WO2018209888A1 - 一种红色荧光粉、其制备方法及其所制成的发光装置 - Google Patents

一种红色荧光粉、其制备方法及其所制成的发光装置 Download PDF

Info

Publication number
WO2018209888A1
WO2018209888A1 PCT/CN2017/106750 CN2017106750W WO2018209888A1 WO 2018209888 A1 WO2018209888 A1 WO 2018209888A1 CN 2017106750 W CN2017106750 W CN 2017106750W WO 2018209888 A1 WO2018209888 A1 WO 2018209888A1
Authority
WO
WIPO (PCT)
Prior art keywords
red phosphor
phosphor
outer shell
fluorescent powder
red
Prior art date
Application number
PCT/CN2017/106750
Other languages
English (en)
French (fr)
Inventor
刘荣辉
陈观通
刘元红
马小乐
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to KR1020197033390A priority Critical patent/KR102345463B1/ko
Priority to US16/612,299 priority patent/US11680203B2/en
Priority to JP2019557606A priority patent/JP6941690B2/ja
Publication of WO2018209888A1 publication Critical patent/WO2018209888A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/677Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7719Halogenides
    • C09K11/772Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention belongs to the field of luminescent materials, and in particular to a red phosphor, a preparation method thereof and a illuminating device produced thereby.
  • the flat panel display has been blooming, and the liquid crystal display (LCD) has the strongest development momentum. It has been widely used in mobile phones, notebook computers, and high-definition televisions. Since the liquid crystal itself does not emit light, the backlight becomes an indispensable key component of the liquid crystal device.
  • LCD liquid crystal display
  • the white light generated by the "blue LED chip + phosphor" is generated by filtering and splitting, and it is necessary to produce pure red, blue and green light, so the phosphor determines the LED backlight liquid crystal display.
  • the key factor of the gamut At present, the wide color gamut liquid crystal display LED backlight generally adopts the SiAlON:Eu green phosphor and the fluoride red phosphor combination scheme.
  • the existing silicon-based fluoride phosphors (such as KSiF 6 : Mn 4+ ) have good water resistance, but the luminous efficiency and temperature resistance are not good, and the luminous efficiency of the lanthanide fluoride phosphor (KGeF 6 : Mn 4+ ) And good temperature resistance, but poor water resistance, seriously restricting the development of wide color gamut display technology.
  • the present invention provides a red phosphor.
  • the red phosphor provided by the invention has excellent comprehensive properties such as luminous efficiency, temperature resistance and water resistance.
  • the present invention adopts the following technical means:
  • a red phosphor characterized in that the particles of the red phosphor are composed of a phosphor core and an outer shell, and the chemical composition of the phosphor core is expressed as A x1 Ge z1 F 6 : y 1 Mn 4+ , and the chemical composition of the outer shell
  • the formula is expressed as B x2 M z2 F 6 : y 2 Mn 4+ , where 1.596 ⁇ x 1 ⁇ 2.2, 1.6 ⁇ x 2 ⁇ 2.2, 0.001 ⁇ y 1 ⁇ 0.2, 0 ⁇ y 2 ⁇ 0.2, 0.9 ⁇ z 1 ⁇ 1.1, 0.9 ⁇ z 2 ⁇ 1.1,
  • A, B are independently selected from alkali metal elements, and M is Si or both Si and Ge elements.
  • the red phosphor having the above composition and ratio not only has excellent luminous efficiency, but also has excellent properties such as temperature resistance and water resistance.
  • a and B are independently selected from the group consisting of Li, Na, and K elements, and preferably A and B are both K elements.
  • the molar ratio m of the Si element to the M element in the outer shell satisfies: 0.5 ⁇ m ⁇ 1.
  • the molar ratio n of the Mn element to the M element in the outer shell satisfies: 0 ⁇ n ⁇ 0.1, preferably 0 ⁇ n ⁇ 0.05.
  • m is 1 and n is 0. That is, the M element in the outer casing is only Si and does not contain Mn.
  • the outer shell has a thickness of from 0.5 to 15 ⁇ m, preferably from 1 to 12 ⁇ m, further preferably from 2 to 5 ⁇ m.
  • the red phosphor has a particle size of from 5 to 45 ⁇ m, preferably from 10 to 40 ⁇ m, further preferably from 15 to 35 ⁇ m.
  • the outer shell has a thickness of 2 to 5 ⁇ m and the red phosphor has a particle size of 15 to 35 ⁇ m.
