WO2018199272A1 - 無人搬送車 - Google Patents

無人搬送車 Download PDF

Info

Publication number
WO2018199272A1
WO2018199272A1 PCT/JP2018/017112 JP2018017112W WO2018199272A1 WO 2018199272 A1 WO2018199272 A1 WO 2018199272A1 JP 2018017112 W JP2018017112 W JP 2018017112W WO 2018199272 A1 WO2018199272 A1 WO 2018199272A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
carriage
fluid pressure
circuit
guided vehicle
Prior art date
Application number
PCT/JP2018/017112
Other languages
English (en)
French (fr)
Inventor
康裕 西澤
上野 俊幸
祐也 松下
Original Assignee
株式会社 明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 明電舎 filed Critical 株式会社 明電舎
Priority to US16/608,559 priority Critical patent/US11452256B2/en
Priority to CN201880027697.8A priority patent/CN110573401B/zh
Priority to KR1020197032353A priority patent/KR102241677B1/ko
Publication of WO2018199272A1 publication Critical patent/WO2018199272A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P1/00Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading
    • B60P1/02Vehicles predominantly for transporting loads and modified to facilitate loading, consolidating the load, or unloading with parallel up-and-down movement of load supporting or containing element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D47/00Loading or unloading devices combined with vehicles, e.g. loading platforms, doors convertible into loading and unloading ramps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D2001/001Traction couplings; Hitches; Draw-gear; Towing devices specially adapted for use on vehicles other than cars
    • B60D2001/005Traction couplings; Hitches; Draw-gear; Towing devices specially adapted for use on vehicles other than cars for carts, scooters, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/32Auto pilot mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/306Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/528Pressure control characterised by the type of actuation actuated by fluid pressure

Definitions

  • the present invention relates to an automatic guided vehicle. Specifically, the present invention relates to an automatic guided vehicle that can stably transport a carriage.
  • Patent Document 1 an automated guided vehicle (Auto Guide Vehicle: hereinafter abbreviated as AGV) that runs along a taxiway laid on the floor of the factory for transporting parts to the assembly line in the assembly factory. ) And the cart are combined and pulled by a pin connection. That is, in this pulling system, a coalescence groove is provided on the bottom surface of the carriage, and the coalescence pin is inserted into the coalescence groove of the carriage from the AGV in a state where the AGV is buried under the floor of the carriage. Similar techniques are also disclosed in Patent Documents 2 and 3.
  • Patent Document 4 discloses a technique in which an AGV is submerged under a wagon and the wagon is completely lifted by a lift device provided in the AGV. The lifted-up wagon is in a state where the wheels are separated from the floor surface.
  • the automatic guided vehicle according to claim 1 of the present invention that solves the above-described problem is the automatic guided vehicle that sinks into a certain space formed between a bottom surface and a floor surface of the carriage and conveys the carriage.
  • a fluid pressure cylinder that is vertically expandable and contractable to apply an upward pushing force to the floor surface of the fluid, a fluid pressure supply device that supplies fluid to the fluid pressure cylinder, and a fluid pressure supply device to the fluid pressure cylinder
  • Pressure adjusting means for adjusting the fluid pressure of the fluid supplied, a control board for outputting a fluid pressure command value to the pressure adjusting means, and a pressure sensor for detecting the fluid pressure of the fluid supplied to the fluid pressure cylinder;
  • the control board has a differential circuit for calculating a differential value of the fluid pressure detected by the pressure sensor, and the carriage is lifted based on a differential value pattern calculated by the differential circuit.
  • An estimation circuit that estimates the measured timing
  • a coefficient multiplication circuit that calculates the command value by multiplying the fluid pressure detected by the pressure sensor at
  • the automatic guided vehicle according to a second aspect of the present invention for solving the above-described problems is the piston rod according to the first aspect, wherein the fluid pressure cylinder has a piston inserted into a cylinder body so as to be movable up and down, and is connected to the piston.
  • a receiving plate that contacts the bottom surface of the carriage is provided at an upper end of the carriage, and a proximity switch that is turned on when approaching the floor surface of the carriage more than a certain level is provided on the receiving plate.
