WO2018120124A1 - 荧光体及具有其的发光装置 - Google Patents

荧光体及具有其的发光装置 Download PDF

Info

Publication number
WO2018120124A1
WO2018120124A1 PCT/CN2016/113742 CN2016113742W WO2018120124A1 WO 2018120124 A1 WO2018120124 A1 WO 2018120124A1 CN 2016113742 W CN2016113742 W CN 2016113742W WO 2018120124 A1 WO2018120124 A1 WO 2018120124A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
inorganic compound
luminous efficiency
light
temperature
Prior art date
Application number
PCT/CN2016/113742
Other languages
English (en)
French (fr)
Inventor
刘荣辉
庄卫东
杜甫
刘元红
高慰
张霞
邵冷冷
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to PCT/CN2016/113742 priority Critical patent/WO2018120124A1/zh
Publication of WO2018120124A1 publication Critical patent/WO2018120124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of fluorescent materials, and in particular to a phosphor and a light-emitting device having the same.
  • White LED has the advantages of green color and long life. It is known as the fourth-generation lighting source. It is a strategic emerging high-tech industry that is mainly developed in China. With the continuous upgrading and transformation of white LED technology, various kinds of phosphors have emerged. Most of them cannot be applied to real life due to various reasons, such as thermal characteristics, luminous efficiency, and the like. Therefore, it is urgent to find new practical phosphors.
  • the mainstream implementation of white LEDs is still a blue LED chip with a variety of emission wavelength phosphors.
  • Phosphors are the key factors determining the luminous efficiency of white LED devices, especially color temperature and color rendering index.
  • the commercial phosphors are mainly concentrated in the aluminate series yellow phosphor and yellow-green phosphor, nitride red phosphor, fluoride narrow-band red powder, ⁇ -Sialon, silicate green phosphor, and these phosphor processes are relatively mature. , has reached a stable level.
  • the above phosphor lacks commercial yellow orange powder.
  • the yellow orange powder in the research stage mainly has Eu 2+ -activated ⁇ -Sialon type phosphor, and the peak wavelength is about 580 nm (see Japanese Patent Laid-Open Publication No. 2002-363554).
  • Ce 3+ When using this series of phosphor combinations Ce 3+
  • a white LED composed of activated yttrium aluminum garnet yellow powder is used, a white LED having a lower color temperature can be produced than a white LED using only Ce 3+ activated YAG, but the series of phosphors are matched with the blue chip. It is less effective and cannot reach the application level.
  • oxide system phosphors such as phosphates, but the phosphors of this series are rarely studied due to poor thermal stability, so it is of great significance to explore new orange-yellow phosphors.
  • the main object of the present invention is to provide a phosphor and a light-emitting device therewith, which solves the problem that the yellow orange powder in the prior art cannot satisfy the practical application.
  • a phosphor comprising an inorganic compound comprising a composition of an element A, a D element, and an element M, wherein the element A is selected from the group consisting of La, Lu, Y, Tb, and One or more of Gd, D is Si or Si and Al, M is one or more of Ce, Eu, Sm, Pr and Dy, and the crystal structure of the inorganic compound is monoclinic crystal, inorganic compound
  • the chemical formula is A x D y N z O v : M w , wherein 5 ⁇ x ⁇ 7, 10 ⁇ y ⁇ 12, 18 ⁇ z ⁇ 22, 0 ⁇ v ⁇ 1.5, 0 ⁇ w ⁇ 0.5.
  • the above A includes at least Lu, and the ratio of the number of moles of Lu to the total number of moles of A is not less than 80%.
  • the above D must contain Si, and the ratio of the number of moles of Si to the total number of moles of D is not less than 90%.
  • the above M includes at least the element Ce.
  • the range of the above w is 0.1 ⁇ w ⁇ 0.15.
  • the excitation wavelength of the phosphor is between 270 and 480 nm, and the emission wavelength of the phosphor is between 540 and 575 nm.
  • a light-emitting device comprising an excitation light source and a fluorescent substance, the fluorescent substance comprising a first phosphor and optionally another phosphor, the first phosphor being any of the above Phosphor.
  • the above other phosphor is selected from a mixture of one or more of the following fluorescent substances: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 O 12 : Ce 3+ , ⁇ -SiAlON: Eu 2 + , (Ca,Sr)AlSiN 3 :Eu 2+ ,(Li,Na,K) 2 (Ti,Zr,Si,Ge)F 6 :Mn 4+ and (Ca,Sr,Ba)MgAl 10 O 17 : Eu 2+ .