  • the thickness of the above-mentioned outer casing and the particle size setting of the red phosphor can optimize the overall performance of the red phosphor.
  • the chemical composition of the above phosphor is K x1 Ge z1 F 6 : y 1 Mn 4+ @K x2 M z2 F 6 : y 2 Mn 4+ , when the molar ratio of K element, M element, F element and Mn element and compound When the total molar ratio conforms to a certain range, the prepared phosphor has excellent luminescent properties.
  • the M element can also be replaced by, but not limited to, a Ti element.
  • the invention also provides a preparation method of the red phosphor of the invention, comprising the following steps:
  • a x1 Ge z1 F 6 y 1 Mn 4+
  • the compound containing A, Ge and Mn is dissolved in 30-50 wt% hydrofluoric acid solution at 10-50 ° C, and mixed.
  • the resulting precipitate is sieved, washed and dried to obtain A x1 Ge z1 F 6 : y 1 Mn 4 + phosphor core powder;
  • the phosphor core powder obtained in the step (1) is added to the mother liquid material obtained in the step (2), stirred, and a precipitate is obtained, which is sieved, washed, and dried to obtain the red phosphor.
  • the mixture is stirred after mixing, and preferably stirred for 2 to 60 minutes.
  • the time of stirring in the step (3) is from 2 to 60 minutes.
  • the present invention also provides a light-emitting device comprising the red phosphor of the present invention.
  • the illumination device further comprises a radiation source, preferably a semiconductor light-emitting chip.
  • the semiconductor light emitting chip is an LED chip emitting a peak wavelength of 440 to 470 nm.
  • the phosphor of the present invention or a resin, a silica gel, a plastic, a glass, a ceramic, or the like, which is mixed with the phosphor of the present invention may be combined with an ultraviolet, violet or blue radiation source to form a light-emitting device.
  • the field of lighting or display is widely used.
  • the present invention has the following advantages and benefits:
  • the phosphor of the present invention is a novel red phosphor for white LED, and the core is a fluorene-based fluoride phosphor having high luminous efficiency and temperature resistance, and the outer shell is silicon-containing fluorine excellent in water resistance.
  • the material has a comprehensive performance such as excellent luminous efficiency, temperature resistance and water resistance.
  • a light-emitting device having characteristics of high light efficiency, high weather resistance, and wide color gamut display can be produced by using the phosphor of the present invention in combination with other phosphors.
  • K 2 Ge 0.9 F 6 Ingredients for 0.1Mn 4+, at 10-50 deg.] C, containing the K, Ge and Mn compounds are dissolved in 30-50wt% hydrofluoric acid solution, mixing the resulting The precipitate is sieved, washed and dried to obtain K 2 Ge 0.9 F 6 :0.1Mn 4+ phosphor;
  • the red phosphor obtained in the comparative example of the present invention and the ⁇ -SiAlON:Eu 2+ green phosphor are uniformly dispersed in the organic silica gel in a mass ratio of 4:1, and the mixture obtained by the mixed defoaming treatment is coated on the blue light.
  • the LED emission wavelength: 450 nm
  • the white LED device was ignited by a current of 150 mA at 85 °C and 85 °C for 168 h to test the change of the luminous flux, and the decay rate of the luminous flux was calculated.
  • the attenuation rate was the difference between the initial luminous flux and the luminous flux after 168 h, and then divided. The value obtained with the initial luminous flux.
  • Table 1 The results obtained are shown in Table 1.
  • K x1 Ge z1 F 6 y 1 Mn 4+
  • the compound containing K, Ge and Mn is dissolved in 30-50 wt% hydrofluoric acid solution at 10-50 ° C, and mixed.
  • the resulting precipitate is sieved, washed and dried to obtain K x1 Ge z1 F 6 : y 1 Mn 4+ phosphor core powder;
  • the luminous flux of the example is the actual luminous flux divided by the actual luminous flux of the comparative example, and multiplied by 100, with the luminous flux of the comparative example being the reference value of 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