  • the automatic guided vehicle according to a third aspect of the present invention for solving the above-described problem is the automatic guided vehicle according to the first aspect, wherein the estimation circuit is configured to perform the differential circuit after the fluid pressure cylinder starts to elongate for a certain period of time.
  • the calculated differential value is estimated as the timing when the carriage starts to rise when the calculated differential value rises above the first predetermined value and then falls below the second predetermined value.
  • the automatic guided vehicle according to a fourth aspect of the present invention for solving the above-described problems is the automatic guided vehicle according to the first aspect, wherein the estimating circuit starts to lift the cart when the differential value calculated by the differential circuit becomes substantially zero. It is characterized in that the timing is estimated.
  • the automatic guided vehicle according to a fifth aspect of the present invention that solves the above-described problems is the automatic guided vehicle according to the first aspect, wherein when there are a plurality of the fluid pressure cylinders, the pressure adjusting means and the pressure sensor for each of the fluid pressure cylinders. Are provided, and the coefficient multiplication circuit outputs a command value corresponding to the pressure detected by each pressure sensor to each pressure adjusting means.
  • the automatic guided vehicle of the present invention detects the fluid pressure of the fluid supplied to the fluid pressure cylinder with a pressure sensor, calculates a differential value of the detected fluid pressure with a differentiation circuit, and calculates the differential value calculated with the differentiation circuit. Based on the pattern, the timing at which the carriage starts to rise is estimated by the estimation circuit, the fluid pressure detected by the pressure sensor at the timing estimated by the estimation circuit is multiplied by a coefficient less than 1 by the coefficient multiplication circuit, and the control board Is output as a command value to the pressure adjusting means from the fluid pressure supply device to the fluid pressure cylinder, the fluid pressure fluid adjusted by the pressure adjusting means is supplied not only by the wheel of the automatic guided vehicle but also by the wheel of the carriage. Since the total weight of the carriage and the load loaded on the carriage is supported in a distributed manner, the carriage can be transported stably.
  • the AGV 20 according to the present embodiment is for transporting the carriage 10 loaded with a plurality of loads 30 on the upper surface by entering the space below the bottom surface of the carriage 10.
  • the carriage 10 has a certain space from the floor surface 1 to the bottom surface 2 and includes casters 11 as wheels at four corners.
  • the AGV 20 includes two drive wheels 23 and two driven wheels 24 having a direction changing function on a vehicle body 21 lower than the space of the carriage 10, and further pushes upward with respect to the bottom surface 2 of the carriage 10.
  • Air cylinders 22 for applying a force are installed at four locations, front, rear, left and right.
  • the air cylinder 22 can be expanded and contracted vertically, and horizontal receiving plates 25 are respectively installed at the upper ends of the front and rear air cylinders 22. That is, two receiving plates 25 are arranged on the left and right. Therefore, when the air cylinder 22 is extended, the receiving plate 25 comes into contact with the carriage 10, and an upward pushing force acts on the bottom surface 2 of the carriage 10 through the receiving plate 25.
  • a compressed air supply device for supplying compressed air (air) to the air cylinder 22 and a pressure adjusting means for adjusting the pressure of the compressed air supplied to the air cylinder 22 will be described with reference to FIG. FIG. 3 is for the two front air cylinders 22. Since the configuration is the same for the two rear air cylinders 22, description thereof is omitted.
  • the air cylinder 22 has a piston 222 inserted into the cylinder body 221 so as to be movable up and down, and a stopper 223 for stopping the lift of the piston 222 is provided at the upper end of the cylinder body 221.
  • the lower end of the penetrating piston rod 224 is connected to the piston 222.
  • a receiving plate 25 that is in contact with the bottom surface of the carriage 10 is installed at the upper end of the piston rod 224.
  • a proximity sensor 225 is provided on the upper surface of the receiving plate 25.
  • the proximity sensor 225 is turned on when it is close enough to come into contact with the bottom surface of the carriage 10, and turned off when it is separated from the bottom surface of the carriage 10 to some extent.
