WO2014094657A1 - 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件 - Google Patents

氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件 Download PDF

Info

Publication number
WO2014094657A1
WO2014094657A1 PCT/CN2013/090145 CN2013090145W WO2014094657A1 WO 2014094657 A1 WO2014094657 A1 WO 2014094657A1 CN 2013090145 W CN2013090145 W CN 2013090145W WO 2014094657 A1 WO2014094657 A1 WO 2014094657A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent substance
red fluorescent
orange
light
red
Prior art date
Application number
PCT/CN2013/090145
Other languages
English (en)
French (fr)
Inventor
刘荣辉
刘元红
何华强
黄小卫
高慰
何涛
胡运生
庄卫东
Original Assignee
有研稀土新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有研稀土新材料股份有限公司 filed Critical 有研稀土新材料股份有限公司
Priority to US14/443,053 priority Critical patent/US9671086B2/en
Priority to EP13864267.3A priority patent/EP2937400A4/en
Priority to KR1020157011284A priority patent/KR101726246B1/ko
Publication of WO2014094657A1 publication Critical patent/WO2014094657A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77928Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to a nitrogen oxide orange-red fluorescent substance, including a light-emitting film or a light-emitting sheet therefor. And light emitting devices.
  • BACKGROUND OF THE INVENTION White light emitting diodes (white LEDs) have the advantages of low voltage, high luminous efficiency, low energy consumption, long life, no pollution, and have been successfully applied in the fields of semiconductor illumination and flat panel display.
  • the implementation of white LEDs is mainly divided into two types: the first is a combination of three primary color (red, blue, green) LED chips; the other is to use LED chips to stimulate the mixing of fluorescent materials to form white light, that is, with blue LED chips.
  • the blue LED chip is simple, easy, and relatively inexpensive in combination with the Y 3 Al 5 0 12: Ce yellow fluorescent material, and becomes a mainstream solution for white LEDs.
  • the white light spectrum formed by this method is relatively single, and the spectrum is mainly concentrated in the yellow light region, resulting in low color rendering of the prepared white LED.
  • the red component missing in the white LED spectrum can be compensated for, and the color rendering ability of the white LED product can be improved.
  • Nitrogen/nitrogen oxide fluorescent substances have received widespread attention since their inception.
  • the anionic group of the fluorescent substance contains a highly negatively charged N 3 —, and the electron cloud expansion effect causes the excitation spectrum to move toward the long-wave direction such as near ultraviolet light and visible light, and can be excited by blue light and ultraviolet light in the range of 200 to 500 nm, and emit light.
  • the main wavelength is distributed in a wide range of 600 ⁇ 720nm, featuring good color rendering and high luminous efficiency. It has good safety performance, non-toxicity, environmental protection, and the matrix has a tight network structure and is stable in physical and chemical properties (for example, Patent Literature)
  • the regulation of CaAlSiN 3 :Eu red powder by Sr can effectively improve the luminous intensity of the fluorescent substance.
  • the nitrogen oxide orange-red fluorescent substance of the present invention further increases the regulation range of the phosphor, and the light color range can be expanded to the orange region.
  • the present invention provides an oxynitride orange-red fluorescent substance, including the luminescent film or the luminescent sheet and the illuminating device thereof, in order to improve the nitrogen oxide orange-red fluorescent substance. Luminous efficiency.
  • a nitrogen oxide orange-red fluorescent substance having a chemical formula of M m A a Si x N y O z :dR, wherein the M element is in Ca, Sr or Ba One or more elements; the A element is a mixture of A1 or A1 and one or more elements of Ga, La, Sc or Y; and the R element is one or more of Ce, Eu or Mn Element; and the above chemical formula satisfies 0.8 ⁇ m 1.2, Ka ⁇ 1.7, Kx ⁇ 1.7, 3 ⁇ y ⁇ 4.2, 0 ⁇ z ⁇ 0.7, 0.001 ⁇ d ⁇ 0.2.
  • the main generation phase of the above-mentioned nitrogen oxide orange-red fluorescent substance is in the powder X-ray diffraction spectrum of the Cuka line, at least at a Bragg angle (2 ⁇ ) 31.3° to 32.7°, 35.2° to 36.2°, 36.2° to 36.7. °, 36.7.
  • a diffraction peak in the range of ⁇ 37.6° wherein the intensity of the diffraction peak in the range of 36.7° to 37.6° is not less than 18% of the intensity of the diffraction peak in the range of 36.2° to 36.7°, and the half-peak width of the emission spectrum of the phosphor Not less than 82nm.
  • the main generating phase of the above-mentioned nitrogen oxide orange-red fluorescent substance is in the powder X-ray diffraction spectrum of the Cuka line, at least at a Bragg angle (2 ⁇ ) at 31.3 ° to 31.8 °, 31.8 ° to 32.7 °, 35.2 ° ⁇
  • diffraction peaks in the range of 36.2°, 36.2° to 36.7°, 36.7° to 37.6°, 48.0° to 49.5°, 56.0° to 57.2°
  • the half-peak width of the emission spectrum of the phosphor is not less than 95 nm.
  • the above M element is Ca and/or Sr; the A element is Al, or a mixture of A1 and Ga and/or Y; and the R element is one or two elements of Eu and Mn. Further, the above A element is Al. Further, the above R element is Eu. Further, the above M element is Ca. Further, the fluorescent substance is in the form of a powder, a film or a sheet. Meanwhile, in the present invention, an illuminating film or a luminescent sheet is also formed, which is formed by dispersing the above-mentioned oxynitride orange-red fluorescent substance in a glass material, a plastic material or a resin material.
  • the other fluorescent substance in the luminescent film or the luminescent sheet is one or more of the following fluorescent substances (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0 12 : Ce, (Mg, Ca, Sr,Ba) 2 Si0 4 :Eu , (Ca,Sr) 3 Si0 5 :Eu , (La,Ca) 3 Si 6 Nu:Ce, a-SiA10N:Eu, p-SiA10N:Eu Ba 3 Si 6 0 12 N 2 :Eu, Ca 3 (Sc,Mg) 2 Si 3 0 12 :Ce, CaSc 2 0 4 :Eu , BaAl 8 0i 3 :Eu , (Ca
  • a light-emitting device comprising at least a radiation source and the above-described nitrogen oxide orange-red fluorescent substance.
  • the above radiation source is an ultraviolet, violet, or blue light emitting source.
  • the above-mentioned light emitting device further contains other fluorescent substances that are excited by the radiation source to emit light.
  • the other fluorescent substance is one or more of the following fluorescent substances: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0i 2 : Ce, (Mg, Ca, Sr, Ba) 2 Si0 4 :Eu , (Ca,Sr) 3 Si0 5 :Eu , (La,Ca) 3 Si 6 Nu:Ce, a-SiA10N:Eu, p-SiA10N:Eu Ba 3 Si 6 0 12 N 2 :Eu, Ca 3 (Sc,Mg) 2 Si 3 0 12 :Ce, CaSc 2 0 4 :Eu , BaAl 8 0 13 :Eu , (Ca,Sr,Ba)Al 2 0 4 :Eu , (Sr,Ca,Ba) (Al,Ga,In) 2 S 4 :Eu , (Ca,Sr) 8 (Mg,Zn)(Si0 4 ) 4 Cl 2 :
  • the nitrogen oxide orange-red fluorescent substance provided by the invention can emit orange-red light under the excitation of the radiation source, and the fluorescent substance has good luminous efficiency and can satisfy high color rendering and low color temperature white light. LED needs.