一种红色荧光粉、其制备方法及其所制成的发光装置。所述红色荧光粉的颗粒由荧光粉内核和外壳组成,荧光粉内核化学组成式表示为Ax1Gez1F6:y1Mn4+,外壳的化学组成式表示为Bx2Mz2F6:y2Mn4+,其中,1.596≤x1≤2.2,1.6≤x2≤2.2,0.001≤y1≤0.2,0≤y2≤0.2,0.9≤z1≤1.1,0.9≤z2≤1.1,A、B独立地选自碱金属元素,M为Si或Si和Ge两种元素。本发明提供的红色荧光粉具有高的发光效率及稳定性。此外,该荧光粉单独或与其他发光材料组合可用于制备高性能的发光装置。

Description

一种红色荧光粉、其制备方法及其所制成的发光装置 技术领域
本发明属于发光材料领域,具体而言,涉及一种一种红色荧光粉、其制备方法及其所制成的发光装置。
背景技术
近年来,平板显示百花齐放,而尤以液晶显示(Liquid crystal display,LCD)发展势头最为强劲,其在手机、笔记本电脑、高清电视领域均具有广泛应用。由于液晶本身不发光,背光源就成为液晶器件不可缺少的关键元件。
对于液晶显示LED背光而言,利用“蓝光LED芯片+荧光粉”产生的白光,经过滤光、分光后产生,需要产生纯正的红、蓝和绿三色光,因而荧光粉是决定LED背光液晶显示器色域的关键因素。目前,广色域液晶显示LED背光源普遍采用SiAlON:Eu绿色荧光粉和氟化物红色荧光粉组合方案。现有硅系氟化物荧光粉(如KSiF6:Mn4+)虽然耐水性较好,但发光效率、耐温性不佳,而锗系氟化物荧光粉(KGeF6:Mn4+)发光效率和耐温性好,但耐水性不佳,严重制约了广色域显示技术的发展。
因此,亟待开发新型高性能红色荧光粉,以满足广色域液晶显示LED背光源的应用需要。
发明内容
为此,本发明提供了一种红色荧光粉。本发明提供的红色荧光粉具有优良的发光效率、耐温性和耐水性等综合性能。
为达上述目的,本发明采用如下技术手段:
一种红色荧光粉,其特征在于,所述红色荧光粉的颗粒由荧光粉内核 和外壳组成,荧光粉内核化学组成式表示为Ax1Gez1F6:y1Mn4+,外壳的化学组成式表示为Bx2Mz2F6:y2Mn4+,其中,1.596≤x1≤2.2,1.6≤x2≤2.2,0.001≤y1≤0.2,0≤y2≤0.2,0.9≤z1≤1.1,0.9≤z2≤1.1,A、B独立地选自碱金属元素,M为Si或Si和Ge两种元素。
采用上述组成及配比的红色荧光粉不仅具有优良的发光效率,而且稳定性如耐温性和耐水性等性能优异。
作为优选,A、B独立地选自Li、Na、K元素,优选A、B均为K元素。
为了进一步增强本发明红色荧光粉的耐温性和耐水性,作为优选,外壳中Si元素与M元素的摩尔比m满足:0.5≤m≤1。
为了进一步增强本发明红色荧光粉的耐温性和耐水性,作为优选,外壳中Mn元素与M元素的摩尔比n满足:0≤n≤0.1,优选为0≤n≤0.05。
作为优选,0.5≤m≤1,0≤n≤0.05。
作为优选,m为1,n为0。即外壳中M元素仅为Si,且不含Mn。
作为优选,外壳的厚度为0.5-15μm,优选为1-12μm,进一步优选为2-5μm。
作为优选,红色荧光粉的颗粒尺寸为5-45μm,优选为10-40μm,进一步优选为15-35μm。
作为优选,外壳的厚度为2-5μm,红色荧光粉的颗粒尺寸为15-35μm。上述外壳的厚度和红色荧光粉的颗粒尺寸的设置可使得红色荧光粉的综合性能达到最佳。
上述荧光粉的化学组成式为Kx1Gez1F6:y1Mn4+@Kx2Mz2F6:y2Mn4+,当K元素、M元素、F元素以及Mn元素摩尔比与化合物总摩尔比符合一定范围时,制备的荧光粉具有优异的发光性能。M元素也可以由但不限的Ti元素取代。
本发明还提供了一种本发明所述红色荧光粉的制备方法,包括如下步骤:
(1)按照Ax1Gez1F6:y1Mn4+进行配料,在10-50℃下,把含有A、Ge和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合,将所得沉淀物过筛、洗涤和干燥,获得Ax1Gez1F6:y1Mn4+荧光粉内核粉体;
(2)按照Bx2Mz2F6:y2Mn4+进行配料,M为Si和Ge,或为Si,在10-50℃下,把含有A和M的化合物,或含有A、M和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合获得母液材料;
(3)将步骤(1)中获得的荧光粉内核粉体加入步骤(2)获得的母液材料中,搅拌,得到沉淀物,并进行过筛、洗涤和干燥,获得所述红色荧光粉。
作为优选,混合后进行搅拌,优选搅拌2-60分钟。
作为优选,步骤(3)中搅拌的时间为2-60分钟。
本发明还提供了一种发光装置,其包括本发明所述的红色荧光粉。
作为优选,所述发光装置还包括辐射源,优选为半导体发光芯片。
作为优选,所述的半导体发光芯片为发射峰值波长440~470nm的LED芯片。
另外,还可以将本发明荧光粉或者掺有本发明荧光粉的树脂、硅胶、塑料、玻璃、陶瓷等光转换膜材料,与紫外、紫光或蓝光辐射源组合形成发光装置,这些发光装置能够在照明或显示领域得到广泛应用。
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明的荧光粉是一种新型的白光LED用红色荧光粉,内核是具有高具有优良的发光效率、耐温性的锗系氟化物荧光粉,外壳为耐水性优异的含硅氟化物材料,因而该荧光粉具有优良的发光效率、耐温性和耐水性等综合性能。
(2)利用本发明的荧光粉结合其它荧光粉可以制成具有高光效、高耐候性和广色域显示的特点的发光装置。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面结合实施例来详细说明本申请。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、装置、器件、组件和/或它们的组合。
比较例1
(1)按照K2Ge0.9F6:0.1Mn4+进行配料,在10-50℃下,把含有K、Ge和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合,将所得沉淀物过筛、洗涤和干燥,获得K2Ge0.9F6:0.1Mn4+荧光粉;
(2)将本发明比较例获得的红色荧光粉与β-SiAlON:Eu2+绿色荧光粉按4:1质量比均匀分散到有机硅胶中,经混合脱泡处理后得到的混合物涂敷在蓝光LED上(发射波长450nm),经过150℃和3小时的烘干完成封装,得到白光LED器件。将白光LED器件在85%湿度、85℃条件下通入150mA电流点亮168h,测试其发光光通量变化,并计算发光光通衰减率,衰减率为初始光通量与168h后光通量的差值,再除以初始光通量所得值。所得结果列于表1中。
实施例1-21
(1)按照Kx1Gez1F6:y1Mn4+进行配料,在10-50℃下,把含有K、Ge 和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合,将所得沉淀物过筛、洗涤和干燥,获得Kx1Gez1F6:y1Mn4+荧光粉内核粉体;
(2)按照Kx2Mz2F6:y2Mn4+进行配料,M为Si和Ge,或为Si,在10-50℃下,把含有A和M的化合物,或含有A、M和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合获得母液材料;
(3)将步骤(1)中获得的荧光粉内核粉体加入步骤(2)获得的母液材料中,搅拌,得到沉淀物,并进行过筛、洗涤和干燥,获得所述红色荧光粉。表1中列出了实施例1~21产物的具体组成。
(4)将本发明比较例1~21获得的红色荧光粉与β-SiAlON:Eu2+绿色荧光粉按4:1质量比均匀分散到有机硅胶中,经混合脱泡处理后得到的混合物涂敷在蓝光LED上(发射波长450nm),经过150℃和3小时的烘干完成封装,得到白光LED器件。将白光LED器件在85%湿度、85℃条件下通入150mA电流点亮168h,测试其发光光通量变化,并计算发光光通衰减率,衰减率为初始光通量与168h后光通量的差值,再除以初始光通量所得值。所得结果列于表1中。
表1
Figure PCTCN2017106750-appb-000001
Figure PCTCN2017106750-appb-000002
注:以对比例的光通量为基准值100计,实施例的光通量为其实际光通量除以对比例的实际光通量,再乘以100。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种红色荧光粉,其特征在于,所述红色荧光粉的颗粒由荧光粉内核和外壳组成,荧光粉内核化学组成式表示为Ax1Gez1F6:y1Mn4+,外壳的化学组成式表示为Bx2Mz2F6:y2Mn4+,其中,1.596≤x1≤2.2,1.6≤x2≤2.2,0.001≤y1≤0.2,0≤y2≤0.2,0.9≤z1≤1.1,0.9≤z2≤1.1,A、B独立地选自碱金属元素,M为Si或Si和Ge两种元素。
  2. 根据权利要求1所述的红色荧光粉,其特征在于,A、B独立地选自Li、Na或K元素,优选A、B均为K元素。
  3. 根据权利要求1或2所述的红色荧光粉,其特征在于,外壳中Si元素与M元素的摩尔比m满足:0.5≤m≤1;
    优选地,外壳中Mn元素与M元素的摩尔比n满足:0≤n≤0.1,优选为0≤n≤0.05。
  4. 根据权利要求3所述的红色荧光粉,其特征在于,0.5≤m≤1,0≤n≤0.05;
    优选地,m为1,n为0。
  5. 根据权利要求1-4任一项所述的红色荧光粉,其特征在于,外壳的厚度为0.5-15μm,优选为1-12μm,进一步优选为2-5μm;
    优选地,红色荧光粉的颗粒尺寸为5-45μm,优选为10-40μm,进一步优选为15-35μm。
  6. 根据权利要求1-5任一项所述的红色荧光粉,其特征在于,外壳的厚度为2-5μm,红色荧光粉的颗粒尺寸为15-35μm。
  7. 一种权利要求1-6任一项所述红色荧光粉的制备方法,包括如下步骤:
    (1)按照Ax1Gez1F6:y1Mn4+进行配料,在10-50℃下,把含有A、Ge和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合,将所得沉淀物过 筛、洗涤和干燥,获得Ax1Gez1F6:y1Mn4+荧光粉内核粉体;
    (2)按照Bx2Mz2F6:y2Mn4+进行配料,M为Si和Ge,或为Si,在10-50℃下,把含有A和M的化合物,或含有A、M和Mn的化合物分别溶解于30-50wt%氢氟酸溶液,混合获得母液材料;
    (3)将步骤(1)中获得的荧光粉内核粉体加入步骤(2)获得的母液材料中,搅拌,得到沉淀物,并进行过筛、洗涤和干燥,获得所述红色荧光粉。
  8. 根据权利要求7所述的制备方法,其特征在于,混合后进行搅拌,优选搅拌2-60分钟;
    优选地,步骤(3)中搅拌的时间为2-60分钟。
  9. 一种发光装置,其特征在于,其包括权利要求1-6任一项所述的红色荧光粉。
  10. 根据权利要求9所述的发光装置,其特征在于,所述发光装置还包括辐射源,优选为半导体发光芯片;
    优选地,所述的半导体发光芯片为发射峰值波长440~470nm的LED芯片。
PCT/CN2017/106750 2017-05-15 2017-10-18 一种红色荧光粉、其制备方法及其所制成的发光装置 WO2018209888A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197033390A KR102345463B1 (ko) 2017-05-15 2017-10-18 적색 형광 분말, 그 제조 방법 및 이로 제조되는 발광 장치
US16/612,299 US11680203B2 (en) 2017-05-15 2017-10-18 Red phosphor, preparation method thereof and light-emitting device prepared therefrom
JP2019557606A JP6941690B2 (ja) 2017-05-15 2017-10-18 赤色蛍光体、その製造方法および製造された発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710339569.4 2017-05-15
CN201710339569.4A CN107057702B (zh) 2017-05-15 2017-05-15 一种红色荧光粉、其制备方法及其所制成的发光装置

Publications (1)

Publication Number Publication Date
WO2018209888A1 true WO2018209888A1 (zh) 2018-11-22

Family

ID=59596609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106750 WO2018209888A1 (zh) 2017-05-15 2017-10-18 一种红色荧光粉、其制备方法及其所制成的发光装置

Country Status (5)

Country Link
US (1) US11680203B2 (zh)
JP (1) JP6941690B2 (zh)
KR (1) KR102345463B1 (zh)
CN (1) CN107057702B (zh)
WO (1) WO2018209888A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814259A (zh) * 2023-05-18 2023-09-29 湖南师范大学 一种耐湿性氟化物荧光粉及其制备方法和应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057702B (zh) 2017-05-15 2019-10-01 有研稀土新材料股份有限公司 一种红色荧光粉、其制备方法及其所制成的发光装置
JP2019011429A (ja) * 2017-06-30 2019-01-24 デンカ株式会社 フッ化物蛍光体粉末及びそれを用いた発光装置
CN113337279A (zh) * 2021-04-30 2021-09-03 湖南师范大学 一种氟化物荧光粉及其制备方法
CN116814251B (zh) * 2023-06-16 2024-03-26 江苏博睿光电股份有限公司 一种抗劣化红色荧光粉及其制备方法与应用
CN116814250B (zh) * 2023-06-16 2024-08-13 江苏博睿光电股份有限公司 用四价锰离子激活的红色荧光粉及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003388A (zh) * 2010-07-27 2013-03-27 通用电气公司 抗湿磷光体和相关方法
US20160024378A1 (en) * 2014-07-22 2016-01-28 General Electric Company Red-emitting phosphors, associated processes and devices
CN106479485A (zh) * 2016-10-12 2017-03-08 河北利福光电技术有限公司 一种耐高温高湿的氟化物红光荧光粉及其制备方法
CN107057702A (zh) * 2017-05-15 2017-08-18 有研稀土新材料股份有限公司 一种红色荧光粉、其制备方法及其所制成的发光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473347B1 (en) * 2003-04-30 2006-11-29 Nanosolutions GmbH Core/shell nanoparticles suitable for (F) RET-assays
JP6297505B2 (ja) * 2012-02-16 2018-03-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 半導体led用のコーティングされた狭帯域赤色発光フルオロケイ酸塩
CN105586040A (zh) * 2014-11-18 2016-05-18 中国制釉股份有限公司 壳核结构荧光材料及其光源装置
KR102337406B1 (ko) * 2014-12-09 2021-12-13 삼성전자주식회사 불화물 형광체, 불화물 형광체 제조방법, 백색 발광장치, 디스플레이 장치 및 조명장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103003388A (zh) * 2010-07-27 2013-03-27 通用电气公司 抗湿磷光体和相关方法
US20160024378A1 (en) * 2014-07-22 2016-01-28 General Electric Company Red-emitting phosphors, associated processes and devices
CN106479485A (zh) * 2016-10-12 2017-03-08 河北利福光电技术有限公司 一种耐高温高湿的氟化物红光荧光粉及其制备方法
CN107057702A (zh) * 2017-05-15 2017-08-18 有研稀土新材料股份有限公司 一种红色荧光粉、其制备方法及其所制成的发光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116814259A (zh) * 2023-05-18 2023-09-29 湖南师范大学 一种耐湿性氟化物荧光粉及其制备方法和应用
CN116814259B (zh) * 2023-05-18 2024-04-19 湖南师范大学 一种耐湿性氟化物荧光粉及其制备方法和应用

Also Published As

Publication number Publication date
JP6941690B2 (ja) 2021-09-29
KR20190134780A (ko) 2019-12-04
US20210155848A1 (en) 2021-05-27
JP2020517788A (ja) 2020-06-18
US11680203B2 (en) 2023-06-20
CN107057702B (zh) 2019-10-01
CN107057702A (zh) 2017-08-18
KR102345463B1 (ko) 2021-12-29

Similar Documents

Publication Publication Date Title
WO2018209888A1 (zh) 一种红色荧光粉、其制备方法及其所制成的发光装置
WO2014094657A1 (zh) 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
WO2013056570A1 (zh) 一种led红色荧光物质及含有该荧光物质的发光器件
KR101088996B1 (ko) Led용 규소-함유 형광체, 그의 제조 및 그를 사용하는 발광 소자
WO2013056408A1 (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN105623656A (zh) 红色荧光粉、红色荧光粉的制备方法及发光装置
WO2020042319A1 (zh) 锰掺杂的红色荧光粉的制备方法、产物、器件及背光模组
TW201920609A (zh) 表面處理螢光體及其製造方法、以及發光裝置
CN112310263B (zh) 一种全光谱led光源
CN108913129A (zh) 一种Mn(Ⅳ)掺杂的氟化物红色荧光粉的绿色制备方法
WO2018001368A1 (zh) 氮化物荧光体及包含其的发光装置
CN106281322B (zh) 一种高效稳定led氮化物红色荧光粉及其制备方法
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
CN101838535A (zh) 一种稀土荧光粉及其制造方法
WO2023221551A1 (zh) 一种过渡金属掺杂窄带发光凝胶材料及其制备方法和应用
CN102559173B (zh) 核-表层梯度式氮氧化物荧光粉及制造方法和采用该荧光粉的发光器件
CN106698933A (zh) 一种透明低熔点的微晶玻璃及其制备方法和应用
CN115180835A (zh) 一种蓝宝石基荧光玻璃陶瓷及其制备方法
CN104592988B (zh) 一种用于led器件的荧光粉的制备方法
US20130069005A1 (en) Transparent glass ceramic emitting white light and preparation method thereof
CN105419789A (zh) 氟硅酸盐红色荧光粉及其组合物的制备方法及产品和应用
CN106590657A (zh) 一种镥铝酸盐绿色荧光粉及其制备方法和应用
CN115386374B (zh) 稀土掺杂的荧光材料及其制备方法和用途
CN111233337A (zh) 一种用于宽色域背光显示绿光发射微晶玻璃及其制备方法
CN104927846B (zh) 白光led用蓝光荧光粉及其制备方法和白光led发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557606

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197033390

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910271

Country of ref document: EP

Kind code of ref document: A1