  • On / off of the proximity sensor 25 is input to the control board 40 as indicated by a broken line as a sensor output.
  • the cylinder body 221 is divided into two air chambers A and B by a piston 222 (in the drawing, the lower air chamber is A and the upper air chamber is B).
  • the air chamber A includes an electropneumatic regulator 50.
  • the air tank 60 and the air compressor 70 are sequentially connected, and the pressure reducing valve 80 and the solenoid valve 90 are sequentially connected to the air chamber B.
  • a pressure sensor 100 is attached between the air chamber A and the electropneumatic regulator 50.
  • the pressure sensor 100 detects the pressure of the compressed air supplied from the electropneumatic regulator 50 to the air chamber A (hereinafter referred to as the pressure in the air cylinder 22).
  • the pressure detected by the pressure sensor 100 is input to the control board 40 as a sensor output.
  • the air tank 60 and the air compressor 70 are compressed air supply devices.
  • the air compressor 70 generates compressed air, and the air tank 60 stores the generated compressed air.
  • the electropneumatic regulator 50 is a pressure adjusting unit that adjusts the pressure of the compressed air supplied to the air chamber A of the air cylinder 22 based on a command value based on an output signal from the control board 40.
  • compressed air flows as shown by the black arrow in the figure during the process of raising the piston 222, and compressed as shown by the white arrow in the figure during the process of lowering the piston 222.
  • Air flows.
  • the pressure reducing valve 80 reduces the pressure from the air chamber B of the air cylinder 22 based on a command based on an output signal (command value) from the control board 40, and the solenoid valve 90 is based on an output signal from the control board 40. Open the compressed air to the outside air.
  • the electropneumatic regulator 50 includes a control circuit 501, an intake solenoid valve 502, an exhaust solenoid valve 503, a pressure sensor 504, and a branch pipe 505.
  • the branch pipe 505 includes a pipe line 505a connected to the air cylinder 22, a pipe line 505b connected to the air tank 60, and a pipe line 505c connected to the exhaust system.
  • the supply solenoid valve 502 is interposed between the pipe line 505a and the pipe line 505b.
  • the exhaust solenoid valve 503 is interposed between the pipe line 505a and the pipe line 505c. Therefore, when the air supply solenoid valve 502 is opened by the control circuit 501, the pipe line 505a and the pipe line 505b communicate with each other, and compressed air flows from the air tank 60 to the air chamber A of the air cylinder 22. As a result, the pressure in the air chamber A of the air cylinder 22 increases, and the piston 222 rises.
  • the pipe line 505a and the pipe line 505c communicate with each other, and compressed air flows from the air cylinder 22 to the exhaust system.
  • the pressure sensor 504 is connected to the pipe line 505 a and detects the pressure of the compressed air supplied into the air chamber A of the air cylinder 22.
  • the pressure detected by the pressure sensor 504 becomes an output signal through the control circuit 501 and is sent to the control board 40 as an input signal.
  • the control circuit 501 receives an output signal from the control board 40 as an input signal, opens and closes the supply solenoid valve 502 and the exhaust solenoid valve 503 based on the pressure detected by the pressure sensor 504, The pressure of the compressed air supplied to the air chamber A is adjusted.
  • the control board 40 is a device that outputs a command value of the pressure of compressed air as an output signal to the electropneumatic regulator 22 that is a pressure adjusting means, and includes a differentiation circuit 41, an estimation circuit 42, and a coefficient multiplication circuit 43.
  • the differentiation circuit 41 is a circuit that calculates a differential value of the pressure of the air cylinder 22 detected by the pressure sensor 100.
  • the estimation circuit 42 is a circuit that estimates the timing at which the carriage 10 starts to rise based on the differential value pattern calculated by the differentiation circuit 41. What kind of differential value pattern is used for estimation will be described later.
  • the timing at which the carriage 10 starts to rise is that the caster 11 of the carriage 10 moves away from the floor surface, and the total weight of the weight of the carriage 10 and the weight of the load 30 loaded on the carriage 10 is the air cylinder 22 of the AGV 20.