  • the present invention has other objects, features and advantages. The invention will now be described in further detail with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG In the picture: 1 shows an emission spectrum of a fluorescent substance of a fluorescent substance prepared according to Example 1 of the present application; FIG. 2 shows an XRD pattern of a fluorescent substance prepared according to Example 2 of the present application; and FIG. 3 shows XRD pattern of the fluorescent substance prepared in Example 5 of the present application.
  • an oxynitride orange-red fluorescent substance having a chemical formula of M m A a Si x N y O z :dR, wherein the M element is Ca, Sr or One or more elements in Ba; A element is a mixture of A1 or A1 and one or more elements of Ga, La, Sc or Y; R element is one of Ce, Eu or Mn or One or more elements; and the above chemical formula satisfies 0.8 ⁇ m ⁇ 1.2, Ka ⁇ 1.7, Kx ⁇ 1.7, 3 ⁇ y ⁇ 4.2, 0 ⁇ z ⁇ 0.7, 0.001 ⁇ d ⁇ 0.2.
  • a: x 0.8 to 1.2 is preferable.
  • the oxynitride orange-red fluorescent substance provided in the present invention can emit orange-red light under the excitation of a radiation source, and the fluorescent substance has good luminous efficiency and can satisfy high color rendering and low color. The need for color temperature white LEDs.
  • a : X 0.8 ⁇ 1.2 fluorescent substance is preferred in the chemical formula, and the main generating phase content of the fluorescent substance is large, the content of the heterophase is small, and the luminescent property is good.
  • a / (m + d) > l the relationship of a, m, d in the chemical formula is defined as a / (m + d) > l to define the M element,
  • A The atomic number relationship between the element and the R element is advantageous for broadening the half width of the phosphor of the series, thereby allowing the fluorescent substance to have a higher luminance. Since high-color white LED devices require white light spectrum to have as wide a distribution as possible in the visible light range, the phosphors characterized by this scheme have great advantages in preparing high-color, high-efficiency white LEDs.
  • the main generation phase of the above-mentioned nitrogen oxide orange-red fluorescent substance powder is in a powder X-ray diffraction pattern of the Cuka line, at least at a Bragg angle (2 ⁇ ) 31.3° to 32.7°, 35.2. ° ⁇ 36.2. , 36.2° ⁇ 36.7°, a diffraction peak exists in the range of 36.7° ⁇ 37.6°, wherein the intensity of the diffraction peak in the range of 36.7° ⁇ 37.6° is not less than 18% of the intensity of the diffraction peak in the range of 36.2° to 36.7°,
  • the half-peak width of the emission spectrum of the phosphor is not less than 82 nm.
  • the structure of the prepared nitrogen oxide orange-red fluorescent substance is controlled within the above range, and the nitrogen oxide orange-red fluorescent substance has the advantages of a large half-width and a high luminous efficiency, and is advantageous for producing high luminous efficiency and high display.
  • Chromatic white LED device Preferably, the main generating phase of the above-mentioned nitrogen oxide orange-red fluorescent substance powder is in a powder X-ray diffraction pattern of the Cuka line, at least at a Bragg angle (2 ⁇ ) of 31.3° to 31.8°, 31.8° to 32.7°, 35.2°.
  • the M element is Ca and/or Sr; the A element is Al, or a mixture of A1 and Ga and/or Y; and the R element is one of Eu and Mn Kind or two elements.
  • the M element of the oxynitride orange-red fluorescent substance is Ca and/or Sr; the element A is Al; and the R element is Eu and/or Mn.
  • the M element of the oxynitride orange-red fluorescent substance is Ca and/or Sr; the A element is Al; and the R element is Eu.
  • the molecular element of the oxynitride orange-red fluorescent substance has a M element of Car; the A element is Al; and the R element is Eu.
  • the oxynitride orange-red fluorescent material is in the form of a powder, a film or a sheet.
  • the molecular formula of the above-mentioned oxynitride orange-red fluorescent substance is Ca m Al a Si x N y O z : dEu.
  • the chemical formula satisfies 0.8 ⁇ m ⁇ l, l ⁇ a ⁇ 1.7, Kx ⁇ 1.7, 3 ⁇ y ⁇ 4.2, 0.1 ⁇ z ⁇ 0.7, 0.001 ⁇ d ⁇ 0.2.
  • the fluorescent material having this molecular formula has a small amount of raw material components, is easy to process, and is excellent in performance.
  • an illuminating film or a luminescent sheet is further provided, wherein the luminescent film or the luminescent sheet is formed by dispersing the above-mentioned oxynitride orange-red fluorescent substance in a glass material, a plastic material or a resin material, or It is formed by dispersing the above-mentioned nitrogen oxide orange-red fluorescent substance together with other fluorescent substances in a glass material, a plastic material or a resin material or coating on a glass material, a plastic material or a resin material.
  • the luminescent film or luminescent sheet provided by the present invention is capable of emitting orange-red light, and the fluorescent substance has good luminous efficiency. It can meet the needs of high color rendering and low color temperature white LEDs.
  • the other fluorescent substance is one or more of the following fluorescent substances: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0 12 : Ce, (Mg ,Ca,Sr,Ba) 2 Si0 4 :Eu, (Ca,Sr) 3 Si0 5 :Eu, (La,Ca) 3 Si 6 Nu:Ce, a-SiA10N:Eu, p-SiA10N:Eu Ba 3 Si 6 0 12 N 2 :Eu, Ca 3 (Sc,Mg) 2 Si 3 0 12 :Ce, CaSc 2 0 4 :Eu , BaAl 8 0i 3 :Eu , (Ca,Sr,Ba)Al 2 0 4 :Eu , (Sr, Ca, Ba)(Al,Ga,In) 2 S 4 :Eu , (Ca,Sr) 8 (Mg,Z) 3 (Al, Ga) 5 0 12 : Ce,
  • a light-emitting device comprising at least a radiation source and the above-described nitrogen oxide orange-red fluorescent substance.
  • the source of radiation is preferably an ultraviolet, violet, or blue light emitting source.
  • the above-mentioned light emitting device further contains other fluorescent substances that are excited by the radiation source to emit light.
  • the other fluorescent substance is one or more of the following fluorescent substances: (Y, Gd, Lu, Tb) 3 (Al, Ga) 5 0 12 : Ce, (Mg, Ca, Sr, Ba) 2 Si0 4 : Eu (Ca,Sr) 3 Si0 5 :Eu, (La,Ca) 3 Si 6 N u :Ce, a-SiA10N:Eu, p-SiA10N:Eu Ba 3 Si 6 0 12 N 2 :Eu, Ca 3 (Sc ,Mg) 2 Si 3 0 12 :Ce, CaSc 2 0 4 :Eu, BaAl 8 0 13 :Eu, (Ca,Sr,Ba)Al 2 0 4 :Eu, (Sr,Ca,Ba)(Al,Ga ,In) 2 S4:Eu , (Ca,Sr) 8 (Mg,Zn)(Si0 4 ) 4 Cl 2 :Eu/Mn
  • the fluorescent material according to the present invention is not limited to a synthetic raw material and a preparation method.
  • the following raw materials and preparation methods are preferably employed to improve the color and light performance of the fluorescent material.
  • the raw material for synthesizing the fluorescent substance is preferably a nitride of various metals and non-metal elements. The raw materials are weighed according to the required ratio and mixed thoroughly.
  • the calcination environment is selected in a high pressure/normal pressure furnace having a nitrogen/nitrogen hydrogen or CO atmosphere to prevent oxygen in the atmosphere from entering the furnace.
  • the holding time at the highest temperature is usually 20min-20h. When the holding time is too short, the raw material can not fully react. If the holding time is too long, the N element will overflow and the fluorescent crystal will grow abnormally. Therefore, the holding time is preferably 3-8h. . Then, the temperature in the furnace is lowered to below 100 ° C, and the powder is taken out for post-treatment including grinding, pickling, sieving, and drying steps.
