WO2021230151A1 - ポリウレタンの製造方法 - Google Patents

ポリウレタンの製造方法 Download PDF

Info

Publication number
WO2021230151A1
WO2021230151A1 PCT/JP2021/017511 JP2021017511W WO2021230151A1 WO 2021230151 A1 WO2021230151 A1 WO 2021230151A1 JP 2021017511 W JP2021017511 W JP 2021017511W WO 2021230151 A1 WO2021230151 A1 WO 2021230151A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
group
polyurethane
nmr
compound
Prior art date
Application number
PCT/JP2021/017511
Other languages
English (en)
French (fr)
Inventor
明彦 津田
隆 岡添
浩志 和田
英明 田中
佳孝 砂山
俊文 柿内
Original Assignee
国立大学法人神戸大学
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, Agc株式会社 filed Critical 国立大学法人神戸大学
Priority to EP21803803.2A priority Critical patent/EP4151671A1/en
Priority to JP2022521874A priority patent/JPWO2021230151A1/ja
Publication of WO2021230151A1 publication Critical patent/WO2021230151A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G71/00Macromolecular compounds obtained by reactions forming a ureide or urethane link, otherwise, than from isocyanate radicals in the main chain of the macromolecule
    • C08G71/04Polyurethanes

Definitions

  • the present invention relates to a method for efficiently producing high quality polyurethane.
  • Polyurethane has excellent flexibility and elasticity, so it can be used as a raw material for highly elastic resins and fibers, but it can also be made hard and tough by adjusting its chemical structure. In addition, it is a very excellent material with excellent low temperature characteristics, wear resistance, impact resistance, oil resistance, etc.
  • Polyurethane is generally produced by reacting a diisocyanate compound with a dihydric alcohol compound.
  • isocyanate compounds are concerned about toxicity, are highly reactive, and easily react with water, so strict storage conditions such as low humidity and low temperature are required.
  • Polyurethane can also be produced by using phosgene instead of the isocyanate compound, and the isocyanate compound itself is industrially synthesized by reacting a primary amine compound with phosgene (Patent Document 1 and the like). .
  • Patent Document 1 and the like Patent Document 1 and the like.
  • phosgene is a toxic compound that easily reacts with water to generate hydrogen chloride and has a history of being used as a poisonous gas.
  • a chlorine component remains in the compound produced using phosgene.
  • Non-Patent Document 1 describes that a polycarbonate produced from phosgene contains a chloride compound of several tens to several hundreds of ppm even if it is thoroughly purified. Chlorine components remain in polyurethane manufactured using phosgene, but the chlorine components remaining in polyurethane cause yellowing of polyurethane and adversely affect metals and living organisms. Therefore, a technique for producing polyurethane without using an isocyanate compound or phosgene is being studied.
  • Patent Document 2 and Non-Patent Documents 2 and 3 disclose a technique for producing polyurethane by reacting a diphenyl carbonate which may be substituted with a nitro group or a fluoro group with a diamino compound.
  • diphenyl carbonate itself is generally synthesized by reacting phosgene with phenol, and a method for synthesizing diphenyl carbonate without using phosgene has a large number of steps (Non-Patent Document 4).
  • the present inventors have developed a method capable of safely and efficiently producing a carbonate derivative such as diphenyl carbonate (Patent Documents 3 and 4).
  • Patent Document 5 discloses a biscarbonate compound which may have a fluoro group as a non-aqueous solvent of a non-aqueous electrolyte for a secondary battery.
  • an object of the present invention is to provide a method for efficiently producing high-quality polyurethane.
  • the present inventors have conducted extensive research to solve the above problems. As a result, if polyurethane is produced from a specific fluorocarbon compound as a raw material, the residual amount of the fluoroalcohol compound produced as a by-product can be reduced, and even if the fluoroalcohol compound remains, the polyurethane is rather imparted with preferable properties. We found that and completed the present invention. Hereinafter, the present invention will be shown.
  • a method for producing polyurethane which is a method for producing polyurethane.
  • a step of reacting a biscarbonate compound represented by the above formula (III) with a divalent amino compound represented by the following formula (IV) to obtain a polyurethane represented by the following formula (V) is included.
  • Rf 1 and R 1 are synonymous with the above.
  • R 2 represents a divalent organic group.
  • [2] The method according to the above [1], wherein the fluorocarbon compound represented by the formula (I) and the dihydric alcohol compound represented by the formula (II) are reacted in the presence of a base.
  • R 1 is a C 2-10 alkanediyl group which may be substituted with a halogeno group.
  • R 1 is the formula -R 3- [-X-R 3- ] m- (X represents O or S, and R 3 is a C 1-8 alkanediyl group which may be substituted with a halogeno group.
  • m is an integer of 1 or more and 180 or less.
  • R 2 is a C 2-10 alkanediyl group which may be substituted with a halogeno group.
  • R 6 The method according to any one of the above [1] to [4], wherein R 2 is a C 1-6 alkanediyl-C 6-12 aryldiyl-C 1-6 alkanediyl group.
  • Rf 2 represents an aliphatic hydrocarbon group having an H or fluoro group.
  • Rf 3 and Rf 4 independently represent an aliphatic hydrocarbon group having a fluoro group.
  • R 1 represents a divalent organic group.
  • polyurethane can be produced without using a toxic isocyanate compound. Further, it is not necessary to use diphenyl carbonate, which is a substitute for phosgene, and there is no room for residual phenol, which is a by-product derived from diphenyl carbonate and causes coloring of polyurethane and a decrease in the degree of polymerization. Instead, fluoroalcohol may remain, but the residual amount is less than the residual amount of phenol when diphenylcarbonate is used, and the residual fluoroalcohol can impart preferable properties to polyurethane instead of polyurethane. Therefore, the present invention is industrially very useful as a technique capable of safely and efficiently producing high-quality polyurethane.
  • the method for producing polyurethane according to the present invention is represented by the formula (III) by reacting the fluorocarbon compound represented by the formula (I) with the dihydric alcohol compound represented by the formula (II).
  • Polyurethane represented by the formula (V) by the step of obtaining the biscarbonate compound and by reacting the biscarbonate compound represented by the formula (III) with the divalent amino compound represented by the formula (IV). Includes the step of obtaining.
  • each step will be described, but the present invention is not limited to the following specific examples.
  • the “compound represented by the formula (x)” is abbreviated as “compound (x)”.
  • the biscarbonate compound (III) is obtained by reacting the fluorocarbonate compound (I) with the dihydric alcohol compound (II).
  • the combination of R 2 groups in the divalent amino compound (IV) and R 1 in the biscarbonate compound (III) imparts desired properties such as high strength, flexibility and water repellency to polyurethane. Will be possible.
  • the biscarbonate compound (III) By reacting diphenyl carbonate, which was conventionally developed as a substitute for phosgene, with the dihydric alcohol compound (II), the biscarbonate compound (III) is produced.
  • phenol derived from diphenyl carbonate is produced as a by-product. Since phenol is a solid at room temperature, for example, if it is attempted to be removed from the biscarbonate compound (III) by distillation, the viscosity of the crude composition increases as the distillation progresses, making it difficult to completely remove the phenol.
  • the residual phenol inhibits the polymerization reaction and also remains in the target compound, polyurethane, and the residual phenol is very easily oxidized, which causes the coloring of polyurethane. become.
  • the fluorocarbonate compound (I) is used.
  • fluorocarbonate compound (I) is by-produced, but fluoroalcohol is easier to distill off than phenol.
  • fluoroalcohol is easier to distill off than phenol.
  • water repellency, stain resistance, weather resistance, abrasion resistance, etc. Preferred properties due to the fluoro group can be imparted to the polyurethane.
  • Rf in the fluorocarbonate compound (I) independently represents an aliphatic hydrocarbon group having a fluoro group.
  • the aliphatic hydrocarbon group having a fluoro group include a C 1-10 monovalent chain aliphatic hydrocarbon group having a fluoro group, a C 3-10 monovalent cyclic aliphatic hydrocarbon group having a fluoro group, and a C 3-10 monovalent cyclic aliphatic hydrocarbon group having a fluoro group. Examples thereof include monovalent organic groups to which these 2 or more and 5 or less groups are bonded.
  • C 1-10 monovalent aliphatic hydrocarbon group refers to a linear or branched monovalent saturated or unsaturated aliphatic hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • examples of the C 1-10 monovalent chain aliphatic hydrocarbon group include a C 1-10 alkyl group, a C 2-10 alkenyl group, and a C 2-10 alkynyl group.
  • Examples of the C 1-10 alkyl group include methyl, ethyl, n-propyl, isopropyl, n-butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, 2,2-dimethylethyl and n.
  • Examples of the C 2-10 alkenyl group include ethenyl (vinyl), 1-propenyl, 2-propenyl (allyl), butenyl, hexenyl, octenyl, decenyl and the like. It is preferably a C 2-8 alkenyl group, more preferably a C 4-6 alkenyl group.
  • Examples of the C 2-10 alkynyl group include ethynyl, propynyl, butynyl, hexynyl, octynyl, pentadecynyl and the like. It is preferably a C 2-8 alkynyl group, and more preferably a C 2-6 alkynyl group.
  • C 3-10 monovalent cyclic aliphatic hydrocarbon group refers to a cyclic saturated or unsaturated aliphatic hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • a C 3-10 cycloalkyl group, a C 4-10 cycloalkenyl group, and a C 4-10 cycloalkynyl group can be mentioned.
  • Examples of the monovalent organic group in which a C 1-10 monovalent chain aliphatic hydrocarbon group of 2 or more and 5 or less and a C 3-10 monovalent cyclic aliphatic hydrocarbon group are bonded include C 3-10 monovalent.
  • Cyclic aliphatic hydrocarbon group-C 1-10 Divalent chain aliphatic hydrocarbon group and C 1-10 Monovalent chain aliphatic hydrocarbon group-C 3-10 Divalent cyclic aliphatic hydrocarbon group-C 1-10 include divalent chain aliphatic hydrocarbon group.
  • the number of substituents of the fluoro group in the aliphatic hydrocarbon group having a fluoro group is not particularly limited as long as it can be substituted, but since the reactivity of the fluorocarbonate compound (I) increases as the number of fluoro groups increases, 2 or more is preferable. 3 or more is more preferable.
  • the upper limit of the number of substituents can be, for example, 20 or less, preferably 15 or less.
  • aliphatic hydrocarbon group a sec-alkyl group or a tert-alkyl group is preferable, and a sec-perfluoroalkyl group or a tert-alkyl group in which all hydrogen atoms are substituted with fluoro groups in carbons other than the 1-position carbon is preferable. Groups are more preferred.
  • the fluorocarbonate compound (I) may be substituted with a halogeno group selected from the chloro group, the bromo group, and the iodine group, which are also electron-withdrawing groups, in addition to the fluoro group.
  • the fluorocarbonate compound (I) if there is a commercially available compound, a commercially available compound may be used or may be synthesized.
  • the fluorocarbonate compound (I) can be synthesized, for example, by a conventional method using phosgene, but the reaction between the fluoroaliphatic hydrocarbon ester of trichloroacetic acid and a fluoroalcohol or the method described in WO2018 / 211953 without phosgene is used. Can also be synthesized.
  • fluorocarbon compound (I) examples include bis (2,2,2-trifluoroethyl) carbonate, bis (2,2,3,3-tetrafluoropropyl) carbonate, and bis (1,1,1,3). , 3,3-Hexafluoroisopropyl) carbonate, bis (1,1,1,2,2,4,5,5,5-nonafluoro-4-trifluoromethyl-3-pentyl) carbonate, bis [1,1 , 1,3,3,3-hexafluoro-2- (trifluoromethyl) propan-2-yl] carbonate, bis (2,2,3,3,3-pentafluoropropyl) carbonate, bis (2,2) , 3,3,4,5,5-octafluoropentyl) carbonate, bis (2,2,3,3,4,5,5-octafluorocyclopentyl) carbonate.
  • R 1 in the divalent alcohol compound (II) indicates a divalent organic group.
  • R 1 include C 1-10 divalent chain aliphatic hydrocarbon group, C 3-10 divalent cyclic aliphatic hydrocarbon group, C 6-15 divalent aromatic hydrocarbon group, and two or more thereof. Examples thereof include a divalent organic group to which 5 or less groups are bonded.
  • C 1-10 divalent aliphatic hydrocarbon group refers to a linear or branched divalent saturated or unsaturated aliphatic hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • the C 1-10 divalent chain aliphatic hydrocarbon group include a C 1-10 alkanediyl group, C 2-10 alkenediyl group, and C 2-10 alkynediyl group.
  • Examples of the C 1-10 alcandiyl group include methylene, ethylene, n-propylene, isopropylene, n-butylene, 1-methylpropylene, 2-methylpropylene, 1,1-dimethylethylene and 2,2-dimethylethylene. , N-Pentylene, n-Hexylene, n-Heptylene, n-octylene, n-decylene and the like. It is preferably a C 2-10 alkanediyl group or a C 1-8 alkanediyl group, and more preferably a C 1-6 alkanediyl group or a C 1-4 alkanediyl group.
  • Examples of the C 2-10 alkenyl group include ethenylene (vinylene), 1-propenylene, 2-propenylene (arylene), butenylene, hexenylene, octenylene, decenylene and the like. It is preferably a C 2-8 arcendyl group, more preferably a C 2-6 arcendyl group or a C 2-4 arcendyl group.
  • Examples of the C 2-10 alkyndiyl group include ethynylene, propynylene, butynylene, hexynylene, octinilen, pentadecinilen and the like. It is preferably a C 2-8 alkindiyl group, and more preferably a C 2-6 alkindiyl group or a C 2-4 alkindiyl group.
  • C 3-10 divalent cyclic aliphatic hydrocarbon group refers to a cyclic divalent saturated or unsaturated aliphatic hydrocarbon group having 1 or more and 10 or less carbon atoms.
  • a C 3-10 cycloalkandyl group, a C 3-10 cycloalkenedyl group, and a C 3-10 cycloalkyndiyl group can be mentioned.
  • Examples of the C 3-10 cycloalkanediyl group include cyclobutanediyl, cyclopropanediyl, cyclohexanediyl, and adamantanediyl.
  • the "C 6-15 divalent aromatic hydrocarbon group” means a divalent aromatic hydrocarbon group having 6 or more carbon atoms and 15 or less carbon atoms.
  • phenylene, indenylene, naphthylene, biphenylene, phenalenylene, phenanthrenylene, anthraceneylene and the like preferably a C 6-12 divalent aromatic hydrocarbon group, and more preferably phenylene.
  • C 1-10 divalent chain aliphatic hydrocarbon groups C 3-10 divalent cyclic aliphatic hydrocarbon groups, and C 6-15 divalent aromatic hydrocarbon groups.
  • divalent organic group to which the above is bonded include C 3-10 divalent cyclic aliphatic hydrocarbon group-C 1-10 divalent chain aliphatic hydrocarbon group and C 1-10 divalent chain aliphatic hydrocarbon.
  • the divalent organic group in the dihydric alcohol compound (II) may be substituted with one or more halogeno groups selected from fluoro, chloro, bromo, and iodine.
  • the C 3-10 divalent cyclic aliphatic hydrocarbon group and the C 6-15 divalent aromatic hydrocarbon group may contain an ether group (—O—), and further, in addition to the halogeno group, C It may be substituted with a 1-6 alkyl group.
  • fluoro is preferable.
  • dihydric alcohol compound (II) examples include ethanediol, propanediol, butanediol, pentanediol, hexanediol, heptanediol, octanediol, and isosorbide.
  • R 1 in the divalent alcohol compound (II) include a divalent organic group represented by the following formula (VI).
  • R 11 and R 12 are independent,-(CR 14 R 15 ) m3- or-(-O- (CR 14 R 15 ) m4- ) m5- (in the formula, R 14 and R 15 are independent.
  • the H or C 1-6 alkyl group is represented, m3 represents an integer of 0 or more and 10 or less, m4 represents an integer of 1 or more and 10 or less, and m5 represents an integer of 1 or more and 10 or less.
  • m3 or m4 is an integer of 2 or more, a plurality of R 14 and R 15 may be the same or different from each other).
  • R 13 represents one of the following divalent organic groups,
  • R 16 and R 17 independently have H, a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent ⁇ , and a C 1-20 alkoxy group which may have a substituent ⁇ .
  • Representing a C 6-20 aromatic hydrocarbon group which may have a substituent ⁇ , or R 16 and R 17 combine to form a C 3-20 carbocycle or 5-12 membered heterocycle.
  • R 18 and R 19 independently represent an H or C 1-6 alkyl group, and if m6 is an integer greater than or equal to 2, multiple R 18 and R 19 may be the same or different from each other.
  • R 20 to R 27 independently have a halogeno group, a C 1-20 aliphatic hydrocarbon group which may have a substituent ⁇ , a C 1-20 alkoxyl group which may have a substituent ⁇ , or Represents a C 6-12 aromatic hydrocarbon group which may have a substituent ⁇
  • R 28 represents a C 1-9 alkanediyl group which may have a substituent ⁇ .
  • m6 represents an integer of 1 or more and 20 or less.
  • m7 represents an integer of 1 or more and 500 or less.
  • Substituent ⁇ 1 and substituent ⁇ 2 are independently a halogeno group, a C 1-20 aliphatic hydrocarbon group, a C 1-20 alkoxy group, a C 3-20 cycloalkyl group, and a C 6-20 aromatic carbide. Represents one or more substituents selected from the group consisting of a hydrogen group, a C 7-20 aralkyl group, a C 6-20 aromatic hydrocarbon oxy group, and a C 3-20 cycloalkoxyl group.
  • m1 and m2 independently represent integers of 0 or more and 4 or less.
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkoxy group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group, and a carbamoyl group.
  • the substituent ⁇ is one or more substituents selected from a C 1-6 alkyl group, a C 1-6 alkoxyl group, a C 1-7 acyl group, a halogeno group, a nitro group, a cyano group, and a carbamoyl group.
  • -(CR 14 R 15 ) m3 -groups in the divalent organic group (VI) include single bonds and C 1-2 alkyl groups, or-(-O- (CR 14 R 15 ) m4- ) m5.
  • R 1 in the dihydric alcohol compound (II) the formula-R 3- [-X-R 3- ] m- (X represents O or S, O is preferable, and R 3 is C 1-.
  • X represents O or S
  • O is preferable
  • R 3 is C 1-.
  • m indicates an integer of 1 or more and 180 or less and m is an integer of 2 or more, a plurality of X and R 3 may be the same or different from each other.
  • the divalent organic group represented by is mentioned.
  • R 3 includes an ethylene group (-CH 2 CH 2- ), a propylene group [-CH (CH 3 ) CH 2- or -CH 2 CH (CH 3 )-], and a tetramethylene group (-CH 2 CH 2).
  • CH 2 CH 2- can be mentioned.
  • m 5 or more is preferable, 10 or more is more preferable, 20 or more is further preferable, 160 or less is preferable, and 150 or less is more preferable.
  • a solvent may be used when reacting the fluorocarbon compound (I) with the dihydric alcohol compound (II).
  • the solvent is not particularly limited as long as it is a liquid at normal temperature and pressure and does not adversely affect the reaction, but is not particularly limited.
  • a nitrile solvent such as acetonitrile
  • examples thereof include ether solvents such as dioxane; ketone solvents such as acetone and methyl ethyl ketone; ester solvents such as ethyl acetate; halogenated hydrocarbon solvents such as dichloromethane, chloroform and carbon tetrachloride.
  • the solvent may not be used. From the viewpoint of cost and environmental load, it is preferable not to use a solvent.
  • the amounts of the fluorocarbon compound (I) and the dihydric alcohol compound (II) may be adjusted as appropriate.
  • the molar ratio of the other to one can be 5 times or more and 20 times or less. ..
  • the molar ratio is preferably 15 times molar or less, more preferably 12 times molar or less.
  • the molar ratio can be 0.5 times or more and 1.5 times or less.
  • the fluorocarbon compound (I) and the dihydric alcohol compound (II) may be reacted in the presence of a base.
  • a base examples include organic bases such as pyridine, triethylamine, ethyldiisopropylamine, diazabicycloundecene (DBU), and N-methylmorpholin; sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, cesium carbonate, and carbonic acid.
  • organic bases such as pyridine, triethylamine, ethyldiisopropylamine, diazabicycloundecene (DBU), and N-methylmorpholin
  • sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, cesium carbonate examples thereof include inorganic bases such as calcium, and organic bases are preferable from the viewpoint of solubility in a reaction solution and appropriate basicity.
  • the amount of the base used may be adjusted as appropriate.
  • the reaction temperature may be appropriately adjusted, for example, 30 ° C. or higher and 120 ° C. or lower. Further, the reaction may be carried out under heated reflux conditions depending on the solvent to be used and the like.
  • the reaction time may be appropriately adjusted, and may be determined until the consumption of at least one of the fluorocarbon compound (I) and the dihydric alcohol compound (II) is confirmed by chromatography or the like, or by a preliminary experiment, for example. It can be 1 hour or more and 50 hours or less.
  • a water-insoluble solvent such as diethyl ether, chloroform, or ethyl acetate and water are added to the reaction solution to separate the layers, and the biscarbonate compound (III), which is the target compound, is extracted into the organic phase.
  • the organic phase may be washed with water, saturated brine, or the like, or dried over anhydrous sodium sulfate or anhydrous magnesium sulfate.
  • biscarbonate compound (III) is obtained.
  • the obtained biscarbonate compound (III) may be further purified by chromatography, recrystallization or the like, or may be used as it is in the following step 2.