  • the coefficient multiplication circuit 43 is a circuit that calculates a command value to the electropneumatic regulator 22 by multiplying the pressure detected by the pressure sensor 100 at the timing estimated by the estimation circuit 42 by a coefficient less than 1.
  • the command value calculated in this way is output from the control board 40 to the electropneumatic regulator 22, the total weight of the weight of the carriage 10 and the weight of the load 30 loaded on the carriage 10 is supported only by the air cylinder 22. Instead, it is supported by the caster 11 of the carriage 10 that is grounded to the floor.
  • the total weight of the carriage 10 and the load 30 is supported by the four casters 11 of the carriage 10 in addition to the two driving wheels 23 and the two driven wheels 24 of the AGV 20. It can be transported stably.
  • the pressure control of the electropneumatic regulator 50 by the control board 40 will be described below.
  • an input signal to the electropneumatic regulator 50 is given as a ramp function from the control board 40, the pressure on the ascending side (air chamber A) of the air cylinder 22 supporting the receiving plate 25 increases, and the receiving plate 25 starts to rise. To do.
  • the pressure in the air cylinder 22 is substantially constant until the receiving plate 25 rises and contacts the carriage 10.
  • the proximity sensor 225 When the receiving plate 25 comes close to contact with the carriage 10, the proximity sensor 225 is turned on. Thereafter, when the receiving plate 25 comes into contact with the carriage 10, the pressure in the air cylinder 22 gradually increases, and when the pressure of the air cylinder 22 further rises, the carriage 10 starts to rise. Then, in a state where the carriage 10 starts to lift gently, the differential value of the pressure in the air cylinder 22 becomes small. That is, the pressure has a substantially constant value.
  • the relationship between the pressure P in the air cylinder 22 and the lift height H of the carriage is shown in FIG.
  • FIG. 6 when an input signal is given to the electropneumatic regulator 50, the pressure P on the rising side of the air cylinder 22 increases from time t 0 to time t 1 when the rising of the receiving plate 25 starts. To do.
  • the weight of the carriage 10 and the load 30 loaded on the carriage 10 can be reduced even when the carriage 10 is not lifted by the air cylinder 22 so much.
  • the total weight including the weight is supported only by the air cylinder 22.
  • the estimation circuit 42 estimates that the timing when the carriage 10 starts to float when the following conditions (1) to (3) are satisfied.
  • the proximity sensor 225 is in an ON state.
  • the differential value of the pressure in the air cylinder 22 has risen to a first predetermined value (0.03 MPa / sec or more) or more.
  • the differential value of the pressure in the air cylinder 22 has decreased to a second predetermined value (0.05 MPa / sec or less) or less.
  • the condition of (3) shall be satisfied. That is, to satisfy the conditions (1) to (3), the proximity sensor 225 is in the ON state, and after the differential value of the pressure in the air cylinder 22 becomes equal to or higher than the first predetermined value, it becomes equal to or lower than the second predetermined value. It is a time of decline. At least the differential value pattern must satisfy the conditions (2) and (3).
  • the coefficient multiplication circuit 43 multiplies the pressure value at the time of (3) by a coefficient (such as 0.9 times) less than 1 to give a command value. Is calculated.
  • the calculated command value is output from the control board 40 to the electropneumatic regulator 50.
  • the pressure applied from the electropneumatic regulator 50 to the air cylinder 22 is 0.9 times the pressure value in the above (3), about 90% of the total load of the carriage 10 and the load is supported by the air cylinder 22. The remaining 10% is supported by the carriage 10.
  • the coefficient that is multiplied by the pressure value can be changed according to the pressure value obtained at the timing (3) above, whereby a further optimum pressure can be obtained.
  • the coefficient is 0.9 when the pressure measurement value (MPa) ⁇ 0.3 (MPa), and the coefficient is 0.7 when the pressure measurement value (MPa)> 0.3 (MPa).
  • the proximity sensor 225 can be omitted.
  • a minimum pressure for example, the pressure P in the air cylinder 22 at the time t 1
  • the estimation circuit 42 can also estimate that it is the timing when the carriage 10 starts to rise only under the conditions (2) and (3).