  • the fluorescent material or the fluorescent sheet according to the present invention is not limited to a synthetic raw material and a preparation method, and the red fluorescent substance of the present invention, or the red fluorescent substance of the present invention and other fluorescent substances are prepared as long as the glass material, the plastic material or the resin material is prepared.
  • the fluorescent substance according to the present invention can be efficiently excited by radiation light having a wavelength of 300-500 nm, and the fluorescent substance or the light conversion film material of the resin, silica gel, plastic, glass, ceramics, etc., which is mixed with the fluorescent substance, and ultraviolet light and violet light can be used. Or a combination of blue radiation sources to form a light emitting device. These white light emitting devices are widely used in the field of illumination or display.
  • the beneficial effects of the orange-red fluorescent substance prepared by the present invention will be further described below in conjunction with specific examples.
  • Examples 1-26 and Comparative Example 1 (D1) Raw materials: silicon nitride and/or silicon oxide is used as a silicon source, and any one or more of aluminum nitride, aluminum nitrate, and metal aluminum is used as an aluminum source (Ga, La, Sc and Y are the same), with any one or more of calcium nitride, calcium oxide, calcium carbonate and calcium hydroxide as the calcium source (Sr, Ba is the same), with tantalum nitride and/or Cerium oxide is the source of lanthanum (Ce, Mn are the same).
  • Preparation method Weigh each raw material according to the ratio of each raw material in the chemical formula to be formed, mix and weigh each raw material, and mix the mixed raw materials in a nitrogen-hydrogen atmosphere at 1500 ° C for 3 hours. , the temperature is reduced to 10 (TC or less, after removal, post-treatment such as grinding, washing, drying and sieving to obtain a fluorescent substance.
  • Test 1 Excitation of Examples 1-26 with blue light having a wavelength of 460 nm and comparison as an example Phosphor in (D1), and measure the color coordinates, emission spectrum, half-width, and relative brightness of the phosphor.
  • Fig. 1 is an emission spectrum of a fluorescent substance prepared in Example 1.
  • the fluorescent substance has a broad emission peak in the range of 550 to 750 nm, and the emission spectrum shows that the fluorescent material exhibits red luminescence.
  • the nitrogen oxide orange-red fluorescent material provided by the present invention has the advantages of large half-width and high luminous efficiency, and is advantageous for producing a white LED device having high luminous efficiency and high color rendering. It has a structure of the chemical formula M m A a Si x N y O z :dR and satisfies 0.8 ⁇ m ⁇ 1.2, l ⁇ a ⁇ 1.7, Kx ⁇ 1.7, 3 ⁇ y ⁇ 4.2, 0 ⁇ z ⁇ 0.7, 0.001 ⁇
  • the relative luminescence intensity of the fluorescent substance required for d ⁇ 0.2 is remarkably superior to the relative luminescence intensity of the fluorescent substance (D1) when the above numerical range is not satisfied.
  • the nitrogen oxide orange-red fluorescent substance provided by the present invention is more preferably a powder X of the main generation phase of the powder in the Cuka line while satisfying the above chemical formula of M m A a Si x N y O z :dR.
  • the ray diffraction pattern at least in the Bragg angle (2 ⁇ ) 31.3 ° ⁇ 32.7 °, 35.2 ° ⁇ 36.2 °, 36.2 ° ⁇ 36.7 °, 36.7 ° ⁇ 37.6 ° range of diffraction peaks, and 36.7 ° ⁇ 37.6 ° range
  • the intensity of the diffraction peak in the range is not less than 18% of the intensity of the diffraction peak in the range of 36.2° to 36.7°, and the half-peak width of the emission spectrum of the phosphor is not less than 82 nm of the oxynitride orange-red fluorescent substance.
  • an X-ray diffraction pattern of the nitrogen oxide orange-red fluorescent substance in the above embodiments 2 and 5 of the present invention is further provided, and Example 1
  • Example 1 The diffraction peaks in the X-ray diffraction pattern of the nitrogen oxide orange-red fluorescent substance in Examples 26 and Comparative Example 1.
  • the X-ray diffraction patterns of the oxynitride orange-red fluorescent substances in Examples 2 and 5 are shown in Fig. 2 and Fig. 3: as shown in Fig. 2, Fig. 2 is the X of the fluorescent substance prepared in the above Example 2.
  • FIG. 3 is an emission spectrum of a fluorescent substance of the fluorescent substance prepared in the above Example 5, wherein the Bragg angle (2 ⁇ ) is 31.3° to 31.8°, 31.8° to 32.7°, 35.2° to 36.2°.
  • the angle at the Bragg angle (2 ⁇ ) is 31.3. ° ⁇ 31.8°, 31.8° ⁇ 32.7°, 35.2. ⁇ 36.2. , 36.2. ⁇ 36.7. , 36.7. ⁇ 37.6. , 48.0. ⁇ 49.5. , 56.0. ⁇ 57.2.
  • Examples 3-12, 15-26 The range of NOx orange-red phosphors (Examples 3-12, 15-26) in the range of diffraction peaks relative to the Bragg angle only (2 ⁇ ) 31.3° to 32.7°, 35.2° to 36.2°, 36.2° ⁇
  • the relative luminescence intensity of the NOx-orange-red phosphors (Examples 1, 2, 13 and 14) with diffraction peaks in the range of 36.7°, 36.7° to 37.6° is higher.
  • Example 27 Using a blue LED chip as a radiation source, the orange-red fluorescent substance, the white LED yellow fluorescent substance Y 3 Al 5 01 2 :Ce, the red fluorescent substance CaAlSiN 3 :Eu, three kinds of fluorescence in Example 3 of the present invention are used.
  • Material weight ratio For: Orange: Yellow: Red 15:70:15, the fluorescent substance is dispersed in a silica gel with a refractive index of 1.41 and a transmittance of 99%.
  • the chip and the light conversion film are combined, soldered, and sealed.
  • a white light emitting device was obtained with a color coordinate of (0.3745, 0.3312), a color rendering index of 92, and a correlated color temperature of 3745K.
  • Embodiment 28 Using a blue LED chip as a radiation source, an orange-red fluorescent substance, white light in Embodiment 3 of the present invention
  • LED yellow fluorescent substance Y 3 Al 5 01 2 :Ce, red fluorescent substance CaAlSiN 3 :Eu, green fluorescent substance (Y,Lu) 3 (Al,Ga) 5 0i 2 :Ce), the weight ratio of the four fluorescent substances is : Orange: Yellow: Red: Green 15:60:15:10, the fluorescent substance is dispersed in a silica gel with a refractive index of 1.41 and a transmittance of 99%. The chip and the light conversion film are combined, and the circuit is soldered. After sealing, a white light emitting device was obtained, the color coordinates of which were (0.3875, 0.3408), the color rendering index of 96, and the correlated color temperature of 3469 K.
  • Embodiment 30 In this embodiment, a near-violet LED chip (380 nm) is used as a radiation source, and a red fluorescent substance, a blue fluorescent substance BaMgAl 1Q 0 17: E U and a green fluorescent substance such as (Y, Lu) in Embodiment 15 of the present invention are used.
  • a red fluorescent substance, a blue fluorescent substance BaMgAl 1Q 0 17: E U and a green fluorescent substance such as (Y, Lu) in Embodiment 15 of the present invention are used.
  • the circuit is soldered and sealed to obtain a white light emitting device with a color coordinate of (0.3867, 0.3412), a color rendering index of 94.4, and a correlated color temperature of 3469 K.
  • the nitrogen oxide orange-red fluorescent substance prepared by the application of the present invention can emit white light when used in combination with other fluorescent materials, and the prepared white LED can satisfy high color rendering and low color. Color temperature market demand.