  • the excitation light source is a semiconductor light emitting diode or a laser light source, and preferably, the excitation light source has an emission peak wavelength of 360 to 440 nm.
  • the inorganic compound having the above elemental composition can emit yellow-orange light, that is, yellow orange phosphor powder, and it is experimentally verified that the phosphor has high light efficiency when combined with the blue light chip;
  • the inorganic compound formed can form a crystal structure of a monoclinic crystal. As shown in FIG. 1, the crystal structure is relatively stable, so that high luminous efficiency can be maintained in practical applications, and the color temperature is low.
  • FIG. 1 is a schematic perspective view showing the crystal structure of a phosphor provided in accordance with the present invention.
  • Embodiment 4 shows an excitation and emission spectrum of a phosphor according to Embodiment 1 of the present invention, wherein ⁇ ex represents an excitation wavelength, and ⁇ em represents an emission wavelength.
  • the prior art has a large number of phosphors of various colors, and most of the phosphors of the color have been stably applied in the industry, but the yellow orange powder cannot simultaneously satisfy the high light efficiency.
  • the requirement of low color temperature has not yet been practically applied in the industry.
  • the present application provides a phosphor and a light-emitting device therewith.
  • a phosphor comprising an inorganic compound comprising a composition of an A element, a D element, and an M element, wherein the A element is selected from the group consisting of La, Lu, Y, and Gd.
  • D is Si or Si and Al
  • M is one or more of Ce, Eu, Sm, Pr and Dy
  • the crystal structure of the inorganic compound is monoclinic crystal
  • the chemical formula of the above inorganic compound Is A x D y N z O v : M w , wherein 5 ⁇ x ⁇ 7, 10 ⁇ y ⁇ 12, 18 ⁇ z ⁇ 22, 0 ⁇ v ⁇ 1.5, 0 ⁇ w ⁇ 0.5.
  • the inorganic compound having the above elemental composition can emit yellow-orange light, that is, yellow orange phosphor powder, and it is experimentally verified that the phosphor has high light efficiency when combined with the blue chip; and the inorganic compound composed of the above components can form a single
  • the crystal structure of the oblique crystal, as shown in Fig. 1, is relatively stable, so that it can maintain high luminous efficiency and low color temperature in practical applications.
  • the above A includes at least Lu, and the ratio of the number of moles of Lu to the total number of moles of A is not less than 80%.
  • D must contain Si, and the ratio of the number of moles of Si to the total number of moles of D is not less than 90%.
  • M includes at least element Ce as the main luminescent center ion.
  • the range of x described above is 5.5 ⁇ x ⁇ 6.4.
  • the range of v is 0.5 ⁇ v ⁇ 1.
  • the range of w described above is 0.1 ⁇ w ⁇ 0.15 to improve luminous efficiency.
  • the above A is Lu, D is Si, and M is Ce. To further ensure the purity of the crystal structure of the inorganic compound.
  • the blue light chip can be used as an excitation light source and a phosphor of other luminescent colors to emit white light, wherein the phosphor has an emission wavelength between 540 and 575 nm when the excitation wavelength is between 270 and 480 nm. That is, yellow orange light is emitted.
  • the preparation method of the phosphor of the present application reference may be made to the preparation method of the conventional phosphor in the prior art, and the preparation method preferably includes:
  • the raw materials are weighed according to the design ratio, and the raw materials are: nitride of raw material (a) A, such as tantalum nitride, tantalum nitride, etc.; nitride of raw material (b) D, here mainly silicon nitride and nitrogen Two kinds of aluminum; raw material (c) M nitride or oxide.
  • the raw material (a), the raw material (b) and the raw material (c) are mixed to form a mixed raw material, and the mixed raw material is calcined at an ambient pressure of 2 MPa or more and 1700 ° C or more to 2000 ° C or lower to obtain a phosphor precursor.
  • the phosphor after sintering was heated in a water bath of 1 mol/L hydrochloric acid or nitric acid at 50 ° C for half an hour, and dried to obtain phosphors of the respective examples.
  • a light emitting device comprising an excitation light source and a fluorescent substance, the fluorescent substance comprising a first phosphor and optionally other phosphors, the first phosphor being Fluorescence of any of the above Light body.