  • the estimation circuit 42 estimates that the timing at which the carriage 10 starts to rise with the timing when the differential value of the pressure P in the air cylinder 22 becomes 0 for the second time.
  • the pressure value obtained in the above (3) is such that the wheel of the carriage 10 is always in contact with the floor surface and can provide the pressure necessary for transportation regardless of the unbalanced load of the carriage 10. It is possible to travel regardless of how the cargo is loaded, the position of the center of gravity, and the weight.
  • the front two air cylinders 22 and the rear two air cylinders 22 are controlled by one electropneumatic regulator 50, respectively.
  • the four air cylinders 22 can be controlled by one electropneumatic regulator 50, respectively. .
  • the driving wheel 23 When the driving wheel 23 is present at the front side as in the present embodiment, the driving wheel 23 is idled when the pressure of the rear air cylinder 22 is higher than the front air cylinder 22 (the load supporting the carriage 10 is large). There is a risk that. Therefore, after determining the pressure value of the front air cylinder 22 in (3) above, if the pressure of the air cylinder 22 on the rear side of the front air cylinder 22 becomes a certain value (0.2 MPa or more) or more, A value obtained by adding a certain value to the pressure value of the air cylinder 22 may be used as a pressure command value for the rear air cylinder 22 so that the drive wheel 23 does not idle.
  • an AGV according to a second embodiment of the present invention will be described with reference to FIG.
  • an electropneumatic regulator (not shown) that adjusts the pressure of compressed air for each of the air cylinders 22a, 22b, 22c, and 22d arranged on the front, rear, left, and right sides of the AGV 20; It is characterized in that a pressure sensor (not shown) is provided.
  • Other configurations are the same as those of the above-described embodiment, and the same reference numerals are given and description thereof is omitted.
  • the position G of the center of gravity of the carriage 10 including the luggage is not in the center, that is, suitable for the case of an unbalanced load of the carriage 10 including the luggage.
  • the center of gravity G of the total weight of the carriage 10 including the luggage is not in the center of the carriage 10.
  • the total weight is equally shared by the four air cylinders 22a, 22b, 22c, and 22d.
  • the closer to the center of gravity position G the higher the sharing ratio.
  • the larger the size of the circles indicating the air cylinders 22a, 22b, 22c, and 22d the higher the burden ratio.
  • the air cylinders 22a, 22b, 22c, and 22d have a higher share of the total weight as they are closer to the center of gravity position G. As a result, the air cylinders 22a, 22b, and 22c are increased. , 22d, the pressure values detected by the pressure sensors respectively provided are high.
  • a differential value is calculated for each pressure of each air cylinder 22a, 22b, 22c, 22d detected by each pressure sensor by a differentiating circuit (not shown), and an estimation circuit (not shown) is calculated based on the calculated differential value pattern.
  • the timing at which the carriage 10 starts to rise is estimated.
  • each pressure of each air cylinder 22a, 22b, 22c, 22d detected by the pressure sensor at the same estimated timing is multiplied by a coefficient less than 1 (all the same) by a coefficient multiplication circuit (not shown).
  • the command value is calculated and output as a command value from the control board (not shown) to each electropneumatic regulator.
  • the pressure of each air cylinder 22a, 22b, 22c, 22d adjusted by each electropneumatic regulator to which each command value is output shares the total weight that each air cylinder 22a, 22b, 22c, 22d bears. It depends on the ratio. In other words, the higher the sharing ratio, the higher the pressure.
  • the carriage 10 can be stably conveyed while maintaining the level. That is, in the present embodiment, there is an advantage that the carriage 10 can be stably conveyed while maintaining the level even in the case of an unbalanced load of the carriage 10 including the luggage.