Abstract

一种氮氧化物橙-红色荧光物质,以及包括其的发光膜或发光片及发光器件。氮氧化物橙-红色荧光物质的化学式为MmAaSixNyOz:dR,其中M元素为Ca、Sr或Ba中的一种或一种以上元素;A元素为A1或A1与Ga、La、Sc或Y中的一种或一种以上元素的混合;R元素为Ce、Eu或Mn中的一种或一种以上元素;且该化学式满足0.8≤m≤1.2,1<a<1.7,1<x<1.7,3<y<4.2,0<z<0.7,0.001≤d≤0.2。氮氧化物橙-红色荧光物质在辐射源的激发下能够发出橙-红的光线,且这种荧光物质具有较好的发光效率,能够满足高显色、低色温白光LED的需要。

Description

氮氧化物橙-红色荧光物质, 包括其的发光膜或发光片及发光器件 技术领域 本发明属于半导体技术领域, 尤其涉及一种氮氧化物橙-红色荧光物质, 包括其的 发光膜或发光片及发光器件。 背景技术 白光发光二极管 (白光 LED) 具有低电压、 高光效、 低能耗、 长寿命、 无污染等 优点, 在半导体照明及平板显示领域得到了成功的应用。 目前白光 LED的实现方式主 要分为两种: 第一种是三基色 (红、 蓝、 绿) LED芯片的组合; 另一种是用 LED芯 片激发荧光物质混合形成白光, 即用蓝光 LED芯片配合发黄光的荧光物质, 或者用蓝 光 LED配合发绿色光和红色光的两种荧光物质, 或者用紫外或紫光 LED去激发红、 绿、 蓝三种荧光物质等。 在这些实现方式中, 蓝光 LED芯片配合 Y3Al5012:Ce黄色荧 光物质的方式简单、 易行、 且价格相对低廉, 成为白光 LED的主流方案。 然而使用这 种方式形成的白光光谱比较单一, 光谱主要集中在黄光区域, 导致制备的白光 LED显 色性较低。 通过在封装过程中添加橙-红色荧光物质可以补偿白光 LED光谱中缺失的 红色成分, 提升白光 LED产品的显色能力。 氮 /氮氧化物荧光物质问世以来, 受到了广泛关注。 该类荧光物质的阴离子基团含 有高负电荷的 N3—,电子云膨胀效应使得其激发光谱向近紫外、可见光等长波方向移动, 可以被 200〜500nm 范围内蓝光和紫外激发发光, 发射光主波长分布在 600〜720nm 较宽范围内, 具备显色性好、 发光效率高的特点, 安全性能好、 无毒、 环保, 且基质 具有紧密的网络结构, 物理化学性质稳定(例如, 专利文献 EP1104799A1、 WO2005/052087 CN100340631C CN101090953A 中公开的荧光物质)。 在硅基氮化 物红粉中(专利 CN1918262B),利用 Sr对 CaAlSiN3:Eu红粉的调控可有效提升荧光物 质的发光强度。本专利发明的氮氧化物橙-红色荧光物质进一步增加了荧光粉的调控范 围, 光色范围可以扩充到橙色区域。 发明内容 为了解决现有技术中的不足, 本发明提供了一种氮氧化物橙-红色荧光物质, 包括 其的发光膜或发光片及发光器件, 以便于提高氮氧化物橙-红色荧光物质的发光效率。 在本发明的一个方面, 提供了一种氮氧化物橙-红色荧光物质, 该荧光物质的化学 式为 MmAaSixNyOz:dR, 其中 M元素为 Ca、 Sr或 Ba中的一种或一种以上元素; A元 素为 A1或 A1与 Ga、 La、 Sc或 Y中的一种或一种以上元素的混合; R元素为 Ce、 Eu 或 Mn中的一种或一种以上元素; 且上述化学式满足 0.8≤m≤1.2, Ka<1.7, Kx<1.7, 3<y<4.2, 0<z<0.7, 0.001≤d≤0.2。 进一步地, 上述荧光物质的化学式中 a:x=0.8〜1.2。 进一步地, 上述荧光物质的化学式中 a/(m+d)> l。 进一步地, 上述氮氧化物橙-红色荧光物质的主要生成相在 Cuka线的粉末 X射线 衍射图谱中,至少在布拉格角度(2Θ) 31.3°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7。〜 37.6°的范围内存在衍射峰, 其中 36.7°〜37.6°范围内的衍射峰强度不低于 36.2°〜36.7° 范围内的衍射峰强度的 18%, 该荧光粉的发射光谱的半峰宽度不低于 82nm。 进一步地, 上述氮氧化物橙-红色荧光物质的主要生成相在 Cuka线的粉末 X射线 衍射图谱中, 至少在布拉格角度 (2Θ) 在 31.3°〜31.8°, 31.8°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜37.6°, 48.0°〜49.5°, 56.0°〜57.2°的范围内存在衍射峰, 且该荧 光粉的发射光谱的半峰宽度不低于 95nm。 进一步地, 上述 M元素为 Ca和 /或 Sr; A元素为 Al, 或者 A1与 Ga和 /或 Y的混 合物; R元素为 Eu和 Mn中的一种或两种元素。 进—步地, 上述 A元素为 Al。 进—步地, 上述 R元素为 Eu。 进—步地, 上述 M元素为 Ca。 进—步地, 上述荧光物质为粉末状、 薄膜状或片状。 同时, 在本发明中还提供了一种发光膜或发光片, 该发光膜或发光片是由上述的 氮氧化物橙 -红色荧光物质分散在玻璃材料、 塑料材料或树脂材料中所形成的, 或者, 是由上述的氮氧化物橙 -红色荧光物质与其他荧光物质共同分散在玻璃材料、塑料材料 或树脂材料中或涂敷在玻璃材料、 塑料材料或树脂材料之上所形成的。 进一步地, 上述发光膜或发光片中其他荧光物质为下列荧光物质中一种或一种以 上 (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu 、 (Ca,Sr)3Si05:Eu 、 (La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl80i3:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu Zn2Si04:Mn、(Y,Gd)B03:Tb、 ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu、 (Li,Na,K)3ZrF7:Mn、 (Li,Na,K)2(Ti,Zr)F6:Mn、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Bao.65Zr0.35F2.7:Mn 、 (Sr,Ca)S:Eu 、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu、 Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAl10O17:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO*0.5MgF2*GeO2:Mn。 同时, 在本发明中还提供了一种发光器件, 该发光器件至少包含辐射源和上述的 氮氧化物橙-红色荧光物质。 进一步地, 上述辐射源为紫外、 紫光、 或蓝光发射源。 进一步地, 上述发光器件中还含有被辐射源激发发光的其他荧光物质。 进一步地, 上述其他荧光物质为下列荧光物质中一种或一种以上: (Y,Gd,Lu,Tb)3(Al,Ga)50i2:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu 、 (Ca,Sr)3Si05:Eu 、 (La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu Zn2Si04:Mn、(Y,Gd)B03:Tb、 ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu、 (Li,Na,K)3ZrF7:Mn、 (Li,Na,K)2(Ti,Zr)F6:Mn、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Bao.65Zr0.35F2.7:Mn 、 (Sr,Ca)S:Eu 、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu (Ca,Sr,Ba)MgAl10O17:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO*0.5MgF2*GeO2:Mn。 本发明所提供的这种氮氧化物橙-红色荧光物质在辐射源的激发下能够发出橙-红 的光线, 且这种荧光物质具有较好的发光效率, 能够满足高显色、低色温白光 LED的 需要。 除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 附图构成本说明书的一部分、 用于进一步理解本发明, 附图示出了本发明的优选 实施例, 并与说明书一起用来说明本发明的原理。 图中: 图 1示出了根据本申请实施例 1所制备的荧光物质的荧光物质的发射光谱; 图 2示出了根据本申请实施例 2所制备的荧光物质的 XRD图谱; 以及 图 3示出了根据本申请实施例 5所制备的荧光物质的 XRD图谱。 具体实施方式 应该指出, 以下详细说明都是例示性的, 旨在对本发明提供进一步的说明。 除非 另有指明, 本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人 员通常理解的相同含义。 在本发明的一种实施方式中, 提供了一种氮氧化物橙-红色荧光物质, 该荧光物质 的化学式为 MmAaSixNyOz:dR, 其中 M元素为 Ca、 Sr或 Ba中的一种或一种以上元素; A元素为 A1或 A1与 Ga、 La、 Sc或 Y中的一种或一种以上元素的混合; R元素为 Ce、 Eu或 Mn中的一种或一种以上元素;且上述化学式满足 0.8≤m≤1.2, Ka<1.7, Kx<1.7, 3<y<4.2, 0<z<0.7, 0.001≤d≤0.2。 