  • the fluoroalcohol is particularly easily desorbed from the biscarbonate compound (III-1) during the reaction, so that the reaction proceeds rapidly.
  • R 1 does not contain a fluoro group
  • the reaction may be difficult to proceed, but since the biscarbonate compound (III-1) is particularly reactive, the biscarbonate compound (III-1) is used. If used, polyurethane can be satisfactorily produced even in such a case.
  • polyurethane (V) is obtained by reacting the biscarbonate compound (III) obtained in the above step 1 with the divalent amino compound (IV).
  • R 2 in the divalent amino compound (IV) represents a divalent organic group.
  • examples of R 2 in the divalent amino compound (IV) include a divalent organic group similar to R 1 in the divalent alcohol compound (II). However, R 2 in the divalent amino compound (IV) may be the same as or different from R 1 in the divalent alcohol compound (II). From the viewpoint of various properties of the target compound, polyurethane (V), it is preferable that R 1 and R 2 are different from each other.
  • a solvent may be used when reacting the biscarbonate compound (III) with the divalent amino compound (IV).
  • the solvent is not particularly limited as long as it is a liquid at normal temperature and pressure and does not adversely affect the reaction.
  • an aromatic hydrocarbon solvent such as benzene, toluene or chlorobenzene
  • a nitrile solvent such as acetonitrile
  • diethyl diethyl
  • Ether solvent such as ether, tetrahydrofuran, dioxane; ester solvent such as ethyl acetate; halogenated hydrocarbon solvent such as dichloromethane, chloroform, carbon tetrachloride; hydrocarbon solvent such as pentane, hexane; ketone solvent such as acetone, methyl ethyl ketone Solvents; amide-based solvents such as dimethylformamide and dimethylacetamide; sulfoxide-based solvents such as dimethylsulfoxide and the like can be mentioned.
  • the solvent may not be used.
  • the amounts of the biscarbonate compound (III) and the divalent amino compound (IV) may be adjusted as appropriate.
  • the molar ratio of the divalent amino compound (IV) to 1 mol of the biscarbonate compound (III) can be 0.5 times mol or more and 1.5 times mol or less.
  • the molar ratio is preferably 0.8 times mol or more, more preferably 0.9 times mol or more, more preferably 1.2 times mol or less, and even more preferably 1.1 times mol or less.
  • the reaction temperature in this step 2 may be appropriately adjusted, and can be, for example, 10 ° C. or higher and 200 ° C. or higher. Further, the reaction may be carried out under heated reflux conditions depending on the solvent to be used and the like.
  • the reaction time may be appropriately adjusted, and may be determined until the consumption of at least one of the biscarbonate compound (III) or the divalent amino compound (IV) is confirmed by chromatography or the like, or by a preliminary experiment, for example. , 30 minutes or more and 10 hours or less.
  • the target compound polyurethane (V)
  • V polyurethane
  • the target compound is a polymer and is insoluble in a solvent, so that it may be washed with an inert solvent such as n-hexane. Further, it may be only dried after or without washing.
  • polyurethane can be easily, safely and efficiently produced without using a highly toxic isocyanate compound.
  • the polyurethane produced by the present invention with its two divalent organic radical in the molecular structure unit, i.e. R 1 in bis carbonate compound (III) with divalent amino compound (IV) R 2 group in The combination makes it possible to have desired properties such as high strength, flexibility and water repellency.
  • the residual fluoroalcohol may enhance the quality of the polyurethane.
  • Example 1 Synthesis of non-yellowing thermoplastic polyurethane (1) 1,6-hexamethylene bis (1,1,1,2,2,4,5,5,5-nonafluoro-4- (trifluoromethyl)) -3-Pentyl carbonate) synthesis Chloroform (50 mL, 620 mmol) is placed in a three-necked cylindrical flask ( ⁇ 42 mm ⁇ 200 mm), and a low-pressure mercury lamp installed at a position 2 cm from the bottom of the flask while blowing oxygen at 1.0 mL / min at 0 ° C. for 3 hours.
  • thermoplastic polyurethane 1,6-Hexamethylene bis (1,1,1,2,2,4,5,5,5-nonafluoro-4- (trifluoromethyl) -3-pentyl carbonate) (0.20 g) in a 10 mL sample bottle , 0.5 mmol), m-xylylene diamine (0.07 g, 0.5 mmol), and toluene (3 mL) as a solvent, and the mixture was stirred at 100 ° C. for 1 hour. The reaction product was washed with n-hexane, suction filtered, and vacuum dried at 60 ° C.
  • Example 2 Synthesis of non-yellowing thermoplastic polyurethane (1) Synthesis of PPG bis (2,2,2-trifluoroethyl carbonate) [B3FEC + polypropylene glycol 400 (PPG)] Bis (2,2,2-trifluoroethyl carbonate) (3.39 g, 15.0 mmol) and potassium carbonate (55 mg, 0.4 mmol) were added to acetonitrile (2 mL) and mixed to prepare a solution. Polypropylene glycol 400 (2.0 g, 5.0 mmol) was added to the solution, and the mixture was stirred at 50 ° C. for 3 hours.
  • PPG polypropylene glycol 400
  • Example 3 Synthesis of non-yellowing thermoplastic polyurethane (1) Synthesis of 1,6-hexamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) In a bite eggplant flask, bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (BHFC) (3.62 g, 10 mmol), 1,6-hexanediol (0.12 g, 1.0 mmol) , And triethylamine (0.1 mmol, 13.8 ⁇ L) were added, and the mixture was stirred at 90 ° C. for 3 hours. The reaction solution was vacuum dried at 50 ° C.
  • BHFC bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate)
  • Example 4 Synthesis of non-yellowing thermoplastic polyurethane (1) Synthesis of polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) In a two-necked eggplant flask, bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (BHFC) (3.62 g, 10 mmol), polypropylene glycol 400 (0.4 g, 1.0 mmol), and Triethylamine (0.1 mmol, 13.8 ⁇ L) was added, and the mixture was stirred at 90 ° C. for 21 hours. The reaction solution was vacuum dried at 50 ° C.
  • BHFC bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate)
  • Triethylamine 0.1 mmol, 13.8 ⁇ L
  • thermoplastic polyurethane In a 50 mL eggplant flask, polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropylcarbonate) (2.2 g, 3.0 mmol) and m-xylylene diamine (0.4 g, 3. 0 mmol) was added, and the mixture was stirred at 150 ° C. for 3 hours under an argon atmosphere. The reaction solution was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield: 90%, yield: 1.57 g, 2.7 mmol).
  • Comparative Example 1 Synthesis of Polyurethane Using Diphenyl Carbonate (1) Synthesis of Polypropylene Glycol Bis (Phenyl Carbonate) In a bite eggplant flask, polypropylene glycol 400 (0.4 g, 1.0 mmol), diphenyl carbonate (0.5 g, 2.5 mmol), and 1,4-diazabicyclo (2,2,2) octane (hereinafter, DABCO) (hereinafter, DABCO) ( 0.01 g, 0.1 mmol) was added, and the mixture was stirred at 100 ° C. for 13 hours. The obtained oil-like reaction solution was vacuum-dried at 100 ° C.
  • DABCO 1,4-diazabicyclo (2,2,2) octane
  • Example 5 Synthesis of non-yellowing thermoplastic polyurethane
  • polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropylcarbonate) (2.3 g, 3.0 mmol) and 1,6-hexamethylenediamine (0.35 g, 3.0 mmol) was added, and the mixture was stirred at 150 ° C. for 3 hours under an argon atmosphere.
  • the reaction mixture was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield:> 99%, yield: 1.81 g, 3.2 mmol).
  • Fluoroalcohol was produced as the reaction proceeded, but the fluoroalcohol was easily volatilized, and no fluoroalcohol was detected in the obtained polyurethane.
  • 1 1 H NMR (400 MHz, CDCl 3 , 293K): ⁇ / ppm 4.93-4.87 (br., 2H, methine), 3.65-3.30 (br., 22H, methylene + methine), 3.
  • Comparative Example 2 Synthesis of Polyurethane Using Diphenyl Carbonate
  • the bis (phenyl carbonate) obtained in Comparative Example 1 (1) (1.92 g, 3.0 mmol) and 1,6-hexa.
  • Methylenediamine (0.35 g, 3.0 mmol) was added, and the mixture was stirred at 150 ° C. for 3 hours.
  • To remove the desorbed alcohol it was vacuum dried at 120 ° C. for 4 hours using an oil rotary pump. The formation of the corresponding polyurethane was confirmed by 1 1 H NMR spectrum.
  • Example 6 Synthesis of non-yellowing thermoplastic polyurethane
  • polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropylcarbonate) (0.39 g, 0.5 mmol) and 1,5-pentamethylenediamine (0.05 g, 0.5 mmol) was added, and the mixture was stirred at 100 ° C. for 1 hour.
  • the reaction mixture was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield: 98%, yield: 0.27 g, 0.49 mmol).
  • Example 7 Synthesis of non-yellowing thermoplastic polyurethane Polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.39 g, 0.5 mmol) and 1,3-bis (aminomethyl) cyclohexane (0) in a 50 mL eggplant flask. .07 g, 0.5 mmol) was added, and the mixture was stirred at 100 ° C. for 2 hours. The reaction mixture was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield: 96%, yield: 0.29 g, 0.48 mmol).
  • Example 8 Synthesis of non-yellowing thermoplastic polyurethane
  • polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropylcarbonate) (0.79 g, 1.0 mmol) and 4,4'-methylene bis (cyclohexylamine) 0.21 g (1.0 mmol) was added, and the mixture was stirred at 150 ° C. for 1 hour.
  • the reaction mixture was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield: 98%, yield: 0.65 g, 0.98 mmol).
  • Example 9 Synthesis of non-yellowing thermoplastic polyurethane
  • polypropylene glycol bis (1,1,1,3,3,3-hexafluoroisopropylcarbonate) (0.39 g, 0.5 mmol)
  • isophorone diamine (0.09 g, 0.5 mmol).
  • the reaction solution was vacuum dried at 50 ° C. for 2 hours to obtain a pale yellow oily target (yield: 97%, yield: 0.30 g, 0.48 mmol).
  • Example 10 Synthesis of non-yellowing thermoplastic polyurethane (1) Synthesis of polypropylene glycol bis (2,2,3,3-tetrafluoropropyl carbonate) using an inorganic base In a bite eggplant flask, bis (2,2,3,3-tetrafluoropropyl) carbonate (78.33 g, 270 mmol), propylene glycol 400 (36 mL, 90 mmol), potassium carbonate (1.3 g, 9 mmol), and acetonitrile as a solvent. (150 mL) was added, and the mixture was stirred at 50 ° C. for 3 hours.
  • Example 11 Synthesis of non-yellowing thermoplastic polyurethane using solvent
  • polypropylene glycol bis (2,2,3,3-tetrafluoropropyl carbonate) 1.0 g, 1.37 mmol
  • m-Xylylene diamine 1.0 g, 1.37 mmol
  • the formation of the corresponding polyurethane was confirmed by 1 1 H NMR spectrum, and the average molecular weight was estimated by GPC. The results are shown in Table 1.
  • Example 12 Synthesis of non-yellowing thermoplastic polyurethane using solvent In a 50 mL bite eggplant flask, polypropylene glycol bis (2,2,3,3-tetrafluoropropyl carbonate) (1.0 g, 1.37 mmol), THF (444 ⁇ L) and the diamine shown in Table 1 were added, and the mixture was stirred at 50 ° C. for 332 hours. The formation of the corresponding polyurethane was confirmed by 1 1 H NMR spectrum, and the average molecular weight was estimated by GPC. The results are shown in Table 2.
  • Example 13 Synthesis of non-yellowing thermoplastic polyurethane Polypropylene glycol bis (2,2,3,3-tetrafluoropropyl carbonate) (2.40 g, 3.36 mmol) and 1,6-hexamethylenediamine (0.40 g, 3.36 mmol) in a 20 mL bite eggplant flask. ) was put in, the temperature was raised from 20 ° C. to 120 ° C. over 5 hours while stirring the reaction solution under reduced pressure by a diaphragm pump, and the mixture was further stirred at 120 ° C. for 2 hours. When the pressure was returned to normal pressure and the reaction solution was cooled to room temperature, a pale yellow oil-like target substance was quantitatively obtained.
  • Example 14 Synthesis of non-yellowing thermoplastic polyurethane using solvent
  • polypropylene glycol bis (2,2,3,3-tetrafluoropropyl carbonate) 1.0 g, 1.37 mmol
  • 1,6-Hexamethylenediamine 0.11 g, 1.00 mmol
  • the solvent shown in Table 1 1.0 g, 1.37 mmol
  • 1,6-Hexamethylenediamine 0.11 g, 1.00 mmol
  • the average molecular weight of the polyurethane produced by using the solvent was larger than that of Example 13. It is considered that the reaction was accelerated due to the increased fluidity of the polymer. It was also found that the reaction was further accelerated by adding the base.
  • Example 15 (1) Synthesis of 1,6-hexamethylene bis (2,2,2-trifluoroethyl carbonate) Bis (3,3,3-trifluoroethyl) carbonate (0.79 g, 3.5 mmol) and potassium carbonate (55 mg, 0.4 mmol) were added to acetonitrile (2 mL) and mixed in a bite eggplant flask. 1,6-Hexanediol (0.18 g, 1.5 mmol) was added to the obtained solution, and the mixture was stirred at 50 ° C. for 3 hours. Dichloromethane and water were added to the reaction solution to separate the layers, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 16 (1) Synthesis of bis (hydroxyethyl) bisphenol A bis (2,2,2-trifluoroethyl carbonate) Bis (3,3,3-trifluoroethyl) carbonate (11.3 g, 50.0 mmol) and potassium carbonate (688 mg, 5.0 mmol) were added to acetonitrile (25 mL) and mixed in a bite eggplant flask. Bis (hydroxyethyl) bisphenol A (5.28 g, 16.7 mmol) was added to the obtained solution, and the mixture was heated and stirred at 50 ° C. for 1 hour. Diethyl ether and water were added to the reaction solution to separate the layers, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 17 (1) Synthesis of isosorbide bis (2,2,2-trifluoroethyl carbonate) Bis (3,3,3-trifluoroethyl) carbonate (11.3 g, 50.0 mmol) and potassium carbonate (688 mg, 5.0 mmol) were added to acetonitrile (25 mL) and mixed in a bite eggplant flask. Isosorbide (2.44 g, 16.7 mmol) was added to the obtained solution, and the mixture was stirred at 50 ° C. for 1 hour. Diethyl ether and water were added to this reaction solution to separate the layers, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 18 (1) Synthesis of 2,2'-thiodiethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) In a bite eggplant flask, bis (1,1,1,3,3,3-hexafluoropropane-2-yl) carbonate (1.81 g, 5 mmol), 2,2'-thiodiethanol (0.12 g, 1 mmol), And triethylamine (0.1 mmol, 13.8 ⁇ L) were added, and the mixture was stirred at 90 ° C. for 16 hours. Then, chloroform and water were added to separate the liquids, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 19 (1) Synthesis of polytetramerylene ether glycol bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) Bis (1,1,1,3,3,3-hexafluoropropane-2-yl) carbonate (3.62 g, 10 mmol) and polytetramethylene ether glycol (PTMG1500) (1.5 g, 1 mmol) in a bite eggplant flask. , And triethylamine (0.1 mmol, 13.8 ⁇ L) were added, and the mixture was stirred at 90 ° C. for 16 hours. Then, chloroform and water were added to separate the liquids, and the organic layer was dried over anhydrous sodium sulfate.
  • PTMG1500 polytetramethylene ether glycol
  • Example 20 (1) Synthesis of 1,1'-thiodiethylene bis (2,2,3,3-tetrafluoropropyl carbonate)
  • bis (2,2,3,3-tetrafluoropropyl) carbonate (16 mL, 90 mmol)
  • 1,1'-thiodiethanol (3.7 g, 30 mmol)
  • potassium carbonate (0.42 g, 3 mmol)
  • Acetonitrile 50 mL
  • dichloromethane and pure water were added to separate the liquids, and the organic layer was dried over anhydrous sodium sulfate.
  • Example 21 (1) Synthesis of 2,2,3,3,4,4-hexafluoro-1,5-pentamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) BHFC (24 mmol, 5.3 mL), 2,2,3.3.4.4-hexafluoro-1,5-pentanediol (1,5-HFPDL) (4.0 mmol, 0.84 g) in a 50 mL eggplant flask. , Pyridine (0.40 mmol, 32 ⁇ L) and acetonitrile (2 mL) as a solvent were added, and the mixture was stirred at 20 ° C. for 6 hours.
  • Example 22 Polyurethane synthesis 2,2,3,3,4,4-hexafluoro-1,5-pentamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.30 g) in a 7 mL test tube , 0.50 mmol) and 1,6-hexamethylenediamine (55 mg, 0.48 mmol) were added, and the mixture was stirred at 100 ° C. for 2 hours. Next, appropriate amounts of acetone and hexane were added to the reaction solution, and the precipitated solid was collected by suction filtration and vacuum dried at 50 ° C. for 2 hours to obtain the target compound as a white solid (yield: 0.18 g, 0. 48 mmol, yield: 95%).
  • Example 23 Polyurethane synthesis 2,2,3,3,4,4-hexafluoro-1,5-pentamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.30 g) in a 7 mL test tube , 0.50 mmol) and polypropylene glycol diamine (PPGDA, average molecular weight: 430) (0.22 g, 0.50 mmol) were added, and the mixture was stirred at 100 ° C. for 2 hours. Then, the reaction solution was vacuum dried at 50 ° C. for 3 hours to obtain a target compound as a yellow viscous solid (yield: 0.36 g, 0.50 mmol, yield:> 99%).
  • PPGDA polypropylene glycol diamine
  • Example 24 Polyurethane synthesis In a 20 mL eggplant flask, 2,2,3,3,4,4-hexafluoro-1,5-pentamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.30 g, 0.50 mmol), 4,4'-diaminodiphenylmethane (0.50 mmol, 99 mg), and THF (2 mL) as a solvent were added, and the mixture was stirred at 60 ° C. for 27 days. A sample was taken from the reaction solution approximately every 3 days, mixed with deuterated acetone and analyzed by 1 1 H NMR, and it was confirmed that the reaction was proceeding.
  • 2,2,3,3,4,4-hexafluoro-1,5-pentamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.30 g, 0.50 mmol
  • 4,4'-diaminodiphenylmethane (0.50 mmol,
  • Example 25 (1) Synthesis of 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) BHFC (54 mmol, 11.9 mL), 2,2,3,3,4,5,5-octafluoro-1,6-hexanediol (9.0 mmol, 2.36 g), pyridine (2,2,3,3,4,5,5-octafluoro-1,6-hexanediol) in a 50 mL eggplant flask. 1.35 mmol, 108 ⁇ L), acetonitrile (4 mL) was added as a solvent, and the mixture was stirred at 20 ° C.
  • Example 26 Polyurethane synthesis In a 100 mL eggplant flask, 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylenebis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) ( (Containing 7.8% of carbonate oligomer) (0.65 g, 0.92 mmol) and 1,5-pentamethylenediamine (108 ⁇ L, 0.92 mmol) were added, and the mixture was stirred at 150 ° C. for 1 hour. Then, the reaction solution was mixed with tetrahydrofuran, the solvent was distilled off under reduced pressure, and the mixture was vacuum dried at 50 ° C.
  • 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylenebis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (Containing 7.8% of carbonate oligomer) (0.65 g, 0.92 mmol) and 1,5-p
  • Example 27 Polyurethane synthesis (1) In a 100 mL eggplant flask, 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylenebis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) ( (Containing 9.5% of carbonate oligomer) (0.65 g, 0.92 mmol) and 1,6-hexamethylenediamine (0.105 g, 0.92 mmol) were added, and the mixture was stirred at 150 ° C. for 1 hour. Then, the reaction solution was mixed with tetrahydrofuran, the solvent was distilled off under reduced pressure, and the mixture was vacuum dried at 50 ° C.
  • 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylenebis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (Containing 9.5% of carbonate oligomer) (0.65 g, 0.92 mmol) and 1,
  • Example 28 Polyurethane synthesis (1) 2,2,3,3,4,5,5-octafluoro-1,6-hexamethylene bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) in a 7 mL test tube (Contains 17.5% carbonate oligomer) (0.38 g, 0.48 mmol), polypropylene glycol diamine (PPGDA, average molecular weight: 400) (0.20 g, 0.50 mmol), and tetrahydrofuran (1 mL) as a solvent. , Stirred at 30 ° C. for 1 hour. Then, the solvent was distilled off under reduced pressure and vacuum dried at 60 ° C.
  • PPGDA polypropylene glycol diamine
  • Example 29 (1) Synthesis of perfluoropolyether (1,1,1,3,3,3-hexafluoroisopropyl carbonate) BHFC (4.8 mmol, 1.1 mL), perfluoropolyether (HOCH 2 CF 2 O (CF 2 CF 2 O) p (CF 2 O) q CF 2 CH 2 OH, "Fomblin®” in a 50 mL eggplant flask. D2 ”manufactured by Solvay) (0.80 mmol, 1.2 g) and pyridine (0.16 mmol, 13 ⁇ L) were added, and the mixture was stirred at 70 ° C. for 2 hours.
  • Example 30 Polyurethane synthesis Perfluoropolyether bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.38 g, 0.20 mmol) and 1,5-pentamethylenediamine (23 ⁇ L, 0) in a 7 mL test tube. .18 mmol) was added, and the mixture was stirred at 100 ° C. for 2 hours, and then stirred at 120 ° C. for 30 minutes under reduced pressure conditions using an oil pump. Then, the reaction solution was vacuum concentrated at 50 ° C. for 2 hours to obtain a target compound as a pale yellow viscous solid (yield: 0.34 g, 0.20 mmol, yield:> 99%).
  • Example 31 Polyurethane synthesis Perfluoropolyether bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.38 g, 0.20 mmol) and 1,6-hexamethylenediamine (23 ⁇ L, 0) in a 7 mL test tube. .18 mmol) was added, and the mixture was stirred at 100 ° C. for 2 hours. Then, the reaction solution was vacuum concentrated at 80 ° C. for 1 hour to obtain a target compound as a colorless viscous liquid (yield: 0.31 g, 0.19 mmol, yield: 94%).
  • Example 32 Polyurethane synthesis Perfluoropolyether bis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) (0.38 g, 0.20 mmol) and 4,4'-methylene bis (cyclohexylamine) in a 7 mL test tube. (23 ⁇ L, 0.18 mmol) was added, and the mixture was stirred at 100 ° C. for 2 hours. Then, the reaction solution was vacuum concentrated at 80 ° C. for 1 hour to obtain a target compound as a colorless viscous liquid (yield: 0.31 g, 0.19 mmol, yield: 94%).
  • Example 33 Synthesis of Polyurethane (1) Of 1H, 1H, 11H, 11H-dodecafluoro-3,6,9-trioxaundecanebis (1,1,1,3,3,3-hexafluoroisopropyl carbonate) Synthetic In a 25 mL eggplant flask, BHFC (12 mmol, 2.64 mL), 1H, 1H, 11H, 11H-dodecafluoro-3,6,9-trioxaundecane-1,11-diol (2.0 mmol, 0.82 g), Pyridine (0.20 mmol, 16 ⁇ L) and acetonitrile (1 mL) were added as a solvent, and the mixture was heated and stirred at 20 ° C.
  • BHFC 12 mmol, 2.64 mL
  • 1H, 1H, 11H, 11H-dodecafluoro-3,6,9-trioxaundecane-1,11-diol 2.0 mmol,
  • the target compound perfluoropolyether diphenyl carbonate was obtained as a colorless liquid (yield: 0.67 g, 0.38 mmol, yield: 38%), but the target compound contained 76% of the polymer. It was.
  • diphenyl carbonate is used instead of the fluorocarbonate compound, the reaction progress is slowed down probably due to the separation of the reaction solution into two layers, and further an undesired polymerization reaction proceeds to form polycarbonate.