  • the present invention can be widely used industrially as an automatic guided vehicle capable of stably transporting a carriage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Handcart (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Warehouses Or Storage Devices (AREA)

Abstract

台車(10)を搬送する無人搬送車(20)において、台車(10)の床面に上向きの押上力を作用させる上下方向に伸縮自在な流体圧シリンダ(22)と、流体圧シリンダ(22)に対して流体を供給する流体圧供給装置(70)と、流体圧供給装置(70)から流体圧シリンダ(22)に供給される流体の流体圧を調整する圧力調整手段(50)と、圧力調整手段(50)に流体圧の指令値を出力する制御基板(40)と、流体圧シリンダ(22)に供給される流体の流体圧を検出する圧力センサ(100)とが設けられ、制御基板(40)は、圧力センサ(100)で検出された流体圧の微分値を算出し、算出された微分値のパターンに基づいて、台車が浮き上がり始めたタイミングを推定し、推定されたタイミングにおける圧力センサ(100)で検出された流体圧に1未満の係数を乗算して指令値を算出することを特徴とする。

Description

無人搬送車
 本発明は、無人搬送車に関する。詳しくは、台車を安定して搬送できる無人搬送車に関する。
 特許文献1には、組立工場における組立ラインへの部品の搬送のために、工場の床面に敷設された誘導路に沿って自走する無人搬送車(Auto Guide Vehicle:以下、AGVと省略する)と台車とをピン結合により合体して牽引する牽引方式が開示されている。即ち、この牽引方式は、台車の底面には合体用溝を設け、AGVを台車の床下に潜り込ませた状態で、AGVから台車の合体用溝に合体用ピンを差し込んで合体させるものである。同様な技術が特許文献2,3にも開示されている。
 特許文献4には、AGVをワゴンの下に潜り込ませて、AGVに備えたリフト装置でワゴンを完全にリフトアップする技術が開示されている。リフトアップされたワゴンは、車輪が床面から離れた状態となる。
特開平10-105238号公報 特開2013-114307号公報 特開2004-107003号公報 特開平10-291798号公報
 特許文献1,2,3のように、牽引方式では、台車の底面を改造して合体用溝を設けるため、コストアップを招くことになる。特に、大量の台車を改造する必要がある工場や物流センターでは顕著である。また、牽引方式の場合は、駆動輪が空回りしないようにAGV本体を重くする必要があった。
 特許文献4のように、AGVに備えたリフト装置で台車を完全にリフトアップする技術では、台車の車輪が床面から浮いてしまうため、台車の中の荷物がアンバランスであると、転倒の虞があった。
 そこで、本発明者らは関連出願(特願2015-255945)を提案している。
 この関連出願では、台車を20mm程度完全に持ち上げてエアシリンダの上端リミットスイッチがONしなければ、荷重バランスがわからない。
 そのため、台車に接触する受け板が水平になるようにエアシリンダを動かさないと、台車が大きく傾く、もしくは台車の荷物が荷崩れする可能性がある。
 また、偏荷重があってもエアシリンダを最大ストロークまでリフトアップする必要があるため、想定される1つのエアシリンダにかかる最大負荷及び最大負荷を持ち上げられるエアシリンダに供給する圧力を選定する必要がある。
 上記課題を解決する本発明の請求項1に係る無人搬送車は、台車の底面と床面との間に形成される一定のスペースに潜り込んで、前記台車を搬送する無人搬送車において、前記台車の床面に上向きの押上力を作用させる上下方向に伸縮自在な流体圧シリンダと、前記流体圧シリンダに対して流体を供給する流体圧供給装置と、前記流体圧供給装置から前記流体圧シリンダに供給される流体の流体圧を調整する圧力調整手段と、前記圧力調整手段に流体圧の指令値を出力する制御基板と、前記流体圧シリンダに供給される流体の流体圧を検出する圧力センサと、が設けられ、前記制御基板は、前記圧力センサで検出された流体圧の微分値を算出する微分回路と、前記微分回路で算出された微分値のパターンに基づいて、前記台車が浮き上がり始めたタイミングを推定する推定回路と、前記推定回路で推定されたタイミングにおける前記圧力センサで検出された流体圧に1未満の係数を乗算して前記指令値を算出する係数乗算回路とを備えることを特徴とする。