其中优选荧光物质的化学式中 a:x=0.8〜1.2。 在本发明中所提供的这种氮氧化物橙-红色荧光物质在辐射源的激发下能够发出 橙 -红的光线, 且这种荧光物质具有较好的发光效率, 能够满足高显色、 低色温白光 LED的需要。 其中优选化学式中 a:X=0.8〜1.2荧光物质, 这类荧光物质中主要生成相 含量较多, 杂相含量较少, 发光性能较好。 优选地, 在本发明上述荧光物质的化学式中 a/(m+d)> l, 将化学式中 a、 m、 d的 关系限定为 a/(m+d)> l, 以限定 M元素、 A元素和 R元素之间的原子数量关系, 有利 于拓宽该系列荧光粉的半峰宽, 进而使荧光物质具有较高发光亮度。 由于高显色白光 LED器件要求白光光谱在可见光范围内拥有尽可能宽的分布, 故在这种方案所表征的 荧光粉在制备高显色、 高光效白光 LED方面具有较大优势。 在本发明的一种优选实施方式中,上述氮氧化物橙-红色荧光物质粉末的主要生成 相在 Cuka线的粉末 X射线衍射图谱中,至少在布拉格角度(2Θ) 31.3°〜32.7°, 35.2°〜 36.2。, 36.2°〜36.7°, 36.7°〜37.6°的范围内存在衍射峰, 其中 36.7°〜37.6°范围内的衍 射峰强度不低于 36.2°〜36.7°范围内的衍射峰强度的 18%, 该荧光粉的发射光谱的半 峰宽度不低于 82nm。将所制备的氮氧化物橙-红色荧光物质的结构控制在上述范围内, 能够使该氮氧化物橙 -红色荧光物质具有半峰宽大以及发光效率高等优点,有利于制作 高发光效率、 高显色性的白光 LED器件。 优选地, 上述氮氧化物橙-红色荧光物质粉末的主要生成相在 Cuka线的粉末 X射 线衍射图谱中, 至少在布拉格角度(2Θ)在 31.3°〜31.8°, 31.8°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜37.6°, 48.0°〜49.5°, 56.0°〜57.2°的范围内存在衍射峰, 且该荧 光粉的发射光谱的半峰宽度不低于 95nm。 优选地, 在上述氮氧化物橙 -红色荧光物质的分子式中 M元素为 Ca和 /或 Sr; A 元素为 Al,或者 A1与 Ga和 /或 Y的混合物; R元素为 Eu和 Mn中的一种或两种元素。 还优选地, 该氮氧化物橙 -红色荧光物质的分子式中 M元素为 Ca和 /或 Sr; A元素为 Al; R元素为 Eu和 /或 Mn。 进一步优选地, 该氮氧化物橙 -红色荧光物质的分子式中 M元素为 Ca和 /或 Sr; A元素为 Al; R元素为 Eu。 更进一步优选地, 该氮氧化物橙- 红色荧光物质的分子式中 M元素为 Car; A元素为 Al; R元素为 Eu。 更为优选地, 上 述氮氧化物橙 -红色荧光物质为粉末状、 薄膜状或片状。 优选地, 在上述氮氧化物橙 -红色荧光物质的分子式为 CamAlaSixNyOz: dEu。 且该 化学式满足 0.8≤m≤l, l<a<1.7, Kx<1.7, 3<y<4.2, 0.1<z<0.7, 0.001≤d≤0.2。 具有该 分子式的荧光物质原料成分少, 易于加工, 且性能优异。 同时, 在本发明中还提供了一种发光膜或发光片, 发光膜或发光片是由上述的氮 氧化物橙 -红色荧光物质分散在玻璃材料、 塑料材料或树脂材料中所形成的, 或者, 是 由上述的氮氧化物橙 -红色荧光物质与其他荧光物质共同分散在玻璃材料、塑料材料或 树脂材料中或涂敷在玻璃材料、 塑料材料或树脂材料之上所形成的。 本发明所提供这 种发光膜或发光片能够发出橙 -红的光线, 且这种荧光物质具有较好的发光效率。 能够 满足高显色、 低色温白光 LED的需要。 优选地, 在上述发光膜或发光片中, 其他荧光物质为下列荧光物质中一种或一种 以上: (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce、 (Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、 (La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu 、 BaAl80i3:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、
(Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、(Y,Gd)B03:Tb、 ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、 (Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu、 (Li,Na,K)3ZrF7:Mn、 (Li,Na,K)2(Ti,Zr)F6:Mn、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Bao.65Zr0.35F2.7:Mn 、 (Sr,Ca)S:Eu 、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu、 Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAl10O17:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO*0.5MgF2*GeO2:Mn。 同时, 在本发明中还提供了一种发光器件, 该发光器件至少包含辐射源和上述的 氮氧化物橙-红色荧光物质。 其中辐射源优选为紫外、 紫光、 或蓝光发射源。 优选地, 上述发光器件中还含有被辐射源激发发光的其他荧光物质。 其他荧光物 质为下列荧光物质中一种或一种 以上: (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce、 (Mg,Ca,Sr,Ba)2Si04:Eu (Ca,Sr)3Si05:Eu、(La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu、 BaAl8013:Eu、(Ca,Sr,Ba)Al204:Eu、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、
(Ca,Sr,Ba)3MgSi208:Eu/Mn (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb、 ZnS:Cu,Cl/AK ZnS:Ag,Cl/Al、(Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu、 (Li,Na,K)3ZrF7:Mn (Li,Na,K)2(Ti,Zr)F6:Mn、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Bao.65Zr0.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu 、 (Y,Gd)(V,P)04:Eu 、 Y203:Eu 、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu 、 (Ca,Sr,Ba)MgAli0Oi7:Eu (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO*0.5MgF2*GeO2:Mn。 从以上技术方案可以看出, 本发明制备的系列 MmAaSixNyOz:dR新型橙-红色荧光 物质在外界辐射源的激发下可以发出橙 -红色光线, 能够满足高显色、低色温白光 LED 的需要。 本发明所涉及的荧光物质不限定合成的原材料及制备方法, 在本发明中优选采用 以下原料及制备方法以提高荧光物质的光色性能。 合成荧光物质的原材料优选各种金 属及非金属元素的氮化物。 原材料按照所需比例称量后充分混合均勾。 煅烧环境选择 具有氮 /氮氢或 CO气氛的高压 /常压炉体内进行, 杜绝大气中的氧进入炉体内。最高温 度下的保温时间通常是 20min-20h, 当保温时间太短时, 原材料不能充分进行反应, 保温时间过久会造成 N元素的溢出以及荧光晶体的异常长大,因而保温时间优选 3-8h。 然后将炉内温度降至 100°C以下, 取出进行粉体进行包括研磨、 酸洗、 过筛及烘干步 骤的后处理。 本发明所涉及的荧光膜或荧光片的不限定合成的原材料及制备方法, 只要玻璃材 料、 塑料材料或树脂材料制备过程中, 将本发明红色荧光物质, 或者本发明红色荧光 物质与其他荧光物质混入到玻璃材料、 塑料材料、 陶瓷材料或树脂材料的原料中混合 均勾, 然后按照玻璃材料、 塑料材料、 陶瓷材料或树脂材料的常规方法制备成膜状或 片状即可, 本发明橙-红色荧光物质, 或者本发明红色荧光物质与其他荧光物质的混合 物加入到玻璃材料、 塑料材料、 陶瓷材料或树脂材料的量与现有技术中荧光膜或荧光 片中荧光物质的加入量相等即可。 本领域技术人员在本发明的基础上, 能够通过合理 的技术手段制备出本发明所提供的这种发光膜或发光片, 故对其制作方法不再赘述。 本发明涉及的荧光物质可以被波长位于 300-500nm的辐射光高效激发, 可以将该 荧光物质或者掺有该荧光物质的树脂、 硅胶、 塑料、 玻璃、 陶瓷等光转换膜材料, 与 紫外、 紫光或蓝光辐射源组合形成发光器件。 这些白光发光器件能够在照明或显示领 域得到广泛应用。 以下将结合具体实施例进一步说明本发明所制备的橙-红色荧光物质的有益效果。 实施例 1-26和对比例 1 (D1 ) 原料: 以氮化硅和 /或氧化硅为硅源, 以氮化铝、 硝酸铝、 金属铝中任一种或多种 为铝源 (Ga、 La、 Sc和 Y与之相同)、 以氮化钙、 氧化钙、 碳酸钙、 氢氧化钙中任一 种或多种为钙源 (Sr、 Ba与之相同)、 以氮化铕和 /或氧化铕为铕源 (Ce、 Mn与之相 同)。 制备方法: 根据所欲形成的化学式中各原料的配比称量各原料, 将称量好的各原 料混合均勾, 将混合好的原料在氮氢气氛下, 1500°C下保温 3小时之后, 将温度降至 10(TC以下, 取出后, 进行研磨、 洗涤、 烘干及过筛等后处理获得荧光物质。 测试一: 以波长为 460nm的蓝光分别激发实施例 1-26以及对比为例 (D1 ) 中的 荧光粉, 并测量荧光粉的色坐标、 发射光谱、 半峰宽、 相对发光亮度。 测试结果:
( 1 )图 1为实施例 1中所制备荧光物质的发射光谱,在图 1中该荧光物质在位于 550-750nm范围内有一个较宽发射峰, 发射图谱显示该荧光粉呈现出红色发光。
(2) 实施例 1-26以及对比为例 (D1 ) 中的荧光粉的色坐标、 半峰宽、 相对发光 亮度的测试结果如表 1所示。 表 1
色坐标 半峰宽 相对发光 化学式
X y (nm) 亮度 (%)
1 Cao.99AljSiL3N3.37Oo.05: O.OlEu 0.6800 0.3076 79.0 95%
2 Cao.99 l1.nSi1.11N3.19Oo.il· O.OlEu 0.6606 0.3388 82.5 100%
3 Cao.79Al1.i8Si1.i8N3.i6Oo.i8: O.OlEu 0.6356 0.3578 95.4 113%
4 Cao.99Al1.25Si! .25N3.42O0.25: O.OlEu 0.6185 0.3792 99.8 127%
5 Cao.99Al1.33Si1.33N3.5eOo.33: O.OlEu 0.5903 0.3841 114.9 138%
6 Cao.ggAl! .43 Si! .43N3.71O0.43: O.OlEu 0.5758 0.4187 124.5 153%
7 Cao.99Al1.54 Si1.54N3.90O0.54: O.OlEu 0.5603 0.4340 129.8 165%
Figure imgf000010_0001
由上述表 1中内容可以看出,本发明所提供的氮氧化物橙-红色荧光物质具有的半 峰宽大以及发光效率高等优点, 有利于制作高发光效率、 高显色性的白光 LED器件。 其中具有化学式 MmAaSixNyOz:dR 中结构, 并满足 0.8≤m≤1.2, l<a<1.7, Kx<1.7 , 3<y<4.2, 0<z<0.7, 0.001≤d<0.2要求的荧光物质的相对发光强度明显优于不满足上述 数值范围时的荧光物质 (D1 ) 的相对发光强度。 具有化学式具有上述化学式, 且满足 a:X=0.8〜1.2的荧光物质的相对发光强度明显优于不满足 a:X=0.8〜1.2要求的荧光物质 (实施例 1 ) 的相对发光强度。
本发明所提供的这种氮氧化物橙-红色荧光物质在满足上述化学式为 MmAaSixNyOz:dR要求的同时, 更为优选粉末的主要生成相在 Cuka线的粉末 X射线衍 射图谱中, 至少在布拉格角度(2Θ ) 31.3°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜 37.6°的范围内存在衍射峰, 且其中 36.7°〜37.6°范围内的衍射峰强度不低于 36.2°〜 36.7°范围内的衍射峰强度的 18%, 该荧光粉的发射光谱的半峰宽度不低于 82nm的氮 氧化物橙-红色荧光物质。 为了说明本发明氮氧化物橙 -红色荧光物质结构与发光效率的关系,进一步提供了 本发明上述实施例 2和 5中的氮氧化物橙-红色荧光物质的 X射线衍射图谱,以及实施 例 1至 26和对比例 1中氮氧化物橙-红色荧光物质的 X射线衍射图谱中衍射峰情况。 实施例 2和 5中的氮氧化物橙-红色荧光物质的 X射线衍射图谱如图 2和图 3所示: 如图 2所示, 图 2为上述实施例 2中所制备的荧光物质的 X射线衍射光谱, 其中 布拉格角度 ( 2Θ )在 31.3。〜32.7。, 35.2。〜36.2。, 36.2。〜36.7。, 36.7。〜37.6。, 48.0。〜 49.5°, 56.0°〜57.2°的范围内存在衍射峰。 且其中 (2Θ ) 36.7°〜37.6°范围内的衍射峰 强度为 36.2°〜36.7°范围内的衍射峰强度的 18.8%。 如图 3所示, 图 3为上述实施例 5中所制备的荧光物质的荧光物质的发射光谱, 其中布拉格角度(2Θ )在 31.3°〜31.8°, 31.8°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜 37.6。, 48.0°〜49.5°, 56.0°〜57.2°的范围内存在衍射峰。 且其中 ( 2Θ ) 36.7°〜37.6°范 围内的衍射峰强度为 36.2°〜36.7°范围内的衍射峰强度的 100.4%。 实施例 1至 26和对比例 1中氮氧化物橙-红色荧光物质的 X射线衍射图谱中衍射 峰情况如图 2所示。 表 2
Figure imgf000011_0001
13 970 715 1395 255 289 303
14 879 642 1275 237 257 271
15 415 709 527 1123 372 213 238
16 381 629 472 967 325 207 215
17 352 590 439 912 317 179 198
18 212 1027 879 853 698 237 199
19 215 1024 882 847 701 243 201
20 196 987 835 826 679 214 185
21 198 991 847 837 680 217 193
22 192 985 841 824 674 226 183
23 173 905 768 745 609 204 165
24 221 1213 793 756 627 205 173
25 515 897 658 1254 423 256 227
26 530 902 676 1278 443 278 265
Dl 967 895 1303 173 397 425 结合表 2和表 1中的数据可知, 当氮氧化物橙-红色荧光物质在布拉格角度 (2Θ) 31.3°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜37.6°的范围内存在衍射峰时, 且满 足 36.7°〜37.6°范围内的衍射峰强度不低于 36.2°〜36.7°范围内的衍射峰强度的 18%的 氮氧化物橙-红色荧光物质的相对发光强度更高 (对比实施例 2-26与实施例 1 )。 当氮 氧化物橙-红色荧光物质在布拉格角度 36.7°〜37.6°范围内的衍射峰强度不低于 36.2°〜 36.7°范围内的衍射峰强度的 18%时,在布拉格角度(2Θ)在 31.3°〜31.8°, 31.8°〜32.7°, 35.2。〜36.2。, 36.2。〜36.7。, 36.7。〜37.6。, 48.0。〜49.5。, 56.0。〜57.2。的范围内存在衍 射峰的氮氧化物橙-红色荧光物质 (实施例 3-12、 15-26)相对于仅在布拉格角度 (2Θ) 31.3°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜37.6°的范围内存在衍射峰的氮氧化 物橙-红色荧光物质 (实施例 1、 2、 13和 14) 的相对发光强度更高。 以下将结合实施例 27-30,进一步说明采用上述本发明实施例 3中所制备的荧光物 质制备 LED芯片时的有益效果。 实施例 27 采用蓝光 LED芯片作为辐射源, 将本发明的实施例 3中橙-红色荧光物质、 白光 LED黄色荧光物质 Y3Al5012:Ce、红色荧光物质 CaAlSiN3:Eu, 三种荧光物质的重量比 为: 橙:黄:红 =15:70:15, 将荧光物质均勾分散在折射率 1.41, 透射率 99%的硅胶中, 将芯片与光转换膜组合在一起, 焊接好电路、 封结后得到白光发光装置, 其色坐标为 (0.3745, 0.3312), 显色指数 92, 相关色温 3745K。 实施例 28 采用蓝光 LED芯片作为辐射源, 将本发明的实施例 3中橙-红色荧光物质、 白光
LED 黄色荧光物质 Y3Al5012:Ce、 红色荧光物质 CaAlSiN3:Eu、 绿色荧光物质 (Y,Lu)3(Al,Ga)50i2:Ce), 四种荧光物质的重量比为: 橙:黄:红:绿 =15:60:15:10, 将荧光 物质均勾分散在折射率 1.41, 透射率 99%的硅胶中, 将芯片与光转换膜组合在一起, 焊接好电路、 封结后得到白光发光装置, 其色坐标为 (0.3875, 0.3408), 显色指数 96, 相关色温 3469 K。 实施例 29 本实施例采用紫外 LED芯片 (360nm) 作为辐射源, 将本发明的实施例 14中红 色荧光物质、 蓝色荧光物质 Sr5(P04)3Cl:Eu及绿色荧光物质 Zn2Si04:Mn, 三种荧光物 质的重量比为: 红:蓝:绿 =15:60:25, 将混合后的荧光物质均勾分散在塑料内, 制备成 塑料膜, 与紫外 LED芯片组合在一起, 焊接好电路、 封结后得到白光发光装置, 其色 坐标为 (0.3876, 0.3439) 显色指数 93, 相关色温 3461 K。 实施例 30 本实施例采用近紫光 LED芯片 (380nm) 作为辐射源, 将本发明的实施例 15中 红色荧光物质、 蓝色荧光物质 BaMgAl1Q017:EU 及绿色荧光物质如 (Y,Lu)3(Al,Ga)50i2:Ce, 三种荧光物质的重量比为: 红:蓝:绿 =15:55:30, 将荧光物质均 勾分散在玻璃中, 将芯片与玻璃组合在一起, 焊接好电路、封结后得到白光发光装置, 其色坐标为 (0.3867, 0.3412), 显色指数 94.4, 相关色温 3469 K。 由上述实施例 27-30中内容可知, 本发明申请所制备的氮氧化物橙-红色荧光物质 与其他荧光物质配合使用时, 能够发出白光, 且所制备的白光 LED能够满足高显色、 低色温市场需求。 以上仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技术人 员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的任何 修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种氮氧化物橙-红色荧光物质, 其特征在于, 该荧光物质的化学式为 MmAaSixNyOz:dR, 其中所述 M元素为 Ca、 Sr或 Ba中的一种或一种以上元素; 所述 A元素为 A1或 A1与 Ga、 La、 Sc或 Y中的一种或一种以上元素的混合; 所述 R元素为 Ce、 Eu或 Mn 中的一种或一种以上元素; 且上述化学式满足 0.8≤m≤1.2, l<a<1.7, Kx<1.7, 3<y<4.2, 0<z<0.7, 0.001≤d≤0.2。