Abstract

本発明は、高品質なポリウレタンを効率的に製造するための方法を提供することを目的とする。本発明に係るポリウレタンの製造方法は、特定のフルオロカーボネート化合物と二価アルコール化合物とを反応させることによりビスカーボネート化合物を得る工程、および、ビスカーボネート化合物と二価アミノ化合物とを反応させることにより、ポリウレタンを得る工程を含むことを特徴とする。

Description

ポリウレタンの製造方法
 本発明は、高品質なポリウレタンを効率的に製造するための方法に関するものである。
 ポリウレタンは、柔軟性や弾性に優れることから、伸縮性の高い樹脂や繊維の原料とすることができる一方で、その化学構造の調整により硬く強靭なものとすることもできる。その他、低温特性、耐摩耗性、耐衝撃性、耐油性などに優れる非常に優れた素材である。
 ポリウレタンは、一般的に、ジイソシアネート化合物と二価アルコール化合物とを反応させることにより製造される。しかし、イソシアネート化合物には毒性が懸念されている上に、反応性に富み、水とも容易に反応するため、低湿度や低温など、保存には厳しい条件が必要である。また、イソシアネート化合物の代わりにホスゲンを用いてもポリウレタンは製造することが可能であり、イソシアネート化合物自体も、工業的には一級アミン化合物とホスゲンを反応させることにより合成される(特許文献1等)。しかしホスゲンは水と容易に反応して塩化水素を発生させたり、毒ガスとして利用された歴史があるなど、有毒な化合物である。また、ホスゲンを用いて製造された化合物には塩素成分が残留する。例えば非特許文献1には、ホスゲンから製造されたポリカーボネートには、たとえ徹底的に精製しても数10ppmから数100ppmの塩化物化合物が含まれると記載されている。ホスゲンを用いて製造されたポリウレタンにも塩素成分が残留するが、ポリウレタンに残留した塩素成分はポリウレタンの黄変の原因となったり、金属や生体に悪影響を及ぼす。そこで、イソシアネート化合物やホスゲンを用いることなくポリウレタンを製造する技術が検討されている。
 例えば特許文献2および非特許文献2,3には、ニトロ基やフルオロ基で置換されていてもよいジフェニルカーボネートとジアミノ化合物を反応させることによりポリウレタンを製造する技術が開示されている。しかし、ジフェニルカーボネート自体が一般的にはホスゲンとフェノールを反応させて合成されるものであるし、ホスゲンを用いずにジフェニルカーボネートを合成する方法は工程数が多い(非特許文献4)。それに対して本発明者らは、ジフェニルカーボネート等のカーボネート誘導体を安全かつ効率的に製造することができる方法を開発している(特許文献3,4)。
 なお、特許文献5には、二次電池のための非水電解質の非水溶媒として、フルオロ基を有していても良いビスカーボネート化合物が開示されている。
国際公開第2017/104709号パンフレット 米国特許第9062160号明細書 国際公開第2018/211952号パンフレット 国際公開第2018/017349号パンフレット 特開平10-149840号公報
FUKUOKA Shinsukeら,Polymer Journal,Vol.39,No.2,pp.91-114(2007) Daniela M.Fidalgoら,Journal of Polymer Science Part A,2013,51,pp.463-470 Amaury Bossionら,Langmuir,2017,33,pp.1959-1968 小宮強介,正本順三,日本生産管理学会論文誌,Vol.11,No.2,pp.109-114(2005年)
 上述した通り、イソシアネート化合物やホスゲンを用いることなくジフェニルカーボネートを用いてポリウレタンを製造する技術は既に開発されている。しかし本発明者らは、上記反応ではフェノールが副生するが、ビスカーボネート化合物やポリウレタンからフェノールを完全に除去することができず、ポリウレタンに残留し、この残留フェノールが容易に酸化されてポリウレタンの着色や重合度低下の原因になるなど、ポリウレタンの品質を貶めることを見出した。また、本発明者らは、かかる残留フェノールが重合反応を阻害することも実験的に見出した。
 そこで本発明は、高品質なポリウレタンを効率的に製造するための方法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、特定のフルオロカーボネート化合物を原料としてポリウレタンを製造すれば、副生するフルオロアルコール化合物の残留量を低減でき、また、たとえフルオロアルコール化合物が残留しても、かえってポリウレタンに好ましい特性を付与することを見出して、本発明を完成した。
 以下、本発明を示す。
 [1] ポリウレタンを製造するための方法であって、
 下記式(I)で表されるフルオロカーボネート化合物と、下記式(II)で表される二価アルコール化合物とを反応させることにより、下記式(III)で表されるビスカーボネート化合物を得る工程、および、
Figure JPOXMLDOC01-appb-C000004
[式中、
 Rf1は、独立して、フルオロ基を有する脂肪族炭化水素基を示し、
 R1は二価の有機基を示す。]
 上記式(III)で表されるビスカーボネート化合物と、下記式(IV)で表される二価アミノ化合物とを反応させることにより、下記式(V)で表されるポリウレタンを得る工程を含むことを特徴とする方法。
Figure JPOXMLDOC01-appb-C000005
[式中、
 Rf1およびR1は前記と同義を示し、
 R2は二価有機基を示す。]
 [2] 塩基の存在下、式(I)で表されるフルオロカーボネート化合物と式(II)で表される二価アルコール化合物とを反応させる上記[1]に記載の方法。
 [3] R1が、ハロゲノ基で置換されてもよいC2-10アルカンジイル基である上記[1]または[2]に記載の方法。
 [4] R1が式-R3-[-X-R3-]m-(XはOまたはSを示し、R3は、ハロゲノ基で置換されてもよいC1-8アルカンジイル基を示し、mは、1以上、180以下の整数を示す。)で表される二価有機基である上記[1]または[2]に記載の方法。
 [5] R2が、ハロゲノ基で置換されてもよいC2-10アルカンジイル基である上記[1]~[4]のいずれかに記載の方法。
 [6] R2がC1-6アルカンジイル-C6-12アリールジイル-C1-6アルカンジイル基である上記[1]~[4]のいずれかに記載の方法。
 [7] 下記式(III-1)で表されることを特徴とするビスカーボネート化合物。
Figure JPOXMLDOC01-appb-C000006
[式中、
 Rf2は、Hまたはフルオロ基を有する脂肪族炭化水素基を示し、
 Rf3とRf4は、独立して、フルオロ基を有する脂肪族炭化水素基を示し、
 R1は二価の有機基を示す。]
 本発明方法によれば、有毒なイソシアネート化合物を使用することなくポリウレタンを製造することができる。また、ホスゲンの代替品であるジフェニルカーボネートも使用する必要がなく、ジフェニルカーボネート由来の副生物であり、ポリウレタンの着色や重合度低下の原因となるフェノールが残留する余地はない。その代わり、フルオロアルコールが残留し得るが、その残留量はジフェニルカーボネートを使用した場合のフェノール残留量に比べて少なく、且つ残留したフルオロアルコールはポリウレタンにかえって好ましい特性を付与し得る。よって本発明は、高品質なポリウレタンを安全かつ効率的に製造することができる技術として、産業上非常に有用である。
 本発明に係るポリウレタンの製造方法は、式(I)で表されるフルオロカーボネート化合物と、式(II)で表される二価アルコール化合物とを反応させることにより、式(III)で表されるビスカーボネート化合物を得る工程、および、式(III)で表されるビスカーボネート化合物と、式(IV)で表される二価アミノ化合物とを反応させることにより、式(V)で表されるポリウレタンを得る工程を含む。以下、各工程につき説明するが、本発明は以下の具体例に限定されるものではない。なお、以下、「式(x)で表される化合物」を「化合物(x)」と略記する。
 1.ビスカーボネート化合物の製造工程
 本工程では、フルオロカーボネート化合物(I)と二価アルコール化合物(II)とを反応させることにより、ビスカーボネート化合物(III)を得る。本発明では、二価アミノ化合物(IV)中のR2基とビスカーボネート化合物(III)中のR1との組み合わせにより、ポリウレタンに、高強度、柔軟性、撥水性など所望の特性を付与することが可能になる。
 従来、ホスゲンの代替品として開発されたジフェニルカーボネートと二価アルコール化合物(II)を反応させれば、ビスカーボネート化合物(III)が生成する。しかしその場合には、ジフェニルカーボネート由来のフェノールが副生する。フェノールは常温で固体であるために、例えば蒸留によりビスカーボネート化合物(III)から除去しようとすると、蒸留が進行するにつれ粗組成物の粘度が上昇し、完全に除去することは難しくなる。残留したフェノールは、本発明者らの実験的知見によれば重合反応を阻害し、また、目的化合物であるポリウレタンにも残留し、残留したフェノールは非常に酸化され易いため、ポリウレタンの着色の原因になる。
 それに対して本発明では、フルオロカーボネート化合物(I)を用いる。フルオロカーボネート化合物(I)と二価アルコール化合物(II)との反応では、フルオロアルコールが副生するが、フルオロアルコールはフェノールに比べて留去し易い。また、たとえフルオロアルコールがポリウレタンに残留しても、フェノールに比べて明らかに酸化され難くポリウレタンの透明度に悪影響を与えないであろうし、かえって撥水性、防汚性、耐候性、耐摩耗性など、フルオロ基に起因する好ましい特性がポリウレタンに付与され得る。
 フルオロカーボネート化合物(I)中のRfは、独立して、フルオロ基を有する脂肪族炭化水素基を示す。フルオロ基を有する脂肪族炭化水素基としては、例えば、フルオロ基を有するC1-10一価鎖状脂肪族炭化水素基、フルオロ基を有するC3-10一価環状脂肪族炭化水素基、およびこれら2以上、5以下の基が結合した一価有機基を挙げることができる。
 「C1-10一価鎖状脂肪族炭化水素基」は、炭素数1以上、10以下の直鎖状または分枝鎖状の一価飽和または不飽和脂肪族炭化水素基をいう。例えばC1-10一価鎖状脂肪族炭化水素基としては、C1-10アルキル基、C2-10アルケニル基、およびC2-10アルキニル基を挙げることができる。
 C1-10アルキル基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、1-メチルプロピル、2-メチルプロピル、1,1-ジメチルエチル、2,2-ジメチルエチル、n-ペンチル、n-ヘキシル、2-ヘキシル、3-ヘキシル、4-メチル-2-ペンチル、n-ヘプチル、n-オクチル、n-デシル等である。好ましくはC2-8アルキル基であり、より好ましくはC4-6アルキル基である。
 C2-10アルケニル基としては、例えば、エテニル(ビニル)、1-プロペニル、2-プロペニル(アリル)、ブテニル、ヘキセニル、オクテニル、デセニル等である。好ましくはC2-8アルケニル基であり、より好ましくはC4-6アルケニル基である。
 C2-10アルキニル基としては、例えば、エチニル、プロピニル、ブチニル、ヘキシニル、オクチニル、ペンタデシニル等である。好ましくはC2-8アルキニル基であり、より好ましくはC2-6アルキニル基である。
 「C3-10一価環状脂肪族炭化水素基」は、炭素数1以上、10以下の環状の飽和または不飽和脂肪族炭化水素基をいう。例えばC3-10シクロアルキル基、C4-10シクロアルケニル基、およびC4-10シクロアルキニル基を挙げることができる。
 2以上、5以下のC1-10一価鎖状脂肪族炭化水素基とC3-10一価環状脂肪族炭化水素基が結合した一価有機基としては、例えば、C3-10一価環状脂肪族炭化水素基-C1-10二価鎖状脂肪族炭化水素基や、C1-10一価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基-C1-10二価鎖状脂肪族炭化水素基が挙げられる。
 フルオロ基を有する脂肪族炭化水素基におけるフルオロ基の置換基数は、置換可能であれば特に制限されないが、フルオロ基が多いほどフルオロカーボネート化合物(I)の反応性は高くなるので、2以上が好ましく、3以上がより好ましい。上記置換基数の上限に関しては、例えば、20以下とすることができ、15以下が好ましい。また、脂肪族炭化水素基としてはsec-アルキル基またはtert-アルキル基が好ましく、第1位炭素以外の炭素において全ての水素原子がフルオロ基に置換されたsec-パーフルオロアルキル基またはtert-アルキル基がより好ましい。更に、フルオロカーボネート化合物(I)は、フルオロ基に加えて、同じく電子吸引性基であるクロロ基、ブロモ基、およびヨード基から選択されるハロゲノ基に置換されていてもよい。
 フルオロカーボネート化合物(I)は、市販のものがあれば市販のものを使用すればよいし、合成してもよい。フルオロカーボネート化合物(I)は、例えばホスゲンを用いた常法により合成できるが、トリクロロ酢酸のフルオロ脂肪族炭化水素エステルとフルオロアルコールとの反応や、ホスゲンを用いないWO2018/211953に記載の方法を用いても合成することができる。
 フルオロカーボネート化合物(I)としては、例えば、ビス(2,2,2-トリフルオロエチル)カーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート、ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル)カーボネート、ビス(1,1,1,2,2,4,5,5,5-ノナフルオロ-4-トリフルオロメチル-3-ペンチル)カーボネート、ビス[1,1,1,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロパン-2-イル]カーボネート、ビス(2,2,3,3,3-ペンタフルオロプロピル)カーボネート、ビス(2,2,3,3,4,4,5,5-オクタフルオロペンチル)カーボネート、ビス(2,2,3,3,4,4,5,5-オクタフルオロシクロペンチル)カーボネートが挙げられる。
 二価アルコール化合物(II)中のR1は、二価の有機基を示す。R1としては、例えば、C1-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基、C6-15二価芳香族炭化水素基、およびこれら2以上、5以下の基が結合した二価有機基が挙げられる。
 「C1-10二価鎖状脂肪族炭化水素基」は、炭素数1以上、10以下の直鎖状または分枝鎖状の二価飽和または不飽和脂肪族炭化水素基をいう。例えばC1-10二価鎖状脂肪族炭化水素基としては、C1-10アルカンジイル基、C2-10アルケンジイル基、およびC2-10アルキンジイル基を挙げることができる。
 C1-10アルカンジイル基としては、例えば、メチレン、エチレン、n-プロピレン、イソプロピレン、n-ブチレン、1-メチルプロピレン、2-メチルプロピレン、1,1-ジメチルエチレン、2,2-ジメチルエチレン、n-ペンチレン、n-ヘキシレン、n-ヘプチレン、n-オクチレン、n-デシレン等である。好ましくはC2-10アルカンジイル基またはC1-8アルカンジイル基であり、より好ましくはC1-6アルカンジイル基またはC1-4アルカンジイル基である。
 C2-10アルケンジイル基としては、例えば、エテニレン(ビニレン)、1-プロペニレン、2-プロペニレン(アリレン)、ブテニレン、ヘキセニレン、オクテニレン、デセニレン等である。好ましくはC2-8アルケンジイル基であり、より好ましくはC2-6アルケンジイル基またはC2-4アルケンジイル基である。
 C2-10アルキンジイル基としては、例えば、エチニレン、プロピニレン、ブチニレン、ヘキシニレン、オクチニレン、ペンタデシニレン等である。好ましくはC2-8アルキンジイル基であり、より好ましくはC2-6アルキンジイル基またはC2-4アルキンジイル基である。
 「C3-10二価環状脂肪族炭化水素基」は、炭素数1以上、10以下の環状の二価飽和または不飽和脂肪族炭化水素基をいう。例えば、C3-10シクロアルカンジイル基、C3-10シクロアルケンジイル基、およびC3-10シクロアルキンジイル基を挙げることができる。C3-10シクロアルカンジイル基としては、例えば、シクロブタンジイル、シクロプロパンジイル、シクロヘキサンジイル、アダマンタンジイルが挙げられる。
 「C6-15二価芳香族炭化水素基」とは、炭素数が6以上、15以下の二価芳香族炭化水素基をいう。例えば、フェニレン、インデニレン、ナフチレン、ビフェニレン、フェナレニレン、フェナントレニレン、アントラセニレン等であり、好ましくはC6-12二価芳香族炭化水素基であり、より好ましくはフェニレンである。
 C1-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基、およびC6-15二価芳香族炭化水素基から選択される2以上、5以下の基が結合した二価有機基としては、例えば、C3-10二価環状脂肪族炭化水素基-C1-10二価鎖状脂肪族炭化水素基、C1-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基、C6-15二価芳香族炭化水素基-C1-10二価鎖状脂肪族炭化水素基、C1-10二価鎖状脂肪族炭化水素基-C6-15二価芳香族炭化水素基、C1-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基-C1-10二価鎖状脂肪族炭化水素基、C3-10二価環状脂肪族炭化水素基-C1-10二価鎖状脂肪族炭化水素基-C3-10二価環状脂肪族炭化水素基、およびC1-10二価鎖状脂肪族炭化水素基-C6-15二価芳香族炭化水素基-C1-10二価鎖状脂肪族炭化水素基が挙げられる。
 二価アルコール化合物(II)中の上記二価有機基は、フルオロ、クロロ、ブロモ、およびヨードから選択される1以上のハロゲノ基で置換されていてもよい。また、C3-10二価環状脂肪族炭化水素基およびC6-15二価芳香族炭化水素基は、エーテル基(-O-)を含んでいてもよく、更に、ハロゲノ基の他、C1-6アルキル基で置換されていてもよい。置換基としては、フルオロが好ましい。
 二価アルコール化合物(II)としては、例えば、エタンジオール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、イソソルビドが挙げられる。
 二価アルコール化合物(II)中のR1としては、下記式(VI)で表される二価有機基を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
[式中、
 R11とR12は、独立して、-(CR1415m3-、または-(-O-(CR1415m4-)m5-(式中、R14とR15は、独立して、HまたはC1-6アルキル基を表し、m3は0以上、10以下の整数を表し、m4は1以上、10以下の整数を表し、m5は1以上、10以下の整数を表し、m3またはm4が2以上の整数である場合、複数のR14とR15は互いに同一であっても異なっていてもよい)を表し、
 R13は、以下のいずれかの二価有機基を示し、   
Figure JPOXMLDOC01-appb-C000008
(式中、
 R16とR17は、独立して、H、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシ基、置換基γを有してもよいC6-20芳香族炭化水素基を表すか、或いはR16とR17が結合して、C3-20炭素環または5-12員複素環を形成してもよく、
 R18とR19は、独立して、HまたはC1-6アルキル基を表し、m6が2以上の整数である場合、複数のR18とR19は互いに同一であっても異なっていてもよく、
 R20~R27は、独立して、ハロゲノ基、置換基βを有してもよいC1-20脂肪族炭化水素基、置換基βを有してもよいC1-20アルコキシル基、または置換基γを有してもよいC6-12芳香族炭化水素基を表し、
 R28は置換基βを有してもよいC1-9アルカンジイル基を表し、
 m6は1以上、20以下の整数を表し、
 m7は1以上、500以下の整数を表す。)
 置換基α1と置換基α2は、独立して、ハロゲノ基、C1-20脂肪族炭化水素基、C1-20アルコキシ基、C3-20シクロアルキル基、C6-20芳香族炭化水素基、C7-20アラルキル基、C6-20芳香族炭化水素オキシ基、およびC3-20シクロアルコキシル基からなる群より選択される1以上の置換基を表し、
 m1とm2は、独立して、0以上、4以下の整数を表し、
 置換基βは、C1-6アルコキシ基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基であり、
 置換基γは、C1-6アルキル基、C1-6アルコキシル基、C1-7アシル基、ハロゲノ基、ニトロ基、シアノ基、およびカルバモイル基から選択される1以上の置換基である。]
 二価有機基(VI)中の-Ph-R13-Ph-としては、ビスフェノールA、ビスフェノールAP、ビスフェノールAF、ビスフェノールB、ビスフェノールBP、ビスフェノールC、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールS、ビスフェノールTMC、ビスフェノールZ中の水酸基を除いた部分の二価有機基が挙げられる。
 二価有機基(VI)中の-(CR1415m3-基としては単結合およびC1-2アルキル基が挙げられ、または-(-O-(CR1415m4-)m5-基としては-(-O-CH2CH2-)m5-、-(-O-CH(CH3)CH2-)m5-、および-(-O-CH2CH(CH3)-)m5-が挙げられる。