 上記課題を解決する本発明の請求項2に係る無人搬送車は、請求項1において、前記流体圧シリンダは、シリンダ本体にピストンを上下動自在に挿入してなり、前記ピストンに接続するピストンロッドの上端には前記台車の底面に接触する受け板が設けられると共に前記受け板には、前記台車の床面に一定以上接近したときにオンとなる近接スイッチが設けられ、前記推定回路は、前記近接スイッチがオンとなった状態において、前記微分回路で算出された微分値が第1所定値以上に上昇した後、第2所定値以下に低下した時を以て、前記台車が浮き上がり始めたタイミングとして推定する。
 上記課題を解決する本発明の請求項3に係る無人搬送車は、請求項1において、前記推定回路は、前記流体圧シリンダが伸長を開始して、一定時間経過した後において、前記微分回路で算出された微分値が第1所定値以上に上昇した後、第2所定値以下に低下した時を以て、前記台車が浮き上がり始めたタイミングとして推定することを特徴とする。
 上記課題を解決する本発明の請求項4に係る無人搬送車は、請求項1において、前記推定回路は、前記微分回路で算出された微分値が略0となる時を以て、前記台車が浮き上がり始めたタイミングとして推定することを特徴とする。
 上記課題を解決する本発明の請求項5に係る無人搬送車は、請求項1において、前記流体圧シリンダが複数のときは、前記各流体圧シリンダに対して、前記圧力調整手段及び前記圧力センサが各々設けられ、前記係数乗算回路は、前記各圧力センサで検出された圧力に応じた指令値を前記各圧力調整手段へ各々出力することを特徴とする。
 本発明の無人搬送車は、流体圧シリンダに供給される流体の流体圧を圧力センサで検出し、検出された流体圧の微分値を微分回路で算出し、微分回路で算出された微分値のパターンに基づいて、台車が浮き上がり始めたタイミングを推定回路で推定し、推定回路で推定されたタイミングにおける圧力センサで検出された流体圧に係数乗算回路により1未満の係数を乗算して、制御基板から圧力調整手段に指令値として出力するので、圧力調整手段により調整された流体圧の流体が流体圧供給装置から流体圧シリンダに供給され、無人搬送車の車輪だけでなく、台車の車輪によっても台車及び台車に積載される荷物の総重量が分散して支えられるために、台車を安定して搬送することができる。
本発明の第1の実施例に係る無人搬送車の側面図である。 本発明の第1の実施例に係る無人搬送車の平面図である。 本発明の第1の実施例に係る無人搬送車の圧力調整系統図である。 本発明の第1の実施例に係る無人搬送車に使用される電空レギュレータの概略図である。 本発明の第2の実施例に係る無人搬送車の平面図である。 台車上昇高さとエアシリンダの圧力とを重ね合わせて示すグラフである。
 以下、本発明について、図面に示す実施例を参照して詳細に説明する。
 本発明の第1の実施例に係るAGVを図1~図4に示す。
 図1及び図2に示すように、本実施例に係るAGV20は、上面に複数の荷物30が積載される台車10を、台車10の底面下のスペースに潜り込んで搬送するものである。台車10は、床面1から底面2まで一定のスペースを有し、四隅に車輪としてキャスター11を備える。
 AGV20は、台車10のスペースより低い車体21に、方向転換機能を備えた2個の駆動輪23と、2個の従動輪24とを備え、更に、台車10の底面2に対して上向きの押上力を作用させるエアシリンダ22を前後左右の4カ所に設置したものである。
 エアシリンダ22は、上下に伸縮可能であり、前後のエアシリンダ22の上端には水平な受け板25がそれぞれ設置されている。つまり、受け板25は左右に2個配置されている。
 従って、エアシリンダ22を伸長させると、受け板25が台車10に接触し、受け板25を介して、台車10の底面2に対して上向きの押上力が作用することになる。