2. 根据权利要求 1所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述荧光物质 的化学式中 a:x=0.8〜1.2。
3. 根据权利要求 1或 2所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述荧光 物质的化学式中 a/(m+d)> l。
4. 根据权利要求 1至 3中任一项所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述氮氧化物橙-红色荧光物质的主要生成相在 Cuka线的粉末 X射线衍射图谱 中, 至少在布拉格角度(2Θ) 31.3°〜32.7°, 35.2°〜36.2°, 36.2°〜36.7°, 36.7°〜 37.6°的范围内存在衍射峰, 其中 36.7°〜37.6°范围内的衍射峰强度不低于 36.2°〜36.7°范围内的衍射峰强度的 18%,该荧光粉的发射光谱的半峰宽度不低 于 82nm。
5. 根据权利要求 4所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述氮氧化物 橙-红色荧光物质的主要生成相在 Cuka线的粉末 X射线衍射图谱中, 至少在布 拉格角度(2Θ)在 31.3。〜31.8。, 31.8。〜32.7。, 35.2。〜36.2。, 36.2。〜36.7。, 36.7。〜 37.6°, 48.0°〜49.5°, 56.0°〜57.2°的范围内存在衍射峰, 且该荧光粉的发射光 谱的半峰宽度不低于 95nm。
6. 根据权利要求 1所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述 M元素 为 Ca禾 或 Sr; A元素为 Al, 或 Al与 Ga和 /或 Y的混合; R元素为 Eu和 Mn 中的一种或两种元素。
7. 根据权利要求 6所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述 A元素 为 Al。
8. 根据权利要求 7所述的氮氧化物橙-红色荧光物质,其特征在于,所述 R元素为
9. 根据权利要求 8所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述 M元素 为 Ca。
10. 根据权利要求 1至 9中任一项所述的氮氧化物橙-红色荧光物质, 其特征在于, 所述荧光物质为粉末状、 薄膜状或片状。
11. 一种发光膜或发光片, 其特征在于, 所述发光膜或发光片是由权利要求 1或 2 所述的氮氧化物橙 -红色荧光物质分散在玻璃材料、塑料材料或树脂材料中所形 成的, 或者, 是由权利要求 1至 10中任一项所述的氮氧化物橙-红色荧光物质 与其他荧光物质共同分散在玻璃材料、 塑料材料或树脂材料中或涂敷在玻璃材 料、 塑料材料或树脂材料之上所形成的。
12. 根据权利要求 11所述的发光膜或发光片,其特征在于,所述其他荧光物质为下 列 荧光 物质 中 一 种 或 一种 以 上 : (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce 、 (Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、 (La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce、 CaSc204:Eu、 BaAl8013:Eu、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、 (Ca,Sr,Ba)3MgSi208:Eu/Mn 、 (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu、 Zn2Si04:Mn、 (Y,Gd)B03:Tb、 ZnS:Cu,Cl/Al、 ZnS:Ag,Cl/Al 、 (Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu、 (Li,Na,K)3ZrF7:Mn、 (Li,Na,K)2(Ti,Zr)F6:Mn、(Ca,Sr,Ba)(Ti,Zr)F6:Mn、 Ba0.65Zr0.35F2.7:Mn、(Sr,Ca)S:Eu、 (Y,Gd)B03:Eu、 (Y,Gd)(V,P)04:Eu、 Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAlioOi7:Eu (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO*0.5MgF2*GeO2:Mn。
13. 一种发光器件, 其特征在于, 所述发光器件至少包含辐射源和权利要求 1或 2 所述的氮氧化物橙-红色荧光物质。
14. 根据权利要求 13所述的发光器件, 其特征在于, 所述辐射源为紫外、 紫光、 或 蓝光发射源。
15. 根据权利要求 13或 14所述的发光器件, 其特征在于, 所述发光器件中还含有 被所述辐射源激发发光的其他荧光物质。
16. 根据权利要求 15所述的发光器件,其特征在于,所述其他荧光物质为下列荧光 物质中一种或一种以上: (Y,Gd,Lu,Tb)3(Al,Ga)5012:Ce、(Mg,Ca,Sr,Ba)2Si04:Eu、 (Ca,Sr)3Si05:Eu、(La,Ca)3Si6Nu:Ce、 a-SiA10N:Eu、 p-SiA10N:Eu Ba3Si6012N2:Eu、 Ca3(Sc,Mg)2Si3012:Ce 、 CaSc204:Eu 、 BaAl8013:Eu 、 (Ca,Sr,Ba)Al204:Eu 、 (Sr,Ca,Ba)(Al,Ga,In)2S4:Eu 、 (Ca,Sr)8(Mg,Zn)(Si04)4Cl2:Eu/Mn 、
(Ca,Sr,Ba)3MgSi208:Eu/Mn 、 (Ca,Sr,Ba)2(Mg,Zn)Si207:Eu 、 Zn2Si04:Mn 、 (Y,Gd)B03:Tb、ZnS:Cu,Cl/Al、ZnS:Ag,Cl/Al、(Sr,Ca)2Si5N8:Eu、 (Sr,Ca)AlSiN3:Eu (Li,Na,K)3ZrF7:Mn 、 (Li,Na,K)2(Ti,Zr)F6:Mn 、 (Ca,Sr,Ba)(Ti,Zr)F6:Mn 、 Ba0.65Zr0.35F2.7:Mn、 (Sr,Ca)S:Eu、 (Y,Gd)B03:Eu、 (Y,Gd)(V,P)04:Eu Y203:Eu、 (Sr,Ca,Ba,Mg)5(P04)3Cl:Eu、 (Ca,Sr,Ba)MgAl10O17:Eu、 (Ca,Sr,Ba)Si202N2:Eu、 3.5MgO0.5MgF2*Ge02:Mn。
PCT/CN2013/090145 2012-12-21 2013-12-20 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件 WO2014094657A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/443,053 US9671086B2 (en) 2012-12-21 2013-12-20 Oxynitride orange-red fluorescent substance and light-emitting film or sheet and light-emitting device comprising the same
EP13864267.3A EP2937400A4 (en) 2012-12-21 2013-12-20 RED ORANGE OXYNITRIDE FLUORESCENT SUBSTANCE AND LIGHT EMITTING FILM OR LIGHT EMITTING SHEET AND LIGHT EMITTING DEVICE COMPRISING THE SAME
KR1020157011284A KR101726246B1 (ko) 2012-12-21 2013-12-20 질소산화물 등색-적색 형광물질 및 그 형광물질을 포함한 발광막 혹은 발광시트 및 발광소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012105645992A CN102994079A (zh) 2012-12-21 2012-12-21 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
CN201210564599.2 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014094657A1 true WO2014094657A1 (zh) 2014-06-26

