WO2018001368A1 - 氮化物荧光体及包含其的发光装置 - Google Patents

氮化物荧光体及包含其的发光装置 Download PDF

Info

Publication number
WO2018001368A1
WO2018001368A1 PCT/CN2017/091236 CN2017091236W WO2018001368A1 WO 2018001368 A1 WO2018001368 A1 WO 2018001368A1 CN 2017091236 W CN2017091236 W CN 2017091236W WO 2018001368 A1 WO2018001368 A1 WO 2018001368A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
nitride
nitride phosphor
light
present
Prior art date
Application number
PCT/CN2017/091236
Other languages
English (en)
French (fr)
Inventor
刘荣辉
高慰
刘元红
杜甫
张霞
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Publication of WO2018001368A1 publication Critical patent/WO2018001368A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of luminescent materials, and in particular to a nitride phosphor and a light-emitting device comprising the same.
  • the illuminating device is composed of an excitation light source having a certain emission wavelength and a phosphor capable of adjusting the wavelength of the excitation light.
  • the white light LED obtains white light by a blue chip composite yellow YAG phosphor.
  • the temperature of the phosphor is raised due to the heat generated by the light source.
  • the use of a high-power LED and a high-energy-density excitation source makes the temperature of the phosphor more intense, and the ordinary phosphor,
  • conventional YAG phosphors are sensitive to heat, and the intensity of light emission and color coordinates change significantly with increasing temperature, resulting in spectral drift and lifetime reduction of the light-emitting device.
  • Japan Institute of Materials Research and Mitsubishi Chemical jointly disclosed a novel nitride phosphor Ce x M III 3-x M IV y X -III z (JP2008088362A, JP2010070773A).
  • This nitride can be excited by light of about 300 to 530 nm to obtain yellow light. Its thermal stability is higher than that of conventional YAG phosphors, and it can be excited by ultraviolet light of 300-450 nm. It is a new type of phosphor with broad application prospects. .
  • the phosphors mentioned in the above documents have more excellent stability and application range than the conventional yellow YAG phosphors, the spectrum is relatively simple, and only yellow light having a color coordinate of about 0.43 can be obtained, and when applied in the backlight field, A considerable portion of the light will be filtered out, causing damage to the light.
  • a main object of the present invention is to provide a nitride phosphor and a light-emitting device comprising the same, which can improve the problem of lacking high-stability, high-efficiency narrow-peak green phosphor in the prior art, thereby improving the color rendering of the device.
  • a nitride phosphor having a chemical formula of M m A a X y : Tb z , wherein M is an element La, Ce, Lu, Y And one or more of Gd, A is Si or A is Si and Ge, X is N or X is N and O, and 2 ⁇ m ⁇ 4, 5.5 ⁇ a ⁇ 6.5, 10 ⁇ y ⁇ 12, 0 ⁇ z ⁇ 0.5.
  • M includes at least the elements La and Ce, and the ratio of the sum of the moles of the elements La and Ce to the total number of moles in M is 80% or more, and the above nitride phosphor has the same color as La 3 Si 6 N 11 Crystal structure.
  • the molar ratio of the element Ce to La is 0.3 to 0.75:1.
  • the peak position of the laser wavelength of the nitride phosphor is 400 to 490 nm, and the peak wavelength of the emission wavelength is 540 to 550 nm.
  • a light-emitting device comprising a radiation source and a phosphor, the phosphor comprising a first phosphor, and the first phosphor being a nitride phosphor of any of the above.
  • the phosphor further includes a second phosphor selected from any one or more of the following: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 O 12 : Ce, ⁇ -SiAlON :Eu, Ca 3 (Sc,Mg) 2 Si 3 O 12 :Ce, (Sr,Ca) 2 Si 5 N 8 :Eu, (Sr,Ca)AlSiN 3 :Eu,(Li,Na,K) 3 ZrF 7 : Mn, (Li, Na, K) 2 (Ti, Zr) F 6 : Mn, (Ca, Sr, Ba) (Ti, Zr) F 6 : Mn, Ba 0.65 Zr 0.35 F 2.7 : Mn, (Sr , Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu, (Ca, Sr, Ba) MgAl 10 O 17 : Eu and Mg 4 GeFO 5.5 : Mn.
  • the radiation source is a laser light source or a semiconductor light source.
  • a crystal structure of La 3 Si 6 N 11 having Tb as a luminescent center can be formed, which makes the activator center in the trivalent rare earth ions and the Si-N tetrahedron A higher transition energy is obtained by the action of the field, thereby improving the problem of low luminous efficacy of the current Tb-containing phosphor, obtaining high-efficiency green light, and using a La 3 Si 6 N 11 crystal structure as a matrix to prepare a phosphor. It has high thermal stability and is therefore suitable for devices with high energy density excitation, which has high light efficiency and long life.
  • FIG. 1 shows an XRD pattern of a nitride phosphor provided in accordance with a preferred embodiment of the present invention
  • Figure 2 shows an XRD pattern of a luminescent material provided in accordance with a preferred embodiment of the present invention.
  • a nitride phosphor is provided, the chemical formula thereof Is M m A a X y : Tb z , wherein the M element is one or more of La, Ce, Lu, Y, and Gd, A is Si or A is Si and Ge, X is N or X is N and O, and 2 ⁇ m ⁇ 4, 5.5 ⁇ a ⁇ 6.5, 10 ⁇ y ⁇ 12, 0 ⁇ z ⁇ 0.5.
  • the above-mentioned nitride phosphor of the present invention has a chemical formula of M m A a X y : Tb z , wherein the M element is in La, Ce, Lu, Y and Gd.