 その他、二価アルコール化合物(II)中のR1としては、式-R3-[-X-R3-]m-(XはOまたはSを示し、Oが好ましく、R3はC1-8アルカンジイル基を示し、mは1以上、180以下の整数を示し、mが2以上の整数である場合、複数のXおよびR3はそれぞれ互いに同一であっても異なっていてもよい。)で表される二価有機基が挙げられる。
 R3としては、エチレン基(-CH2CH2-)、プロピレン基[-CH(CH3)CH2-または-CH2CH(CH3)-]、およびテトラメチレン基(-CH2CH2CH2CH2-)が挙げられる。
 mとしては、5以上が好ましく、10以上がより好ましく、20以上がより更に好ましく、また、160以下が好ましく、150以下がより好ましい。
 フルオロカーボネート化合物(I)と二価アルコール化合物(II)とを反応させる際、溶媒を使ってもよい。溶媒は、常温常圧で液体であり、且つ反応に悪影響を及ぼさないものであれば特に制限されないが、例えば、アセトニトリル等のニトリル系溶媒;ジエチルエーテル、グリム、ジグリム、トリグリム、テトラグリム、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;酢酸エチル等のエステル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素溶媒などが挙げられる。但し、フルオロカーボネート化合物(I)または二価アルコール化合物(II)の少なくとも一方が反応条件下で液体である場合には、溶媒を用いなくてもよい。コストや環境負荷の観点からは、溶媒を用いないことが好ましい。
 フルオロカーボネート化合物(I)と二価アルコール化合物(II)の量は、適宜調整すればよい。例えば、フルオロカーボネート化合物(I)または二価アルコール化合物(II)のうち一方の合成が難しい場合や高価である場合、一方に対する他方のモル比を5倍モル以上、20倍モル以下用いることができる。当該モル比としては15倍モル以下が好ましく、12倍モル以下がより好ましい。或いは、上記モル比を0.5倍モル以上、1.5倍モル以下とすることもできる。
 本工程1では、塩基の存在下、フルオロカーボネート化合物(I)と二価アルコール化合物(II)を反応させてもよい。塩基としては、例えば、ピリジン、トリエチルアミン、エチルジイソプロピルアミン、ジアザビシクロウンデセン(DBU)、N-メチルモルホリン等の有機塩基;炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸カルシウム等の無機塩基が挙げられ、反応液に対する溶解性や適度な塩基性の観点からは有機塩基が好ましい。塩基の使用量は適宜調整すればよいが、例えば、フルオロカーボネート化合物(I)と二価アルコール化合物(II)のうちモル数の少ない方に対して、0.01倍モル以上、1倍モル以下用いることができる。但し、コストや残留の観点からは、塩基を用いないことが好ましい。
 反応温度は適宜調整すればよく、例えば、30℃以上、120℃以下とすることができる。また、使用する溶媒などに応じて、加熱還流条件下で反応を行ってもよい。反応時間も適宜調整すればよく、フルオロカーボネート化合物(I)または二価アルコール化合物(II)の少なくとも一方の消費がクロマトグラフィー等で確認されるまでや、予備実験などで決定すればよいが、例えば、1時間以上、50時間以下とすることができる。
 反応後は、通常の後処理を行うことができる。例えば、反応液に、ジエチルエーテル、クロロホルム、酢酸エチル等の水不溶性溶媒と水を加えて分液し、目的化合物であるビスカーボネート化合物(III)を有機相に抽出する。有機相は、水や飽和食塩水などで洗浄したり、無水硫酸ナトリウムや無水硫酸マグネシウムで乾燥してもよい。有機相を濃縮することで、ビスカーボネート化合物(III)が得られる。得られたビスカーボネート化合物(III)は、クロマトグラフィーや再結晶などで更に精製してもよいが、そのまま下記の工程2で用いてもよい。
 ビスカーボネート化合物(III)の内、上記ビスカーボネート化合物(III-1)からは、反応の際にフルオロアルコールが特に脱離し易いため、反応が速やかに進行する。特にR1中にフルオロ基が含まれていない場合には反応が進行し難い場合があるが、ビスカーボネート化合物(III-1)は特に反応性が高いため、ビスカーボネート化合物(III-1)を用いればその様な場合でもポリウレタンを良好に製造することが可能になる。
 2.ポリウレタンの製造工程
 本工程では、上記工程1で得たビスカーボネート化合物(III)と二価アミノ化合物(IV)とを反応させることにより、ポリウレタン(V)を得る。
 二価アミノ化合物(IV)中のR2は、二価の有機基を示す。二価アミノ化合物(IV)中のR2としては、二価アルコール化合物(II)中のR1と同様の二価有機基が挙げられる。但し、二価アミノ化合物(IV)中のR2は、二価アルコール化合物(II)中のR1と同一であってもよいし、異なっていてもよい。目的化合物であるポリウレタン(V)の多様な特性の観点からは、R1とR2は互いに異なっていることが好ましい。
 ビスカーボネート化合物(III)と二価アミノ化合物(IV)とを反応させる際、溶媒を使ってもよい。溶媒は、常温常圧で液体であり、且つ反応に悪影響を及ぼさないものであれば特に制限されないが、例えば、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素溶媒;アセトニトリル等のニトリル系溶媒;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒;酢酸エチル等のエステル系溶媒;ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素溶媒;ペンタン、ヘキサン等の炭化水素溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジメチルホルムアミド、ジメチルアセトアミド等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒などが挙げられる。但し、ビスカーボネート化合物(III)と二価アミノ化合物(IV)の少なくとも一方が反応条件下で液体である場合には、溶媒を用いなくてもよい。但し、コストや環境負荷の観点からは、溶媒を用いないことが好ましい。
 ビスカーボネート化合物(III)と二価アミノ化合物(IV)の量は、適宜調整すればよい。例えば、ビスカーボネート化合物(III)1モルに対する二価アミノ化合物(IV)のモル比を、0.5倍モル以上、1.5倍モル以下とすることができる。当該モル比としては、0.8倍モル以上が好ましく、0.9倍モル以上がより好ましく、また、1.2倍モル以下が好ましく、1.1倍モル以下がより好ましい。
 本工程2の反応温度は適宜調整すればよく、例えば、10℃以上、200℃以上とすることができる。また、使用する溶媒などに応じて、加熱還流条件下で反応を行ってもよい。反応時間も適宜調整すればよく、ビスカーボネート化合物(III)または二価アミノ化合物(IV)の少なくとも一方の消費がクロマトグラフィー等で確認されるまでや、予備実験などで決定すればよいが、例えば、30分間以上、10時間以下とすることができる。
 反応後は、通常の後処理を行うことができる。例えば、目的化合物であるポリウレタン(V)は高分子であり、溶媒に対して不溶性を示すため、n-ヘキサン等の不活性溶媒で洗浄してもよい。また、洗浄後または洗浄することなく、乾燥するのみでもよい。
 本発明によれば、毒性の高いイソシアネート化合物を用いることなく、ポリウレタンを簡便、安全、且つ効率的に製造することができる。また、本発明により製造されるポリウレタンは、その分子構造単位中の2つの二価有機基、即ちビスカーボネート化合物(III)中のR1と二価アミノ化合物(IV)中のR2基との組み合わせにより、高強度、柔軟性、撥水性など所望の特性を有することが可能になる。更に残留し得るフルオロアルコールにより、ポリウレタンの品質が高まる場合もあり得る。
 本願は、2020年5月11日に出願された日本国特許出願第2020-83148号に基づく優先権の利益を主張するものである。2020年5月11日に出願された日本国特許出願第2020-83148号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 実施例1: 難黄変型熱可塑性ポリウレタンの合成
 (1)1,6-ヘキサメチレン ビス(1,1,1,2,2,4,5,5,5-ノナフルオロ-4-(トリフルオロメチル)-3-ペンチル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000009
 三口円筒形フラスコ(φ42mm×200mm)内にクロロホルム(50mL,620mmol)を入れ、0℃で3時間、酸素を1.0mL/minで吹き込みながら、フラスコの底部から2cmの位置に設置した低圧水銀ランプ(20W,φ24mm×120mm,253.7nmと184.9nmの紫外光を含む。)で光照射した。続いて、光照射を止め、反応液を-30℃に冷却し、1,1,1,2,2,4,5,5,5,-ノナフルオロ-4-(トリフルオロメチル)ペンタノール(3.2g,10mmol)とピリジン(3.2mL,30mmol)を順に加え、2時間撹拌を行った。続いて、反応溶液に溶け込んでいるホスゲン等の光分解ガスを系中から除くため、反応液を50℃に昇温して2時間撹拌した。発生するガスは飽和炭酸水素ナトリウム水溶液に通し、炭酸ガスに分解してから排出した。その後、1,6-ヘキサンジオール(0.35g,3mmol)を添加し、30℃で15時間撹拌した。反応液にジクロロメタンと水を加え、分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、ガラスチューブオーブンを使った蒸留により、無色液体である目的化合物を得た(収率:60%,収量:1.4g,1.8mmol)。
1H NMR(400MHz,CDCl3,20℃):δ/ppm=6.01(ttt,J=19Hz,6.6Hz,3.6Hz,2H,methine),4.29(t,J=6.6Hz,4H,methylene),1.72(t,J=6.6Hz,4H,methylene),1.40(tt,J=6.6Hz,4H,methylene)
19F NMR(376MHz,CDCl3,20℃):δppm=-73.87(m,6F,-CF3),-83.06(m,3F,-CF3),-122.90(m,2F,-CF2-),-182.84(m,1F,-CF-)
13C NMR(125MHz,CDCl3,20℃):δppm=152.36,119.92,119.50,119.261,110.79,89.65,70.64,67.84,28.28,25.11
IR(ATR):2972,2871,1780,1302,1206,1171,1115,970cm-1
FAB-MS: m/z calculated for [M+H]+(C2014246)807.04,found 806.91
 (2)難黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000010
 10mLのサンプル瓶に1,6-ヘキサメチレン ビス(1,1,1,2,2,4,5,5,5-ノナフルオロ-4-(トリフルオロメチル)-3-ペンチル カーボネート)(0.20g,0.5mmol)、m-キシリレンジアミン(0.07g,0.5mmol)、および溶媒としてトルエン(3mL)を入れ、100℃で1時間撹拌した。この反応物をn-ヘキサンで洗浄した後、吸引濾過し、60℃で2時間真空乾燥させることにより、薄黄色固体の目的物を得た(収率:61%,収量:93mg,0.3mmol)。
1H NMR(400MHz,DMSO-d6,20℃):δ7.64(br.,2H,NH),7.35-7.09(br.,4H,Phenyl),4.14(d,4H,methylene),3.94(t,4H,methylene),1.53(br.,4H,methylene),1.31(br.,4H,methylene)
IR(ATR):3304,2931,1686,1523,1240,1135,1048cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=3100,Mw=5200,Mw/Mn=1.7
 実施例2: 難黄変型熱可塑性ポリウレタンの合成
 (1)PPG ビス(2,2,2-トリフルオロエチル カーボネート)[B3FEC + ポリプロピレングリコール400(PPG)]の合成
Figure JPOXMLDOC01-appb-C000011
 ビス(2,2,2-トリフルオロエチル カーボネート)(3.39g,15.0mmol)、および炭酸カリウム(55mg,0.4mmol)をアセトニトリル(2mL)に加えて混合し、溶液を調製した。当該溶液にポリプロピレングリコール400(2.0g,5.0mmol)を添加し、50℃で3時間撹拌した。当該反応液にジクロロメタンと水を加え、分液し、有機層を無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去することにより、淡黄色油状の目的物が得られた(収率:90%,収量:2.92g,4.47mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.94(sext,J=6.0Hz,2H,methine),4.50(q,J=8.3Hz,4H,methylene),3.39-3.62(m,methylene,methine),1.31(dd,J=6.8Hz,3.2Hz,6H,methyl),1.13(m,methyl)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-74.20
IR(ATR):ν=2974,2876,1759,1296,1246,1166,1102,991,956cm-1
ESI-FT-MS: m/z calculated for [M+Na]+ [C121667(C36O)n] 409.07+n(58.04)(n≧3),found 583.20(n=3),641.24(n=4),699.28(n=5),757.32(n=6),815.37(n=7),873.41(n=8),931.45(n=9)
 (2)難黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000012
 20mLの一口ナスフラスコに、ポリプロピレングリコールビス(2,2,2-トリフルオロエチルカーボネート)(1.96g,3.0mmol)、およびm-キシリレンジアミン(0.41g,3.0mmol)を入れ、150℃で3時間撹拌した。当該反応液を50℃で3.5時間真空乾燥させることにより、褐色油状の目的物を得た(収率:>99%,収量:1.8g,3.0mmol)。
1H NMR(400MHz,CDCl3,20℃):δ7.28-7.30(br.,1H,Phenyl),7.17-7.19(br.,3H,Phenyl),5.31(br.,2H,NH),4.93(br.,2H,methine),4.32(br.,4H,methylene),3.38-3.54[m,methine and methylene],1.23(br.,6H,methyl),1.12(br.,methyl)
IR(ATR):3316,2974,2929,2873,1697,1531,1450,1376,1247,1098,944cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=2900,Mw=4700,Mw/Mn=1.6
 実施例3: 難黄変型熱可塑性ポリウレタンの合成
 (1)1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000013
 一口ナスフラスコに、ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(BHFC)(3.62g,10mmol)、1,6-ヘキサンジオール(0.12g,1.0mmol)、およびトリエチルアミン(0.1mmol,13.8μL)を加え、90℃で3時間撹拌した。当該反応液を50℃で3時間真空乾燥することにより、無色油状の目的物を得た(収率:98%,収量:0.50g,0.98mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.56(m,2H,methine),4.30(t,J=6.8Hz,3H,methylene),1.79-1.72(m,4H,methylene),1.47-1.43(m,4H,methylene)
13C NMR(125MHz,DMSO-d6,293K):δ/ppm=153.2,120.5,70.3,70.1,28.4,25.3
19F NMR(376MHz,CDCl3,293K):δ/ppm=-73.57
IR(ATR):1771,1385,1364,1300,1248,1230,1194,1141,1107,915,906,688,601,563cm-1
FAB-MS: m/z calculated for [M+H]+(C1414126) 507.07,found 506.96
 (2)難黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000014
 50mLのナスフラスコに、1,6-ヘキサメチレンビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.4g,0.8mmol)、およびm-キシリレンジアミン(0.1g,0.8mmol)を入れ、150℃で1.5時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、白色固体の目的物を得た(収率:>99%,収量:0.27g,0.9mmol)。
1H NMR(400MHz,DMSO-d6,293K):δ/ppm=7.63(t,J=5.2Hz,2H,NH),7.24(t,J=8.0Hz,1H,phenyl),7.10-7.09(br.,3H,phenyl),4.14(d,J=5.6Hz,4H,benzyl),3.94(t,J=6.4Hz,4H,methylene),1.54(br.,4H,methylene),1.32(br.,4H,methylene)
IR(ATR):3306,2934,1684,1526,1476,1249,1132,1072,1049cm-1
HPLCによる平均分子量(ポリスチレン標準):不溶性固体が多いため測定不能
 実施例4: 難黄変型熱可塑性ポリウレタンの合成
 (1)ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000015
 二口ナスフラスコに、ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(BHFC)(3.62g,10mmol)、ポリプロピレングリコール400(0.4g,1.0mmol)、およびトリエチルアミン(0.1mmol,13.8μL)を加え、90℃で21時間撹拌した。当該反応液を50℃で3時間真空乾燥することにより、無色油状の目的物を得た(収率:99%,収量:0.78g,0.99mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.57(m,2H,methine),5.05-4.97(m,2H,methine),3.65-3.38(m,19H,methylene+methine),1.35-1.32(m,6H,methyl),1.14-1.10(m.,15H,methyl)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-73.53
IR(ATR):2980,2900,2875,2866,1773,1385,1364,1299,1256,1227,1198,1168,1109,1078,1068,1008,921,908,894,689cm-1
ESI-FT-MS: m/z calculated for [M+Na]+ 545.04+n(58.04),found 777.21(n=4),835.25(n=5),893.30(n=6),951.34(n=7),1009.38(n=8),1067.42(n=9),1125.46(n=10),1183.50(n=11)
 (2)残留塩素測定
 得られたビスカーボネート(50mg)を内標準であるPと共に自動試料燃焼装置(「AQF-2100」三菱アナリティック社製)で燃焼させ、吸収液に吸収させた。吸収液としては、25mM NaOH+0.1% H22を用いた。得られた吸収液をイオンクロマトグラフィー(「ICS-2100」Thermo Fisher Scientific社製,カラム:AS11HC)で分析し、吸収液中のClとPを定量した。その結果、塩素濃度は132wtppmであった。なお、混入した塩素は、原料として用いたBHFCに含まれる不純物に由来するものであると考えられる。
 (3)難黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000016
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(2.2g,3.0mmol)、およびm-キシリレンジアミン(0.4g,3.0mmol)を入れ、アルゴン雰囲気下、150℃で3時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:90%,収量:1.57g,2.7mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=7.30(t,J=7.6Hz,1H,phenyl),7.19-7.17(br.,3H,phenyl),5.30(br.,2H,NH),4.94(br.,2H,methine),4.32-4.25(br.,4H,benzyl),3.64-3.28(br.,22H,methylene+methine),1.25(d,6H,methyl),1.12-1.11(br.,18H,methyl)
IR(ATR):3325,2972,2931,1699,1529,1451,1374,1247,1093,753,663,553cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=27300,Mw=46000,Mw/Mn=1.68
 得られたポリウレタンに残留する塩素量を上記(2)と同様の方法で測定したところ、30wtppmと極微量であった。また、反応の進行によりフルオロアルコールが生成するが、フルオロアルコールは揮発し易く、得られたポリウレタンからフルオロアルコールは検出されなかった。
 比較例1: ジフェニルカーボネートを用いたポリウレタンの合成
 (1)ポリプロピレングリコール ビス(フェニルカーボネート)の合成
Figure JPOXMLDOC01-appb-C000017
 一口ナスフラスコに、ポリプロピレングリコール400(0.4g,1.0mmol)、ジフェニルカーボネート(0.5g,2.5mmol)、および1,4-ジアザビシクロ(2,2,2)オクタン(以下、DABCO)(0.01g,0.1mmol)を加え、100℃で13時間撹拌した。得られたオイル状反応液を、オイル回転ポンプで100℃で2時間真空乾燥させ、反応で生じた脱離アルコールとDABCOを留去することにより、透明オイル状の生成物を得た。
 しかし、1H NMRスペクトルにおいて、脱離したフェノールがわずかに残留していたため、さらに、200℃で2時間、オイル回転ポンプで真空乾燥を行い、透明オイル状の生成物を得た(収率:67%)。
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000018
 50mLの一口ナスフラスコに、比較例1(1)で得られたビス(フェニルカーボネート)(1.92g,3.0mmol)およびm-キシリレンジアミン(0.41g,3.0mmol)を入れ、150℃で3時間撹拌した。脱離したアルコールを除くため、オイル回転ポンプを用いて、120℃で4時間真空乾燥した。1H NMRスペクトルによって相当するポリウレタンの生成を確認した。
 GPCにより平均分子量を見積もったところ、Mn=3263、Mw=6912、Mw/Mn=2.12であった。また、得られたポリウレタンには、反応により脱離した総フェノールに対して39%のフェノールが残留していた。
 以上の結果の通り、高温で真空乾燥したにもかかわらずポリウレタンにはフェノールが残留しており、同じポリウレタンでも実施例4(2)に比べて分子量が小さく、分子量のばらつきも大きいのは、副生したフェノールが除去されず、重合反応を阻害したことが考えられる。
 実施例5: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000019
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(2.3g,3.0mmol)、および1,6-ヘキサメチレンジアミン(0.35g,3.0mmol)を入れ、アルゴン雰囲気下、150℃で3時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:>99%,収量:1.81g,3.2mmol)。反応の進行によりフルオロアルコールが生成するが、フルオロアルコールは揮発し易く、得られたポリウレタンからフルオロアルコールは検出されなかった。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.93-4.87(br.,2H,methine),3.65-3.30(br.,22H,methylene+methine),3.14-3.13(br.,4H,methylene),1.50-1.47(br.,4H,methylene),1.34-1.30(br.,4H,methylene),1.23(d,J=6.4Hz,6H,methyl),1.14(d,J=5.2Hz,18H,methyl)
IR(ATR):3329,2972,2931,2862,1697,1530,1453,1374,1252,1200,1097,1016cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=10800,Mw=17500,Mw/Mn=1.62
 比較例2: ジフェニルカーボネートを用いたポリウレタンの合成
 50mLの一口ナスフラスコに、比較例1(1)で得られたビス(フェニルカーボネート)(1.92g,3.0mmol)、および1,6-ヘキサメチレンジアミン(0.35g,3.0mmol)を入れ、150℃で3時間撹拌した。脱離したアルコールを除くため、オイル回転ポンプを用いて、120℃で4時間真空乾燥した。1H NMRスペクトルによって相当するポリウレタンの生成を確認した。
 GPCにより平均分子量を見積もったところ、Mn=2791、Mw=5804、Mw/Mn=2.08であった。また、得られたポリウレタンには、反応により脱離した総フェノールに対して62%のフェノールが残留していた。
 以上の結果の通り、高温で真空乾燥したにもかかわらずポリウレタンにはフェノールが残留しており、同じポリウレタンでも実施例5に比べて分子量が小さく、分子量のばらつきも大きいのは、副生したフェノールが除去されず、重合反応を阻害したことが考えられる。
 実施例6: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000020
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.39g,0.5mmol)、および1,5-ペンタメチレンジアミン(0.05g,0.5mmol)を入れ、100℃で1時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:98%,収量:0.27g,0.49mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.92-4.87(br.,2H,methine),3.65-3.32(br.,16H,methylene+methine),3.14-3.13(m.,4H,methylene),1.51(m,4H,methylene),1.37-1.29(m,2H,methylene),1.22(br.,6H,methyl),1.14-1.13(br.,12H,methyl)
IR(ATR):3321,2972,2934,2871,1696,1527,1451,1375,1248,1180,1099,1016cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=14300,Mw=31000,Mw/Mn=2.18
 実施例7: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000021
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.39g,0.5mmol)、および1,3-ビス(アミノメチル)シクロヘキサン(0.07g,0.5mmol)を入れ、100℃で2時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:96%,収量:0.29g,0.48mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.95-4.82(br.,2H,methine),3.59-3.39(br.,22H,methylene+methine),3.07-2.95(br.,4H,methylene),1.80-1.38+0.90-0.54(br.,10H,methylene+methine),1.25-1.22(d,6H,J=6.4Hz,methyl),1.14-1.13(br.,18H,methyl)
IR(ATR):3348,2973,2918,2854,1698,1530,1450,1375,1248,1094,1015cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=7400,Mw=13200,Mw/Mn=1.78
 実施例8: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000022
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.79g,1.0mmol)、および4,4’-メチレン ビス(シクロヘキシルアミン)(0.21g,1.0mmol)を入れ、150℃で1時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:98%,収量:0.65g,0.98mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.95-4.82(br.,2H,methine),3.59-3.39(br.,16H,methylene),3.07-2.95(br.,4H,methylene),1.25-1.22(br.,6H,methyl),1.14-1.13(br.,12H,methyl)
IR(ATR):3326,2971,2927,2857,1688,1523,1449,1374,1304,1249,1095,1034cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=9400,Mw=21400,Mw/Mn=2.28
 実施例9: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000023
 50mLのナスフラスコに、ポリプロピレングリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.39g,0.5mmol)、およびイソホロンジアミン(0.09g,0.5mmol)を入れ、150℃で1時間撹拌した。当該反応液を50℃で2時間真空乾燥させることにより、淡黄色油状の目的物を得た(収率:97%,収量:0.30g,0.48mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=4.95-4.87(m,2H,methine),3.59-3.39(m,22H,methylene),2.94-2.88(br.,2H,methylene),1.75-1.50(br.,6H),1.24(d,J=5.6Hz,6H,methyl),1.16-1.14(d,J=6.0Hz,18H,methyl),1.07-0.83(m,10H)
IR(ATR):3326,2970,2931,1699,1530,1460,1374,1302,1240,1098,1027cm-1
HPLCによる平均分子量(ポリスチレン標準): Mn=8800,Mw=16000,Mw/Mn=1.82
 実施例10: 難黄変型熱可塑性ポリウレタンの合成
 (1)無機塩基を用いたポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000024
 一口ナスフラスコにビス(2,2,3,3-テトラフルオロプロピル)カーボネート(78.33g,270mmol)、プロピレングリコール400(36mL,90mmol)、炭酸カリウム(1.3g,9mmol)、および溶媒としてアセトニトリル(150mL)を加え、50℃で3時間撹拌した。その後、反応溶液の溶媒をエバポレーターで減圧留去した後に、酢酸エチルとヘキサンと純水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液をエバポレーターで減圧濃縮し、100℃で2時間真空乾燥させることにより、無色透明オイル状の目的物を得た(収率:85%,収量:39.12mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.94(tt,J=53.0Hz,4.0Hz,2H,methine),4.86-4.97(m,methylene),4.61(tt,J=12.6Hz,1.2Hz,2H,methylene),3.39-3.62(m,methylene and methine),1.31(dd,J=6.8Hz,3.2Hz,6H,methyl),1.13(m,methyl)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-124.6,-138
IR(ATR):2977,2879,1454,1383,1268,1099,992,921,786cm-1
FT-MS: m/z calculated for [M+Na]+[C141887(C36O)n]473.08+58.06n,found 763.28(n=5),821.32(n=6),879.36(n=7),937.40(n=8),995.44(n=9),1053(n=10),1111.52(n=11)
 (2)有機塩基を用いたポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)の合成
 一口ナスフラスコにビス(2,2,3,3-テトラフルオロプロピル)カーボネート(14.5g,50mmol)、プロピレングリコール400(4.0g,10mmol)、およびトリエチルアミン(0.2g,2mmol)を加え、90℃で13時間撹拌した。その後、反応溶液の低沸点成分をエバポレーターで減圧留去した後に、120℃で1時間真空乾燥させることにより、無色透明オイル状の目的物を得た(収率:94%)。
 (3)有機塩基を用いたポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)の合成
 一口ナスフラスコに、ポリプロピレングリコール400(0.4g,1.0mmol)、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート(0.72g,2.5mmol)、および1,4-ジアザビシクロ(2,2,2)オクタン(以下、DABCO)(0.01g,0.1mmol)を加え、100℃で13時間撹拌した。得られたオイル状反応液を、100℃で2時間、オイル回転ポンプを使って真空乾燥させ、反応で生じた脱離アルコールとDABCOを留去することにより、透明オイル状の目的物を得た(収率96%)。
 (4)難黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000025
 10mLの一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(2.40g,3.36mmol)、およびm-キシリレンジアミン(0.46g,3.36mmol)を入れ、ダイアフラムポンプによる減圧下、反応液を撹拌しながら20℃から120℃まで5時間かけて昇温し、更に120℃で2時間撹拌した。圧力を常圧に戻し、反応液を室温まで冷却すると、淡黄色オイル状の目的物が定量的に得られた。
1H NMR(400MHz,DMSO-d6,20℃):δ7.64(t,J=5.8Hz,2H,NH),7.24(t,J=8.0Hz,1H,Phenyl),7.11(s,1H,Phenyl),7.10(d,J=8.0Hz,2H,Phenyl),4.75(m,2H,methine),4.14(d,J=6.0Hz,4H,methylene),3.54-3.31(m,methine and methylene),1.13(m.,6H,methyl),1.04(d,J=6.0Hz,methyl)
HPLCによる平均分子量(ポリスチレン標準): Mn=3267,Mw=4281,Mw/Mn=1.28   
 (5)難黄変型熱可塑性ポリウレタンの合成
 一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(0.73g,1.0mmol)、およびm-キシリレンジアミン(0.14g,1.0mmol)を加え、100℃で13時間撹拌した。得られたオイル状反応液を、100℃で1時間、ダイヤフラムポンプを使って真空乾燥させた。1H NMRスペクトルによって相当するポリウレタンの生成を確認した。
 GPCにより平均分子量を見積もったところ、Mn=4195、Mw=5900、Mw/Mn=1.40であった。また、得られたポリウレタンからは、反応により脱離したフルオロアルコールは検出されなかった。
 比較例3
 実施例10(5)において、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(0.73g,1.0mmol)の代わりに比較例1(1)で得たビス(フェニルカーボネート)(0.64g,1.0mmol)を用いた以外は同様にして、ポリウレタンを製造した。1H NMRスペクトルによって相当するポリウレタンの生成を確認した。
 GPCにより平均分子量を見積もったところ、Mn=1318、Mw=1715、Mw/Mn=1.30であった。また、得られたポリウレタンには、反応により脱離した総フェノールに対して5%のフェノールが残留していた。
 以上の結果の通り、高温で真空乾燥したにもかかわらずポリウレタンにはフェノールが残留しており、同じポリウレタンでも実施例10(5)に比べて分子量が小さく、分子量のばらつきも大きいのは、副生したフェノールが除去されず、重合反応を阻害したことが考えられる。
 実施例11: 溶媒を使った難黄変型熱可塑性ポリウレタンの合成
 50mLの一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(1.0g,1.37mmol)、m-キシリレンジアミン、および表1に示す溶媒を入れ、表1に示す条件で加熱と撹拌を行った。1H NMRスペクトルによって相当するポリウレタンの生成を確認し、またGPCによって平均分子量を見積もった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 溶媒を使わなかった実施例10(4)と比較して、得られたポリウレタンの平均分子量に大きな変化はなく、溶媒を用いても反応は良好に進行することが分かった。
 実施例12: 溶媒を使った難黄変型熱可塑性ポリウレタンの合成
 50mLの一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(1.0g,1.37mmol)、THF(444μL)、および表1に示すジアミンを入れ、50℃で332時間撹拌した。1H NMRスペクトルによって相当するポリウレタンの生成を確認し、またGPCによって平均分子量を見積もった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000027
 溶媒を使わなかった実施例10(4)と比較して、得られたポリウレタンの平均分子量に大きな変化はなく、溶媒を用いても反応は良好に進行することが分かった。
 実施例13: 無黄変型熱可塑性ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000028
 20mLの一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(2.40g,3.36mmol)、および1,6-ヘキサメチレンジアミン(0.40g,3.36mmol)を入れ、ダイアフラムポンプによる減圧下、反応液を撹拌しながら20℃から120℃まで5時間かけて昇温し、更に120℃で2時間撹拌した。圧力を常圧に戻し、反応液を室温まで冷却すると、淡黄色オイル状の目的物が定量的に得られた。
1H NMR(400MHz,DMSO-d6,20℃):δ7.07(s,2H,NH),4.73(m,2H,methine),3.56-3.32(m,methine and methylene),2.94(m,4H,methylene),1.36(br.,methyl),1.22(br.,methyl),1.11(m,methyl),1.04(d,J=6.0Hz,methyl)
HPLCによる平均分子量(ポリスチレン標準): Mn=2690,Mw=3886,Mw/Mn=1.44
 実施例14: 溶媒を使った難黄変型熱可塑性ポリウレタンの合成
 50mLの一口ナスフラスコに、ポリプロピレングリコール ビス(2,2,3,3-テトラフルオロプロピル カーボネート)(1.0g,1.37mmol)、1,6-ヘキサメチレンジアミン(0.11g,1.00mmol)、および表1に示す溶媒、更に場合によって表1に示す塩基を入れ、表1に示す条件で加熱と撹拌を行った。1H NMRスペクトルによって相当するポリウレタンの生成を確認し、またGPCによって平均分子量を見積もった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000029
 表3に示される結果の通り、実施例13と比較して、溶媒を用いたことで製造されるポリウレタンの平均分子量が大きくなった。ポリマーの流動性が高まったことで、反応が加速したためと考えられる。また、塩基を添加することで、反応が更に加速することが分かった。
 実施例15
 (1)1,6-ヘキサメチレン ビス(2,2,2-トリフルオロエチル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000030
 一口ナスフラスコにビス(3,3,3-トリフルオロエチル)カーボネート(0.79g,3.5mmol)、および炭酸カリウム(55mg,0.4mmol)をアセトニトリル(2mL)に加えて混合した。得られた溶液に1,6-ヘキサンジオール(0.18g,1.5mmol)を添加し、50℃で3時間撹拌した。反応液にジクロロメタンと水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液を減圧濃縮することにより、無色油状の目的物を得た(収率:81%,収量:0.45g,1.21mmol)。
1H NMR(500MHz,CDCl3,293K):δ/ppm=4.51(q,J=8.3Hz,4H,methylene),4.21(t,J=6.8Hz,4H,methylene),1.72(quin,J=7.0Hz,4H,methylene),1.43(quin,J=3.8Hz,4H,methylene)
13C NMR(125MHz,CDCl3,293K):δ/ppm=154.04,122.58,69.15,63.32,28.37,25.25
19F NMR(376MHz,CDCl3,293K):δ/ppm=-74.26
IR(ATR): 2932,1759,1418,1298,1239,1161,972,788cm-1
FAB-MS: m/z calculated for [M+H]+(C121666) 371.09,found 370.97
 実施例16
 (1)ビス(ヒドロキシエチル)ビスフェノールA ビス(2,2,2-トリフルオロエチル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000031
 一口ナスフラスコにビス(3,3,3-トリフルオロエチル)カーボネート(11.3g,50.0mmol)、および炭酸カリウム(688mg,5.0mmol)をアセトニトリル(25mL)に加えて混合した。得られた溶液にビス(ヒドロキシエチル)ビスフェノールA(5.28g,16.7mmol)を添加し、50℃で1時間加熱撹拌した。反応液にジエチルエーテルと水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液をエバポレーターで減圧濃縮した後に、更に80℃で2時間真空乾燥することにより、褐色油状の目的物を得た(収率:94%,収量:8.9g,15.7mmol)。
1H NMR(500MHz,CDCl3,293K):δ/ppm=7.13(d,J=9.0Hz,4H,phenyl),6.80(d,J=9.0Hz,4H,phenyl),4.53(t,J=4.8Hz,4H,methylene),4.52(q,J=8.2Hz,4H,methylene),4.18(t,J=4.8Hz,4H,methylene),1.63(s,6H,methyl)
13C NMR(125MHz,CDCl3,293K):δ/ppm=156.05,153.93,143.80,127.81,122.46,113.96,67.33,65.33,63.49,41.74,30.98
19F NMR(376MHz,CDCl3,293K):δ/ppm=-74.16
IR(ATR):2970,1761,1509,1417,1299,1227,1164,987,831cm-1
FAB-MS:m/z calculated for [M+H]+(C252668) 569.15,found 569.14
 実施例17
 (1)イソソルビド ビス(2,2,2-トリフルオロエチル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000032
 一口ナスフラスコにビス(3,3,3-トリフルオロエチル)カーボネート(11.3g,50.0mmol)、および炭酸カリウム(688mg,5.0mmol)をアセトニトリル(25mL)に加えて混合した。得られた溶液にイソソルビド(2.44g,16.7mmol)を添加し、50℃で1時間撹拌した。この反応液にジエチルエーテルと水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液をエバポレーターで減圧濃縮した後に、更に80℃で2時間真空乾燥することにより、褐色油状の目的物を得た(収率:82%,収量:5.5g,13.7mmol)。
1H NMR(500MHz,CDCl3,293K):δ/ppm=5.08-5.16(m,2H),4.87-4.99(m,1H),4.49-4.61(m,5H),4.06-4.12(m,1H),3.97-4.04(m,2H),3.87-3.94(m,1H)
13C NMR(125MHz,CDCl3,293K):δ/ppm=153.42,153.11,122.47,122.39,85.73,82.12,81.08,77.83,72.97,70.77,64.24,63.66
19F NMR(376MHz,CDCl3,293K):δ/ppm=-74.25
IR(ATR):2983,2885,1759,1416,1291,1237,1162,1095,990,973,778cm-1
FAB-MS:m/z calculated for [M+H]+(C121268) 399.04,found 399.00
 実施例18
 (1)2,2’-チオジエチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000033
 一口ナスフラスコにビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)カーボネート(1.81g,5mmol)、2,2’-チオジエタノール(0.12g,1mmol)、およびトリエチルアミン(0.1mmol,13.8μL)を加え、90℃で16時間撹拌した。その後、クロロホルムと水を添加して分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液をエバポレーターで減圧濃縮した後に、更に50℃で3時間真空乾燥させることにより、無色油状の目的物を得た(収率:75%,収量:0.38g,0.75mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.57(m,2H,methine),5.05-4.97(m,2H,methine),3.65-3.38(m,19H,methylene and methine),1.35-1.32(m,6H,methyl),1.14-1.10(m.,15H,methyl)
13C NMR(125MHz,CDCl3,293K):δ/ppm=152.8,120.3,70.5,69.0,30.5
19F NMR(376MHz,CDCl3,293K):δ/ppm=-73.52
IR(ATR):1774,1382,1296,1253,1238,1197,1189,1140,1106,939,929,686,677,594,565cm-1
FAB MS:m/z calculated for [M]+ (C1210126S) 510.00,found 509.93
 実施例19
 (1)ポリテトラメリレンエーテルグリコール ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000034
 一口ナスフラスコにビス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)カーボネート(3.62g,10mmol)とポリテトラメチレンエーテルグリコール(PTMG1500)(1.5g,1mmol)、およびトリエチルアミン(0.1mmol,13.8μL)を加え、90℃で16時間撹拌した。その後、クロロホルムと水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液を減圧濃縮した後に、60℃で1時間真空乾燥させることにより、白色固体の目的物を定量的(1.93g,1.0mmol)に得た。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.56(m,2H,methine),4.32(t,J=5.2Hz,4H,methylene),3.45-3.36(m,82H,methylene),1.83(m,4H,methylene),1.68-1.57(m,82H,methylene)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-73.52
IR(ATR):2942,2862,1777,1371,1253,1199,1106,1065,1012,996,617,607,594,582,567,554cm-1
FT-MS:m/z calculated for [M+Na]+ [C1210126(C48O)n] 501.02+72.07n,found 789.25(n=4),861.31(n=5),933.36(n=6),1005.42(n=7),1077.48(n=8),1149.53(n=9),1221.59(n=10),1365.71(n=11),1365.71(n=12)1437.76(n=13),1509.82(n=14),1581.88(n=15),1653.94(n=16),1725.99(n=17),1798.05(n=18),1870.11(n=19)
 実施例20
 (1)1,1’-チオジエチレン ビス(2,2,3,3-テトラフルオロプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000035
 一口ナスフラスコにビス(2,2,3,3-テトラフルオロプロピル)カーボネート(16mL,90mmol)、1,1’-チオジエタノール(3.7g,30mmol)、炭酸カリウム(0.42g,3mmol)、および溶媒としてアセトニトリル(50mL)を加え、50℃で3時間撹拌した。その後、エバポレーターで減圧濃縮した後に、ジクロロメタンと純水を加えて分液し、有機層を無水硫酸ナトリウムで乾燥させた。無水硫酸ナトリウムを濾別し、濾液をエバポレーターで減圧濃縮し、ガラスチューブオーブンにより蒸留を行い、170℃のフラクションを回収することにより、無色透明オイル状の目的物を得た(収率:15%,収量:1.97g,8.67mmol)。
1H NMR(400MHz,CDCl3,293K):δ/ppm=5.92(tt,J=53.0Hz,4.0Hz,2H,methine),4.54(tt,J=12.6Hz,1.2Hz,4H,methylene),4.36(t,J=6.8Hz,4H,methylene),2.86(t,J=6.8Hz,4H,methylene)
19F NMR(376MHz,CDCl3,293K):δ/ppm=-124.2,-137.6
IR(ATR):1760,1452,1267,1202,984,835,636,574cm-1
FAB-MS:m/z calculated for [M+H]+ (C111286S) 411.01,found 411.04
 実施例21
 (1)2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000036
 50mLナスフラスコにBHFC(24mmol,5.3mL)、2,2,3.3.4.4-ヘキサフルオロ-1,5-ペンタンジオール(1,5-HFPDL)(4.0mmol,0.84g)、ピリジン(0.40mmol,32μL)、溶媒としてアセトニトリル(2mL)を加え、20℃で6時間撹拌した。その後、溶媒を減圧留去し、減圧下で50℃に加熱して乾燥させ、無色液体として目的化合物を得た(収量:2.2g,3.6mmol,収率:90%)で得た。
1H NMR(400MHz,CDCl3,293K):δ5.56(sep,J=5.8Hz,2H,CH),4.77(t,J=13Hz,4H,CH2
13C NMR(125MHz,CDCl3,293K):δ152.4,120.0(q,J=283Hz),113.8(tt,J=257,31Hz),110.9(tt,J=261,33Hz),71.2(sep),64.6(t,J=28Hz)
19F NMR(376MHz,CDCI3,293K,C66 as external standard):δ-73.63(s,12F,CF3),-120.20(s,4F,CF2),-125.66(s,2F,CF2
IR(ATR):2985,1787,1384,1254,1200,1152,1111,1045,985,906,777,689cm-1
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000037
 7mLの試験管に、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.30g,0.50mmol)とm-キシリレンジアミン(73μL,0.53mmol)を入れ、100℃で2時間撹拌した。次いで、反応液にメタノールとヘキサンを適量加え、析出した固体を吸引濾過で集め、50℃で2時間真空乾燥させることにより、薄黄色固体である目的化合物を得た(収量:0.14g,0.35mmol,収率:71%)。
1H NMR(400MHz,acetone-d6,293K):δ7.31-7.21(m,4H,CHAr),4.69(t,J=14Hz,4H,CH2),4.34(s,4H,CH2
13C NMR(125MHz,acetone-d6,293K):δ155.8,140.3,129.5,127.2,126.9,116.2(tt),112.3(tt),60.5(t,J=25Hz),45.3
19F NMR(376MHz,acetone-d6,293K,C66 as external standard):δ-120.87(s,4F,CF2),-127.08(s,2F,CF2
IR(ATR):3322,1703,1529,1457,1260,1149,1055,967,776cm-1
HPLCによる平均分子量: Mn=6500,Mw=11100,Mw/Mn=1.7
 実施例22: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000038
 7mLの試験管に、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.30g,0.50mmol)と1,6-ヘキサメチレンジアミン(55mg,0.48mmol)を入れ、100℃で2時間撹拌した。次いで、反応液にアセトンとヘキサンを適量加え、析出した固体を吸引濾過で集め、50℃で2時間真空乾燥させることにより、白色固体である目的化合物を得た(収量:0.18g,0.48mmol,収率:95%)。
1H NMR(400MHz,acetone-d6,293K):δ6.74(t,J=5.6Hz,2H,NH),4.65(t,J=14Hz,4H,CH2),3.17(td,J=6.6,6.6Hz,4H,CH2),1.54(t,J=6.6Hz,4H,CH2),1.37(m,4H,CH2
13C NMR(125MHz,acetone-d6,293K):δ155.6,116.2(tt,J=220,26Hz),112.3(tt),60.2(t,J=25Hz),41.7,30.4,27.0
19F NMR(376MHz,acetone-d6,293K,C66 as external standard):δ-120.98(br.,4F,CF2),-127.25(br.,2F,CF2
IR(ATR):3331,2938,2864,1703,1535,1257,1151,978,896,773cm-1
HPLCによる平均分子量: Mn=6500,Mw=11300,Mw/Mn=1.7
 実施例23: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000039
 7mLの試験管に、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.30g,0.50mmol)とポリプロピレングリコールジアミン(PPGDA,平均分子量:430)(0.22g,0.50mmol)を入れ、100℃で2時間撹拌した。次いで、反応液を50℃で3時間真空乾燥させることにより、黄色粘性固体の目的化合物を得た(収量:0.36g,0.50mmol,収率:>99%)。
1H NMR(400MHz,acetone-d6,293K):δ6.58(br.,2H,NH),4.68-4.64(br.,4H,CH2),3.77(m,2H,CH),3.60-3.36(m,19H,CH+CH2),1.18(br.,6H,CH3),1.10(br.,15H,CH3
13C NMR(125MHz,acetone-d6,293K):δ154.9,116.2(tt,J=255,30Hz),112.2(tt),76.5-72.7(m),60.2(t,J=25Hz),48.5-48.2(m),17.7
19F NMR(376MHz,acetone-d6,293K,C66 as external standard):δ-120.89(br.),-127.17(br.)
IR(ATR):3330,2974,1873,1721,1534,1428,1375,1240,1098,927,769cm-1
HPLCによる平均分子量: Mn=6600,Mw=15000,Mw/Mn=2.3
 実施例24: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000040
 20mLナスフラスコに、2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.30g,0.50mmol)、4,4’-ジアミノジフェニルメタン(0.50mmol,99mg)、および溶媒としてTHF(2mL)を入れ、60℃で27日間撹拌した。およそ3日毎に反応溶から試料を採取し、重アセトンと混合して1H NMRにて分析し、反応が進行していることを確認した。次いで、反応液にTHFとヘキサンを適量加え、析出した固体を吸引濾過で集め、50℃で3時間真空乾燥させることにより、薄茶色固体の目的化合物を得た(収量:0.21g,0.46mmol,収率:91%)。
1H NMR(400MHz,DMSO-d6,293K):δ10.05(s,2H,NH),7.38(d,J=7.6Hz,4H,CHAr),7.14(d,J=7.6Hz,4H,CHAr),4.82(t,J=15Hz,4H,CH2),3.82(s,2H,CH2
13C NMR(125MHz,DMSO-d6,293K):δ151.8,136.2,136.1,128.9,118.6,115.0(tt),113.0(tt),59.0(t,J=21Hz),39.7
19F NMR(376MHz,DMSO-d6,293K,C66 as external standard):δ-119.20(br.,4F,CF2),-125.40(br.,2F,CF2
IR(ATR):3334,1716,1598,1536,1415,1236,1158,1112,992,814,762cm-1
HPLCによる平均分子量: Mn=6300,Mw=13400,Mw/Mn=2.1
 実施例25
 (1)2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000041
 50mLナスフラスコにBHFC(54mmol,11.9mL)、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサンジオール(9.0mmol,2.36g)、ピリジン(1.35mmol,108μL)、溶媒としてアセトニトリル(4mL)を入れ、20℃で6時間撹拌した。その後、その後、反応液に1M塩酸とハイドロフルオロエーテル(「NovecTM 7100」3M社製)を適量添加し、分液して、有機層を無水硫酸ナトリウムで乾燥させた。得られた溶液から溶媒を減圧留去した後、50℃で2時間真空乾燥させ、白色固体として目的化合物を得た(収量:5.6g,8.7mmol,収率:96%)で得た。
1H NMR(400MHz,CDCl3,293K):δ5.56(sep,J=6.0Hz,2H,CH),4.77(t,J=13Hz,4H,CH2
13C NMR(100MHz,CDCl3,293K):δ152.38,119.94,115.73,113.70,71.17,64.42
19F NMR(376MHz,CDCl3,293K):δ-73.49(s,12F,CF3),-119.99(s,4F,CF2),-123.65(s,4F,CF2
IR(ATR):2997,1790,1443,1411,1390,1371,1322,1293,1255,1234,1203,1179,1111,1044,1015,943,907,868,775,734cm-1
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000042
 7mLの試験管に2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを16.7%含有)(0.33g,0.42mmol)とm-キシリレンジアミン(66μL,0.50mmol)を入れ、150℃で1時間撹拌した。次いで、反応液にアセトンとヘキサンを適量加え、析出した固体を吸引濾過で集め、50℃で1.5時間真空乾燥させることにより、白色固体である目的化合物を得た(収量:0.19g,0.38mmol,収率:86%)。
1H NMR(400MHz,acetone-d6,293K):δ7.32-7.19(m,4H,CHAr),4.72(t,J=14.4Hz,4H,CH2),4.37(d,J=6.4Hz,4H,CH2
13C NMR(125MHz,acetone-d6,293K):δ155.77,140.30,129.44,127.27,126.97,116.16,112.20,60.47,45.45
19F NMR(376MHz,acetone-d6,293K):δ-120.66(s,4F,CF2),-124.36(s,4F,CF2
IR(ATR):3331,3060,2973,2928,2881,1698,1538,1350,1256,1173,1146,1118,1056,961,870,771cm-1
HPLCによる平均分子量: Mn=9500,Mw=18200,Mw/Mn=1.5
 (3)ポリウレタンの合成
 50mLナスフラスコに、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを9.5%含有)(3.25g,4.53mmol)、m-キシリレンジアミン(587μL,4.53mmol)、および溶媒としてテトラヒドロフラン(12.5mL)を入れ、65℃で2時間撹拌した。その後、溶媒を減圧留去し、50℃で2時間真空乾燥させることにより、白色固体である目的化合物を得た(収量:2.39g,4.53mmol,収率:99%)。
HPLCによる平均分子量: Mn=7900,Mw=13900,Mw/Mn=1.8
 (4)ポリウレタンの合成
 50mLナスフラスコに、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを10.7%含有)(2.18g,3.0mmol)、m-キシリレンジアミン(356μL,2.74mmol)、および溶媒としてテトラヒドロフラン(10mL)を入れ、室温で34時間撹拌した。その後、溶媒を減圧留去し、50℃で2時間真空乾燥させることにより、白色固体である目的化合物(未反応のカーボネートとm-キシリレンジアミンを含む)を得た。
HPLCによる平均分子量: Mn=5700,Mw=6600,Mw/Mn=1.2
 実施例26: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000043
 100mLナスフラスコに、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを7.8%含有)(0.65g,0.92mmol)と1,5-ペンタメチレンジアミン(108μL,0.92mmol)を入れ、150℃で1時間撹拌した。その後、反応液をテトラヒドロフランと混合し、溶媒を減圧留去し、50℃で2時間真空乾燥させることにより、茶色固体である目的化合物を得た(収量:0.44g,0.83mmol,収率:90%)。
1H NMR(400MHz,acetone-d6,293K):δ6.73(br.,2H,NH),4.68(t,J=14Hz,4H,CH2),3.17(q,J=6.6Hz,4H,CH2),1.57(qin,J=7.4Hz,4H,CH2),1.40(m,4H,CH2
13C NMR(125MHz,acetone-d6,293K):δ155.49,116.19,112.20,60.22,41.72,24.43
19F NMR(376MHz,acetone-d6,293K):δ-120.73(br.,4F,CF2),-124.41(br.,4F,CF2
IR(ATR):3354,2945,2868,1703,1533,1455,1260,1227,1170,1146,1122,1045,974,870,773cm-1
HPLCによる平均分子量: Mn=11600,Mw=22100,Mw/Mn=1.9
 実施例27: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000044
 (1)
 100mLナスフラスコに、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを9.5%含有)(0.65g,0.92mmol)と1,6-ヘキサメチレンジアミン(0.105g,0.92mmol)を入れ、150℃で1時間撹拌した。その後、反応液をテトラヒドロフランと混合し、溶媒を減圧留去し、50℃で2時間真空乾燥させることにより、白色固体である目的化合物を得た(収量:0.46g,0.85mmol,収率:92%)。
1H NMR(400MHz,acetone-d6,293K):δ6.72(t,J=4.8Hz,2H,NH),4.68(m,J=14Hz,4H,CH2),3.17(q,J=6.6Hz,4H,CH2),1.54(m,4H,CH2),1.37(m,4H,CH2
13C NMR(100MHz,acetone-d6,293K):δ155.47,116.19,112.19,60.19,41.72,26.99
19F NMR(376MHz,acetone-d6,293K):δ-120.77(br.,4F,CF2),-124.45(br.,4F,CF2
IR(ATR):3344,2942,2863,1791,1702,1535,1259,1174,1147,1119,1063,975,870,838,773,755cm-1
HPLCによる平均分子量: Mn=11000,Mw=17600,Mw/Mn=1.6
 (2)
 20mLのナスフラスコに、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを10.7%含有)(2.18g,3.0mmol)、1,6-ヘキサメチレンジアミン(0.349g,3.0mmol)、および溶媒としてテトラヒドロフラン(15mL)を入れ、室温で5時間撹拌した。その後、溶媒を減圧留去し、50℃で2時間真空乾燥させることにより、白色固体である目的化合物を得た(収量:1.43g,3.0mmol,収率:>99%)。
HPLCによる平均分子量: Mn=7200,Mw=12400,Mw/Mn=1.7
 実施例28: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000045
 (1)
 7mLの試験管に、2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(カーボネートオリゴマーを17.5%含有)(0.38g,0.48mmol)、ポリプロピレングリコールジアミン(PPGDA,平均分子量:400)(0.20g,0.50mmol)、および溶媒としてテトラヒドロフラン(1mL)を入れ、30℃で1時間撹拌した。その後、溶媒を減圧留去し、60℃で7時間真空乾燥させることにより、無色透明粘性液体である目的化合物を得た(収量:0.35g,0.50mmol,収率:98%)。
1H NMR(400MHz,acetone-d6,293K):δ6.60-6.54(br.,2H,NH),4.72-4.68(br.,4H,CH2),3.80(m,2H,CH),3.63-3.36(m,19H, CH+CH2),1.18(br.,6H,CH3),1.11(br.,15H,CH3
13C NMR(125MHz,acetone-d6,293K):δ154.91,116.19,112.19,76.54-72.70,60.35,48.39,17.69
19F NMR(376MHz,acetone-d6,293K):δ-120.64(br.),-124.33(br.)
IR(ATR):3319,2976,2935,2875,1782,1732,1531,1456,1377,1175,1100,1020,986,929,870,840,771cm-1
HPLCによる平均分子量: Mn=8300,Mw=13600,Mw/Mn=1.6   
 (2)
 10mLのナスフラスコに2,2,3,3,4,4,5,5-オクタフルオロ-1,6-ヘキサメチレン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)(0.65g,1.0mmol)とポリプロピレングリコールジアミン(PPGDA,平均分子量:230)(0.23g,1.0mmol)を入れ、溶媒としてテトラヒドロフラン(2mL)を加え、20℃で2時間撹拌した。その後、溶媒を減圧留去し、50℃で2時間真空乾燥させ、薄黄色透明粘性液体である目的化合物を得た(収量:0.68g,1.0mmol,収率:>99%,脱離したHFIPを含む)。
1H NMR(400MHz,acetone-d6,293K):δ6.64-6.52(br.,2H,NH),4.75-4.62(br.,4H,CH2),3.87-3.75(br.,2H,CH),3.58-3.36(m,19H,CH+CH2),1.18(br.,6H,CH3),1.10(br.,15H,CH3
13C NMR(125MHz,acetone-d6,293K):δ154.92,116.19,112.19,76.54-72.70,60.35,48.34,17.79
19F NMR(376MHz,acetone-d6,293K):δ-120.60(br.),-124.31(br.)
IR(ATR):3327,2977,2937,2878,2360,1715,1531,1456,1378,1287,1226,1173,1125,1100,983,894,870,841,771cm-1
HPLCによる平均分子量: Mn=13100,Mw=22400,Mw/Mn=1.7
 実施例29
 (1)パーフルオロポリエーテル(1,1,1,3,3,3-ヘキサフルオロイソプロピルカーボネート)の合成
Figure JPOXMLDOC01-appb-C000046
 50mLナスフラスコにBHFC(4.8mmol,1.1mL)、ペルフルオロポリエーテル(HOCH2CF2O(CF2CF2O)p(CF2O)qCF2CH2OH,「Fomblin(登録商標) D2」Solvay社製)(0.80mmol,1.2g)、ピリジン(0.16mmol,13μL)を加え、70℃で2時間撹拌した。その後、反応溶液に1M塩酸とハイドロフルオロエーテル(「NovecTM 7100」3M社製)を適量添加し、分液して、有機層を無水硫酸ナトリウムで乾燥させた。この溶液を減圧濃縮した後、75℃で1時間真空乾燥し、無色液体として目的化合物を得た(収量:1.2g,0.62mmol,収率:78%)。
1H NMR(400MHz,CDCl3,293K):δ5.54(br.,2H,CH),4.63(br.,4H,CH2
19F NMR(376MHz,CDCl3,293K):δ-53.45(m,12F,CF2),-73.69(s,12F,CF3),-77.79(m,4F,CF2),-88.88,-91.97(m,32F,CF2
IR(ATR):1796,1386,1190,1048,996,908cm-1
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000047
 7mLの試験管に、パーフルオロポリエーテル ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.38g,0.20 mmol)とm-キシリレンジアミン(24μL,0.18mmol)を入れ、100℃で2時間撹拌した。その後、反応液を50℃で2時間真空濃縮させることにより、無色粘性液体である目的化合物を得た(収量:0.37g,0.20mmol,収率:>99%)。
1H NMR(400MHz,CDCl3,293K):δ7.21-7.05(m,4H,CHAr),4.46(br.,4H,CH2),4.35(br.,4H,CH2
19F NMR(376MHz,CDCl3,293K):δ-51.67~-56.67(m,12F,CF2),-78.02~-81.05(m,4F,CF2),-88.8~-92.02(m,32F,CF2
IR(ATR):3351,1719,1541,1185,1052,697cm-1
HPLCによる平均分子量: Mn=6400,Mw=12600,Mw/Mn=2.0
 実施例30: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000048
 7mLの試験管に、パーフルオロポリエーテル ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.38g,0.20mmol)と1,5-ペンタメチレンジアミン(23μL,0.18mmol)を入れ、100℃で2時間撹拌した後、オイルポンプを用いて減圧条件にしながら、120℃で30分撹拌した。次いで、反応液を50℃で2時間真空濃縮することにより、薄黄色粘性固体である目的化合物を得た(収量:0.34g,0.20mmol,収率:>99%)。
1H NMR(400MHz,CDCl3,293K):δ4.45(br.,4H,CH2),3.24(br.,4H,CH2),1.38(br.,6H,CH2
19F NMR(376MHz,CDCl3,293K):δ-51.76~-56.61(m,12F,CF2),-77.92~-81.13(m,4F,CF2),-88.87~-91.85(m,32F,CF2
IR(ATR):3332,2942,1720,1521,1186,1059,815,695cm-1
HPLCによる平均分子量: Mn=6400,Mw=13000,Mw/Mn=2.0
 実施例31: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000049
 7mLの試験管に、パーフルオロポリエーテル ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.38g,0.20mmol)と1,6-ヘキサメチレンジアミン(23μL,0.18mmol)を入れ、100℃で2時間撹拌した。次いで、反応液を80℃で1時間真空濃縮することにより、無色粘性液体である目的化合物を得た(収量:0.31g,0.19mmol,収率:94%)。
1H NMR(400MHz,CDCl3,293K):δ5.73(br.,2H,NH),4.48(br.,4H,CH2),3.25(br.,4H,CH2),1.45-1.36(br.,4H,CH2),1.24-1.19(br.,4H,CH2
19F NMR(376MHz,CDCl3,293K):δ-51.84~-56.60(m,12F,CF2),-75.41~-81.15(m,4F,CF2),-88.89~-91.90(m,32F,CF2
IR(ATR):3332,2944,1721,1523,1186,1058,850,683cm-1
HPLCによる平均分子量: Mn=8300,Mw=17100,Mw/Mn=2.1
 実施例32: ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000050
 7mLの試験管に、パーフルオロポリエーテル ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.38g,0.20mmol)と4,4’-メチレン ビス(シクロヘキシルアミン)(23μL,0.18mmol)を入れ、100℃で2時間撹拌した。次いで、反応液を80℃で1時間真空濃縮することにより、無色粘性液体である目的化合物を得た(収量:0.31g,0.19mmol,収率:94%)。
1H NMR(400MHz,CDCl3,293K):δ4.43(br.,4H,CH2),3.42(br.,2H,CH),2.01-0.98(m,20H,CH2
19F NMR(376MHz,CDCl3,293K):δ-51.69~-56.41(m,12F,CF2),-77.91~-80.74(m,4F,CF2),-88.84~-91.91(m,32F,CF2
IR(ATR):3332,2944,1721,1523,1186,1058,850,683cm-1
HPLCによる平均分子量: Mn=9400,Mw=20500,Mw/Mn=2.2
 実施例33: ポリウレタンの合成
 (1)1H,1H,11H,11H-ドデカフルオロ-3,6,9-トリオキサウンデカン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)の合成
Figure JPOXMLDOC01-appb-C000051
 25mLナスフラスコに、BHFC(12mmol,2.64mL)、1H,1H,11H,11H-ドデカフルオロ-3,6,9-トリオキサウンデカン-1,11-ジオール(2.0mmol,0.82g)、ピリジン(0.20mmol,16μL)、及び溶媒としてアセトニトリル(1mL)を加え、20℃で6時間加熱撹拌した。その後、反応液に1M塩酸とハイドロフルオロエーテル(「NovecTM 7100」3M社製)を適量添加し、分液して有機層を無水硫酸ナトリウムで乾燥させた。得られた溶液から溶媒を減圧留去した後、50℃で1.5時間真空乾燥させ、白色固体である目的化合物を得た(収量:1.49g,1.9mmol,収率:93%)。
1H NMR(400MHz,CDCl3,293K):δ5.55(sep,J=5.6Hz,2H,CH),4.64(t,J=8.4Hz,4H,CH2
13C NMR(100MHz,CDCl3,293K):δ152.42,120.04,117.57,114.51,111.64,71.24,66.20
19F NMR(376MHz,CDCl3,293K):δ-73.67(m,12F,CF3),-77.77(m,4F,CF2),-88.83(m,4F,CF2),-88.94(s,4F,CF2
IR(ATR):2988,2360,1791,1385,1322,1288,1247,1196,1146,1108,1044,990,949,907,776,690cm-1
FT-MS:m/z calculated for [M+Na]+ (C166249) 820.9498,found 821.3282
 (2)ポリウレタンの合成
Figure JPOXMLDOC01-appb-C000052
 10mLのナスフラスコに、H,1H,11H,11H-ドデカフルオロ-3,6,9-トリオキサウンデカン ビス(1,1,1,3,3,3-ヘキサフルオロイソプロピル カーボネート)(0.80g,1.0mmol)とm-キシリレンジアミン(130μL,1.0mmol)を入れ、150℃で1時間撹拌した。その後、不溶分をテトラヒドロフランに溶解させ、溶媒を減圧留去し、50℃で2時間真空乾燥させ、黄色固体である目的化合物を得た(収量:0.68g,0.99mmol,収率:99%)で得た。
1H NMR(400MHz,acetone-d6,293K):δ7.30-7.21(m,4H,CHAr),4.66(t,J=10.2Hz,4H,CH2),4.34(d,J=6.4Hz,4H,CH2
13C NMR(125MHz,acetone-d6,293K):δ155.62,140.25,129.43,127.28,126.96,123.15,115.52,113.24,68.08,62.29,45.43,26.18
19F NMR(376MHz,acetone-d6,293K):δ-78.29(m,4F,CF2),-89.15(br.,4F,CF2),-89.48(s,4F,CF2
IR(ATR):3330,2974,2364,1699,1540,1412,1172,1108,1057,962,774,703cm-1
HPLCによる平均分子量: Mn=4800,Mw=12100,Mw/Mn=2.5
 比較例4
Figure JPOXMLDOC01-appb-C000053
 50mLナスフラスコに、ジフェニルカーボネート(24mmol,5.1g)、1,5-HFPDL(4.0mmol,0.84g)、およびピリジン(1.2mmol,96μL)を入れ、80℃で12日間撹拌した。次いで、溶媒を減圧蒸留で除去した後、ガラスチューブオーブンを用いて減圧蒸留した。
 その結果、黄色粘性固体として目的化合物である2,2,3,3,4,4-ヘキサフルオロ-1,5-ペンタメチレンジフェニルカーボネートが得られたが(収量:1.1g,2.5mmol,収率:63%)、目的化合物中には重合物が62%含まれていた。
 以上の結果の通り、フルオロカーボネート化合物ではなくジフェニルカーボネートを用いた場合には、望まない重合反応が進行してポリカーボネートが生成し、ポリウレタンの合成が困難となった。
1H NMR(400MHz,CDCl3,293K):δ7.41(t,J=8.0Hz,4H,CHAr),7.30-7.26(m,2H,CHAr),7.21-7.18(m,4H,CHAr),4.79-4.65(br.,10H,CH2+CH2
19F NMR(376MHz,CDCl3,293K):δ-119.98~-120.18(m,4F,CF2),-125.62(m,2F,CF2
IR(ATR):1772,1593,1496,1410,1240,1154,984,895,772,687cm-1
 比較例5
Figure JPOXMLDOC01-appb-C000054
 50mLナスフラスコに、ジフェニルカーボネート(10mmol,2.1g)、ペルフルオロポリエーテル(「Fomblin(登録商標) D2」Solvay社製)(1.0mmol,1.5g)、およびピリジン(1.0mmol,81μL)を入れ、85℃で9日間、相分離した溶液が混ざるよう強く撹拌した。反応後、反応液にジクロロメタンを加えてデカンテーションにより液体部分を除去した後に、ガラスチューブオーブンを用いて減圧蒸留した。
 その結果、無色液体として目的化合物であるパーフルオロポリエーテルジフェニルカーボネートが得られたが(収量:0.67g,0.38mmol,収率:38%)、目的化合物中には重合物が76%含まれていた。
 以上の結果の通り、フルオロカーボネート化合物ではなくジフェニルカーボネートを用いた場合には、おそらく反応液が2層に分離したことにより反応の進行が遅くなり、更に望まない重合反応が進行してポリカーボネートが生成し、ポリウレタンの合成が困難となった。
1H NMR(400MHz,CDCl3,293K):δ7.40(t,J=8.0Hz,4H,CHAr),7.30-7.26(m,2H,CHAr),7.18(d,J=7.6Hz,4H,CHAr),4.61-4.50(br.,17H,CH2+CH2
19F NMR(376MHz,CDCl3,293K):δ-54.88(m,12F,CF2),-80.61(m,4F,CF2),-89.00~-91.92(m,32F,CF2
IR(ATR):1790,1182,1055,826cm-1

Claims (7)

  1.  ポリウレタンを製造するための方法であって、
     下記式(I)で表されるフルオロカーボネート化合物と、下記式(II)で表される二価アルコール化合物とを反応させることにより、下記式(III)で表されるビスカーボネート化合物を得る工程、および、
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Rf1は、独立して、フルオロ基を有する脂肪族炭化水素基を示し、
     R1は二価の有機基を示す。]
     上記式(III)で表されるビスカーボネート化合物と、下記式(IV)で表される二価アミノ化合物とを反応させることにより、下記式(V)で表されるポリウレタンを得る工程を含むことを特徴とする方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Rf1およびR1は前記と同義を示し、
     R2は二価有機基を示す。]
  2.  塩基の存在下、式(I)で表されるフルオロカーボネート化合物と式(II)で表される二価アルコール化合物とを反応させる請求項1に記載の方法。
  3.  R1が、ハロゲノ基で置換されてもよいC2-10アルカンジイル基である請求項1または2に記載の方法。
  4.  R1が式-R3-[-X-R3-]m-(XはOまたはSを示し、R3は、ハロゲノ基で置換されてもよいC1-8アルカンジイル基を示し、mは、1以上、180以下の整数を示す。)で表される二価有機基である請求項1または2に記載の方法。
  5.  R2が、ハロゲノ基で置換されてもよいC2-10アルカンジイル基である請求項1~4のいずれかに記載の方法。
  6.  R2がC1-6アルカンジイル-C6-12アリールジイル-C1-6アルカンジイル基である請求項1~4のいずれかに記載の方法。
  7.  下記式(III-1)で表されることを特徴とするビスカーボネート化合物。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     Rf2は、Hまたはフルオロ基を有する脂肪族炭化水素基を示し、
     Rf3とRf4は、独立して、フルオロ基を有する脂肪族炭化水素基を示し、
     R1は二価の有機基を示す。]
PCT/JP2021/017511 2020-05-11 2021-05-07 ポリウレタンの製造方法 WO2021230151A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21803803.2A EP4151671A1 (en) 2020-05-11 2021-05-07 Method for manufacturing polyurethane
JP2022521874A JPWO2021230151A1 (ja) 2020-05-11 2021-05-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020083148 2020-05-11
JP2020-083148 2020-05-11

Publications (1)

Publication Number Publication Date
WO2021230151A1 true WO2021230151A1 (ja) 2021-11-18

Family

ID=78525824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017511 WO2021230151A1 (ja) 2020-05-11 2021-05-07 ポリウレタンの製造方法

Country Status (3)

Country Link
EP (1) EP4151671A1 (ja)
JP (1) JPWO2021230151A1 (ja)
WO (1) WO2021230151A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304903A (zh) * 2022-09-02 2022-11-08 四川龙华光电薄膜股份有限公司 一种tpu改性树脂及应用
WO2023080052A1 (ja) * 2021-11-02 2023-05-11 国立大学法人神戸大学 ポリウレタンの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149840A (ja) 1996-11-19 1998-06-02 Mitsui Chem Inc 非水電解液および非水電解液二次電池
WO2014171367A1 (ja) * 2013-04-16 2014-10-23 旭硝子株式会社 ポリカーボネートの製造方法およびポリカーボネート
US9062160B1 (en) 2014-01-23 2015-06-23 International Business Machines Corporation Catalyst-free methods of forming polyurethanes from pentafluorophenyl carbonates
WO2017104709A1 (ja) 2015-12-18 2017-06-22 住友化学株式会社 イソシアネート化合物の製造方法
JP2017530091A (ja) * 2014-07-29 2017-10-12 ソルヴェイ(ソシエテ アノニム) 2つの酸素含有官能基を含むフッ素化カーボネート
WO2018017349A1 (en) 2016-07-18 2018-01-25 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
WO2018211952A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 カーボネート誘導体の製造方法
WO2018211953A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 フッ素化カーボネート誘導体の製造方法
WO2020100970A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 ハロゲノギ酸ハロゲン化アルキルエステルの製造方法
JP2020083148A (ja) 2018-11-28 2020-06-04 トヨタ自動車株式会社 車両用ドア制御装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149840A (ja) 1996-11-19 1998-06-02 Mitsui Chem Inc 非水電解液および非水電解液二次電池
WO2014171367A1 (ja) * 2013-04-16 2014-10-23 旭硝子株式会社 ポリカーボネートの製造方法およびポリカーボネート
US9062160B1 (en) 2014-01-23 2015-06-23 International Business Machines Corporation Catalyst-free methods of forming polyurethanes from pentafluorophenyl carbonates
JP2017530091A (ja) * 2014-07-29 2017-10-12 ソルヴェイ(ソシエテ アノニム) 2つの酸素含有官能基を含むフッ素化カーボネート
WO2017104709A1 (ja) 2015-12-18 2017-06-22 住友化学株式会社 イソシアネート化合物の製造方法
WO2018017349A1 (en) 2016-07-18 2018-01-25 Scientia Vascular, Llc Guidewire devices having shapeable tips and bypass cuts
WO2018211952A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 カーボネート誘導体の製造方法
WO2018211953A1 (ja) 2017-05-16 2018-11-22 国立大学法人神戸大学 フッ素化カーボネート誘導体の製造方法
WO2020100970A1 (ja) * 2018-11-15 2020-05-22 国立大学法人神戸大学 ハロゲノギ酸ハロゲン化アルキルエステルの製造方法
JP2020083148A (ja) 2018-11-28 2020-06-04 トヨタ自動車株式会社 車両用ドア制御装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AMAURY BOSSION ET AL., LANGMUIR, vol. 33, 2017, pages 1959 - 1968
DANIELA M. FIDALGO ET AL., JOURNAL OF POLYMER SCIENCE PART A, vol. 51, 2013, pages 463 - 470
FUKUOKA SHINSUKE ET AL., POLYMER JOURNAL, vol. 39, no. 2, 2007, pages 91 - 114
KOMIYA KYOSUKEMASAMOTO JUNZO, JOURNAL OF JAPAN SOCIETY FOR PRODUCTION, vol. 11, no. 2, 2005, pages 109 - 114
See also references of EP4151671A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080052A1 (ja) * 2021-11-02 2023-05-11 国立大学法人神戸大学 ポリウレタンの製造方法
CN115304903A (zh) * 2022-09-02 2022-11-08 四川龙华光电薄膜股份有限公司 一种tpu改性树脂及应用

Also Published As

Publication number Publication date
EP4151671A1 (en) 2023-03-22
JPWO2021230151A1 (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2021230151A1 (ja) ポリウレタンの製造方法
US11680077B2 (en) Preparation method for glufosinate
US9309218B2 (en) 2-Oxo-1,3-dioxolane-4-carboxamides, their preparation and use
JP6338599B2 (ja) 2−オキソ−1,3−ジオキソラン−4−カルボキサミドのビルディングブロック、その製造及び使用
JP2018507932A (ja) 高い安定性を有するポリオキサゾリジノン化合物の合成方法
CN110114339A (zh) 制备脂族异氰酸酯的方法
TW201829375A (zh) 異氰酸酯組成物、異氰酸酯組成物的製造方法及異氰酸酯聚合物的製造方法
EP2771315A1 (fr) PROCEDE DE PREPARATION D'UN COMPOSE COMPRENANT AU MOINS UN MOTIF béta-HYDROXY-URETHANE ET/OU AU MOINS UN MOTIF gamma-HYDROXY-URETHANE.
US20160096914A1 (en) Urethanes, polymers thereof, coating compositions and their production from cyclic carbonates
BR112020005932A2 (pt) compostos orgânicos funcionalizados com heteroalquenil e heteroalquil halogenados e métodos para preparar tais compostos
WO2018177989A1 (fr) Nouveaux composes de type dithiospirocetals et leur utilisation
WO2023080052A1 (ja) ポリウレタンの製造方法
EP2430027B1 (fr) Polymeres triazoles/tetrazoles issus de la cyclo addition de monomeres derives de dianhydrohexitol fonctionnalises, composes intermediaires, leurs procedes de preparation et leurs applications
LU84238A1 (fr) Nouveaux sels de polyisocyanates organiques et leur preparation
JP7308723B2 (ja) シリルアミン化合物
WO2023080049A1 (ja) 含フッ素ポリウレタンの製造方法
US4259255A (en) Process for the production of isocyanates
KR20210011955A (ko) 적어도 하나의 4-(2-옥시에틸리덴)-1,3-디옥솔란-2-온 단위를 포함하는 단량체 및 그의 용도
FR2951448A1 (fr) Synthese de polyurethane par autocondensation
EP2080753A1 (en) Method for producing tris(perfluoroalkanesulfonyl)methide acid salt
CN113365987A (zh) 制备硫代碳酸酯的方法
US4325887A (en) Isocyanatoaryl sulfonic acid esters
US4009152A (en) Diisocyanato-diketenes
JP5199899B2 (ja) スルホン酸ジオール化合物の製造方法およびポリウレタン樹脂の製造方法
JP7475638B2 (ja) 光学活性化合物およびその製造方法、光学活性化合物を含む配位化合物、環状化合物、ならびに中間体化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022521874

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021803803

Country of ref document: EP

Effective date: 20221212