  • the above other phosphor is selected from a mixture of one or more of the following phosphors: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 O 12 : Ce 3+ , ⁇ -SiAlON: Eu 2 + , (Ca,Sr)AlSiN 3 :Eu 2+ ,(Li,Na,K) 2 (Ti,Zr,Si,Ge)F 6 :Mn 4+ and (Ca,Sr,Ba)MgAl 10 O 17 : Eu 2+ .
  • the light-emitting device may be a semiconductor light-emitting device or a laser device commonly used in the art.
  • the excitation light source is a semiconductor light-emitting diode or a laser light source, and the fluorescent material may be coated on the outside of the excitation light source.
  • the excitation light source has an emission peak wavelength of 360 to 440 nm.
  • Excitation and emission spectra were acquired using a highly sensitive integrated fluorescence spectrometer from Horiba's FluoroMax-4 model; the luminescence intensity and color coordinates were measured using a high-speed fast spectroradiometer from Hangzhou Yuggling HAAS-2000.
  • the detection of the gamut range, color rendering index and color temperature was detected by the company's ZWL-600 model photoelectric test system.
  • a light-emitting device comprising two 450 nm blue light chips and a phosphor layer coated on the blue light chip, wherein the phosphor layer contains a red phosphor and a yellow phosphor, and the molar ratio of the two is 1:4, red fluorescent
  • the powder is SrAlSiN 3 :Eu 2+ and the yellow phosphor is Y 3 Al 5 O 12 :Ce 3+ .
  • the two phosphors and the silica gel are uniformly mixed and coated on two blue chips respectively, and the circuit is soldered and packaged. After that, a light-emitting device having a luminous efficiency of 100% and a color rendering index of 85 was obtained.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 4.2 LaSi 11.1 N 20 O:Ce 0.3 , and accurately weigh 39.69 g of LuN, 7.65 LaN, 2.31 g of CeN, and 25.9 g of Si 3 N 4 in a glove box. After uniformization, it was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas.
  • the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol / L water is heated in a water bath at 50 ° C for half an hour, and dried to obtain a phosphor.
  • the XRD of the phosphor is shown in Figure 2, and the SEM is shown in Figure 3.
  • the excitation and emission spectra are shown in Figure 4, respectively.
  • the luminous efficiency of the phosphor and the red phosphor SrAlSiN 3 :Eu 2+ package and the molar ratio of the two is 4:1, and the color rendering index test results are shown in Table 1.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 5.44 Y 1.36 Si 10.4 N 20 O:Ce 0.1 accurately weighs 51.408 g of LuN, 8.39 YN, 0.77 g of CeN, and 24.3 g of Si 3 N 4 in a glove box. After mixing uniformly, the mixture was placed in a boron nitride crucible, and the N 2 gas was used as a shielding gas. The temperature was raised to 1900 ° C at a heating rate of 10 ° C/min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 4.48 Gd 1.12 Si 12 N 21 O:Ce 0.067 accurately weighs 42.336 g of LuN, 9.675 GdN, 0.52 g of CeN, and 28 g of Si 3 N 4 in a glove box. After uniformization, it was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas.
  • the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol / L in hydrochloric acid, heated at 50 ° C for half an hour in a water bath, dried to obtain a phosphor, the above values and the luminous efficiency of the phosphor and the red phosphor SrAlSiN 3 :Eu 2+ package and the molar ratio of the two is 4:1
  • the color rendering index test results are shown in Table 1.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 6 Si 12 N 22 O 0.5 : 0.3Ce. 56.7 g of LuN, 2.31 g of CeN, and 28 g of Si 3 N 4 are accurately weighed and mixed in a glove box. Into boron nitride crucible, N 2 gas is used as a shielding gas, and the temperature is raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product is ground in 1 mol/L hydrochloric acid.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 5.1 Si 10.1 N 18 O: 0.1Ce. 48.195 g of LuN, 0.231 g of CeN, and 23.4 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • N 2 gas is used as a shielding gas, and the temperature is raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product is ground in 1 mol/L hydrochloric acid.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6.5 Si 10 AlN 20 O 1.3 : 0.03Ce accurately weighs 61.425 g of LuN, 2.05 AlN, 0.231 g of CeN, and 23.3 g of Si 3 N 4 in a glove box. After uniformization, it was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas.
  • the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol / L in hydrochloric acid, heated at 50 ° C for half an hour in a water bath, dried to obtain a phosphor, the above values and the luminous efficiency of the phosphor and the red phosphor SrAlSiN 3 :Eu 2+ package and the molar ratio of the two is 4:1
  • the color rendering index test results are shown in Table 1.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6.5 Si 10 AlN 20 O 1.4 : 0.1Ce accurately weighs 61.425 g of LuN, 2.05 AlN, 0.77 g of CeN, and 23.3 g of Si 3 N 4 in a glove box. After uniformization, it was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas.
  • the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol / L in hydrochloric acid, heated at 50 ° C for half an hour in a water bath, dried to obtain a phosphor, the above values and the luminous efficiency of the phosphor and the red phosphor SrAlSiN 3 :Eu 2+ package and the molar ratio of the two is 4:1
  • the color rendering index test results are shown in Table 1.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 4.2 LaSi 10 AlN 20 O 0.2 : 0.3Ce. Weigh accurately 39.69g LuN, 2.05AlN, 2.31g CeN, 23.3g Si 3 N 4 are mixed in the glove box. After uniformization, it was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas.
  • the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground at 1 mol / L in hydrochloric acid, heated at 50 ° C for half an hour in a water bath, dried to obtain a phosphor, the above values and the luminous efficiency of the phosphor and the red phosphor SrAlSiN 3 :Eu 2+ package and the molar ratio of the two is 4:1
  • the color rendering index test results are shown in Table 1.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6.5 Si 10.5 Al 0.5 N 21 O 0.15 : 0.1Ce accurately weighs 61.425g LuN, 1.025AlN, 0.77g CeN, 24.5g Si 3 N 4 in the glove box. After mixing uniformly, the mixture was placed in a boron nitride crucible, and N 2 gas was used as a shielding gas. The temperature was raised to 1900 ° C at a heating rate of 10 ° C/min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6 Si 11 N 20 O: 0.001Ce. 56.7 g of LuN, 0.008 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 6 Si 11 N 20 O 1.08 : 0.05Ce, and 56.7 g of LuN, 0.385 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible is charged with N 2 gas as a shielding gas, and the temperature is raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product is ground, and then 1 mol/L of nitric acid is used.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6 Si 11 N 20 O 1.18 : 0.12Ce.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6 Si 11 N 20 O 1.23 : 0.15Ce, and 56.7 g of LuN, 1.16 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 6 Si 11 N 20.3 O 0.7 : 0.1Ce. 56.7 g of LuN, 0.77 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6 Si 11 N 20.17 O 0.9 : 0.1Ce, and 56.7 g of LuN, 0.77 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 5.5 Si 11 N 20 O 0.4 : 0.1Ce.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 5.7 Si 11 N 20 O 0.7 : 0.1Ce, and 53.8655 g of LuN, 0.77 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 5.9 Si 11 N 20 O: 0.1Ce. 55.755 g of LuN, 0.77 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • N 2 gas is used as a shielding gas, and the temperature is raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product is ground in 1 mol/L hydrochloric acid.
  • the chemical formula of the nitride yellow phosphor prepared in this example is Lu 6.2 Si 11 N 20.5 O 0.7 : 0.1Ce.
  • the chemical formula of the nitride yellow phosphor prepared in this embodiment is Lu 6.4 Si 11 N 21 O 0.25 : 0.1Ce. 60.48 g of LuN, 0.77 g of CeN, and 25.7 g of Si 3 N 4 are accurately weighed and mixed in a glove box.
  • the boron nitride crucible was charged with N 2 gas as a shielding gas, and the temperature was raised to 1900 ° C at a heating rate of 10 ° C / min, and calcined under a pressure of 20 MPa for 8 hours, and then the calcined product was ground, and then 1 mol/L hydrochloric acid was used.
  • the inorganic compound having the above elemental composition can emit yellow-orange light, that is, yellow orange phosphor powder, and it is experimentally verified that the phosphor has high light efficiency when combined with the blue chip; and the inorganic compound composed of the above components can form a single
  • the crystal structure of the oblique crystal, as shown in Fig. 1, is relatively stable, so that it can maintain high luminous efficiency and low color temperature in practical applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种荧光体及具有其的发光装置。该荧光体包括无机化合物,无机化合物包含A元素、D元素、M元素的组成,其中A元素选自La、Lu、Y、Tb和Gd中的一种或几种,D为Si或者为Si和Al,M为Ce、Eu、Sm、Pr和Dy中的一种或几种,无机化合物的晶体结构为单斜晶体,无机化合物的化学式为AxDyNzOv:Mw,其中,5<x<7,10<y≤12,18≤z≤22,0≤v<1.5,0<w<0.5。具有上述元素组成的无机化合物能够发出黄橙色光该荧光体与蓝光芯片配合后其光效较高;无机化合物能够形成单斜晶体的晶体结构,该晶体结构比较稳定,因此在实际应用中能够保持较高的发光效率,色温较低。

Description

荧光体及具有其的发光装置 技术领域
本发明涉及荧光材料领域,具体而言,涉及一种荧光体及具有其的发光装置。
背景技术
白光LED具有绿色和长寿命等优点,被誉为第四代照明光源,是我国重点发展的战略性新兴高技术产业,伴随着白光LED技术的不断升级、变革,涌现出形形色色荧光粉,但是绝大多数由于种种原因无法应用于实际生活,诸如热特性、发光效率等。因此寻找新型实用性荧光粉已迫在眉睫。
目前,白光LED的主流实现方案依然为蓝光LED芯片搭配多种发射波长的荧光粉,荧光粉是决定白光LED器件发光效率特别是色温和显色指数等性能的关键因素。目前商用的荧光粉主要集中在铝酸盐系列黄色荧光粉和黄绿色荧光粉、氮化物红色荧光粉、氟化物窄带红粉、β-Sialon、硅酸盐绿色荧光粉,这些荧光粉工艺技术较为成熟,已达到稳定水平。同时上述荧光粉缺少商用黄橙粉。
目前,处于研究阶段的黄橙粉主要有Eu2+激活的α-Sialon类型荧光粉,峰值波长为580nm左右(见日本特开2002-363554号公报),当使用该系列荧光粉组合Ce3+激活的钇铝石榴石黄粉而构成的白光LED时,与仅使用Ce3+激活的YAG的白色LED相比,可以制作色温更低的白光LED,但是该系列荧光粉与蓝光芯片匹配后,光效较低,无法达到应用水平。此外,还有氧化物体系荧光粉,诸如磷酸盐等,但是该系列荧光粉因热稳定性较差而研究甚少,因此探索新型橙黄色荧光粉具有较大意义。
发明内容
本发明的主要目的在于提供一种荧光体及具有其的发光装置,以解决现有技术中的黄橙粉不能满足实际应用的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种荧光体,包括无机化合物,无机化合物包含A元素、D元素、M元素的组成,其中A元素选自La、Lu、Y、Tb和Gd中的一种或几种,D为Si或者为Si和Al,M为Ce、Eu、Sm、Pr和Dy中的一种或几种,无机化合物的晶体结构为单斜晶体,无机化合物的化学式为AxDyNzOv:Mw,其中,5<x<7,10<y≤12,18≤z≤22,0≤v<1.5,0<w<0.5。
进一步地,上述A至少包括Lu,且Lu的摩尔数占A的总摩尔数之比不低于80%。
进一步地,上述D必含Si,且Si的摩尔数占D的总摩尔数之比不低于90%。
进一步地,上述M至少包括元素Ce。
进一步地,上述x的范围为5.5≤x≤6.4。
进一步地,上述v的范围为0.5≤v≤1。
进一步地,上述w的范围为0.1≤w≤0.15。
进一步地,上述A为Lu,D为Si,M为Ce。
进一步地,上述荧光体的激发波长位于270~480nm之间,荧光体的发射波长位于540~575nm之间。
根据本发明的另一方面,提供了一种发光装置,发光装置包括激发光源和荧光物质,荧光物质包括第一荧光体和可选的其它荧光体,该第一荧光体为上述任一种的荧光体。
进一步地,上述其它荧光体选自以下荧光物质中一种或多种的混合物:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce3+,β-SiAlON:Eu2+,(Ca,Sr)AlSiN3:Eu2+,(Li,Na,K)2(Ti,Zr,Si,Ge)F6:Mn4+和(Ca,Sr,Ba)MgAl10O17:Eu2+
进一步地,上述激发光源为半导体发光二极管或激光光源,优选激发光源的发射峰值波长位于360~440nm。
应用本发明的技术方案,具有上述元素组成的无机化合物能够发出黄橙色光,即为黄橙荧光粉,且经过试验验证该荧光体与蓝光芯片配合后其光效较高;同时由上述组分构成的无机化合物能够形成单斜晶体的晶体结构,如图1所示,该晶体结构比较稳定,因此在实际应用中能够保持较高的发光效率,色温较低。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明提供的荧光体的晶体结构立体示意图;
图2示出了根据本发明实施例1提供的荧光体的XRD谱图;
图3示出了根据本发明实施例1提供的荧光体的SEM谱图;以及
图4示出了根据本发明实施例1提供的荧光体的激发、发射光谱,其中,λex表示激发波长,λem表示发射波长。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所分析的,现有技术对各种颜色的荧光粉的均较多,且大部分颜色的荧光粉已经能够在工业中稳定应用,但是,黄橙粉不能同时满足高光效,低色温的要求,目前还没有在工业中得到实际应用,为了解决该问题,本申请提供了一种荧光体及具有其的发光装置。
在本申请一种典型的实施方式中,提供了一种荧光体,包括无机化合物,该无机化合物包含A元素、D元素、M元素的组成,其中A元素选自La、Lu、Y和Gd中的一种或几种,D为Si或者为Si和Al,M为Ce、Eu、Sm、Pr和Dy中的一种或几种,无机化合物的晶体结构为单斜晶体,上述无机化合物的化学式为AxDyNzOv:Mw,其中,5<x<7,10<y≤12,18≤z≤22,0≤v<1.5,0<w<0.5。
具有上述元素组成的无机化合物能够发出黄橙色光,即为黄橙荧光粉,且经过试验验证该荧光体与蓝光芯片配合后其光效较高;同时由上述组分构成的无机化合物能够形成单斜晶体的晶体结构,如图1所示,该晶体结构比较稳定,因此在实际应用中能够保持较高的发光效率,色温较低。
此外,优选上述A至少包括Lu,且Lu的摩尔数占A的总摩尔数之比不低于80%。以保证具有该无机化合物的晶体结构的稳定性。优选D必含Si,且Si的摩尔数占D的总摩尔数之比不低于90%。以形成为硅为基本结构的晶体结构。优选M至少包括元素Ce,以作为主要发光中心离子。
进一步地,优选上述x的范围为5.5≤x≤6.4。优选上述v的范围为0.5≤v≤1。优选上述w的范围为0.1≤w≤0.15,以提高发光效率。
在本申请另一种优选的实施例中,上述A为Lu,D为Si,M为Ce。以进一步保证该无机化合物的晶体结构的纯度。
上述荧光体在使用时,可以采用蓝光芯片作为激发光源和其他发光颜色的荧光粉配合以发出白光,其中该荧光体在激发波长位于270~480nm之间时的发射波长位于540~575nm之间,即发出黄橙光。
本申请的荧光体的制备方法可以参考现有技术中常规荧光体的制备方法,优选该制备方法包括:
按设计配比称取各原料,各原料分别为:原料(a)A的氮化物,诸如氮化镧,氮化镥等;原料(b)D的氮化物,这里主要是氮化硅和氮化铝两种;原料(c)M的氮化物或氧化物。
将上述原料(a)、原料(b)和原料(c)混合,形成混合原料;将该混合原料在2MPa以上的环境压力下、与1700℃以上至2000℃以下进行焙烧,得到荧光体前体;对烧结后的荧光体在1mol/L的盐酸或硝酸在50℃水浴加热半小时,干燥得到各实施例的荧光体。
在本申请另一种典型的实施方式中,提供了一种发光装置,该发光装置包括激发光源和荧光物质,荧光物质包括第一荧光体和可选的其它荧光体,该第一荧光体为上述任一种的荧 光体。将本申请的荧光体应用于发光装置中,能够避免由于其导致的发光不稳定,出光效率差的问题,使得该发光装置具有高显色、低色温的特点。同时本申请的荧光体还可以和其它荧光体配合使用,以调整该发光装置的发光颜色。
优选地,上述其它荧光体选自以下荧光物质中一种或多种的混合物:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce3+,β-SiAlON:Eu2+,(Ca,Sr)AlSiN3:Eu2+,(Li,Na,K)2(Ti,Zr,Si,Ge)F6:Mn4+和(Ca,Sr,Ba)MgAl10O17:Eu2+。其中,(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce3+作为黄色荧光粉使用,(Ca,Sr)AlSiN3:Eu2+作为红色荧光粉使用。
上述发光装置可以为本领域常用的半导体发光装置或者激光装置,优选上述激发光源为半导体发光二极管或激光光源,荧光物质可以包覆在激发光源的外部。为了和上述组成的荧光物质配合发出低色温白光,优选上述激发光源的发射峰值波长位于360~440nm。
以下将结合实施例和对比例,进一步说明本申请的有益效果。
测试方法
本发明的实施例和比较例的测试条件如下:XRD图谱采用Co靶(λ=1.78892nm)进行X射线衍射。激发光谱和发射光谱采用采用Horiba公司的FluoroMax-4型号的高灵敏一体式荧光光谱仪采集得到;发光强度和色坐标采用杭州远方HAAS-2000高精度快速光谱辐射计检测得到。色域范围、显色指数和色温的检测采用中为公司的ZWL-600型号的光电测试系统检测得到。
比较例1
一种发光装置,包括两个450nm蓝光芯片以及涂敷在蓝光芯片上的荧光粉层,其中,荧光粉层中含有红色荧光粉和黄色荧光粉,且二者摩尔比为1:4,红色荧光粉为SrAlSiN3:Eu2+,黄色荧光粉为Y3Al5O12:Ce3+,将这两种荧光粉以及硅胶混合均匀后分别涂敷在两个蓝光芯片上,焊接好电路,封装后得到发光装置,其发光效率达到100%,显色指数为85。
实施例1
本实施例所制备的氮化物黄色荧光粉化学式为Lu4.2LaSi11.1N20O:Ce0.3,准确称取39.69g LuN、7.65LaN、2.31g CeN、25.9g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,荧光粉的XRD见图2所示,SEM见图3所示,激发、发射光谱分别见图4所示,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例2
本实施例所制备的氮化物黄色荧光粉化学式为Lu5.44Y1.36Si10.4N20O:Ce0.1准确称取51.408g LuN、8.39YN、0.77g CeN、24.3g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以 N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例3
本实施例所制备的氮化物黄色荧光粉化学式为Lu4.48Gd1.12Si12N21O:Ce0.067准确称取42.336g LuN、9.675GdN、0.52g CeN、28g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例4
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si12N22O0.5:0.3Ce准确称取56.7g LuN、2.31g CeN、28g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例5
本实施例所制备的氮化物黄色荧光粉化学式为Lu5.1Si10.1N18O:0.1Ce准确称取48.195g LuN、0.231g CeN、23.4g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例6
本实施例所制备的氮化物黄色荧光粉化学式为Lu6.5Si10AlN20O1.3:0.03Ce准确称取61.425g LuN、2.05AlN、0.231g CeN、23.3g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例7
本实施例所制备的氮化物黄色荧光粉化学式为Lu6.5Si10AlN20O1.4:0.1Ce准确称取61.425g LuN、2.05AlN、0.77g CeN、23.3g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例8
本实施例所制备的氮化物黄色荧光粉化学式为Lu4.2LaSi10AlN20O0.2:0.3Ce准确称取39.69g LuN、2.05AlN、2.31g CeN、23.3g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例9
本实施例所制备的氮化物黄色荧光粉化学式为Lu6.5Si10.5Al0.5N21O0.15:0.1Ce准确称取61.425g LuN、1.025AlN、0.77g CeN、24.5g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例10
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20O:0.001Ce准确称取56.7g LuN、0.008g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的硝酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例11
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20O1.08:0.05Ce准确称取56.7g LuN、0.385g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的硝酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例12
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20O1.18:0.12Ce准确称取56.7g LuN、0.924g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例13
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20O1.23:0.15Ce准确称取56.7g LuN、1.16g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例14
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20.3O0.7:0.1Ce准确称取56.7g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例15
本实施例所制备的氮化物黄色荧光粉化学式为Lu6Si11N20.17O0.9:0.1Ce准确称取56.7g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例16
本实施例所制备的氮化物黄色荧光粉化学式为Lu5.5Si11N20O0.4:0.1Ce准确称取51.976g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上 数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例17
本实施例所制备的氮化物黄色荧光粉化学式为Lu5.7Si11N20O0.7:0.1Ce准确称取53.8655g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例18
本实施例所制备的氮化物黄色荧光粉化学式为Lu5.9Si11N20O:0.1Ce准确称取55.755g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例19
本实施例所制备的氮化物黄色荧光粉化学式为Lu6.2Si11N20.5O0.7:0.1Ce准确称取58.59g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
实施例20
本实施例所制备的氮化物黄色荧光粉化学式为Lu6.4Si11N21O0.25:0.1Ce准确称取60.48g LuN、0.77g CeN、25.7g Si3N4在手套箱中进行混合均匀后,装入氮化硼坩埚中,以N2气为保护气体,以10℃/min升温速度进行升温至1900℃,20MPa压力下焙烧8小时,然后将焙烧产物进行研磨后,在1mol/L的盐酸中、50℃的温度下水浴加热半小时,干燥获得荧光粉,以上数值及该荧光粉的发光效率及与红色荧光粉SrAlSiN3:Eu2+封装且二者摩尔比为4:1,显色指数测试结果如表1。
表1
Figure PCTCN2016113742-appb-000001
Figure PCTCN2016113742-appb-000002
根据表1中的数据可以看出,各实施例采用本申请的荧光体后,发光装置的色温明显降低,且显示色域也较高,光效也比较理想。同时,根据实施例3、4和10的数据可以看出,当其中w值超出0.1~0.15的范围后,会在一定程度上导致发光效率的下降;根据实施例6和9的数据可以看出,当x值超出5.5~6.4的范围后,也会在一定程度上导致发光效率的下降。根据实施例11至15的数据和其他实施例的数据对比,可以发现,当A元素为Lu且x值均为6,且Ce浓度较合适时,其发光效率更好。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
具有上述元素组成的无机化合物能够发出黄橙色光,即为黄橙荧光粉,且经过试验验证该荧光体与蓝光芯片配合后其光效较高;同时由上述组分构成的无机化合物能够形成单斜晶体的晶体结构,如图1所示,该晶体结构比较稳定,因此在实际应用中能够保持较高的发光效率,色温较低。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种荧光体,其特征在于,包括无机化合物,所述无机化合物包含A元素、D元素、M元素的组成,其中A元素选自La、Lu、Y、Tb和Gd中的一种或几种,D为Si或者为Si和Al,M为Ce、Eu、Sm、Pr和Dy中的一种或几种,所述无机化合物的晶体结构为单斜晶体,所述无机化合物的化学式为AxDyNzOv:Mw,其中,5<x<7,10<y≤12,18≤z≤22,0≤v<1.5,0<w<0.5。
  2. 根据权利要求1所述的荧光体,其特征在于,所述A至少包括所述Lu,且所述Lu的摩尔数占所述A的总摩尔数之比不低于80%。
  3. 根据权利要求1所述的荧光体,其特征在于,所述D必含所述Si,且所述Si的摩尔数占所述D的总摩尔数之比不低于90%。
  4. 根据权利要求1所述的荧光体,其特征在于,所述M至少包括元素Ce。
  5. 根据权利要求1所述的荧光体,其特征在于,所述x的范围为5.5≤x≤6.4。
  6. 根据权利要求1所述的荧光体,其特征在于,所述v的范围为0.5≤v≤1。
  7. 根据权利要求1所述的荧光体,其特征在于,所述w的范围为0.1≤w≤0.15。
  8. 根据权利要求1所述的荧光体,其特征在于,所述A为Lu,所述D为Si,所述M为Ce。
  9. 根据权利要求1所述的荧光体,其特征在于,所述荧光体的激发波长位于270~480nm之间,所述荧光体的发射波长位于540~575nm之间。
  10. 一种发光装置,所述发光装置包括激发光源和荧光物质,所述荧光物质包括第一荧光体和可选的其它荧光体,其特征在于,所述第一荧光体为权利要求1至9中任一项所述的荧光体。
  11. 根据权利要求10所述的发光装置,其特征在于,所述其它荧光体选自以下荧光物质中一种或多种的混合物:(Y,Gd,Lu,Tb)3(Al,Ga)5O12:Ce3+,β-SiAlON:Eu2+,(Ca,Sr)AlSiN3:Eu2+,(Li,Na,K)2(Ti,Zr,Si,Ge)F6:Mn4+和(Ca,Sr,Ba)MgAl10O17:Eu2+
  12. 根据权利要求10所述的发光装置,其特征在于,所述激发光源为半导体发光二极管或激光光源,优选所述激发光源的发射峰值波长位于360~440nm。
PCT/CN2016/113742 2016-12-30 2016-12-30 荧光体及具有其的发光装置 WO2018120124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113742 WO2018120124A1 (zh) 2016-12-30 2016-12-30 荧光体及具有其的发光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/113742 WO2018120124A1 (zh) 2016-12-30 2016-12-30 荧光体及具有其的发光装置

Publications (1)

Publication Number Publication Date
WO2018120124A1 true WO2018120124A1 (zh) 2018-07-05

Family

ID=62706955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113742 WO2018120124A1 (zh) 2016-12-30 2016-12-30 荧光体及具有其的发光装置

Country Status (1)

Country Link
WO (1) WO2018120124A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521400A1 (en) * 2018-01-31 2019-08-07 Panasonic Intellectual Property Management Co., Ltd. Phosphor and light-emitting apparatus
CN115340869A (zh) * 2022-08-31 2022-11-15 广东旭宇光电有限公司 橙色发光材料及其制备方法、白光led

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305955A1 (en) * 2011-05-31 2012-12-06 Hussell Christopher P Luminescent Particles, Methods and Light Emitting Devices Including the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120305955A1 (en) * 2011-05-31 2012-12-06 Hussell Christopher P Luminescent Particles, Methods and Light Emitting Devices Including the Same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKATOSHI SETO: "Blue-Excited and Yellow-Emitting Oxynitride Phosphor Y6+(x/3)-yCay+(z/2)Si11N20+x-y+z01-x+y-z:Ce", ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, vol. 4, no. 7, 17 April 2015 (2015-04-17) *
WOON BAE PARK: "Y6+x/3Si11-yAlyN20+x-y01-x+y:Re3+(Re=ce3+, Tb3+, Sm3+) Phosphors Indentified by Solid-State Combinatorial Chemistry", JOURNAL OF MATERIALS CHEMISTRY, vol. 21, no. 15, 7 March 2011 (2011-03-07) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521400A1 (en) * 2018-01-31 2019-08-07 Panasonic Intellectual Property Management Co., Ltd. Phosphor and light-emitting apparatus
US10662376B2 (en) 2018-01-31 2020-05-26 Panasonic Intellectual Property Managment Co., Ltd. Phosphor that includes crystal phase containing celium
CN115340869A (zh) * 2022-08-31 2022-11-15 广东旭宇光电有限公司 橙色发光材料及其制备方法、白光led
CN115340869B (zh) * 2022-08-31 2023-04-04 广东旭宇光电有限公司 橙色发光材料及其制备方法、白光led

Similar Documents

Publication Publication Date Title
TWI394815B (zh) 螢光體組成物及其製造方法、使用該螢光體組成物之發光裝置
KR101157313B1 (ko) 형광체 조성물과 그 제조방법, 및 그 형광체 조성물을 이용한 발광 장치
JP4843990B2 (ja) 蛍光体およびそれを用いた発光装置
WO2018001369A1 (zh) 荧光粉、其制备方法及具有其的发光器件
WO2018001370A1 (zh) 镥氮基荧光粉及具有其的发光器件
KR20160003195A (ko) 인광체
CN112457848A (zh) 一种窄带蓝光荧光粉及其制备方法与应用
WO2017114281A1 (zh) 石榴石型结构的荧光粉及其制成的发光装置
JP2016535719A (ja) 蛍光体
WO2016127843A1 (zh) 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
WO2018120124A1 (zh) 荧光体及具有其的发光装置
TWI418610B (zh) 螢光材料、及包含其之發光裝置
CN108913127A (zh) 一种窄带绿光荧光粉及其制备方法和白光led发光装置
CN108264897B (zh) 荧光体及具有其的发光装置
KR101176212B1 (ko) 알카리 토류 포스포러스 나이트라이드계 형광체와 그 제조방법 및 이를 이용한 발광장치
WO2018001368A1 (zh) 氮化物荧光体及包含其的发光装置
WO2016065725A1 (zh) 荧光材料及其制造方法和包含该荧光材料的组合物
CN106635015B (zh) 一种具有石榴石结构的氮氧化物荧光粉及其制备方法和应用
CN104342156B (zh) 一种荧光粉及其制备方法和含该荧光粉的发光器件
CN107974252B (zh) 一种氮化物发光材料及包含其的发光装置
CN104152147A (zh) 一种稀土含氧酸盐荧光体及其应用
TW201341503A (zh) 螢光材料、含其之螢光材料組合物、及以其製得之發光裝置
CN107189779A (zh) 一种白光led用光谱可调磷酸盐荧光粉及其制备方法
CN110066656B (zh) 一种Mn2+掺杂的氟铌钽酸盐荧光粉及其合成与应用
TWI428428B (zh) 螢光材料及使用其之發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925622

Country of ref document: EP

Kind code of ref document: A1