  • A is Si or A is Si and Ge
  • X is N or X is N and O
  • an element selected from the above species can form a crystal structure of La 3 Si 6 N 11 having Tb as a luminescent center, which makes The activator center (ie, the illuminating center) obtains higher transition energy under the action of trivalent rare earth ions and Si-N tetrahedral field, thereby improving the problem of low luminous efficacy of the current Tb-containing phosphor, and obtaining high luminous efficiency green light
  • the crystal structure of La 3 Si 6 N 11 is used as a matrix, and the prepared phosphor has high thermal stability, and thus is suitable for a device with high energy density excitation, and has high light efficiency and long life.
  • the crystal structure is constructed of an M-Si polyhedron, and a phosphor having a different structure can be obtained by linking the M and the Si-N tetrahedron at an angle-angle or a side-edge.
  • the M element is selected as the trivalent rare earth element La.
  • a preferred 2.5 ⁇ m ⁇ 3.5, more preferably 2.8 ⁇ m ⁇ 3.2, can control the impurity phase as small as possible or no impurity phase, and make the crystal structure of the nitride phosphor more pure.
  • X is N or X is N and O, and the phosphor synthesized by the selected element can have the same crystal structure as La 3 Si 6 N 11 .
  • y is N or X is N and O
  • the phosphor synthesized by the selected element can have the same crystal structure as La 3 Si 6 N 11 .
  • Tb is used as an activator ion, and after a plurality of experiments, it is found that the range of Tb is 0 ⁇ z ⁇ 0.5, which has an optimum effect.
  • Tb content is greater than 0.5, on the one hand, some elements do not participate in the reaction, and do not enter the crystal lattice, resulting in waste of resources.
  • too much Tb will cause concentration quenching effect due to too small ion spacing, and the luminescence brightness will follow The increase in Tb decreases.
  • the amount of Tb is in the range of 0.1 ⁇ z ⁇ 0.3.
  • M comprises at least the elements La and Ce, and the ratio of the sum of the moles of the elements La and Ce to the total number of moles of M is greater than or equal to 80%. Controlling the number of moles of La and Ce within the above range enables energy resonance effects of Ce and Tb, and the energy absorbed by Ce can be transmitted to Tb under the action of the La crystal field, thereby making the activator have higher luminous intensity. .
  • the peak position of the laser wavelength and the peak wavelength of the emission wavelength differ depending on the specific element type and the amount of the selected element.
  • the peak wavelength of the laser wavelength of the nitride phosphor is 400 to 490 nm
  • the peak wavelength of the emission wavelength is 540 to 550 nm.
  • the peak position of the laser wavelength and the peak wavelength of the emission wavelength have a beneficial effect of high luminous intensity within the above range.
  • the weight percentage of the C element in the nitride phosphor is between 0.001% and 0.4%, and a trace amount of C
  • the presence of the compound is beneficial to the stability of the compound.
  • the weight percentage exceeds 0.4%, it is easy to cause contamination of the nitride phosphor, which not only affects the color of the phosphor, but also greatly reduces the light efficiency.
  • the method for preparing the nitride phosphor of the present invention can be prepared by a conventional conventional method.
  • the raw materials of the respective elements required for the synthesis of the nitride phosphor are The ratio is uniformly mixed, and the raw materials of the respective elements are preferably simple substances or compounds of various metals and non-metal elements, wherein the compound is preferably a nitride; then calcination is carried out, and the calcination environment is preferably a high pressure or atmospheric pressure furnace protected by nitrogen, hydrogen or CO gas. It is carried out in the body to ensure the low oxygen content of the environment; after calcination, it is kept at the highest temperature for 20 min to 24 h.
  • the holding time is too short, the reaction is not sufficient, and the abnormal growth of the crystal grains occurs when the time is too long. More preferably, the holding time is 6-15 hours; finally, the temperature in the furnace is taken out to below 100 ° C, and the powder is subjected to a post-treatment step including grinding, pickling, sieving and drying.
  • a light emitting device comprising a radiation source and a first phosphor, the first phosphor being any of the above nitride phosphors, wherein the radiation source comprises It is not limited to a laser light source such as a vacuum ultraviolet light source, an ultraviolet light source, a violet light source or a blue light source, or a semiconductor light source such as an ultraviolet LED, a violet LED, or a blue LED.
  • a laser light source such as a vacuum ultraviolet light source, an ultraviolet light source, a violet light source or a blue light source
  • a semiconductor light source such as an ultraviolet LED, a violet LED, or a blue LED.
  • the above-mentioned light-emitting device of the present invention may include other phosphors in addition to the first fluorescent body, for example, other phosphors that can be effectively excited by the corresponding radiation source may be added.
  • a white light emitting device can be formed by adding a green phosphor or a red phosphor which can be effectively excited by blue light, and these white light emitting devices can be used in the field of illumination or display.
  • the light-emitting device further includes any one or more of the following second phosphors: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 O 12 : Ce ⁇ -SiAlON: Eu, Ca 3 (Sc, Mg) 2 Si 3 O 12 :Ce, (Sr,Ca) 2 Si 5 N 8 :Eu, (Sr,Ca)AlSiN 3 :Eu,(Li,Na, K) 3 ZrF 7 : Mn, (Li, Na, K) 2 (Ti, Zr) F 6 : Mn, (Ca, Sr, Ba) (Ti, Zr) F 6 : Mn, Ba 0.65 Zr 0.35 F 2.7 : Mn, (Sr, Ca, Ba, Mg) 5 (PO 4 ) 3 Cl: Eu, (Ca, Sr, Ba) MgAl 10 O 17 : Eu, Mg 4 GeFO 5.5 : Mn.