Family

ID=47923200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090145 WO2014094657A1 (zh) 2012-12-21 2013-12-20 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件

Country Status (6)

Country Link
US (1) US9671086B2 (zh)
EP (1) EP2937400A4 (zh)
KR (1) KR101726246B1 (zh)
CN (2) CN102994079A (zh)
TW (1) TWI530550B (zh)
WO (1) WO2014094657A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994079A (zh) 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
CN104178142A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 锰掺杂碱土氮铝硅盐发光薄膜、制备方法及其应用
WO2014203841A1 (ja) 2013-06-18 2014-12-24 シャープ株式会社 発光装置
JP6645429B2 (ja) * 2014-08-07 2020-02-14 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
KR102415649B1 (ko) * 2015-03-18 2022-07-01 엘지전자 주식회사 산 질화물 형광체 및 이를 이용한 발광 소자 패키지
CN105623658B (zh) * 2016-01-29 2017-04-12 江苏博睿光电有限公司 一种氮氧化物荧光粉及其制备方法、氮氧化物发光体和发光器件
JP6669147B2 (ja) 2016-10-31 2020-03-18 日亜化学工業株式会社 発光装置
JP2020109850A (ja) * 2016-10-31 2020-07-16 日亜化学工業株式会社 発光装置の製造方法
CN109880621B (zh) * 2019-04-01 2021-07-30 旭宇光电(深圳)股份有限公司 荧光材料及其制备方法、发光膜、发光片、发光装置、图像显示装置
CN113444521B (zh) * 2020-03-24 2022-05-10 有研稀土新材料股份有限公司 一种红色荧光粉及具有其的发光器件
CN113917776B (zh) 2020-07-09 2023-03-24 中强光电股份有限公司 波长转换装置以及投影装置
WO2023176564A1 (ja) * 2022-03-15 2023-09-21 デンカ株式会社 蛍光体粉末、蛍光体粉末の製造方法、及び発光装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
WO2005052087A1 (ja) 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
CN1977030A (zh) * 2004-06-30 2007-06-06 独立行政法人物质·材料研究机构 荧光体和发光器具
CN100340631C (zh) 2004-02-27 2007-10-03 同和矿业株式会社 荧光物质及其制法及使用它的光源和发光二极管
CN101090953A (zh) 2005-01-31 2007-12-19 宇部兴产株式会社 红色氮化物荧光材料及其制造方法
CN102443391A (zh) * 2010-09-30 2012-05-09 奇美实业股份有限公司 控制烧成的荧光体结构成分比例的方法、荧光体及发光装置
CN102453485A (zh) * 2010-10-27 2012-05-16 奇美实业股份有限公司 荧光体及发光装置
CN102464979A (zh) * 2010-11-09 2012-05-23 奇美实业股份有限公司 荧光体及发光装置
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865624B1 (ko) * 2004-04-27 2008-10-27 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을이용한 발광 장치
EP1892268B1 (en) * 2005-06-14 2015-10-28 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
WO2007088966A1 (ja) * 2006-02-02 2007-08-09 Mitsubishi Chemical Corporation 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
CN104882527B (zh) 2006-06-21 2018-05-15 亮锐控股有限公司 具有至少一种陶瓷球形颜色转换器材料的发光器件
KR101277218B1 (ko) 2006-06-29 2013-06-24 엘지디스플레이 주식회사 박막 트랜지스터 제조방법 및 액정표시소자의 제조방법
CN101157854B (zh) * 2007-07-02 2010-10-13 北京宇极科技发展有限公司 一种氮氧化合物发光材料、其制备方法及其应用
JP5833918B2 (ja) * 2009-02-26 2015-12-16 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置
TWI393764B (zh) 2010-10-15 2013-04-21 Chi Mei Corp A phosphor and a light emitting device
EP2787056B1 (en) * 2011-11-07 2016-04-20 National Institute for Materials Science Phosphor, production method therefor, light emission device, and image display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
WO2005052087A1 (ja) 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
CN1918262B (zh) 2003-11-26 2011-05-18 独立行政法人物质·材料研究机构 荧光体和使用荧光体的发光装置
CN100340631C (zh) 2004-02-27 2007-10-03 同和矿业株式会社 荧光物质及其制法及使用它的光源和发光二极管
CN1977030A (zh) * 2004-06-30 2007-06-06 独立行政法人物质·材料研究机构 荧光体和发光器具
CN101090953A (zh) 2005-01-31 2007-12-19 宇部兴产株式会社 红色氮化物荧光材料及其制造方法
CN102443391A (zh) * 2010-09-30 2012-05-09 奇美实业股份有限公司 控制烧成的荧光体结构成分比例的方法、荧光体及发光装置
CN102453485A (zh) * 2010-10-27 2012-05-16 奇美实业股份有限公司 荧光体及发光装置
CN102464979A (zh) * 2010-11-09 2012-05-23 奇美实业股份有限公司 荧光体及发光装置
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937400A4

Also Published As

Publication number Publication date
US20150308657A1 (en) 2015-10-29
EP2937400A4 (en) 2016-08-03
US9671086B2 (en) 2017-06-06
KR101726246B1 (ko) 2017-04-12
EP2937400A1 (en) 2015-10-28
KR20150065802A (ko) 2015-06-15
TWI530550B (zh) 2016-04-21
TW201425534A (zh) 2014-07-01
CN103756674B (zh) 2016-05-04
CN103756674A (zh) 2014-04-30
CN102994079A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2014094657A1 (zh) 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
CN103045256B (zh) 一种led红色荧光物质及含有该荧光物质的发光器件
CN103881706B (zh) 一种氮氧化物荧光粉、其制备方法及含该荧光粉的发光装置
CN112094645A (zh) 一种掺杂Eu2+的蓝光荧光材料及其制备方法和白光LED发光装置
CN103045267B (zh) 一种氮化物荧光粉、其制备方法及含该荧光粉的发光装置
WO2013056408A1 (zh) 氮化物红色发光材料、包括其的发光件以及发光器件
CN110003908B (zh) 白光led用硅酸盐红色荧光粉及制备方法和白光led发光装置
KR102069081B1 (ko) 형광체 및 그 제조 방법, 그리고 led 램프
WO2019061004A1 (zh) 荧光增强的硅基氮氧化物青色荧光粉及其制备方法
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
US8524118B2 (en) Nitride phosphor, method of preparing the same, and white light-emitting device using the same
CN103881718B (zh) 一种氮氧化物橙-黄色荧光粉及含有该荧光粉的发光膜或发光片、发光器件
WO2016065725A1 (zh) 荧光材料及其制造方法和包含该荧光材料的组合物
WO2018001368A1 (zh) 氮化物荧光体及包含其的发光装置
CN110129047B (zh) 一种Tb3+激活的铌钽酸盐绿发光荧光粉及其制备与应用
CN104927846B (zh) 白光led用蓝光荧光粉及其制备方法和白光led发光装置
CN112300799B (zh) 一种氮氧化物荧光粉及含该荧光粉的发光装置
CN111088048B (zh) 一种Eu3+掺杂的氟钽酸盐荧光陶瓷及其合成方法与应用
CN108753290B (zh) 一种铋和铕离子共激活的钛铝酸盐荧光粉及其制备和应用
CN108048085B (zh) 一种磷硅酸盐绿色荧光粉及其制备方法
CN116814260A (zh) 一种锗锆酸镁钙荧光粉及其制备方法
CN117417740A (zh) 一种窄带绿光发光材料及其制备方法和应用
CN108148595A (zh) 一种白光led用光谱可调磷硅酸盐荧光粉及其制备方法
CN111057549A (zh) 一种新型廉价的白光led用单基质荧光粉
TW201542768A (zh) 一種相變形成具複合顏色螢光粉之合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864267

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011284

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14443053

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013864267

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE