heteroaryl group or a C 2-24 alkylpolyoxyalkylene group,
  • R 2 is a C 2-10 alkylene group, a C 6-14 arylene group, a C 4-14 heteroarylene group or a C 2-24 polyoxyalkylene group.
  • C 1-4 halogenated hydrocarbon a halogenated hydrocarbon having 1 to 4 carbon atoms. The same applies to other groups and other compounds.
  • the nitrogen-containing heterocyclyl group formed by R 1 , R 3 and N may be a non-aromatic nitrogen-containing heterocyclyl group or an aromatic nitrogen-containing heterocyclyl group.
  • Non-aromatic nitrogen-containing heterocyclyl groups can include pyrrolidinyl and piperidinyl.
  • Examples of the aromatic nitrogen-containing heterocyclyl group include pyrrolyl, imidazolyl and pyrazole.
  • the hydrogen atom of the C 6-14 aryl group may be substituted with a chlorine atom, a bromine atom, an iodine atom or a C 1-8 alkyl group.
  • the C 4-14 heteroaryl group refers to an aromatic heterocyclyl group having at least one nitrogen atom, oxygen atom or sulfur atom.
  • Heterocyclyl group includes pyrrolyl group, imidazolyl group, pyrazolyl group, thienyl group, furyl group, oxazolyl group, isoxazolyl group, thiazolyl group, isothiazolyl group, thiadiazole group and the like; pyridinyl group, pyrazinyl group, pyrimidinyl Groups, 6-membered heteroaryl groups such as pyridazinyl group; condensed ring aromatic heterocyclyl groups such as indolyl group, isoindolyl group, quinolinyl group, isoquinolinyl group, benzofuranyl group, isobenzofuranyl group, chromenyl group, etc., nitrogen atom
  • a C 4-14 heteroaryl group containing is preferred, and a
  • the C 2-24 alkylpolyoxyalkylene group is preferably a group represented by the formula — (Q H 2 O) m R H.
  • Q H is -CH 2 -, - CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH (CH 3) - or -CH 2 CH 2 CH 2 CH 2 - and is, R H is —CH 3 or —CH 2 CH 3 , and m is an integer of 1-20.
  • Q H may be composed of only one kind or plural kinds.
  • the arrangement of the plurality of types of Q H may be random or block.
  • the C 2-24 polyoxyalkylene group is preferably a group represented by the formula — (Q H 2 O) m Q H —.
  • the C 2-10 alkylene group may be linear, branched, or cyclic.
  • a C 2-6 alkylene group is preferable, and a C 2-4 alkylene group is more preferable.
  • an ethylene group which may be substituted with one or two C 1-4 alkyl groups is preferable, and one or two C 1-2 alkyl groups are preferable.
  • An ethylene group which may be substituted is more preferable, and an ethylene group which may be substituted with one or two methyl groups is still more preferable.
  • the ethylene group which may be substituted with the above alkyl group can also be expressed as a 1,2-alkylene group.
  • C 6-14 arylene group, C 4-14 heteroarylene group and C 2-24 polyoxyalkylene group are respectively a C 6-14 aryl group, a C 4-14 heteroaryl group and a C 2-24 alkyl polyoxyalkylene group.
  • nucleophilic functional group-containing compound (i) examples include a hydroxyl group-containing compound (i), a thiol group-containing compound (i), and an amino group-containing compound (i).
  • examples of the hydroxyl group-containing compound (i) include phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 2-bromophenol, 3-bromophenol, 4-bromophenol, 2-methylphenol, 3- Phenol such as methylphenol and 4-methylphenol and derivatives thereof; C 3-10 cycloalkanol such as cyclohexanol; benzyl alcohol and derivatives thereof such as benzyl alcohol and 2,6-benzyl alcohol; ethylene glycol monomethyl ether and propylene glycol monomethyl alkylene glycol mono C 1-4 alkyl ether, such as ether; diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl et Oligoalkylene glycol mono C 1-4 alkyl
  • Examples of the thiol group-containing compound (i) include thiophenol, 2-chlorothiophenol, 3-chlorothiophenol, 4-chlorothiophenol, 2-bromothiophenol, 3-bromothiophenol, 4-bromothiophenol.
  • Thiophenol such as 2-methylthiophenol, 3-methylthiophenol, 4-methylthiophenol and derivatives thereof; C 3-10 cycloalkanethiol such as cyclohexanethiol; benzyl mercaptan, 2-chlorobenzyl mercaptan, 4-chlorobenzyl mercaptan, Benzyl mercaptans such as 4-methoxybenzyl mercaptan and derivatives thereof; 1,2-ethanedithio such as HSCH 2 CH 2 SCH 3 , HSCH 2 CH (CH 3 ) SCH 3 , HSCH (CH 3 ) CH 2 SCH 3 Mono (C 1-4 alkyl thioether); oligo (1,2) such as di (1,2-ethanedithiol) monomethylthioether, tri (1,2-ethanedithiol) monomethylthioether, tetra (1,2-ethanedithiol) monomethylthioether -Ethanedithiol) alkylene glycol
  • amino group-containing compound (i) examples include aniline, 2-chloroaniline, 3-chloroaniline, 4-chloroaniline, 2-bromoaniline, 3-bromoaniline, 4-bromoaniline, 2-methylaniline, 3 Anilines such as methylaniline and 4-methylaniline and derivatives thereof; C 3-10 cycloalkylamines such as cyclohexylamine; heterocyclic amines such as piperazine and piperidine; benzylamine, 4- (aminomethyl) benzonitrile, 2 Benzyl alcohol and derivatives thereof such as chlorobenzylamine, 3-chlorobenzylamine, 4-chlorobenzylamine, 2-bromobenzylamine, 3-bromobenzylamine, 4-bromobenzylamine, 4-t-butylbenzylamine; N-methylethylene Amine, N, N- dimethylethylenediamine, N- methyl propylene diamine, N, N- alkylene glycol mono C 1-4
  • the nucleophilic functional group-containing compound (i) may be used alone or in combination of two or more.
  • a non-target chain carbonate derivative can be synthesized by using two kinds of nucleophilic functional group-containing compounds (i) in combination.
  • nucleophilic functional group-containing compound (ii) compounds represented by the following formulas (ii-1) and (ii-2) are preferable.
  • R 21 is a C 2-10 alkylene group, a C 6-14 arylene group or a C 4-14 heteroarylene group
  • R 22 and R 24 are each independently a C 6-14 arylene group or a C 4-14 heteroarylene group
  • R 23 is a C 1-10 alkylene group.
  • a polycarbonate derivative (II-1) or a cyclic carbonate derivative (II-2) is obtained.
  • the C 2-10 alkylene group, C 6-14 arylene group and C 4-14 heteroarylene group in the nucleophilic functional group-containing compound (ii-1) are each a 1,2-C 2-10 alkylene group, 1 , 2-C 6-14 arylene group and 1,2-C 4-14 heteroarylene group mainly produce cyclic carbonates.
  • the number of carbon atoms in the main chain contained in R 2 is 4 or more, depending on the reaction conditions and the like, the more chemically stable one is preferentially produced between the cyclic carbonate derivative and the polycarbonate derivative.
  • the 1,2-arylene group includes 1,2-naphthalene, 1,8-naphthalenylene and 2,3-naphthalenylene having the following structure in addition to 1,2-phenylene group and 1,2-biphenylene. Shall. The same applies to 1,2-C 2-10 alkylene groups and 1,2-C 4-14 heteroarylene groups.
  • nucleophilic functional group-containing compound (ii) examples include a hydroxyl group-containing compound (ii), a thiol group-containing compound (ii), and an amino group-containing compound (ii).
  • hydroxyl group-containing compound (ii) examples include glycol compounds such as 1,2-propanediol, 1,2-ethanediol and 1,4-butanediol; dihydroxybenzene compounds such as catechol and resorcinol; 4,6-dihydroxy Dihydroxyheteroaryl compounds such as -2-methylpyrimidine and 3,6-dihydroxy-4-methylpyridazine; bisphenol compounds such as bisphenol A, bisphenol AP, bisphenol B, bisphenol BP, bisphenol E, bisphenol F, bisphenol TMC, and bisphenol Z Is mentioned.
  • Examples of the thiol group-containing compound (ii) include C 1-4 alkylene dithiol compounds such as 1,2-propanedithiol, 1,2-ethanedithiol, 1,4-butanedithiol; 1,2-benzenedithiol and 1 Benzenedithiol compounds such as 2-methylpyrimidine-4,6-dithiol, heteroaryldithiol compounds such as 4-methylpyridazine-3,6-dithiol; 4,4′-thiobisbenzenethiol, 2 , 2-bis (4-mercaptophenyl) propane, 1,1-bis (4-mercaptophenyl) -1-phenylethane, 2,2-bis (4-mercaptophenyl) butane, bis (4-mercaptophenyl) diphenylmethane 1,1-bis (4-mercaptophenyl) ethane, bis (4-merca) Tofeniru) methane, 1,1-bis (4-mercapto-
  • amino group-containing compound (ii) examples include C 1-4 alkylenediamine compounds such as 1,2-propylenediamine, 1,3-propylenediamine, 1,2-ethylenediamine, 1,4-butylenediamine; Phenylenediamine compounds such as 2-phenylenediamine and 1,4-phenylenediamine; heteroaryldithiol compounds such as 4,6-diamino-2-methylpyrimidine and 3,6-diamino-4-methylpyridazine; 2,2-bis (4-aminophenyl) propane, 1,1-bis (4-aminophenyl) -1-phenylethane, 2,2-bis (4-aminophenyl) butane, bis (4-aminophenyl) diphenylmethane, 1,1 -Bis (4-aminophenyl) ethane, bis (4-aminophenyl) methane, 1,1-bis (4- Examples thereof include bisaminobenzene compounds such as
  • the above reaction proceeds even when 1-fold mole of the nucleophilic functional group-containing compound is used relative to the number of moles of the fluorinated hydrocarbon.
  • the molar ratio of the nucleophilic functional group-containing compound to the C 1-4 halogenated hydrocarbon is preferably 0.001 or more and 1 or less.
  • the molar ratio is more preferably 0.01 or more, still more preferably 0.1 or more, more preferably 0.8 or less, and still more preferably 0.5 or less.
  • the molar ratio is too large, the amount of the nucleophilic functional group-containing compound is relatively increased, so that the amount of the unreacted nucleophilic functional group-containing compound increases, while the molar ratio is too small. May increase unreacted C 1-4 halogenated hydrocarbons and release carbonyl halides outside the reaction system.
  • the C 1-4 halogenated hydrocarbon is liquid at normal temperature and pressure and can be used as a solvent, the ratio of the nucleophilic functional group-containing compound to the C 1-4 halogenated hydrocarbon is 1 mg. / ML or more and 500 mg / mL or less.
  • Base In the method of the present invention, one or more bases selected from the group consisting essentially of heterocyclic aromatic amines, non-nucleophilic strong bases, and inorganic bases are used. It is considered that the reaction proceeds with the base until a polycarbonate derivative is formed.
  • Heterocyclic aromatic amine refers to a compound containing at least one heterocyclic ring and having at least one amine functional group.
  • the heterocyclic aromatic amine include pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2,3-lutidine, 2,4-lutidine, 2,6-lutidine, 3,5-lutidine, Examples thereof include pyridine and derivatives thereof such as -chloropyridine, 3-chloropyridine, 4-chloropyridine and the like.
  • Non-nucleophilic strong base refers to a base having a weak nucleophilicity of a lone pair on a nitrogen atom due to a steric hindrance and a basicity (pK BH + ) in acetonitrile of 20 or more.
  • non-nucleophilic strong bases include 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD, pK BH + : 25.98), 7-methyl-1,5, 7-triazabicyclo [4.4.0] dec-5-ene (MTBD, pK BH + : 25.44), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU, pK BH + 24.33), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN, pK BH + : 23.89), and 1,1,3,3-tetramethylguanidine (TMG, pK). BH + : 23.30).
  • Examples of the inorganic base include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate An alkaline earth metal carbonate such as calcium carbonate; an alkali metal hydrogen carbonate such as sodium hydrogencarbonate;
  • the inorganic base may be refined immediately before use and added to the reaction solution, but it is preferable to add an aqueous solution thereof.
  • concentration of the inorganic base aqueous solution may be adjusted as appropriate, and can be, for example, 0.05 g / mL or more and 2 g / mL or less.
  • the inorganic base aqueous solution is used for the decomposition of phosgene. Specifically, phosgene is decomposed into carbon dioxide and hydrogen chloride in the presence of water, and this hydrogen chloride can be neutralized with an inorganic base.
  • the present inventor believes that the reaction according to the present invention is via phosgene, and it was surprising that the reaction of the present invention proceeds even when an inorganic base aqueous solution is used as in the examples described later. . Further, since the reaction according to the present invention proceeds even when an aqueous inorganic base solution is used, there is a possibility that the reaction proceeds without going through phosgene.
  • the above bases may be used alone or in combination of two or more.
  • the amount of the base used may be appropriately adjusted within a range in which the reaction proceeds satisfactorily.
  • the base can be used in an amount of 1.5 to 10 times the mol of the nucleophilic functional group-containing compound. .
  • the ratio is preferably 2.0 times mole or more, more preferably 3.0 times mole or more, and more preferably 4.0 times mole or more. Further preferred.
  • the method of the present invention includes a step of irradiating a composition containing the C 1-4 halogenated hydrocarbon, the nucleophilic functional group-containing compound and the base in the presence of oxygen.
  • the mixing aspect of the C 1-4 halogenated hydrocarbon, the nucleophilic functional group-containing compound, and the base is not particularly limited.
  • the total amount of each compound in the reactor may be mixed in advance, may be added in several portions, or may be added continuously at an arbitrary rate.
  • these raw material compounds can be dissolved appropriately and do not inhibit the reaction of the present invention.
  • a solvent may be used.
  • solvents examples include aliphatic hydrocarbon solvents such as n-hexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene and chlorobenzene; ether solvents such as diethyl ether, tetrahydrofuran and dioxane; nitrile systems such as acetonitrile. Mention may be made of solvents.
  • the oxygen source may be a gas containing oxygen.
  • air or purified oxygen can be used.
  • the purified oxygen may be used by mixing with an inert gas such as nitrogen or argon. Air is preferably used from the viewpoint of cost and ease.
  • the oxygen content in the gas used as the oxygen source is preferably about 15% by volume or more and 100% by volume or less. The oxygen content may be determined as appropriate depending on the type of the C 1-4 halogenated hydrocarbon.
  • the oxygen content is preferably 15% by volume or more and 100% by volume or less, and dibromomethane or bromoform
  • the oxygen content is preferably 90% by volume to 100% by volume.
  • oxygen oxygen content: 100% by volume
  • the method for supplying the gas containing oxygen is not particularly limited, and the gas may be supplied from an oxygen cylinder equipped with a flow rate regulator into the reaction system, or may be supplied from the oxygen generator into the reaction system.
  • the “in the presence of oxygen” may be in a state where each of the compounds is in contact with oxygen or in a state where oxygen is present in the composition. Therefore, the reaction according to the present invention may be performed under a gas stream containing oxygen, but from the viewpoint of increasing the yield of the product, the gas containing oxygen may be supplied into the composition by bubbling. preferable.
  • the amount of gas containing oxygen may be appropriately determined according to the amount of the C 1-4 halogenated hydrocarbon, the shape of the reaction vessel, and the like.
  • the amount of gas per minute supplied to the reaction vessel with respect to the C 1-4 halogenated hydrocarbon present in the reaction vessel is preferably set to 5 times volume or more.
  • 25 volume times or more are more preferable, and 50 volume times or more are more preferable.
  • the upper limit of the ratio is not particularly limited, but is preferably 500 times or less, more preferably 250 or less, even more preferably 150 or less.
  • the amount of oxygen per minute supplied to the reaction vessel relative to the C 1-4 hydrocarbon compound present in the reaction vessel can be 5 to 25 volume times. If the gas flow rate is too high, the C 1-4 hydrocarbon compound may be volatilized, while if it is too low, the reaction may not proceed easily.
  • the light containing short wavelength light is preferable, the light containing an ultraviolet-ray is more preferable,
  • the light containing the wavelength of 180 nm or more and 500 nm or less is more specifically preferable.
  • the wavelength of light may be appropriately determined according to the type of the C 1-4 halogenated hydrocarbon, but is preferably 400 nm or less, and more preferably 300 nm or less.
  • the light irradiation means is not particularly limited as long as it can irradiate light having the above-mentioned wavelength.
  • Examples of the light source including light in such a wavelength range in the wavelength range include sunlight, low-pressure mercury lamp, and medium-pressure mercury.
  • Examples include lamps, high-pressure mercury lamps, ultrahigh-pressure mercury lamps, chemical lamps, black light lamps, metal halide lamps, and LED lamps. From the viewpoint of reaction efficiency and cost, a low-pressure mercury lamp is preferably used.
  • Conditions such as intensity and irradiation time of the irradiation light may be appropriately set depending on the type and amount of the starting material, for example, preferably 10 .mu.W / cm 2 or more 500 W / cm 2 or less as the intensity of the light. More preferably 100 .mu.W / cm 2 or less as the light intensity, 40 ⁇ W / cm 2 or less and more preferably more.
  • the light irradiation time is preferably from 0.5 hours to 10 hours, more preferably from 1 hour to 6 hours, and even more preferably from 2 hours to 4 hours.
  • the mode of light irradiation is also not particularly limited, a mode in which light is irradiated continuously from the start to the end of the reaction, a mode in which light irradiation and light non-irradiation are repeated alternately, a mode in which light is irradiated for a predetermined time from the start of the reaction Any mode can be adopted, but a mode in which light is continuously irradiated from the start to the end of the reaction is preferable.
  • the temperature at the time of reaction is not particularly limited and may be adjusted as appropriate.
  • the temperature may be 0 ° C. or higher and 50 ° C. or lower.
  • 10 degreeC or more is more preferable, 20 degreeC or more is more preferable, 40 degreeC or less is more preferable, and 30 degreeC or less is more preferable.
  • Examples of the reaction apparatus that can be used in the production method of the present invention include a reaction vessel equipped with a light irradiation means.
  • the reaction apparatus may be provided with a stirring device and a temperature control means.
  • FIG. 1 shows an embodiment of a reaction apparatus that can be used in the production method of the present invention.
  • the reaction apparatus shown in FIG. 1 has a light irradiation means 1 in a cylindrical reaction vessel 6. While adding each said raw material compound in the cylindrical reaction container 6, supplying the gas containing oxygen in the said reaction container 6, or bubbling the gas containing oxygen to the said composition (not shown), light Reaction is performed by irradiating light from the irradiation means 1.
  • the jacket is preferably made of a material that transmits the short wavelength light.
  • a reaction container is a raw material which permeate
  • the material that transmits the short-wavelength light is not particularly limited as long as the effect of the present invention is not hindered, and quartz glass and the like are preferably exemplified.
  • the product after the above reaction may be purified by a conventionally known method.
  • the purification method include distillation, vacuum distillation of starting material compounds, column chromatography, liquid separation, extraction, washing, recrystallization and the like.
  • a carbonate group (—O—C ( ⁇ O) —O—)
  • a carbonate derivative having a carbonic acid dithioester group (—S—C ( ⁇ O) —S—) and a urea group (—NH—C ( ⁇ O) —NH—) is produced.
  • a carbonate derivative having a urethane group (—O—C ( ⁇ O) —NH—) is formed, and the thiol group-containing compound and the amino group-containing compound are used in combination.
  • a carbonate derivative having a thiourethane group (—S—C ( ⁇ O) —NH—) is formed.
  • the chain carbonate derivative (I) produced by the method of the present invention is useful as a nonaqueous solvent or the like.
  • the chain carbonate (I) can be used as an electrolyte solvent or the like for a lithium ion secondary battery.
  • polycarbonate (II) is useful as an excellent engineering plastic.
  • Comparative Example 1 Synthesis of dimethyl carbonate A quartz glass jacket with a diameter of 30 mm is placed in a cylindrical reaction vessel having a diameter of 42 mm and a capacity of 100 mL, and a low-pressure mercury lamp (“UVL20PH-6” manufactured by SEN Light, 20 W, ⁇ 24 ⁇ 120 mm) is also contained in the quartz glass jacket. A reaction system was built. A schematic diagram of the reaction system is shown in FIG. Purified chloroform (20 mL), methanol (0.405 mL, 10 mmol), and 5-fold moles of pyridine (4.03 mL) with respect to methanol were placed in the reaction vessel, and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. Three hours later, the reaction solution was analyzed by 1 H-NMR, and it was confirmed that the yield of the target compound, dimethyl carbonate, was only 1.6%.
  • Comparative Example 2 The reaction was conducted in the same manner as in Comparative Example 1 except that ethanol was used instead of methanol, but no progress of the reaction was observed even after 3 hours of reaction. Considering together with the result of Comparative Example 1, it was found that the method of the present invention is difficult to apply to monohydric alcohols.
  • Example 1 Synthesis of diphenyl carbonate (1) Use of pyridine as a base Phenol (0.94 g, 10 mmol) was used instead of methanol, the amount of pyridine used was adjusted to 3.5 times the mole of phenol, and the reaction time was 2 hours. Reaction was performed in the same manner as in Comparative Example 1 above. After completion of the reaction, water and dichloromethane were added to the reaction solution for liquid separation, the organic phase was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was recrystallized from dichloromethane and n-hexane to obtain diphenol carbonate, the target compound as a white solid (isolation yield: 61%).
  • Example 3 The reaction was conducted in the same manner as in Example 1 (2) except that triethylamine was used instead of pyridine. However, it was a small amount of a tar-like black substance that was isolated, and the target compound diphenol carbonate could not be isolated. In this way, when triethylamine was used as the organic base, diphenol carbonate was not obtained. On the other hand, as in Example 1 (2) above, diphenol carbonate was changed to 99 by simply changing the organic base from triethylamine to pyridine. Obtained in a yield of more than%.
  • Example 2 Synthesis of bis (pentachlorophenyl) carbonate The reaction was conducted in the same manner as in Comparative Example 1 except that pentachlorophenol (1.13 g, 5 mmol) was used instead of methanol and the reaction time was changed to 1 hour. After completion of the reaction, methanol was added to the reaction solution in a suspended state to produce a white solid. The resulting white solid was subjected to suction filtration to obtain bis (pentachlorophenol) carbonate as the target compound (isolation yield: 72%).
  • Example 3 Synthesis of 1,3-benzodioxol-2-one Purified chloroform (20 mL), catechol (1.1 g, 10 mmol), and 5-fold mol of pyridine (4.03 mL) with respect to catechol were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. Two hours later, water and dichloromethane were added to the reaction solution for liquid separation, the organic phase was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained solid was recrystallized from dichloromethane and n-hexane to obtain the target compound 1,3-benzodioxol-2-one (isolation yield: over 99%).
  • Example 4 Synthesis of ethylene carbonate The reaction was performed in the same manner as in Example 3 except that ethylene glycol (0.28 mL, 10 mmol) was used instead of catechol. After completion of the reaction, the reaction solution was analyzed by 1 H-NMR to confirm that ethylene carbonate as the target compound was produced (isolation yield: 44%).
  • Example 5 Synthesis of bisphenol A polycarbonate Purified chloroform (20 mL), bisphenol A (2.28 g, 10 mmol), and 5-fold mol of pyridine (4.03 mL) with respect to bisphenol A were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 40 minutes, since the viscosity of the reaction solution increased and the stirring bar could not rotate, methanol (30 mL) was added to the reaction solution, irradiated with ultrasonic waves, and suction filtered. The obtained solid was washed with methanol and then vacuum dried to obtain a white solid.
  • HPC-8320GPC High-speed GPC equipment
  • TSKgel GMHHR-H ⁇ 2 Ultra high polymer
  • Mobile phase Chloroform Flow rate: 1.0 mL / min
  • the polycarbonate synthesized by the method of the present invention has a sufficiently high molecular weight and the molecular weight distribution is relatively narrow.
  • Example 7 Synthesis of tetraethylene glycol polycarbonate The reaction was performed in the same manner as in Comparative Example 1 except that tetraethylene glycol (1.50 g, 10 mmol) was used instead of methanol and the reaction time was 2 hours. After completion of the reaction, water and ethyl acetate were added to the reaction solution for liquid separation, and the organic phase was washed 3 times with brine. The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a tetraethylene glycol polycarbonate as an objective compound in the form of a brown oil (isolation yield: over 99%).
  • Example 8 Photocopolymerization of bisphenol A and hexamethylenediamine
  • Purified chloroform (30 mL), bisphenol A (0.685 g, 3 mmol), hexamethylenediamine (0.412 g, 3 mmol), and aqueous sodium hydroxide solution (20 mL, 100 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. Two hours later, dichloromethane and water were added to the reaction solution, and the resulting precipitate was filtered, washed with methanol, and dried in vacuo at 70 ° C.
  • Example 9 Synthesis of bisphenyl carbonate Purified chloroform (20 mL), phenol (0.941 g, 10 mmol) and aqueous sodium hydroxide solution (20 mL, 100 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 3 hours, chloroform and water were added to the reaction solution to separate it. The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure at 70 ° C. to obtain a flesh-colored solid (yield: 55%). When the obtained solid was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 10 Synthesis of dicyclohexyl carbonate A pale yellow liquid was obtained in the same manner as in Example 9 except that cyclohexanol (1.06 mL, 10 mmol) was used instead of phenol (yield: 13%). When the obtained liquid was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 11 Synthesis of bis (4-tert-butylphenyl) carbonate
  • Purified chloroform (20 mL), 4-t-butylphenol (1.53 g, 10 mmol), sodium carbonate aqueous solution (20 mL, 50 mmol), and pyridine (0.202 mL, 5 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 3 hours, chloroform and water were added to the reaction solution to separate it.
  • Example 12 Synthesis of bis (4-methoxyphenyl) carbonate A brown solid was obtained in the same manner as in Example 9 except that 4-methoxyphenol (10 mmol) was used instead of phenol and 30 mL of chloroform was used (yield: 60%). When the obtained solid was analyzed by 1 H-NMR and IR, it was confirmed that the target compound was produced.
  • Example 13 Synthesis of bis (4-nitrophenyl) carbonate A white powder was obtained in the same manner as in Example 9 except that 4-nitrophenol (1.391 g, 10 mmol) was used instead of phenol, 30 mL of chloroform was used, and the reaction time was 2 hours (yield) : 5%). When the obtained powder was analyzed by 1 H-NMR and IR, it was confirmed that the target compound was produced.
  • Example 14 Synthesis of bisphenol A polycarbonate Purified chloroform (20 mL), bisphenol A (1.14 g, 5 mmol) and an aqueous sodium hydroxide solution (100 mmol, 20 mL) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 2 hours, the layers were separated, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Chloroform and methanol were added and the solvent was removed by decantation, followed by drying under reduced pressure at 70 ° C. to obtain a white solid (yield: 79%). When the obtained solid was analyzed by 1 H-NMR, it was confirmed that the target compound was produced. The molecular weight of the obtained polycarbonate bisphenol A was determined under the same conditions as in Example 5. The results are shown in Table 2.
  • the polycarbonate synthesized by the method of the present invention has a sufficiently high molecular weight, and its molecular weight distribution is relatively narrow.
  • Example 15 Synthesis of dihexyl carbonate The reaction was performed in the same manner as in Example 9 except that 1-hexanol (1.25 mL, 10 mmol) was used instead of phenol. Dichloromethane (0.64 mL, 10 mmol) was added to the solution dried over anhydrous sodium sulfate as an internal standard, and the solution was directly analyzed by 1 H-NMR to confirm the formation of the target compound (yield:> 99%). ).
  • Example 16 Synthesis of dipentyl carbonate The reaction was performed in the same manner as in Example 9 except that 1-pentanol (10 mmol) was used instead of phenol. Dichloromethane (0.64 mL, 10 mmol) was added to the solution dried over anhydrous sodium sulfate as an internal standard, and the solution was directly analyzed by 1 H-NMR to confirm the formation of the target compound (yield: 12%). .
  • Example 17 Synthesis of 1,3-diphenylurea Purified chloroform (20 mL), aniline (0.93 g, 10 mmol), and aqueous sodium hydroxide solution (NaOH: 4 g, 20 mL) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 2 hours, dichloromethane and water were added for liquid separation, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • Purified chloroform (20 mL), aniline (0.93 g, 10 mmol), and aqueous sodium hydroxide solution (NaOH: 4 g, 20 mL) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After
  • Example 18 Synthesis of 1,3-dicyclohexylurea Except that cyclohexylamine (1.17 mL, 10 mmol) was used in place of aniline, the reaction time was 3 hours, and after completion of the reaction, hexane and water were added to the reaction solution, and the resulting precipitate was collected by filtration and vacuum dried. In the same manner as in Example 17, a white powder was obtained (yield: 0.69 g, yield: 62%). When the obtained powder was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 19 Synthesis of 1,3-dibenzylurea Benzylamine (1.07 g, 10 mmol) was used in place of aniline, the reaction time was 5 hours, and after completion of the reaction, the precipitate formed by adding hexane and water to the reaction solution was collected by filtration and vacuum dried.
  • the target compound was obtained as a light brown powder (yield: 0.78 g, yield: 65%). When the obtained powder was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 20 Synthesis of 1,3-dihexylurea A white powder was obtained in the same manner as in Example 17 except that 1-hexylamine (1.01 g, 10 mmol) was used instead of aniline, the reaction temperature was 10 ° C., and the reaction time was 3 hours (yield: 0.58 g, yield: 51%). When the obtained powder was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 21 Synthesis of 1,3-dihexylurea
  • Example 17 was used except that ethylamine hydrochloride (0.82 g, 10 mmol) was used instead of aniline, the reaction temperature was 10 ° C., the reaction time was 5 hours, and ethyl acetate was used instead of dichloromethane after the reaction was completed. Similarly, yellow crystals were obtained (yield: 0.08 g, yield: 14%). When the obtained crystal was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 22 Synthesis of 1,3-dipiperidinyl urea Piperidine (0.85 g, 10 mmol) was used instead of aniline, the reaction time was 3 hours, and after completion of the reaction, the target compound was purified with a short silica gel column (eluent: dichloromethane) in the same manner as in Example 17 above. Thus, yellow crystals were obtained (yield: 0.38 g, yield: 38%). When the obtained crystal was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 23 Photocopolymerization of bisphenol A and hexamethylenediamine Reaction was carried out at 20 ° C. for 2 hours in the same manner as in Example 8 above, except that diazabicycloundecene (60 mmol) was used instead of the aqueous sodium hydroxide solution. Went. Next, the reaction was further performed at 50 ° C. for 15 minutes. After the reaction, water was added and the mixture was allowed to stand overnight, followed by liquid separation. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was washed with hexane and dried under reduced pressure at 70 ° C. Furthermore, after washing with dichloromethane and hexane, drying under reduced pressure at 70 ° C. gave a light orange powder (yield:> 99%). When the obtained powder was analyzed by 1 H-NMR and IR, it was confirmed that the target compound was produced.
  • Example 24 Synthesis of 1,3-diphenylurea Purified chloroform (20 mL), aniline (0.93 g, 10 mmol), and pyridine (4.01 mL, 50 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 2 hours, dichloromethane and water were added to the reaction solution and the phases were separated, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure.
  • Example 25 Synthesis of 1,3-diphenylurea The reaction was performed at 20 ° C. for 2 hours in the same manner as in Example 24 except that diazabicycloundecene (7.48 mL, 50 mmol) was used instead of pyridine. After the reaction, dichloromethane and water were added to the reaction solution for liquid separation, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was dissolved in THF, and the solution was passed through an alumina column to remove impurities. The column treatment liquid was concentrated under reduced pressure, and then recrystallized using dichloromethane and hexane to obtain a light skin color crystal (yield: 0.44 g, yield: 38%).
  • Example 26 Synthesis of 1,3-dicyclohexylurea The reaction was performed at 20 ° C. for 4 hours in the same manner as in Example 24 except that cyclohexylamine (1.17 mL, 10 mmol) was used instead of aniline. After the reaction, dichloromethane and water were added to the reaction solution for liquid separation, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. By recrystallizing from the obtained residue using dichloromethane and hexane, light brown crystals were obtained (yield: 0.16 g, yield: 14%). When the obtained crystal was analyzed by 1 H-NMR, it was confirmed that the target compound was produced.
  • Example 27 Synthesis of polyurea Purified chloroform (20 mL), 4,4′-diaminodiphenyl ether (0.50 g, 2.5 mmol), and pyridine (1.0 mL, 12.5 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min oxygen gas was blown at 20 ° C. by bubbling, and the low-pressure mercury lamp was irradiated. After 1.5 hours, dichloromethane and water were added to the reaction solution for liquid separation, and the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The obtained residue was washed with methanol to obtain a brown powder (yield: 0.14 g, yield: 25%). When the obtained powder was analyzed by 1 H-NMR and IR, it was confirmed that the target compound was produced.
  • Example 28 Synthesis of carbonyldiimidazole Purified chloroform (20 mL), imidazole (0.68 g, 10 mmol), and 2,6-lutidine (5.79 mL, 50 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min of oxygen gas was bubbled in, and the low-pressure mercury lamp was irradiated at 20 ° C. for 2 hours. Then, the irradiation was stopped and the reaction was performed at 50 ° C. for 30 minutes. . Dichloromethane (5 mmol) was added to the reaction solution as an internal standard, and the reaction solution was analyzed by 1 H-NMR. As a result, it was confirmed that the target compound was produced in a yield of 38%.
  • Example 29 Synthesis of S, S'-diphenyl dithiocarbonate
  • Purified chloroform (20 mL), thiophenol (1.03 mL, 10 mmol), and aqueous sodium hydroxide solution (NaOH: 4 g, 20 mmol) were placed in the reaction vessel and mixed with stirring. While stirring the reaction solution, 0.5 L / min of oxygen gas was bubbled through, irradiated with the low-pressure mercury lamp, and reacted at 20 ° C. for 2 hours. Next, dichloromethane and water were added to the reaction solution, and the solution was separated. The organic phase was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain a brown liquid. When the obtained brown liquid was analyzed by 1 H-NMR, it was confirmed that the target compound was produced in a yield of 20%.

Abstract

本発明は、安全かつ効率的にカーボネート誘導体を製造するための方法を提供することを目的とする。本発明に係るカーボネート誘導体の製造方法は、塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および特定の塩基を含む組成物に酸素存在下で光照射することを特徴とする。

Description

カーボネート誘導体の製造方法
 本発明は、安全かつ効率的にカーボネート誘導体を製造するための方法に関するものである。
 カーボネート誘導体のうち鎖状カーボネートは従来より溶媒などとして利用されてきたが、特に近年、リチウムイオン二次電池の電解液の非水溶媒として生産量が増えてきている。また、炭酸とビスフェノール化合物との縮合体であるポリカーボネートは、透明性や耐衝撃性に優れるエンジニアリングプラスチックとして広く利用されている。また、尿素樹脂は接着剤や食器の素材などとして汎用されている。ポリジチオカーボネートは、着色が少なく安定な光学材料としての利用が期待されている。
 カーボネート誘導体は、一般的に、ホスゲンと求核性官能基含有化合物から製造される。しかしホスゲンは水と容易に反応して塩化水素を発生させたり、毒ガスとして利用された歴史があるなど、非常に有毒なものである。その他、一酸化炭素とアルコールと酸素を反応させる方法もあるが、有毒である一酸化炭素を高圧で用いなければならないという問題がある。そこで、炭酸エステルやポリカーボネートの安全な製造方法が種々検討されている。
 例えば特許文献1には、触媒存在下に炭酸エステルをエステル交換反応に付して目的のカーボネート誘導体を製造する方法が記載されている。しかしこの方法では、原料化合物としてのカーボネート誘導体を如何に製造すべきかとの問題が残っており、根本的な解決とはならない。また、高価な触媒を用いなければならないことや、残留触媒による逆反応や副反応の問題もある。
 特許文献2には、触媒の存在下、エポキシ化合物と二酸化炭素からカーボネート誘導体を製造する方法が開示されている。この方法ではホスゲンや一酸化炭素を用いる必要は無いが、高価な触媒を用いなければならず、また、二酸化炭素を高圧にしなければならないなど、工業的な大量生産には適さないといえる。
 ところで本発明者は、ハロゲン化炭化水素とアルコールとを酸化的光反応に付すことによるハロゲン化カルボン酸エステルの製造方法(特許文献3)や、酸素存在下、クロロホルムに光照射してホスゲンを含有する混合物を得る工程、ホスゲンを単離することなくアルコールを前記混合物と反応させる工程を具備するハロゲン化ギ酸エステルの製造方法を開発している(特許文献4)。
特開平7-10811号公報 特開2001-129397号公報 国際公開第2014/171367号パンフレット 特開2013-181028号公報
大熊誠一ら,分析化学,Vol.24,pp.385-387(1975年) 釼実夫ら,日本ゴム協会誌,第43巻,第5号,pp.337-346(1970年) Jerzy Herbichら,J.Photochem.Photobiol.A: Chem.,80,pp.157-160(1994)
 上述したように、カーボネート誘導体の製造にはホスゲンが一般的に使用されており、ホスゲンを使用しない製造方法であっても、その他の有毒な化合物や高価な触媒を使用するものであったり、原料化合物の製造にホスゲンを使用しなければならないといった問題があった。
 そこで本発明は、安全かつ効率的にカーボネート誘導体を製造するための方法を提供することを目的とする。
 本発明者は、上記課題を解決するために鋭意研究を重ねた。その結果、酸素と特定の塩基の存在下、ハロゲノ基で置換された炭化水素化合物と特定の求核性官能基含有化合物とを光反応に付すことで、驚くべきことにカーボネート誘導体を安全に製造かつ効率的に製造できることを見出して、本発明を完成した。一般的に、有機塩基は光反応により色素を形成したり、ラジカルを捕捉する酸化防止剤として働いたり、電子移動などのメカニズムにより化合物の蛍光を消光させたり、ピリジンに至っては紫外線によりグルタコンアルデヒドなどに分解することなどが知られており(非特許文献1~3)、本発明者が開発した特許文献3や特許文献4の発明などの光反応には不利になると考えられていた。それに対して、特定の塩基の存在下での光反応でカーボネート誘導体が効率的に生成することは、非常に驚くべきことであった。
 以下、本発明を示す。
 [1] カーボネート誘導体を製造するための方法であって、
 塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に酸素存在下で光照射し、
 前記求核性官能基含有化合物が下式(i)で表される化合物であり且つ前記カーボネート誘導体が下式(I)で表される鎖状カーボネート誘導体であるか、または、
 前記求核性官能基含有化合物が下式(ii)で表される化合物であり且つ前記カーボネート誘導体が下式(II-1)で表される単位を含むポリカーボネート誘導体もしくは下式(II-2)で表される環状カーボネート誘導体であり、
 前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる、カーボネート誘導体の製造方法。
    (i)    R1-A-H
    (ii)   H-A-R2-A-H
    (I)    R1-A-C(=O)-A-R1
    (II-1) [-A-R2-A-C(=O)-]
Figure JPOXMLDOC01-appb-C000002
[式中、
 Aは、O、SまたはNR3(R3は、HまたはC1-4アルキル基であるか、またはR1およびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
 R1は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
 R2は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
 [2] 前記C1-4ハロゲン化炭化水素がC1-4ポリハロゲン化炭化水素である上記[1]に記載の製造方法。
 [3] 前記C1-4ハロゲン化炭化水素がクロロホルムである上記[1]に記載の製造方法。
 [4] 前記複素環式芳香族アミンが、ピリジン、ピコリンまたはルチジンである上記[1]~[3]のいずれかに記載の製造方法。
 [5] 前記非求核性強塩基が、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンまたは1,1,3,3-テトラメチルグアニジンである上記[1]~[4]のいずれかに記載の製造方法。
 [6] 前記無機塩基が、アルカリ金属水酸化物、アルカリ金属炭酸水素塩またはアルカリ金属炭酸塩である上記[1]~[5]のいずれかに記載の製造方法。
 [7] 前記C1-4ハロゲン化炭化水素に対して0.001倍モル以上1倍モル以下の前記求核性官能基含有化合物を用いる上記[1]~[6]のいずれかに記載の製造方法。
 [8] 前記求核性官能基含有化合物に対して1.5倍モル以上10倍モル以下の前記塩基を用いる上記[1]~[7]のいずれかに記載の製造方法。
 [9] 前記組成物に照射する光が180nm以上500nm以下の波長の光である上記[1]~[8]のいずれかに記載の製造方法。
 本発明方法では、ホスゲンや一酸化炭素といった毒性が極めて高い化合物や、高価な触媒を原料化合物として使う必要が無い。よって本発明方法は、有用なカーボネート誘導体を安全に且つ効率的に製造できる技術として、産業上極めて有用である。
図1は、本発明方法で用いられる反応装置の構成の一例を示す模式図である。
 本発明に係るカーボネート誘導体の製造方法では、塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および特定の塩基を含む組成物に酸素存在下で光照射する。
 1. C1-4ハロゲン化炭化水素
 本発明に係る反応においてC1-4ハロゲン化炭化水素は、おそらく照射光と酸素により分解され、ハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物に変換され、水酸基含有化合物と反応してカーボネート誘導体が生成すると考えられる。たとえ有害なハロゲン化カルボニルが生成しても、ハロゲン化カルボニルは反応性が極めて高いために水酸基含有化合物と直ぐに反応し、反応液外へは漏出しないか、或いは漏出してもその漏出量は僅かである。なお、例えばハロゲン化カルボニルであるホスゲンは非常に毒性が高く、その運搬などには厳しい規制が課せられているが、C1-4ハロゲン化炭化水素は勿論それほど危険ではない。但し、後述するように本発明に係る反応は無機塩基水溶液の存在下でも進行することから、本発明に係る反応にはハロゲン化カルボニルまたはハロゲン化カルボニル様の化合物が介在していない可能性もある。
 特に常温常圧で液体であるC1-4ハロゲン化炭化水素は有機溶媒などとして大量に消費される一方で、大気に放出されると大気汚染やオゾン層の破壊といった環境汚染の原因となる。本発明は、かかるC1-4ハロゲン化炭化水素を光分解することで有用な化合物を製造する技術であり、工業的にもまた環境科学的にも寄与するところは大きい。
 C1-4ハロゲン化炭化水素は、塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子で置換された、炭素数1以上4以下のアルカン、アルケンまたはアルキンである。上述した通り、本発明においてC1-4ハロゲン化炭化水素は照射光と酸素により分解され、ハロゲン化カルボニルと同等の働きをすると考えられる。よってC1-2ハロゲン化炭化水素化合物が好ましく、ハロゲン化メタンがより好ましい。炭素数が2以上4以下である場合には、分解がより容易に進行するよう、1以上の不飽和結合を有するアルケンまたはアルキンが好ましい。また、2以上の上記ハロゲン原子を有するC1-4ハロゲン化炭化水素が好ましい。さらに、分解に伴って上記ハロゲン原子が転移する可能性もあるが、同一炭素に2以上の上記ハロゲン原子を有するC1-4ポリハロゲン化炭化水素化合物が好ましい。
 具体的なC1-4ハロゲン化炭化水素としては、C1-4ハロゲン化アルカン、C2-4ハロゲン化アルケンまたはC2-4ハロゲン化アルキンが好ましく、ハロゲン化カルボニル様化合物を容易に生成する観点から、ハロゲン化メタン、ハロゲン化エテンまたはハロゲン化アセチレンがより好ましく、2以上の上記ハロゲン原子を有するポリハロゲン化メタン、ポリハロゲン化エテンまたはポリハロゲン化アセチレンが特に好ましく、ポリハロゲン化メタンが最も好ましい。C1-4ハロゲン化炭化水素としては、例えば、ジクロロメタン、クロロホルム、ジブロモメタン、ブロモホルム、ヨードメタン、ジヨードメタン等のハロメタン;1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、1,1,2,2-テトラクロロエタン、1,1,1,2-テトラクロロエタン等のハロエタン;1,1,1,3-テトラクロロプロパン等のハロプロパン;テトラクロロメタン、テトラブロモメタン、テトラヨードメタン、ヘキサクロロエタン、ヘキサブロモエタン等のパーハロアルカン;1,1,2,2-テトラクロロエテン、1,1,2,2-テトラブロモエテン等のパーハロエテン等を挙げることができる。
 C1-4ハロゲン化炭化水素は目的とする化学反応や所期の生成物に応じて適宜選択すればよく、また、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。好適には、製造目的化合物に応じて、C1-4ハロゲン化炭化水素は1種のみ用いる。C1-4ハロゲン化炭化水素の中でもクロロ基を有する化合物が好ましい。
 本発明方法で用いるC1-4ハロゲン化炭化水素は、例えば溶媒としていったん使用したC1-4ハロゲン化炭化水素を回収したものであってもよい。その際、多量の不純物や水が含まれていると反応が阻害されるおそれがあり得るので、ある程度は精製することが好ましい。例えば、水洗により水や水溶性不純物を除去した後、無水硫酸ナトリウムや無水硫酸マグネシウムなどで脱水することが好ましい。但し、水が含まれていても反応は進行すると考えられるので、生産性を低下させるような過剰な精製は必要ない。かかる水含量としては、0.5容量%以下がより好ましく、0.2容量%以下がさらに好ましく、0.1容量%以下がよりさらに好ましい。また、上記再利用C1-4ハロゲン化炭化水素には、C1-4ハロゲン化炭化水素の分解物などが含まれていてもよい。
 2. 求核性官能基含有化合物
 本発明において「求核性官能基含有化合物」とは、求核性の酸素原子、硫黄原子、および/または窒素原子を含む求核性官能基を含む化合物であって、式(i)または式(ii)で表される化合物であり、それぞれ「求核性官能基含有化合物(i)」または「求核性官能基含有化合物(ii)」と略記する場合がある。本発明で用いる求核性官能基含有化合物は、フッ素原子を置換基として有さない。その結果、本発明方法で製造されるカーボネート誘導体もフッ素原子を置換基として有さない。また、本発明では特定の求核性官能基含有化合物を用いることによって、カーボネート誘導体までの反応の進行が可能になる。
 本発明において、求核性官能基含有化合物(i)を用いる場合、得られるカーボネート誘導体は式(I)で表される鎖状カーボネート(以下、「鎖状カーボネート(I)」と略記する場合がある)であり、水酸基含有化合物(ii)を用いる場合、得られるカーボネート誘導体は式(II-1)で表される単位を含むポリカーボネート誘導体(以下、「ポリカーボネート誘導体(II-1)」と略記する場合がある)か、または式(II-2)で表される環状カーボネート誘導体(以下、「環状カーボネート誘導体(II-2)」と略記する場合がある)である。
 本発明の製造方法で原料化合物として用いる求核性官能基含有化合物(i)と求核性官能基含有化合物(ii)、および、目的化合物である鎖状カーボネート誘導体(I)とポリカーボネート誘導体(II-1)と環状カーボネート誘導体(II-2)は、以下の通りである。
    (i)    R1-A-H
    (ii)   H-A-R2-A-H
    (I)    R1-A-C(=O)-A-R1
    (II-1) [-A-R2-A-C(=O)-]
Figure JPOXMLDOC01-appb-C000003
[式中、
 Aは、O、SまたはNR3(R3は、HまたはC1-4アルキル基であるか、またはR1およびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
 R1は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
 R2は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
 本明細書においては、炭素数1以上4以下のハロゲン化炭化水素を「C1-4ハロゲン化炭化水素」と記す。他の基と他の化合物とに関しても、同様に記す。
 求核性官能基含有化合物(i)中のR3としては、Hが好ましい。また、R1、R3およびNが形成する窒素含有ヘテロシクリル基は、非芳香族窒素含有ヘテロシクリル基であってもよいし、芳香族窒素含有ヘテロシクリル基であってもよい。非芳香族窒素含有ヘテロシクリル基としては、ピロリジニルおよびピペリジニルを挙げることができる。芳香族窒素含有ヘテロシクリル基としては、ピロリル、イミダゾリル、ピラゾールを挙げることができる。
 C6-14アリール基の水素原子は、塩素原子、臭素原子、ヨウ素原子またはC1-8アルキル基で置換されていてもよい。
 C4-14ヘテロアリール基は、窒素原子、酸素原子または硫黄原子を1以上有する芳香族ヘテロシクリル基をいう。ヘテロシクリル基としては、ピロリル基、イミダゾリル基、ピラゾリル基、チエニル基、フリル基、オキサゾリル基、イソキサゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾール基等の5員環ヘテロアリール基;ピリジニル基、ピラジニル基、ピリミジニル基、ピリダジニル基等の6員環ヘテロアリール基;インドリル基、イソインドリル基、キノリニル基、イソキノリニル基、ベンゾフラニル基、イソベンゾフラニル基、クロメニル基等の縮合環芳香族ヘテロシクリル基が挙げられ、窒素原子を含むC4-14ヘテロアリール基が好ましく、ピリジニル基がより好ましい。
 C2-24アルキルポリオキシアルキレン基としては、式-(QHO)mH基で表される基が好ましい。ただし、QHは-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH2CH(CH3)-または-CH2CH2CH2CH2-であり、RHは-CH3または-CH2CH3であり、mは1以上20以下の整数である。mが2以上である場合、QHは1種のみからなっていてもよく複数種からなっていてもよい。QHが複数種からなる場合、複数種のQHの並び方はランダム状であってもブロック状であってもよい。
 C2-24ポリオキシアルキレン基としては、式-(QHO)mH-基で表される基が好ましい。
 C2-10アルキレン基は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよい。C2-10アルキレン基としては、C2-6アルキレン基が好ましく、C2-4アルキレン基がより好ましい。また、環状カーボネートが得られ易いという観点からは、1個または2個のC1-4アルキル基で置換されていてもよいエチレン基が好ましく、1個または2個のC1-2アルキル基で置換されていてもよいエチレン基がより好ましく、1個または2個のメチル基で置換されていてもよいエチレン基がよりさらに好ましい。なお、上記のアルキル基で置換されていてもよいエチレン基は、1,2-アルキレン基とも表記できる。
 C6-14アリーレン基、C4-14ヘテロアリーレン基およびC2-24ポリオキシアルキレン基は、それぞれC6-14アリール基、C4-14ヘテロアリール基およびC2-24アルキルポリオキシアルキレン基に対応する2価の有機基である。
 求核性官能基含有化合物(i)としては、水酸基含有化合物(i)、チオール基含有化合物(i)、およびアミノ基含有化合物(i)が挙げられる。水酸基含有化合物(i)としては、例えば、フェノール、2-クロロフェノール、3-クロロフェノール、4-クロロフェノール、2-ブロモフェノール、3-ブロモフェノール、4-ブロモフェノール、2-メチルフェノール、3-メチルフェノール、4-メチルフェノールなどのフェノールおよびその誘導体;シクロヘキサノールなどのC3-10シクロアルカノール;ベンジルアルコール、2,6-ベンジルアルコールなどのベンジルアルコールおよびその誘導体;エチレングリコールモノメチルエーテルやプロピレングリコールモノメチルエーテルなどのアルキレングリコールモノC1-4アルキルエーテル;ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテルなどのオリゴアルキレングリコールモノC1-4アルキルエーテルが挙げられる。
 チオール基含有化合物(i)としては、例えば、チオフェノール、2-クロロチオフェノール、3-クロロチオフェノール、4-クロロチオフェノール、2-ブロモチオフェノール、3-ブロモチオフェノール、4-ブロモチオフェノール、2-メチルチオフェノール、3-メチルチオフェノール、4-メチルチオフェノールなどのチオフェノールおよびその誘導体;シクロヘキサンチオールなどのC3-10シクロアルカンチオール;ベンジルメルカプタン、2-クロロベンジルメルカプタン、4-クロロベンジルメルカプタン、4-メトキシベンジルメルカプタンなどのベンジルメルカプタンおよびその誘導体;HSCH2CH2SCH3、HSCH2CH(CH3)SCH3、HSCH(CH3)CH2SCH3などの1,2-エタンジチオールモノC1-4アルキルチオエーテル;ジ(1,2-エタンジチオール)モノメチルチオエーテル、トリ(1,2-エタンジチオール)モノメチルチオエーテル、テトラ(1,2-エタンジチオール)モノメチルチオエーテルなどのオリゴ(1,2-エタンジチオール)アルキレングリコールモノC1-4アルキルチオエーテルが挙げられる。
 アミノ基含有化合物(i)としては、例えば、アニリン、2-クロロアニリン、3-クロロアニリン、4-クロロアニリン、2-ブロモアニリン、3-ブロモアニリン、4-ブロモアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリンなどのアニリンおよびその誘導体;シクロヘキシルアミンなどのC3-10シクロアルキルアミン;ピペラジンやピペリジンなどのヘテロサイクリックアミン;ベンジルアミン、4-(アミノメチル)ベンゾニトリル、2-クロロベンジルアミン、3-クロロベンジルアミン、4-クロロベンジルアミン、2-ブロモベンジルアミン、3-ブロモベンジルアミン、4-ブロモベンジルアミン、4-t-ブチルベンジルアミンなどのベンジルアルコールおよびその誘導体;N-メチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N-メチルプロピレンジアミン、N,N-ジメチルプロピレンジアミンなどのアルキレングリコールモノC1-4アルキルエーテル;N-メチルジエチレントリアミン、N,N-ジメチルジエチレントリアミン、N-メチルトリエチレンテトラミン、N,N-ジメチルトリエチレンテトラミン、N-メチルテトラエチレンペンタミン、N,N-ジメチルテトラエチレンペンタミンなどのN-モノC1-4アルキルオリゴエチレンジアミンまたはN,N-ジC1-4アルキルオリゴエチレンジアミンが挙げられる。
 求核性官能基含有化合物(i)は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。例えば、2種の求核性官能基含有化合物(i)を併用することにより、非対象の鎖状カーボネート誘導体を合成することができる。但し、製造効率などから、1種のみの求核性官能基含有化合物(i)を単独で用いることが好ましい。
 求核性官能基含有化合物(ii)としては、下式(ii-1)および(ii-2)で表される化合物が好ましい。
    (ii-1)    H-A-R21-A-H
    (ii-2)    H-A-R22-R23-R24-A-H
[式中、
 Aは上記と同義を示し、
 R21は、C2-10アルキレン基、C6-14アリーレン基またはC4-14ヘテロアリーレン基であり、
 R22とR24は、それぞれ独立にC6-14アリーレン基またはC4-14ヘテロアリーレン基であり、
 R23は、C1-10アルキレン基である。]
 水酸基含有化合物(ii)を出発原料化合物として用いた場合には、ポリカーボネート誘導体(II-1)または環状カーボネート誘導体(II-2)が得られる。具体的には、R2に含まれる主鎖の炭素数が2または3であり、炭酸エステル基(-O-C(=O)-O-)、炭酸ジチオエステル基(-S-C(=O)-S-)または炭酸アミド基(-NH-C(=O)-NH-)と共に五員環や六員環といった安定な構造が形成される場合には、主に環状カーボネート誘導体が生成する。特に、求核性官能基含有化合物(ii-1)におけるC2-10アルキレン基、C6-14アリーレン基およびC4-14ヘテロアリーレン基がそれぞれ1,2-C2-10アルキレン基、1,2-C6-14アリーレン基および1,2-C4-14ヘテロアリーレン基である場合は、主に環状カーボネートが生成する。R2に含まれる主鎖の炭素数が4以上である場合には、反応条件などにもよるが、環状カーボネート誘導体とポリカーボネート誘導体との間で化学的により安定な方が優先的に生成する。
 なお、1,2-アリーレン基には、1,2-フェニレン基や1,2-ビフェニレンの他、下記構造を有する1,2-ナフタレニレン、1,8-ナフタレニレン、2,3-ナフタレニレンが含まれるものとする。1,2-C2-10アルキレン基と1,2-C4-14ヘテロアリーレン基でも同様である。
Figure JPOXMLDOC01-appb-C000004
 求核性官能基含有化合物(ii)としては、水酸基含有化合物(ii)、チオール基含有化合物(ii)、およびアミノ基含有化合物(ii)が挙げられる。水酸基含有化合物(ii)としては、例えば、1,2-プロパンジオール、1,2-エタンジオール、1,4-ブタンジオール等のグリコール化合物;カテコールやレゾルシノールなどのジヒドロキシベンゼン化合物;4,6-ジヒドロキシ-2-メチルピリミジン、3,6-ジヒドロキシ-4-メチルピリダジンなどのジヒドロキシヘテロアリール化合物;ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールBP、ビスフェノールE、ビスフェノールF、ビスフェノールTMC、ビスフェノールZなどのビスフェノール化合物が挙げられる。
 例えば、水酸基含有化合物(ii)として下式で表されるビスフェノールAを用いた場合には、下記式で表されるポリカーボネートエステルが得られる。
Figure JPOXMLDOC01-appb-C000005
 チオール基含有化合物(ii)としては、例えば、1,2-プロパンジチオール、1,2-エタンジチオール、1,4-ブタンジチオール等のC1-4アルキレンジチオール化合物;1,2-ベンゼンジチオールや1,3-ベンゼンジチオールなどのベンゼンジチオール化合物;2-メチルピリミジン-4,6-ジチオール、4-メチルピリダジン-3,6-ジチオールなどのヘテロアリールジチオール化合物;4,4’-チオビスベンゼンチオール、2,2-ビス(4-メルカプトフェニル)プロパン、1,1-ビス(4-メルカプトフェニル)-1-フェニルエタン、2,2-ビス(4-メルカプトフェニル)ブタン、ビス(4-メルカプトフェニル)ジフェニルメタン、1,1-ビス(4-メルカプトフェニル)エタン、ビス(4-メルカプトフェニル)メタン、1,1-ビス(4-メルカプトフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-メルカプトフェニル)シクロヘキサンなどのビスチオフェノール化合物が挙げられる。
 アミノ基含有化合物(ii)としては、例えば、1,2-プロピレンジアミン、1,3-プロピレンジアミン、1,2-エチレンジアミン、1,4-ブチレンジアミン等のC1-4アルキレンジアミン化合物;1,2-フェニレンジアミンや1,4-フェニレンジアミンなどのフェニレンジアミン化合物;4,6-ジアミノ-2-メチルピリミジン、3,6-ジアミノ-4-メチルピリダジンなどのヘテロアリールジチオール化合物;2,2-ビス(4-アミノフェニル)プロパン、1,1-ビス(4-アミノフェニル)-1-フェニルエタン、2,2-ビス(4-アミノフェニル)ブタン、ビス(4-アミノフェニル)ジフェニルメタン、1,1-ビス(4-アミノフェニル)エタン、ビス(4-アミノフェニル)メタン、1,1-ビス(4-アミノフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-アミノフェニル)シクロヘキサンなどのビスアミノベンゼン化合物が挙げられる。
 C1-4ハロゲン化炭化水素と求核性官能基含有化合物の使用量は、反応が進行し、所期の生成物が得られる限り特に限定されるものではなく、例えば、C1-4ハロゲン化炭化水素のモル数に対して1倍モルの求核性官能基含有化合物を使用する場合にも上記反応は進行する。なお、反応効率および反応時間などの観点からは、C1-4ハロゲン化炭化水素に対する求核性官能基含有化合物のモル比([求核性官能基含有化合物]/[C1-4ハロゲン化炭化水素])を0.001以上1以下とすることが好ましい。上記モル比率は、0.01以上がより好ましく、0.1以上がよりさらに好ましく、また、0.8以下がより好ましく、0.5以下がよりさらに好ましい。上記モル比が大き過ぎる場合には、相対的に求核性官能基含有化合物の量が多くなるため未反応の求核性官能基含有化合物が増加する一方で、上記モル比が小さ過ぎる場合には、未反応のC1-4ハロゲン化炭化水素が増加して、反応系外へハロゲン化カルボニルが放出されてしまう虞があり得る。また、C1-4ハロゲン化炭化水素が常温常圧で液体であり、溶媒としても用いることができる場合には、C1-4ハロゲン化炭化水素に対する求核性官能基含有化合物の割合を1mg/mL以上、500mg/mL以下としてもよい。
 3. 塩基
 本発明方法においては、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる。当該塩基により、ポリカーボネート誘導体が生成するまで反応が進行すると考えられる。
 複素環式芳香族アミンは、少なくとも一つの複素環を含み且つ少なくとも一つのアミン官能基を有している化合物をいう。複素環式芳香族アミンとしては、例えば、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,3-ルチジン、2,4-ルチジン、2,6-ルチジン、3,5-ルチジン、2-クロロピリジン、3-クロロピリジン、4-クロロピリジンなどの、ピリジンおよびその誘導体などを挙げることができる。
 「非求核性強塩基」とは、立体的な障害により窒素原子上の孤立電子対の求核性が弱く、且つ、アセトニトリル中における塩基性度(pKBH+)が20以上の塩基をいうものとする。かかる非求核性強塩基としては、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD,pKBH+:25.98)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD,pKBH+:25.44)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU,pKBH+:24.33)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN,pKBH+:23.89)、および1,1,3,3-テトラメチルグアニジン(TMG,pKBH+:23.30)を挙げることができる。
 無機塩基としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウムなどのアルカリ土類金属水酸化物;炭酸ナトリウムや炭酸カリウムなどのアルカリ金属炭酸塩;炭酸カルシウムなどアルカリ土類金属炭酸塩;炭酸水素ナトリウムなどアルカリ金属炭酸水素塩などを挙げることができる。
 無機塩基は、使用直前に微細化して反応液に添加してもよいが、その水溶液を添加することが好ましい。無機塩基水溶液の濃度は適宜調整すればよいが、例えば、0.05g/mL以上、2g/mL以下とすることができる。なお、無機塩基水溶液は、ホスゲンの分解に用いられる。具体的には、ホスゲンは水の存在により二酸化炭素と塩化水素に分解され、この塩化水素を無機塩基により中和することができる。よって、本発明者は本発明に係る反応はホスゲンを経由していると考えており、本発明反応は後記の実施例の通り無機塩基水溶液を使う場合でも進行することは驚くべきことであった。また、本発明に係る反応は無機塩基水溶液を使っても進行することから、ホスゲンを経由せずに進行している可能性もあり得る。
 上記塩基は、1種のみを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記塩基の使用量は、反応が良好に進行する範囲で適宜調整すればよいが、例えば、上記求核性官能基含有化合物に対して1.5倍モル以上10倍モル以下とすることができる。一般的に、上記塩基の使用量が多いほど収率が高くなるので、上記割合としては2.0倍モル以上が好ましく、3.0倍モル以上がより好ましく、4.0倍モル以上がよりさらに好ましい。
 4. 反応条件
 本発明方法は、上記C1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に、酸素存在下で光照射する工程を含む。
 上記C1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基の混合態様は特に限定されない。例えば、反応器中、各化合物の全量を予め混合しておいてもよいし、数回に分割して添加してもよいし、任意の速度で連続的に添加してもよい。また、上記C1-4ハロゲン化炭化水素と求核性官能基含有化合物の一方または両方が常温常圧で液体でない場合には、これら原料化合物を適度に溶解でき、且つ本発明反応を阻害しない溶媒を用いてもよい。かかる溶媒としては、例えば、n-ヘキサンなどの脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン、クロロベンゼンなどの芳香族炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;アセトニトリルなどのニトリル系溶媒を挙げることができる。
 酸素源としては、酸素を含む気体であればよく、例えば、空気や、精製された酸素を用いることができる。精製された酸素は、窒素やアルゴン等の不活性ガスと混合して使用してもよい。コストや容易さの点からは空気を用いることが好ましい。光照射によるC1-4ハロゲン化炭化水素の分解効率を高める観点からは、酸素源として用いられる気体中の酸素含有率は約15体積%以上100体積%以下であることが好ましい。酸素含有率は上記C1-4ハロゲン化炭化水素などの種類によって適宜決定すればよい。例えば、上記C1-4ハロゲン化炭化水素としてジクロロメタン、クロロホルム、テトラクロロエチレン等のC1-4クロロ炭化水素化合物を用いる場合は、酸素含有率15体積%以上100体積%以下が好ましく、ジブロモメタンやブロモホルムなどのC1-4ブロモ炭化水素化合物を用いる場合は、酸素含有率90体積%以上100体積%以下が好ましい。なお、酸素(酸素含有率100体積%)を用いる場合であっても、反応系内への酸素流量の調節により酸素含有率を上記範囲内に制御することができる。酸素を含む気体の供給方法は特に限定されず、流量調整器を取り付けた酸素ボンベから反応系内に供給してもよく、また、酸素発生装置から反応系内に供給してもよい。
 なお、「酸素存在下」とは、上記各化合物が酸素と接している状態か、上記組成物中に酸素が存在する状態のいずれであってもよい。従って、本発明に係る反応は、酸素を含む気体の気流下で行ってもよいが、生成物の収率を高める観点からは、酸素を含む気体はバブリングにより上記組成物中へ供給することが好ましい。
 酸素を含む気体の量は、上記C1-4ハロゲン化炭化水素の量や、反応容器の形状などに応じて適宜決定すればよい。例えば、反応容器中に存在する上記C1-4ハロゲン化炭化水素に対する、反応容器へ供給する1分あたりの気体の量を、5容量倍以上とすることが好ましい。当該割合としては、25容量倍以上がより好ましく、50容量倍以上がよりさらに好ましい。当該割合の上限は特に制限されないが、500容量倍以下が好ましく、250容量倍以下がより好ましく、150容量倍以下がよりさらに好ましい。また、反応容器中に存在する上記C1-4炭化水素化合物に対する、反応容器へ供給する1分あたりの酸素の量としては、5容量倍以上25容量倍以下とすることができる。気体の流量が多過ぎる場合には、上記C1-4炭化水素化合物が揮発してしまう虞があり得る一方で、少な過ぎると反応が進行し難くなる虞があり得る。
 上記組成物に照射する光としては、短波長光を含む光が好ましく、紫外線を含む光がより好ましく、より詳細には180nm以上500nm以下の波長の光を含む光が好ましい。なお、光の波長は上記C1-4ハロゲン化炭化水素の種類に応じて適宜決定すればよいが、400nm以下がより好ましく、300nm以下がよりさらに好ましい。照射光に上記波長範囲の光が含まれている場合には、上記C1-4ハロゲン化炭化水素を効率良く酸化的光分解できる。
 光照射の手段は、上記波長の光を照射できるものである限り特に限定されないが、このような波長範囲の光を波長域に含む光源としては、例えば、太陽光、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、ケミカルランプ、ブラックライトランプ、メタルハライドランプ、LEDランプ等が挙げられる。反応効率やコストの点から、低圧水銀ランプが好ましく用いられる。
 照射光の強度や照射時間などの条件は、出発原料の種類や使用量によって適宜設定すればよいが、例えば、光の強度としては10μW/cm2以上500μW/cm2以下が好ましい。当該光強度としては100μW/cm2以下がより好ましく、40μW/cm2以下がよりさらに好ましい。光の照射時間としては、0.5時間以上10時間以下が好ましく、1時間以上6時間以下がより好ましく、2時間以上4時間以下がよりさらに好ましい。光照射の態様も特に限定されず、反応開始から終了まで連続して光を照射する態様、光照射と光非照射とを交互に繰り返す態様、反応開始から所定の時間のみ光を照射する態様など、いずれの態様も採用できるが、反応開始から終了まで連続して光を照射する態様が好ましい。
 反応時の温度も特に限定はされず、適宜調整すればよいが、例えば、0℃以上50℃以下とすることができる。当該温度としては、10℃以上がより好ましく、20℃以上がよりさらに好ましく、また、40℃以下がより好ましく、30℃以下がよりさらに好ましい。
 本発明の製造方法に使用できる反応装置としては、反応容器に光照射手段を備えたものが挙げられる。反応装置には、攪拌装置や温度制御手段が備えられていてもよい。図1に、本発明の製造方法に使用できる反応装置の一態様を示す。図1に示す反応装置は、筒状反応容器6内に光照射手段1を有するものである。筒状反応容器6内に、上記各原料化合物を添加し、当該反応容器6内に酸素を含有する気体を供給または上記組成物に酸素を含有する気体をバブリングしながら(図示せず)、光照射手段1より光を照射して反応を行う。前記光照射手段1をジャケット2等で覆う場合、該ジャケットは、前記短波長光を透過する素材であることが好ましい。また、反応容器の外側から光照射を行ってもよく、この場合、反応容器は、前記短波長光を透過する素材であることが好ましい。前記短波長光を透過する素材としては、本発明の効果を妨げない限り特に限定されないが、石英ガラス等が好ましく挙げられる。
 上記反応後の生成物は、従来公知の方法で精製をしてもよい。精製方法としては、蒸留、出発原料化合物の減圧留去、カラムクロマトグラフィー、分液、抽出、洗浄、再結晶などが挙げられる。
 原料化合物である求核性官能基含有化合物として水酸基含有化合物、チオール基含有化合物、アミノ基含有化合物を用いる場合には、それぞれ、炭酸エステル基(-O-C(=O)-O-)、炭酸ジチオエステル基(-S-C(=O)-S-)、ウレア基(-NH-C(=O)-NH-)を有するカーボネート誘導体が生成する。また、水酸基含有化合物とアミノ基含有化合物を併用する場合にはウレタン基(-O-C(=O)-NH-)を有するカーボネート誘導体が生成し、チオール基含有化合物とアミノ基含有化合物を併用する場合にはチオウレタン基(-S-C(=O)-NH-)を有するカーボネート誘導体が生成する。
 本発明方法により製造される鎖状カーボネート誘導体(I)は、非水溶媒などとして有用であり、例えば、鎖状カーボネート(I)はリチウムイオン二次電池の電解質の溶媒などとして利用することができる。さらに、ポリカーボネート(II)は、優れたエンジニアリングプラスチックとして有用である。
 本願は、2017年5月16日に出願された日本国特許出願第2017-97681号に基づく優先権の利益を主張するものである。2017年5月16日に出願された日本国特許出願第2017-97681号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 比較例1: 炭酸ジメチルの合成
Figure JPOXMLDOC01-appb-C000006
 直径42mm、容量100mLの筒状反応容器内に、直径30mmの石英ガラスジャケットを装入し、さらに石英ガラスジャケット内に低圧水銀ランプ(「UVL20PH-6」SEN Light社製,20W,φ24×120mm)を装入した反応システムを構築した。当該反応システムの模式図を図1に示す。反応容器内に精製したクロロホルム(20mL)、メタノール(0.405mL,10mmol)、メタノールに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液を1H-NMRで分析したところ、目的化合物である炭酸ジメチルの収率は僅か1.6%であることが確認された。
 比較例2
 メタノールの代わりにエタノールを用いた以外は上記比較例1と同様にして、反応を行ったが、3時間の反応後においても、反応の進行は認められなかった。比較例1の結果と合わせて考えれば、本発明方法は一価アルコールには適用し難いことが明らかとなった。
 実施例1: 炭酸ジフェニルの合成
Figure JPOXMLDOC01-appb-C000007
 (1) 塩基としてピリジンを使用
 メタノールの代わりにフェノール(0.94g,10mmol)を用い、ピリジンの使用量をフェノールに対して3.5倍モルに調整し、反応時間を2時間にした以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:61%)。
 (2) 塩基としてピリジンを使用
 フェノールに対して5倍モルのピリジンを用い、反応時間を1時間にした以外は上記実施例1(1)と同様にして、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:99%超)。
 (3) 塩基として2,6-ルチジンを使用
 ピリジンの代わりに2,6-ルチジンを用い、反応時間を1時間にした以外は上記実施例1(1)と同様にして、目的化合物である炭酸ジフェノールを得た(単離収率:60%)。
 (4) 四塩化炭素を使用
 クロロホルムの代わりに四塩化炭素(25mL)を用い、フェノールに対して5倍モルのピリジンを用いた以外は上記実施例1(1)と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、白色固体状の目的化合物である炭酸ジフェノールを得た(単離収率:69%)。
 比較例3
 ピリジンの代わりにトリエチルアミンを用いた以外は上記実施例1(2)と同様にして反応を行った。しかし、単離されたのは少量のタール状の黒色物質であり、目的化合物である炭酸ジフェノールを単離することはできなかった。この様に有機塩基としてトリエチルアミンを用いた場合には炭酸ジフェノールは得られなかった一方で、上記実施例1(2)の通り、有機塩基をトリエチルアミンからピリジンに変更するのみで炭酸ジフェノールが99%超の収率で得られた。
 実施例2: 炭酸ビス(ペンタクロロフェニル)の合成
Figure JPOXMLDOC01-appb-C000008
 メタノールの代わりにペンタクロロフェノール(1.13g,5mmol)を用い、反応時間を1時間に変更した以外は上記比較例1と同様にして反応を行った。反応終了後、懸濁状態の反応液にメタノールを添加したところ、白色固体が生じた。生じた白色固体を吸引濾過することにより、目的化合物である炭酸ビス(ペンタクロロフェノール)を得た(単離収率:72%)。
 実施例3: 1,3-ベンゾジオキソール-2-オンの合成
Figure JPOXMLDOC01-appb-C000009
 上記反応容器内に精製したクロロホルム(20mL)、カテコール(1.1g,10mmol)、カテコールに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液に水とジクロロメタンを加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、溶媒を減圧留去した。得られた固体をジクロロメタンとn-ヘキサンから再結晶し、目的化合物である1,3-ベンゾジオキソール-2-オンを得た(単離収率:99%超)。
 実施例4: 炭酸エチレンの合成
Figure JPOXMLDOC01-appb-C000010
 カテコールの代わりにエチレングリコール(0.28mL,10mmol)を用いた以外は上記実施例3と同様にして反応を行った。反応終了後、反応液を1H-NMRで分析し、目的化合物である炭酸エチレンが生成していることを確認した(単離収率:44%)。
 実施例5: ビスフェノールAポリカーボネートの合成
Figure JPOXMLDOC01-appb-C000011
 上記反応容器内に精製したクロロホルム(20mL)、ビスフェノールA(2.28g,10mmol)、ビスフェノールAに対して5倍モルのピリジン(4.03mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。40分後、反応液の粘度が増大して攪拌子が回転できなくなったことから、反応液にメタノール(30mL)を添加して超音波を照射し、吸引濾過した。得られた固形分をメタノールで洗浄した後、真空乾燥することにより白色固体が得られた。当該白色固体を1H-NMRで分析したところ、収率:99%超で目的化合物であるポリ炭酸ビスフェノールAが生成していることが確認された。
 また、得られたポリ炭酸ビスフェノールAを下記の条件のゲル浸透クロマトグラフィー(GPC)で分析し、分子量を求めた。結果を表1に示す。
 装置: 高速GPC装置(「HLC-8320GPC」東ソー社製)
 カラム: 超高分子用カラム(「TSKgel GMHHR-H×2」東ソー社製)
 移動相: クロロホルム         流速: 1.0mL/min
 オーブン温度: 40℃         濃度: 0.3w/v%
 注入量: 100μL          分子量標準: ポリスチレン
 検出器: RI
Figure JPOXMLDOC01-appb-T000012
 表1に示す結果の通り、本発明方法で合成されたポリ炭酸エステルは十分高い分子量を有し、且つその分子量分布は比較的狭いものであることが明らかとなった。
 実施例6: 炭酸ビス(トリエチレングリコールモノメチルエーテル)の合成
Figure JPOXMLDOC01-appb-C000013
 メタノールの代わりにトリエチレングリコールモノメチルエーテル(1.64g,10mmol)を用いた以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水とジクロロメタン:酢酸エチル=1:1の混合溶媒を加えて分液し、有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することにより、褐色オイル状の目的化合物である炭酸ビス(トリエチレングリコールモノメチルエーテル)を得た(単離収率:99%超)。
 実施例7: テトラエチレングリコールポリカーボネートの合成
Figure JPOXMLDOC01-appb-C000014
 メタノールの代わりにテトラエチレングリコール(1.50g,10mmol)を用い、反応時間を2時間とした以外は上記比較例1と同様にして、反応を行った。反応終了後、反応液に水と酢酸エチルを加えて分液し、有機相を食塩水で3回洗浄した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することにより、褐色オイル状の目的化合物であるテトラエチレングリコールポリカーボネートを得た(単離収率:99%超)。
 1H-NMR(400MHz,CDCl3) δ4.28(t,J=4.8Hz,-CO2CH2-),3.73(t,J=4.8Hz,-CH2-),3.68-3.63(m,-CH2-);
 FAB-MS: m/z519,739,958;
 IR(KBr): 2955,2891,1740,1459,1396,1354,1271,1100,1029,950,864,791cm-1
 実施例8: ビスフェノールAとヘキサメチレンジアミンとの光共重合
Figure JPOXMLDOC01-appb-C000015
 上記反応容器内に精製したクロロホルム(30mL)、ビスフェノールA(0.685g,3mmol)、ヘキサメチレンジアミン(0.412g,3mmol)、および水酸化ナトリウム水溶液(20mL,100mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液にジクロロメタンと水を添加し、生じた沈殿を濾過し、メタノールで洗浄後、70℃で真空乾燥した。また、濾液を分液し、有機相を減圧濃縮し、得られた残渣をメタノールで洗浄後、70℃で真空乾燥し、薄オレンジ色粉末を得た(収率:39%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物である共重合体が生成していることが確認された。
 上記の通り、無機塩基の水溶液を用いてもカーボネート誘導体を製造することができた。無機塩基の水溶液はホスゲンを分解するために用いられるものであることから、上記の実験結果は全く予想外であり、本発明に係る反応はホスゲンを経由していない可能性もあると考えられた。
 なお、最初に得られた沈殿は溶媒に不溶であり、濾液から得られた粉末はDMSOなどに可溶であることから、両粉末は分子量が異なると考えられる。
 実施例9: 炭酸ビスフェニルの合成
Figure JPOXMLDOC01-appb-C000016
 上記反応容器内に精製したクロロホルム(20mL)、フェノール(0.941g,10mmol)と水酸化ナトリウム水溶液(20mL,100mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液にクロロホルムと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、70℃で減圧濃縮し、肌色固体を得た(収率:55%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例10: 炭酸ジシクロヘキシルの合成
Figure JPOXMLDOC01-appb-C000017
 フェノールの代わりにシクロヘキサノール(1.06mL,10mmol)を用いた以外は上記実施例9と同様にして、薄黄色液体を得た(収率:13%)。得られた液体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例11: 炭酸ビス(4-t-ブチルフェニル)の合成
Figure JPOXMLDOC01-appb-C000018
 上記反応容器内に精製したクロロホルム(20mL)、4-t-ブチルフェノール(1.53g,10mmol)、炭酸ナトリウム水溶液(20mL,50mmol)、およびピリジン(0.202mL,5mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。3時間後、反応液にクロロホルムと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、70℃で減圧濃縮し、残渣から再結晶することにより、薄オレンジ色粉末を得た(収率:57.0%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例12: 炭酸ビス(4-メトキシフェニル)の合成
Figure JPOXMLDOC01-appb-C000019
 フェノールの代わりに4-メトキシフェノール(10mmol)を用い、30mLのクロロホルムを用いた以外は上記実施例9と同様にして、茶色固体を得た(収率:60%)。得られた固体を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
 実施例13: 炭酸ビス(4-ニトロフェニル)の合成
Figure JPOXMLDOC01-appb-C000020
 フェノールの代わりに4-ニトロフェノール(1.391g,10mmol)を用い、30mLのクロロホルムを用い、反応時間を2時間とした以外は上記実施例9と同様にして、白色粉末を得た(収率:5%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
 実施例14: ビスフェノールAポリカーボネートの合成
Figure JPOXMLDOC01-appb-C000021
 上記反応容器内に精製したクロロホルム(20mL)、ビスフェノールA(1.14g,5mmol)と水酸化ナトリウム水溶液(100mmol,20mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。クロロホルムとメタノールを加え、デカンテーションで溶媒を除去した後、70℃で減圧乾燥することにより、白色固体を得た(収率:79%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 得られたポリ炭酸ビスフェノールAの分子量を上記実施例5と同様の条件により求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000022
 表2に示す結果の通り、本発明方法で合成されたポリ炭酸エステルは十分高い分子量を有し、且つその分子量分布は比較的狭いものであることが明らかとなった。
 実施例15: 炭酸ジヘキシルの合成
Figure JPOXMLDOC01-appb-C000023
 フェノールの代わりに1-ヘキサノール(1.25mL,10mmol)を用いた以外は上記実施例9と同様にして、反応を行った。無水硫酸ナトリウムで乾燥した溶液に内部標準としてジクロロメタン(0.64mL,10mmol)を添加し、溶液を1H-NMRで直接分析することにより、目的化合物の生成を確認した(収率:>99%)。
 実施例16: 炭酸ジペンチルの合成
Figure JPOXMLDOC01-appb-C000024
 フェノールの代わりに1-ペンタノール(10mmol)を用いた以外は上記実施例9と同様にして、反応を行った。無水硫酸ナトリウムで乾燥した溶液に内部標準としてジクロロメタン(0.64mL,10mmol)を添加し、溶液を1H-NMRで直接分析することにより、目的化合物の生成を確認した(収率:12%)。
 実施例17: 1,3-ジフェニルウレアの合成
Figure JPOXMLDOC01-appb-C000025
 上記反応容器内に精製したクロロホルム(20mL)、アニリン(0.93g,10mmol)、および水酸化ナトリウム水溶液(NaOH:4g,20mL)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、ジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた黒色固体からジクロロメタンとヘキサンを用いて再結晶し、黒色粉末を得た(収量:0.13g,収率:12%)。得られた固体を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例18: 1,3-ジシクロヘキシルウレアの合成
Figure JPOXMLDOC01-appb-C000026
 アニリンの代わりにシクロヘキシルアミン(1.17mL,10mmol)を用い、反応時間を3時間とし、反応終了後、反応液にヘキサンと水を加えて生成した沈殿を濾取し、真空乾燥した以外は上記実施例17と同様にして、白色粉末を得た(収量:0.69g,収率:62%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例19: 1,3-ジベンジルウレアの合成
Figure JPOXMLDOC01-appb-C000027
 アニリンの代わりにベンジルアミン(1.07g,10mmol)を用い、反応時間を5時間とし、反応終了後、反応液にヘキサンと水を加えて生成した沈殿を濾取し、真空乾燥した以外は上記実施例17と同様にして、薄茶色粉末である目的化合物を得た(収量:0.78g,収率:65%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例20: 1,3-ジヘキシルウレアの合成
Figure JPOXMLDOC01-appb-C000028
 アニリンの代わりに1-ヘキシルアミン(1.01g,10mmol)を用い、反応温度を10℃、反応時間を3時間とした以外は上記実施例17と同様にして、白色粉末を得た(収量:0.58g,収率:51%)。得られた粉末を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例21: 1,3-ジヘキシルウレアの合成
Figure JPOXMLDOC01-appb-C000029
 アニリンの代わりにエチルアミン塩酸塩(0.82g,10mmol)を用い、反応温度を10℃、反応時間を5時間とし、反応終了後、ジクロロメタンの代わりに酢酸エチルを用いた以外は上記実施例17と同様にして、黄色結晶を得た(収量:0.08g,収率:14%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例22: 1,3-ジピペリジニルウレアの合成
Figure JPOXMLDOC01-appb-C000030
 アニリンの代わりにピペリジン(0.85g,10mmol)を用い、反応時間を3時間とし、反応終了後、目的化合物をショートシリカゲルカラム(溶離液:ジクロロメタン)で精製した以外は上記実施例17と同様にして、黄色結晶を得た(収量:0.38g,収率:38%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例23: ビスフェノールAとヘキサメチレンジアミンとの光共重合
 水酸化ナトリウム水溶液の代わりにジアザビシクロウンデセン(60mmol)を用いた以外は上記実施例8と同様にして、20℃で2時間反応を行った。次いで、更に50℃で15分間反応を行った。反応後、水を添加し、一晩静置してから分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮した。残渣をヘキサンで洗浄し、70℃で減圧乾燥した。更に、ジクロロメタンとヘキサンで洗浄した後、70℃で減圧乾燥することにより、薄オレンジ色粉末を得た(収率:>99%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
 実施例24: 1,3-ジフェニルウレアの合成
Figure JPOXMLDOC01-appb-C000031
 上記反応容器内に精製したクロロホルム(20mL)、アニリン(0.93g,10mmol)、およびピリジン(4.01mL,50mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。2時間後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣にジクロロメタンと酢酸エチルを加えて溶解し、溶液をアルミナカラムに通してアニリンブラックを除去した。カラム処理液を減圧濃縮した後、酢酸エチルとヘキサンを用いて再結晶することにより、薄茶色針状結晶を得た(収量:0.54g,収率:51%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例25: 1,3-ジフェニルウレアの合成
Figure JPOXMLDOC01-appb-C000032
 ピリジンの代わりにジアザビシクロウンデセン(7.48mL,50mmol)を用いた以外は上記実施例24と同様にして、20℃で2時間反応を行った。反応後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をTHFに溶解し、溶液をアルミナカラムに通して不純物を除去した。カラム処理液を減圧濃縮した後、ジクロロメタンとヘキサンを用いて再結晶することにより、薄肌色結晶を得た(収量:0.44g,収率:38%)。
 実施例26: 1,3-ジシクロヘキシルウレアの合成
Figure JPOXMLDOC01-appb-C000033
 アニリンの代わりにシクロヘキシルアミン(1.17mL,10mmol)を用いた以外は上記実施例24と同様にして、20℃で4時間反応を行った。反応後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣からジクロロメタンとヘキサンを用いて再結晶することにより、薄茶色結晶を得た(収量:0.16g,収率:14%)。得られた結晶を1H-NMRで分析したところ、目的化合物が生成していることが確認された。
 実施例27: ポリウレアの合成
Figure JPOXMLDOC01-appb-C000034
 上記反応容器内に精製したクロロホルム(20mL)、4,4’-ジアミノジフェニルエーテル(0.50g,2.5mmol)、およびピリジン(1.0mL,12.5mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、20℃で0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射した。1.5時間後、反応液にジクロロメタンと水を加えて分液し、有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をメタノールで洗浄することにより、茶色粉末を得た(収量:0.14g,収率:25%)。得られた粉末を1H-NMRとIRで分析したところ、目的化合物が生成していることが確認された。
 実施例28: カルボニルジイミダゾールの合成
Figure JPOXMLDOC01-appb-C000035
 上記反応容器内に精製したクロロホルム(20mL)、イミダゾール(0.68g,10mmol)、および2,6-ルチジン(5.79mL,50mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを20℃で2時間照射し、次いで照射を停止してから50℃で30分間反応を行った。反応液に内部標準としてジクロロメタン(5mmol)を添加し、反応液を1H-NMRで分析したところ、収率:38%で目的化合物が生成していることが確認された。
 実施例29: S,S’-ジフェニル ジチオカーボネートの合成
Figure JPOXMLDOC01-appb-C000036
 上記反応容器内に精製したクロロホルム(20mL)、チオフェノール(1.03mL,10mmol)、および水酸化ナトリウム水溶液(NaOH:4g,20mmol)を入れ、攪拌混合した。当該反応液を攪拌しつつ、0.5L/minの酸素ガスをバブリングで吹き込み、上記低圧水銀ランプを照射し、20℃で2時間反応を行った。次いで、反応液にジクロロメタンと水を添加し、分液した。有機相を無水硫酸ナトリウムで乾燥した後、減圧濃縮することに茶色液体を得た。得られた茶色液体を1H-NMRで分析したところ、収率:20%で目的化合物が生成していることが確認された。
 1: 光照射手段,  2: ジャケット,  3: ウォーターバス,
 4: 撹拌子,  5: 熱媒または冷媒,  6: 筒状反応容器

Claims (9)

  1.  カーボネート誘導体を製造するための方法であって、
     塩素原子、臭素原子およびヨウ素原子からなる群から選択される1種以上のハロゲン原子を有するC1-4ハロゲン化炭化水素、求核性官能基含有化合物、および塩基を含む組成物に酸素存在下で光照射し、
     前記求核性官能基含有化合物が下式(i)で表される化合物であり且つ前記カーボネート誘導体が下式(I)で表される鎖状カーボネート誘導体であるか、または、
     前記求核性官能基含有化合物が下式(ii)で表される化合物であり且つ前記カーボネート誘導体が下式(II-1)で表される単位を含むポリカーボネート誘導体もしくは下式(II-2)で表される環状カーボネート誘導体であり、
     前記塩基として、複素環式芳香族アミン、非求核性強塩基、および無機塩基から実質的になる群より選択される1以上の塩基を用いる、カーボネート誘導体の製造方法。
        (i)    R1-A-H
        (ii)   H-A-R2-A-H
        (I)    R1-A-C(=O)-A-R1
        (II-1) [-A-R2-A-C(=O)-]
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Aは、O、SまたはNR3(R3は、HまたはC1-4アルキル基であるか、またはR1およびNと共に窒素含有ヘテロシクリル基を形成してもよい)であり、
     R1は、C6-14アリール基、C4-14ヘテロアリール基またはC2-24アルキルポリオキシアルキレン基であり、
     R2は、C2-10アルキレン基、C6-14アリーレン基、C4-14ヘテロアリーレン基またはC2-24ポリオキシアルキレン基である。]
  2.  前記C1-4ハロゲン化炭化水素がC1-4ポリハロゲン化炭化水素である請求項1に記載の製造方法。
  3.  前記C1-4ハロゲン化炭化水素がクロロホルムである請求項1に記載の製造方法。
  4.  前記複素環式芳香族アミンが、ピリジン、ピコリンまたはルチジンである請求項1~3のいずれかに記載の製造方法。
  5.  前記非求核性強塩基が、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エンまたは1,1,3,3-テトラメチルグアニジンである請求項1~4のいずれかに記載の製造方法。
  6.  前記無機塩基が、アルカリ金属水酸化物、アルカリ金属炭酸水素塩またはアルカリ金属炭酸塩である請求項1~5のいずれかに記載の製造方法。
  7.  前記C1-4ハロゲン化炭化水素に対して0.001倍モル以上1倍モル以下の前記求核性官能基含有化合物を用いる請求項1~6のいずれかに記載の製造方法。
  8.  前記求核性官能基含有化合物に対して1.5倍モル以上10倍モル以下の前記塩基を用いる請求項1~7のいずれかに記載の製造方法。
  9.  前記組成物に照射する光が180nm以上500nm以下の波長の光である請求項1~8のいずれかに記載の製造方法。
PCT/JP2018/017348 2017-05-16 2018-04-27 カーボネート誘導体の製造方法 WO2018211952A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18802405.3A EP3626702B1 (en) 2017-05-16 2018-04-27 Carbonate derivative production method
RU2019138715A RU2771748C2 (ru) 2017-05-16 2018-04-27 Способ получения карбонатного производного
KR1020197034613A KR102542131B1 (ko) 2017-05-16 2018-04-27 카보네이트 유도체의 제조방법
CN201880032021.8A CN110637006B (zh) 2017-05-16 2018-04-27 碳酸酯衍生物的制备方法
SG11201909670Y SG11201909670YA (en) 2017-05-16 2018-04-27 Carbonate derivative production method
JP2019519162A JP7041925B2 (ja) 2017-05-16 2018-04-27 カーボネート誘導体の製造方法
US16/608,898 US11130728B2 (en) 2017-05-16 2018-04-27 Carbonate derivative production method
ES18802405T ES2939475T3 (es) 2017-05-16 2018-04-27 Método de producción de derivado de carbonato
SA519410533A SA519410533B1 (ar) 2017-05-16 2019-11-12 طريقة لإنتاج مشتق كربونات

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017097681 2017-05-16
JP2017-097681 2017-05-16

Publications (1)

Publication Number Publication Date
WO2018211952A1 true WO2018211952A1 (ja) 2018-11-22

Family

ID=64273667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017348 WO2018211952A1 (ja) 2017-05-16 2018-04-27 カーボネート誘導体の製造方法

Country Status (9)

Country Link
US (1) US11130728B2 (ja)
EP (1) EP3626702B1 (ja)
JP (1) JP7041925B2 (ja)
KR (1) KR102542131B1 (ja)
CN (1) CN110637006B (ja)
ES (1) ES2939475T3 (ja)
SA (1) SA519410533B1 (ja)
SG (1) SG11201909670YA (ja)
WO (1) WO2018211952A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100975A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 ポリカーボネートの製造方法
WO2020100977A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 カーボネート誘導体の製造方法
WO2021045115A1 (ja) 2019-09-05 2021-03-11 国立大学法人神戸大学 ハロゲン化カルボニルの製造方法
WO2021230151A1 (ja) 2020-05-11 2021-11-18 国立大学法人神戸大学 ポリウレタンの製造方法
WO2022172744A1 (ja) 2021-02-12 2022-08-18 国立大学法人神戸大学 ハロゲン化カルボニルの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751182B (zh) * 2023-08-23 2023-12-15 山东惟普新能源有限公司 一种碳酸亚乙烯酯及其衍生物的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710811A (ja) 1993-06-24 1995-01-13 Mitsubishi Chem Corp ジアルキルカーボネートの製造方法
JPH10291965A (ja) * 1997-04-22 1998-11-04 Tosoh Corp 難燃性カーボネート化合物、その製造方法及びそれを配合してなる難燃性樹脂組成物
JP2001129397A (ja) 1999-11-09 2001-05-15 Lion Corp 炭酸エステル化触媒、および環状炭酸エステルの製造方法
JP2013181028A (ja) 2012-03-05 2013-09-12 Kobe Univ ハロゲン化炭化水素に光照射して得られる混合物の使用
WO2014171367A1 (ja) 2013-04-16 2014-10-23 旭硝子株式会社 ポリカーボネートの製造方法およびポリカーボネート
WO2015156245A1 (ja) * 2014-04-09 2015-10-15 国立大学法人神戸大学 ハロゲン化カルボン酸エステルの製造方法
JP2017097681A (ja) 2015-11-26 2017-06-01 マツダ株式会社 標識認識システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710811A (ja) 1993-06-24 1995-01-13 Mitsubishi Chem Corp ジアルキルカーボネートの製造方法
JPH10291965A (ja) * 1997-04-22 1998-11-04 Tosoh Corp 難燃性カーボネート化合物、その製造方法及びそれを配合してなる難燃性樹脂組成物
JP2001129397A (ja) 1999-11-09 2001-05-15 Lion Corp 炭酸エステル化触媒、および環状炭酸エステルの製造方法
JP2013181028A (ja) 2012-03-05 2013-09-12 Kobe Univ ハロゲン化炭化水素に光照射して得られる混合物の使用
WO2014171367A1 (ja) 2013-04-16 2014-10-23 旭硝子株式会社 ポリカーボネートの製造方法およびポリカーボネート
WO2015156245A1 (ja) * 2014-04-09 2015-10-15 国立大学法人神戸大学 ハロゲン化カルボン酸エステルの製造方法
JP2017097681A (ja) 2015-11-26 2017-06-01 マツダ株式会社 標識認識システム

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
JERZY HERBICH ET AL., J. PHOTOCHEM. PHOTOBIOL. A: CHEM., vol. 80, 1994, pages 157 - 160
KAWAI, SATOSHI: "Discussion on Decomposition of Chloroform", YAKAGAKU ZASSHI, vol. 86, no. 12, 1966, pages 1125 - 1132, XP055613094 *
KURAHARA, YUKI ET AL: "Abstracts. 2 K2-16: Photo-recycle reaction of halomethane (2): Synthesis of urea derivates from cloroformand primary amines", THE 92ND ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN. ANNUAL MEETING OF CSJ , 2012, pages 1251, XP009516833 *
KUWAHARA, YUKI ET AL.: "Photochemical molecular storage of Cl2, HCl, and COCl2: Synthesis of organochlorine compounds, salts, ureas, and polycarbonate with photodecomposed chloroform", ORGANIC LETTERS, vol. 14, no. 13, 2012, pages 3376 - 3379, XP055613091 *
OKUMA SEIICHI ET AL., THE JOURNAL OF THE JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 24, 1975, pages 385 - 387
See also references of EP3626702A4
TSUDA ET AL: "Abstract. 1 D4-09: Photo-recycle reaction of choroform: Tranformation into urea, carbonate an carbamate", 93 MEETING THE CHEMICAL SOCIETY OF JAPAN, 2013, pages 1288, XP009516835 *
TSURUGI JITSUO ET AL., JOURNAL OF THE SOCIETY OF RUBBER SCIENCE AND TECHNOLOGY, vol. 43, no. 5, 1970, pages 337 - 346
YUKI KUWAHARA ET AL: "Abstract: 2 K2-14: Photo-recycle reaction of halomethane (1): Synthesis of urea derivates from cloroformand primary amines", 92ND MEETING THE CHEMICAL SOCIETY OF JAPAN, 2012, pages 1251, XP009516834 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100975A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 ポリカーボネートの製造方法
WO2020100977A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 カーボネート誘導体の製造方法
WO2021045115A1 (ja) 2019-09-05 2021-03-11 国立大学法人神戸大学 ハロゲン化カルボニルの製造方法
KR20220059483A (ko) 2019-09-05 2022-05-10 고쿠리츠다이가쿠호진 고베다이가쿠 할로겐화 카보닐의 제조방법
EP4026801A4 (en) * 2019-09-05 2024-01-10 Univ Kobe Nat Univ Corp METHOD FOR PRODUCING HALOGENATED CARBONYL
WO2021230151A1 (ja) 2020-05-11 2021-11-18 国立大学法人神戸大学 ポリウレタンの製造方法
WO2022172744A1 (ja) 2021-02-12 2022-08-18 国立大学法人神戸大学 ハロゲン化カルボニルの製造方法
KR20230128318A (ko) 2021-02-12 2023-09-04 고쿠리츠다이가쿠호진 고베다이가쿠 할로겐화 카르보닐의 제조 방법

Also Published As

Publication number Publication date
ES2939475T3 (es) 2023-04-24
KR20200007835A (ko) 2020-01-22
SG11201909670YA (en) 2019-11-28
CN110637006A (zh) 2019-12-31
RU2019138715A3 (ja) 2021-06-16
US11130728B2 (en) 2021-09-28
RU2019138715A (ru) 2021-06-16
JPWO2018211952A1 (ja) 2020-04-02
EP3626702A1 (en) 2020-03-25
CN110637006B (zh) 2022-05-24
EP3626702A4 (en) 2020-12-16
EP3626702B1 (en) 2023-02-15
US20200079723A1 (en) 2020-03-12
KR102542131B1 (ko) 2023-06-09
JP7041925B2 (ja) 2022-03-25
SA519410533B1 (ar) 2023-02-12

Similar Documents

Publication Publication Date Title
WO2018211952A1 (ja) カーボネート誘導体の製造方法
EP2515648B1 (en) Methods for the synthesis of polycyclic guanidine compounds
US11167259B2 (en) Fluorinated carbonate derivative production method
US20090281333A1 (en) Method for producing cyclic disulfonic acid ester
US20220002234A1 (en) Production method for isocyanate compound
FR2552434A1 (fr) Procede de fabrication de silane a partir de methyldichlorosilane et de chlorosilanes
JP5681985B2 (ja) 二酸化炭素固定化による尿素化合物の製造法
US20220289579A1 (en) Method for producing halogenated carbonyl
RU2771748C2 (ru) Способ получения карбонатного производного
CN108863884B (zh) 一种用dast试剂作为消除试剂合成共轭硝基烯取代系列衍生物的方法
CN114805280B (zh) 碳酸亚乙烯酯的制备方法
JP5412879B2 (ja) トリチオカーボネート化合物及びその製法
KR101153713B1 (ko) 이토프라이드의 제조 방법 및 중간체 화합물
JP5840709B2 (ja) アリール、ヘテロアリール若しくはアルケニル置換不飽和炭化水素類の製造方法
WO2020196553A1 (ja) N-置換トリハロアセトアミドの製造方法
Zhang et al. A selenium-catalysed synthesis of thiocarbamates from nitroarenes, carbon monoxide and thiols under mild conditions
JP2007204428A (ja) クロロチオールホルメートの製造法
JP2007290987A (ja) クロロチオールホルメートの製造法
KR20220046580A (ko) 산화제의 첨가에 의한 모노티오카르보네이트 화합물의 냄새의 감소
JP2020083765A (ja) フッ素化カーボネートの製造方法
CN111875524A (zh) 一种碱催化制备异硫氰酸酯的方法
JP2005154391A (ja) ω−メルカプトアルキルピリジン類の製造方法
JP2005179261A (ja) ω−メルカプトアルキルピリジン類鉱酸塩の保存方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18802405

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019519162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034613

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018802405

Country of ref document: EP

Effective date: 20191216