  • second phosphors (Y
  • the method comprises the steps of: weighing LaCO 3 , CeO 2 , Si 3 N 4 and TbO 2 according to a stoichiometric ratio, mixing the above raw materials in a mortar, and then holding the mixture in a reducing atmosphere at 1600 ° C for 8 hours, and the obtained product is crushed,
  • the phosphor of the present invention is obtained by washing, removing, sieving, and drying.
  • the XRD pattern of this phosphor is shown in Figure 1.
  • the phosphor has the same crystal structure as La 3 Si 6 N 11 . It can be seen that the above-mentioned embodiments of the present invention achieve the following technical effects: they can be effectively excited by radiation having a wavelength of 300 to 500 nm, have high luminous stability, and have high emission fluorescence intensity, and are rich in emission color, and can satisfy white LEDs. The need for phosphors.
  • the nitride phosphor of the present invention has excellent luminous efficiency and temperature characteristics, and can obtain a sustained and stable spectral output under a long time and high energy density, and the light-emitting device containing the same can be widely applied to lighting, display, and special industries. field.
  • the nitride of the trivalent metal M, the nitride or oxide of the A element, the cerium oxide and the like are accurately weighed and uniformly mixed, wherein the group is uniformly mixed.
  • the oxygen in the fraction is introduced by the oxide of Tb or the compound of the A element, and then calcined in a nitrogen or nitrogen-hydrogen mixed atmosphere at a high temperature of 1400-1800 ° C for 6-8 hours, and the obtained calcined product is further crushed (broken to 5).
  • -20 ⁇ m over 100-500 mesh sieve, washed with dilute acid or deionized water, and dried at 80-150 ° C to obtain samples having the chemical formulas of Examples 2-20 and Comparative Examples.
  • the luminescence intensity of the comparative examples and the fluorescent materials of Examples 2-20 were measured by a spectrophotometer, wherein the excitation wavelength was set to 460 nm, and the highest peak relative intensity of the comparative luminescent material was 100.
  • the test results are shown in Table 1 and Table. 2 is shown.
  • the novel nitride phosphors of the present invention all have higher luminescence intensity than the comparative La 2.9 Si 6 N 11 :Ce 0.1 luminescent materials, which are It is beneficial to increase the luminous intensity of the liquid crystal backlight.
  • the luminescent materials of Examples 2-20 have a luminescence intensity in the range of 92-95% at room temperature, Higher than the comparative example La 2.9 Si 6 N 11 : Ce 0.1 91% of the luminescent material.
  • the luminescent material of the present invention contains La and Ce in common, and the ratio of the sum of the moles of the elements La and Ce in M to the total number of moles is 80% or more, the luminescent material has a better luminescent intensity.
  • the luminescent material M of the present invention When the molar ratio of the element Ce to La in the luminescent material M of the present invention is from 0.3 to 0.75:1, the luminescent material has a better luminescent intensity.
  • Examples 7-9 are all the changes in the number of moles of La and Ce in M and the total moles of M. As can be seen from the results in Table 1, when the molar ratio of Ce to La is 0.3 to 0.75:1, the luminescent material has a better luminescence intensity.
  • the XRD patterns of the luminescent material prepared in Example 2 and the luminescent material prepared in the comparative example were tested, respectively, see FIG.
  • the abscissa is 2 ⁇ angle
  • the ordinate is relative peak intensity
  • L1 represents the luminescent material prepared in Example 2 of the present invention
  • L2 represents the luminescent material prepared in the comparative example.
  • the nitride luminescent material prepared in Example 2 of the present invention has the same crystal structure as that of the comparative example, and has a crystal structure of La 3 Si 6 N 11 , thereby ensuring the center of the activator in the La 3 Si 6 N 11 crystal structure. It is stable in the middle, and a high thermal stability luminescent material is obtained, as shown in the results of Table 2.
  • the luminescent material obtained in Example 4 was dispersed in a silicone resin having a refractive index of 1.42, and uniformly defoamed by stirring, and then dispensed and cured on a 455 nm blue chip, and the circuit was soldered and sealed with a resin.
  • the corresponding light-emitting device has a color coordinate of (0.4215, 0.5350).
  • the luminescent material obtained in Example 7 and the ⁇ -SiAlON:Eu luminescent material were dispersed in a silicone resin having a refractive index of 1.5 in a ratio of 1:1, uniformly stirred, centrifugally defoamed, and coated on a 460 nm blue chip to be cured. And soldering the circuit, the green light-emitting device can be obtained, and its color coordinates are (0.3415, 0.6217).
  • the luminescent material obtained in Example 8 and the (Sr,Ca) 2 Si 5 N 8 :Eu luminescent material were dispersed in a ratio of 6:1 in a silicone resin having a refractive index of 1.53, uniformly stirred, and subjected to centrifugal defoaming.
  • the white light-emitting device is obtained by curing and soldering the circuit, and its color coordinates are (0.3415, 0.3917).
  • the luminescent material obtained in Example 18 and the (Sr, Ca)AlSiN 3 :Eu luminescent material were cured in a ceramic sheet in a ratio of 4:1.
  • the circuit was packaged and soldered to obtain white light.
  • the light-emitting device has a color coordinate of (0.4215, 0.3878)
  • the nitride light-emitting materials provided by the present invention can be applied to semiconductor chips of different wavelengths and laser chips, so that they can be used in combination to produce light having different light color parameters. Device.
  • Embodiments 21-24 are only embodiments of the present invention, which do not limit the scope of protection of the present invention.
  • the luminescent material can be mixed with glass, plastic, and filler to form a light-emitting device, thereby achieving illuminating.
  • the glass, the plastic and the filler may be optional as long as the luminescent material can be prevented from chemically reacting with them, and the luminescent member formed in the medium can still be effectively excited by the semiconductor and the laser source and emit light. can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种氮化物荧光体及包含其的发光装置。该氮化物荧光体的化学式为M mA aX y: Tb z,M为元素La、Ce、Lu、Y和Gd中的一种或几种,A为Si或者A为Si和Ge,X为N或者X为N和O,且2<m≤4,5.5≤a≤6.5,10≤y≤12,0<z≤0.5。通过选择上述种类的元素及其含量,能够形成以Tb为发光中心的La 3Si 6N 11晶体结构,这使得激活剂中心在三价稀土离子以及Si-N四面体场的作用下获得更高的跃迁能量,从而改善目前含Tb荧光粉光效低的问题,获得高光效绿光。而且以类La 3Si 6N 11晶体结构作为基质,制备出的荧光体热稳定性高,适合用于高能量密度激发的器件,其光效高,寿命长。

Description

氮化物荧光体及包含其的发光装置 技术领域
本发明涉及发光材料领域,具体而言,涉及一种氮化物荧光体及包含其的发光装置。
背景技术
一般发光装置都是由具有一定发射波长的激发光源和可以调节激发光波长的荧光体组成,例如白光LED获得白光的方式是由蓝光芯片复合黄色YAG荧光体。然而使用这种方式时会由于光源的发热导致荧光体的升温,尤其是最近几年大功率LED、高能量密度激发光源的使用,就会使荧光体的升温更加剧烈,而普通的荧光体,例如常规YAG荧光体对热量较为敏感,随温度的升高发光强度和色坐标变化明显,从而造成发光装置光谱的漂移和寿命缩减。
为了获得大功率、高能量密度激发的发光装置,一方面需要加强装置的散热方式,另一方面就是寻求具有更高热稳定性的荧光体。
2008年,日本物质材料研究所和三菱化学共同公开了一种新型氮化物荧光体CexMIII 3-xMIV yX-III z(JP2008088362A、JP2010070773A)。这种氮化物能够被300~530nm左右的光激发得到黄光,其热稳定性较常规YAG荧光体要高,而且能够被300~450nm的紫外光激发,是一种应用前景广泛的新型荧光体。
虽然上述文献涉及的荧光体较传统黄色YAG荧光体具有更加优异的稳定性和应用范围,但其光谱较为单一,只能得到色坐标在0.43左右的黄光,而且当应用在背光源领域时则会被过滤掉相当一部分光,致使光效受损。
因而,仍需要对现有技术进行改进,以期提获得一种新的高光效且具有高稳定性的氮化物绿色荧光粉。
发明内容
本发明的主要目的在于提供一种氮化物荧光体及包含其的发光装置,以改善现有技术中缺乏高稳定性、高光效的窄峰绿色荧光粉的问题,从而提升器件的显色性。
为了实现上述目的,根据本发明的一个方面,提供了一种氮化物荧光体,该氮化物荧光体的化学式为MmAaXy:Tbz,其中M为元素La、Ce、Lu、Y和Gd中的一种或几种,A为Si或者A为Si和Ge,X为N或者X为N和O,且2<m≤4,5.5≤a≤6.5,10≤y≤12,0<z≤0.5。
进一步地,M至少包括元素La和Ce,且元素La和Ce的摩尔数之和与M中总摩尔数之比大于等于80%,且上述氮化物荧光体具有和La3Si6N11相同的晶体结构。
进一步地,元素Ce与La的摩尔比为0.3~0.75:1。
进一步地,2.5≤m≤3.5
进一步地,2.8≤m≤3.2。
进一步地,0.1<z≤0.3。
进一步地,氮化物荧光体的激光波长的峰值位置在400~490nm,且发射波长的峰值波长为540~550nm。
根据本发明的另一方面,提供了一种发光装置,发光装置包括辐射源和荧光体,荧光体包括第一荧光体,第一荧光体为上述任一种的氮化物荧光体。
进一步地,荧光体还包括第二荧光体,第二荧光体选自以下任意一种或几种:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce、β-SiAlON:Eu、Ca3(Sc,Mg)2Si3O12:Ce、(Sr,Ca)2Si5N8:Eu、(Sr,Ca)AlSiN3:Eu、(Li,Na,K)3ZrF7:Mn、(Li,Na,K)2(Ti,Zr)F6:Mn、(Ca,Sr,Ba)(Ti,Zr)F6:Mn、Ba0.65Zr0.35F2.7:Mn、(Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu、(Ca,Sr,Ba)MgAl10O17:Eu以及Mg4GeFO5.5:Mn。
进一步地,辐射源为激光光源或半导体光源。
应用本发明的技术方案,通过选择上述种类的元素及其含量,能够形成以Tb为发光中心的La3Si6N11晶体结构,这使得激活剂中心在三价稀土离子以及Si-N四面体场的作用下获得更高的跃迁能量,从而改善目前含Tb荧光粉光效低的问题,获得高光效绿光,而且以类La3Si6N11晶体结构作为基质,从而制备出的荧光体热稳定性高,因而适合用于高能量密度激发的器件,其光效高,寿命长。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种优选的实施例中所提供的氮化物荧光体的XRD图谱;以及
图2示出了根据本发明的一种优选的实施例中所提供的发光材料的XRD图谱。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
由于现有技术中氮化物荧光体缺乏窄峰绿色荧光粉,为了获得不同波长荧光体以应用于不同领域,在本发明一种典型的实施方式中,提供了一种氮化物荧光体,其化学式为MmAaXy:Tbz,其中M元素为La、Ce、Lu、Y和Gd中的一种或几种,A为Si或者A为Si和Ge,X为N或者X为N和O,且2<m≤4,5.5≤a≤6.5,10≤y≤12,0<z≤0.5。
与现有技术中的氮化物荧光体相比,本发明的上述氮化物荧光体,其化学式为MmAaXy:Tbz,其中M元素为La、Ce、Lu、Y和Gd中的一种或几种,A为Si或者A为Si和Ge,X为N或者X为N和O,选择上述种类的元素能够形成以Tb为发光中心的La3Si6N11晶体结构,这使得激活剂中心(即发光中心)在三价稀土离子以及Si-N四面体场的作用下获得更高的跃迁能量,从而改善目前含Tb荧光粉光效低的问题,获得高光效绿光,而且以类La3Si6N11晶体结构作为基质,从而制备出的荧光体热稳定性高,因而适合用于高能量密度激发的器件,其光效高,寿命长。
本发明的上述氮化物荧光体中,其晶体结构是由M-Si多面体构建的,而通过将M与Si-N四面体以角-角或者边-边链接能够得到不同结构的荧光体。为了使本发明的氮化物荧光体具有与La3Si6N11一样的晶体结构,而又不至引入其他杂相,在本发明的氮化物荧光体中,选择M元素为三价稀土元素La、Ce、Lu、Y、Gd中的一种或几种时,能够保证荧光体晶格的稳定性,获得高耐候性荧光体,然而上述元素的引入量应当合适,当m≤2时,在焙烧过程中容易产生大量杂相,从而影响荧光粉的发光强度;当m>4时,过量的原料剩余同样影响荧光体的发光强度,且荧光体的温度特性也会变差。优选的2.5≤m≤3.5,更优选的2.8≤m≤3.2,能够控制杂相尽量小或者无杂相,使氮化物荧光体的晶体结构更纯。
X为N或者X为N和O,能够使所选元素所合成的荧光粉与La3Si6N11相同的晶体结构。当a<5.5或者a>6.5,y<10或者y>12之后,使晶体结构发生畸变的概率增大,从而不容易获得理想的荧光体,因此优选5.5≤a≤6.5,10≤y≤12。
本发明的上述荧光体中,Tb作为激活剂离子,经过多次实验后发现Tb的限定范围为0<z≤0.5时具有最优效果。当Tb含量大于0.5时,一方面部分元素未参与反应,没有进入晶格,造成资源的浪费,另一方面,太多的Tb会因离子间距太小产生浓度猝灭效应,发光亮度反而随着Tb的增加而下降。为了进一步平衡发光亮度与资源利用之间的关系,更优选Tb的用量范围为0.1<z≤0.3。
选择上述种类及其用量的元素已经能够使得所形成的述氮化物荧光体具有发光强度高、稳定性好的有益效果。为了获得更高的发光强度,在本发明一种优选的实施例中,M至少包括元素La和Ce,且将元素La和Ce的摩尔数之和与M总摩尔数之比大于等于80%。将La和Ce的摩尔数控制在上述范围内,能够使Ce与Tb发生能量共振效应,且在La晶体场的作用下,Ce所吸收的能量能够传递给Tb,从而使得激活剂发光强度更高。而为了进一步优化荧光体的发光效果,经过大量实验,更优选的限定M中元素Ce与La的摩尔比为0.3~0.75:1。
本发明的上述氮化物荧光体,根据所选择的具体元素种类及用量配比的不同,其激光波长的峰值位置和发射波长的峰值波长也存在差异。在本发明一种优选的实施例中,上述氮化物荧光体的激光波长的峰值位置在400~490nm,且发射波长的峰值波长为540~550nm。激光波长的峰值位置和发射波长的峰值波长在上述范围内具有发光强度高的有益效果。
在本发明的氮化物荧光体中,不可避免的会存在微量的C(碳),在本发明中C元素在氮化物荧光体中的重量百分比介于0.001%~0.4%之间,微量的C的存在有利于化合物的稳定, 但当其重量百分含量超过0.4%时容易对氮化物荧光体造成污染,不仅影响荧光体发光颜色,而且光效也大幅下降。
本发明的氮化物荧光体的制备方法可以采用现有的常规方法进行制备,在本发明一种优选的实施例中,按照上述合成氮化物荧光体的通式中所需的各元素的原料及其比例混合均匀,各元素的原料优选各种金属及非金属元素的单质或化合物,其中化合物优选为氮化物;然后进行煅烧,煅烧环境优选具有氮气、氢气或CO气体保护的高压或常压炉体内进行,保证环境的低含氧量;煅烧之后,在最高温度下保温20min~24h。若保温时间太短,反应不够充分,而时间过常时造成晶粒异常长大。更优选保温时间为6~15h;最后将炉内温度将至100℃以下取出,将粉体进行包括研磨、酸洗、过筛及烘干等后处理步骤。
在本发明又一种典型的实施方式中,提供了一种发光装置,该发光装置包括辐射源和第一荧光体,第一荧光体为上述任一种氮化物荧光体,其中辐射源包括但不限于真空紫外发射源、紫外发射源、紫光发射源或蓝光发射源等激光光源,或者诸如紫外LED、紫光LED、蓝光LED等半导体光源。
根据所应用的照明或显示需求的不同,本发明的上述发光装置除了包含上述第一荧光体外,还可以包含其他的荧光体,比如,还可以加入其他能够被相应辐射源有效激发的荧光粉,如在“蓝光LED+本发明的氮化物荧光体”组合中,加入能够被蓝光有效激发的绿色荧光粉或红色荧光粉可形成白光发光器件,上述这些白光发光器件能够用于照明或显示领域。
在本发明一种优选的实施例中,上述发光装置还包括以下第二荧光体中的任意一种或几种:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce、β-SiAlON:Eu、Ca3(Sc,Mg)2Si3O12:Ce、(Sr,Ca)2Si5N8:Eu、(Sr,Ca)AlSiN3:Eu、(Li,Na,K)3ZrF7:Mn、(Li,Na,K)2(Ti,Zr)F6:Mn、(Ca,Sr,Ba)(Ti,Zr)F6:Mn、Ba0.65Zr0.35F2.7:Mn、(Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu、(Ca,Sr,Ba)MgAl10O17:Eu、Mg4GeFO5.5:Mn。
下面将结合具体的实施例进一步说明本发明的有益效果。
实施例1
一种荧光粉,其化学式为(La2.81,Ce0.2)Si6N11:Tb0.1。其制造方法为按照化学计量比称取LaCO3、CeO2、Si3N4、TbO2,将上述原料在研钵中混合均匀后,在1600℃还原气氛中保温8小时,所得产品经破碎、水洗除杂、过筛、烘干,即得本发明的荧光体。该荧光体的XRD图谱见图1。
由图1可知,该荧光体与La3Si6N11具有相同的晶体结构。由此可知,本发明上述的实施例实现了如下技术效果:能够被波长为300~500nm的辐射光有效激发,发光稳定性强,且发射的荧光强度高,发射颜色较为丰富,能够满足白光LED对荧光体的需求。
本发明的氮化物荧光体具有优异的发光效率和温度特性,能够在长时间、高能量密度下获得持续稳定的光谱输出,含有该荧光体的发光器件能够广泛应用于照明、显示以及特殊行业等领域。
以下将进一步结合具体实施例2-20和对比例进一步说明本发明所提供的氮化物荧光体的发光情况。同时,将结合实施例2进一步说明本发明所提供的发光器件的有益效果。
实施例2-20中氮化物荧光体的化学式如表1所示,对比例选择La2.9Si6N11:Ce0.1
实施例2-20以及对比例中发光材料的制备方法:
根据通式实施例2-20所示的通式中的化学计量比,将三价金属M的氮化物、A元素的氮化物或氧化物、氧化铽等原料准确称量后混合均匀,其中组分中的氧由Tb的氧化物或A元素的化合物引入,然后再在氮气或氮氢混合气氛中、1400-1800℃的高温下焙烧6-8小时,所得焙烧产物再经破碎(破碎至5-20μm)、过100-500目筛、经稀酸酸洗或去离子水水洗、80-150℃烘干,即得到具有实施例2-20和对比例化学式的样品。
测试方法:
采用分光光度计对对比例和实施例2-20中荧光材料进行发光强度测试,其中设定激发波长为460nm,并对比对比例发光材料的最高峰相对强度为100,测试结果如表1和表2所示。
表1:
  发光材料化学式 相对强度
对比例 La2.9Si6N11:Ce0.1 100
实施例1 La2.81Ce0.2Si6N11:Tb0.1 132
实施例2 La2.1Si5.85N10.2:Tb0.3 115
实施例3 La3.4Ce0.2Y0.4Si5.1Ge0.18N11.15:Tb0.1 118
实施例4 La1.8Ce1.7Si5.4N10O1.3:Tb0.15 110
实施例5 La1.5CeSi6N10.8:Tb0.28 135
实施例6 La1.8Ce0.54Y0.1Si5.7N10.3:Tb0.26 133
实施例7 La2.2Ce1.1Y0.1Si5.9N11.5:Tb0.21 153
实施例8 La1.5Ce1.125Y0.1Si6.2N11.2:Tb0.21 138
实施例9 LaCe0.5Lu1.4Si5.9N10.9:Tb0.14 115
实施例10 La1.4Ce0.8Lu0.55Si6.2N11.2:Tb0.183 118
实施例11 Lu2.78La0.3Si5.5N10.5:Tb0.083 115
实施例12 Y2.7La0.1Si6.5N11.6:Tb0.135 125
实施例13 Y2.9Ce0.2Si5.5N10:Tb0.165 115
实施例14 Y2.9Gd0.6Si5.9N11O:Tb0.3 114
实施例15 Lu2.81Ce0.2Si6N11.1:Tb0.09 116
实施例16 Lu2.9Si6N11:Tb0.1 115
实施例17 Y2.9Si6N11:Tb0.1 112
实施例18 Gd2.9Si6N11:Tb0.1 110
实施例19 La2.6Gd0.1Ce0.1Si6.1N10.95:Tb0.01 112
实施例20 La2.5Lu0.1Y0.1Ce0.3Si5.94N11.42:Tb0.5 110
表2:
Figure PCTCN2017091236-appb-000001
从表1列举的实施例2-20的结果中可以看出,本发明涉及的新型氮化物荧光体均具有比对比例La2.9Si6N11:Ce0.1发光材料更高的发光强度,这些均有利于提升液晶背光源的发光强度。而且,从表2给出的实施例2-20发光材料的温度特性来说,在200℃高温时,实施例2-20涉及的发光材料的发光强度处于室温时的92-95%范围内,高于对比例La2.9Si6N11:Ce0.1发光材料的91%。
同时,由表中实施例2-20的相应数据不难发现以下现象:
(1)当本发明发光材料中M共同含有La和Ce时,且M中元素La和Ce的摩尔数之和与总摩尔数之比大于等于80%时,发光材料具有更好的发光强度。
对比表1中实施例2和3、7和9、10时,其中实施例2的发光材料M中只含有La,而实施例3的M中包含La和Ce,且La和Ce的摩尔数之和与总摩尔数之比大于等于80%,其发光强度大于实施例2中发光材料的发光强度;同时由实施例7、9和.10的对比可见,本发明中M中La和Ce元素的摩尔数之和与总摩尔数之和大于等于80%时,对应的发光材料具有更好的发光强度。因此,当发光材料中M共同含有La和Ce时,且M中元素La和Ce的摩 尔数之和与总摩尔数之比大于等于80%时,发光材料具有更好的发光强度。
(2)当本发明发光材料M中元素Ce与La的摩尔比为0.3~0.75:1时,发光材料具有更好的发光强度。
对比表1中实施例4和7-9,相对实施例4,实施例7-9都是M中La和Ce的摩尔数与M总摩尔数发生改变。由表1中结果可以看出,当Ce与La的摩尔比为0.3~0.75:1时,发光材料具有更好的发光强度。
为了进一步说明本发明所制备的发光材料相对于对比例中发光材料的相结构,分别测试由实施例2所制备的发光材料和由对比例所制备的发光材料的XRD图谱,参见附图2。在附图2中横坐标为2θ角度,纵坐标为相对峰强度,L1代表本发明实施例2所制备的发光材料,L2代表对比例所制备的发光材料。La3Si6N11PDF=48-1805和Ce3Si6N11PDF=85-0113分别代表标准La3Si6N11晶体结构和标准Ce3Si6N11结构。
如图2所示,本发明实施例2所制备的氮化物发光材料与对比例相同,均具有La3Si6N11的晶体结构,从而保障激活剂中心在类La3Si6N11晶体结构中稳定存在,获得高热稳定性发光材料,如表2结果所示。
以下将根据实施例21-24进一步说明本发明所提供的发光材料在制备发光装置时的有益效果。
实施例21:
将实施例4得到的发光材料分散在折射率为1.42的有机硅树脂中,经搅拌均匀离心脱泡后在455nm蓝光芯片上点胶、固化,并焊接好电路,用树脂封结,即可得到相应发光器件,其色坐标为(0.4215,0.5350)。
实施例22
将实施例7得到的发光材料与β-SiAlON:Eu发光材料按照1:1比例分散在折射率为1.5的有机硅树脂中,经搅拌均匀、离心脱泡后涂覆在460nm蓝光芯片上,固化,并焊接好电路,即可得到绿光发光器件,其色坐标为(0.3415,0.6217)。
实施例23
将实施例8得到的发光材料与(Sr,Ca)2Si5N8:Eu发光材料按照6:1比例分散在折射率为1.53的有机硅树脂中,经搅拌均匀、离心脱泡后涂覆在460nm蓝光芯片上,固化,并焊接好电路,即可得到白光发光器件,其色坐标为(0.3415,0.3917)。
实施例24
将实施例18得到的发光材料与(Sr,Ca)AlSiN3:Eu发光材料按照4:1比例固化在陶瓷片中,至于功率为3w的激光芯片上,封装并焊接好电路,即可得到白光发光器件,其色坐标为 (0.4215,0.3878)
由实施例21-24所制备的发光器件可以看出,本发明所提供的氮化物发光材料可以适用于不同波长的半导体芯片以及激光芯片,从而可以与它们组合使用制造具有不同光色参数的发光器件。
实施例21-24仅是本发明的实施例,其不能限定本发明的保护范围,本发明所保护的发光器件中发光材料可以与玻璃、塑料以及填充物进行混合形成发光器件,进而实现发光的作用,在本发明中玻璃、塑料以及填充物可以是任选,只要能够达到发光材料与它们不发生化学反应,且分散在介质中形成的发光件仍然能够被半导体和激光光源有效激发并发光即可。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种氮化物荧光体,其特征在于,所述氮化物荧光体的化学式为MmAaXy:Tbz,其中M为元素La、Ce、Lu、Y和Gd中的一种或几种,A为Si或者A为Si和Ge,X为N或者X为N和O,且2<m≤4,5.5≤a≤6.5,10≤y≤12,0<z≤0.5。
  2. 根据权利要求1所述的氮化物荧光体,其特征在于,M至少包括元素La和Ce,且元素La和Ce的摩尔数之和与M的总摩尔数之比大于等于80%,且上述氮化物荧光体具有和La3Si6N11相同的晶体结构。
  3. 根据权利要求2所述的氮化物荧光体,其特征在于,元素Ce与La的摩尔比为0.3~0.75:1。
  4. 根据权利要求1至3中任一项所述的氮化物荧光体,其特征在于,2.5≤m≤3.5。
  5. 根据权利要求1至3中任一项所述的氮化物荧光体,其特征在于,2.8≤m≤3.2。
  6. 根据权利要求1至3中任一项所述的氮化物荧光体,其特征在于,0.1<z≤0.3。
  7. 根据权利要求1至6中任一项所述的氮化物荧光体,其特征在于,所述氮化物荧光体的激光波长的峰值位置在400~490nm,且发射波长的峰值波长为540~550nm。
  8. 一种发光装置,所述发光装置包括辐射源和荧光体,所述荧光体包括第一荧光体,其特征在于,所述第一荧光体为权利要求1至7中任一项所述的氮化物荧光体。
  9. 根据权利要求8所述的发光装置,其特征在于,所述荧光体还包括第二荧光体,所述第二荧光体选自以下任意一种或几种:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce、β-SiAlON:Eu、Ca3(Sc,Mg)2Si3O12:Ce、(Sr,Ca)2Si5N8:Eu、(Sr,Ca)AlSiN3:Eu、(Li,Na,K)3ZrF7:Mn、(Li,Na,K)2(Ti,Zr)F6:Mn、(Ca,Sr,Ba)(Ti,Zr)F6:Mn、Ba0.65Zr0.35F2.7:Mn、(Sr,Ca,Ba,Mg)5(PO4)3Cl:Eu、(Ca,Sr,Ba)MgAl10O17:Eu以及Mg4GeFO5.5:Mn。
  10. 根据权利要求8所述的发光装置,其特征在于,所述辐射源为激光光源或半导体光源。
PCT/CN2017/091236 2016-06-30 2017-06-30 氮化物荧光体及包含其的发光装置 WO2018001368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610513235.X 2016-06-30
CN201610513235 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018001368A1 true WO2018001368A1 (zh) 2018-01-04

Family

ID=60785329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/091236 WO2018001368A1 (zh) 2016-06-30 2017-06-30 氮化物荧光体及包含其的发光装置

Country Status (2)

Country Link
CN (1) CN107557006B (zh)
WO (1) WO2018001368A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6821813B6 (ja) * 2018-02-12 2022-06-07 有研稀土新材料股▲フン▼有限公司 窒化物発光材料およびそれを含む発光装置
CN110316963B (zh) * 2019-05-17 2022-10-04 有研稀土新材料股份有限公司 一种荧光玻璃陶瓷材料以及含该材料的发光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361956A (zh) * 2009-03-31 2012-02-22 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
CN103254900A (zh) * 2007-04-18 2013-08-21 三菱化学株式会社 荧光体及其发光装置
US20140321099A1 (en) * 2013-04-26 2014-10-30 Nichia Corporation Phosphor, light-emitting apparatus including the same, and phosphor production method
CN104981532A (zh) * 2013-02-07 2015-10-14 三菱化学株式会社 氮化物荧光体及其制造方法
CN105255493A (zh) * 2014-07-08 2016-01-20 日亚化学工业株式会社 荧光体及使用它的发光装置以及荧光体的制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4413955B2 (ja) * 2007-07-19 2010-02-10 株式会社東芝 蛍光体および発光装置
CN104178160A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 铈铽双掺杂氮硅镧发光材料、制备方法及其应用
WO2016037773A2 (en) * 2014-09-11 2016-03-17 Philips Lighting Holding B.V. Pc-led module with enhanced white rendering and conversion efficiency.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254900A (zh) * 2007-04-18 2013-08-21 三菱化学株式会社 荧光体及其发光装置
CN102361956A (zh) * 2009-03-31 2012-02-22 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
CN104981532A (zh) * 2013-02-07 2015-10-14 三菱化学株式会社 氮化物荧光体及其制造方法
US20140321099A1 (en) * 2013-04-26 2014-10-30 Nichia Corporation Phosphor, light-emitting apparatus including the same, and phosphor production method
CN105255493A (zh) * 2014-07-08 2016-01-20 日亚化学工业株式会社 荧光体及使用它的发光装置以及荧光体的制造方法

Also Published As

Publication number Publication date
CN107557006A (zh) 2018-01-09
CN107557006B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
US9550939B2 (en) Red emitting nitride fluorescent material and white light emitting device using the same
KR100785492B1 (ko) 새로운 조성의 황색 발광 Ce3+부활 실리케이트황색형광체, 그 제조방법 및 상기 형광체를 포함하는 백색발광 다이오드
KR100774028B1 (ko) 형광체, 형광체의 제조 방법, 및 형광체를 이용하는 발광장치
JP6101700B2 (ja) Led赤色蛍光体及び該蛍光体を含有する発光デバイス
TWI530550B (zh) Nitrogen oxide orange-red fluorescent substance, including its light-emitting film or light-emitting sheet and light-emitting device
JP2006299168A (ja) 蛍光体およびそれを用いた発光装置
JP6718991B2 (ja) 窒化ルテチウム蛍光粉末、及びその蛍光粉末を有する発光装置
KR101717241B1 (ko) 질화물 적색 발광재료, 그것을 포함한 발광체 및 발광소자
WO2017114281A1 (zh) 石榴石型结构的荧光粉及其制成的发光装置
KR101476561B1 (ko) 형광체 및 발광 장치
JP2016535719A (ja) 蛍光体
WO2016127843A1 (zh) 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
WO2018001368A1 (zh) 氮化物荧光体及包含其的发光装置
KR100891554B1 (ko) 백색 led 소자용 산화질화물계 형광체, 그의 제조방법및 이를 이용한 백색 led 소자
JP2023522185A (ja) 緑色発光蛍光体およびそのデバイス
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
KR101176212B1 (ko) 알카리 토류 포스포러스 나이트라이드계 형광체와 그 제조방법 및 이를 이용한 발광장치
KR100456430B1 (ko) 백색발광소자용 야그계 황색 형광체의 제조방법
WO2018120124A1 (zh) 荧光体及具有其的发光装置
CN107974252B (zh) 一种氮化物发光材料及包含其的发光装置
KR101190719B1 (ko) 칼슘-보레이트-실리케이트계 녹색 발광 형광체
KR101047775B1 (ko) 형광체 및 발광소자
CN104471023A (zh) 掺杂钍的石榴石荧光体及利用此的发光装置
KR20050029795A (ko) 백색 발광다이오드 소자용 실리케이트계 형광체, 그의제조 방법 및 그를 이용한 백색 발광다이오드 소자
KR100902414B1 (ko) 바륨-마그네슘-포스페이트계 형광체 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17819364

Country of ref document: EP

Kind code of ref document: A1