 本実施例のAGV20は、設定された積載上限荷重以内であれば、エアシリンダ22を上端まで上昇させると、台車10のキャスター11が床面から離れる。一方、エアシリンダ22を下端まで下降させると、台車10のキャスター11が床面に接地する。
 エアシリンダ22に対して圧縮空気(エア)を供給する圧縮空気供給装置及びエアシリンダ22に供給される圧縮空気の圧力を調整する圧力調整手段について、図3を参照して説明する。図3は、前方の2個のエアシリンダ22に対するものである。後方の2個のエアシリンダ22に対しても同様な構成であるので、その説明は省略する。
 図3に示すように、エアシリンダ22は、シリンダ本体221にピストン222を上下動自在に挿入し、シリンダ本体221の上端にピストン222の上昇を停止させるストッパ223が設けられ、更に、ストッパ223を貫通するピストンロッド224の下端をピストン222に接続したものである。ピストンロッド224の上端には台車10の底面に接触する受け板25が設置されている。
 受け板25の上面には、近接センサ225が設けられている。近接センサ225は、台車10の底面に接触する程度に近接するとオンとなり、台車10の底面からある程度離れるとオフとなる。近接センサ25のオン-オフはセンサ出力として破線で示すように制御基板40へ入力される。
 シリンダ本体221は、ピストン222により二つの空気室A,Bに区画され(図中、下側の空気室をA、上側の空気室をBとする)、空気室Aには、電空レギュレータ50、エアタンク60、エアコンプレッサ70が順に接続される一方、空気室Bには減圧弁80、ソレノイドバルブ90が順に接続されている。
 また、空気室Aと電空レギュレータ50との間には、圧力センサ100が取り付けられている。圧力センサ100は、電空レギュレータ50から空気室Aへ供給される圧縮空気の圧力(以下、エアシリンダ22内の圧力と言う)を検出する。圧力センサ100で検出された圧力は、センサ出力として制御基板40へ入力される。
 エアタンク60及びエアコンプレッサ70は、圧縮空気供給装置であり、エアコンプレッサ70は、圧縮空気を発生させ、エアタンク60は発生した圧縮空気を貯留する。
 電空レギュレータ50は、圧力調整手段であり、制御基板40からの出力信号による指令値に基づき、エアシリンダ22の空気室Aへ供給される圧縮空気の圧力を調整する。図3において、ピストン222が上昇する工程の際には、図中黒の矢印で示すように圧縮空気が流れ、ピストン222が下降する工程の際には、図中白の矢印で示すように圧縮空気が流れる。
 減圧弁80は、制御基板40からの出力信号(指令値)による指令に基づき、エアシリンダ22の空気室Bから圧力を減圧し、また、ソレノイドバルブ90は、制御基板40からの出力信号に基づき、圧縮空気を外気に開放する。
 制御基板40から、電空レギュレータ50、減圧弁80、ソレノイドバルブ90には出力信号が送られ、また、電空レギュレータ50から制御基板40へ入力信号が送られる。これらの電気信号は、図3において、破線で示している。
 電空レギュレータ50は、図4に示すように、制御回路501、給気用電磁弁502、排気用電磁弁503、圧力センサ504、分岐配管505から構成される。
 分岐配管505は、エアシリンダ22に接続する管路505aと、エアタンク60に接続する管路505bと、排気系統に接続する管路505cとを備えている。給気用電磁弁502は、管路505aと管路505bとの間に介装されている。排気用電磁弁503は、管路505aと管路505cとの間に介装されている。
 従って、制御回路501により給気用電磁弁502を開くと、管路505aと管路505bとが連通し、エアタンク60からエアシリンダ22の空気室Aへ圧縮空気が流れる。その結果、エアシリンダ22の空気室Aの圧力が増大し、ピストン222が上昇する。
 また、制御回路501により排気用電磁弁503を開くと、管路505aと管路505cとが連通し、エアシリンダ22から圧縮空気が排気系統に流れる。その結果、エアシリンダ22の空気室Aの圧力が減少し、ピストン222が下降する。
 圧力センサ504は、管路505aに接続しており、エアシリンダ22の空気室A内に供給される圧縮空気の圧力を検出する。圧力センサ504で検出した圧力は、制御回路501を経て出力信号となり、制御基板40へ入力信号として送られる。
 制御回路501は、制御基板40からの出力信号が入力信号として与えられ、圧力センサ504で検出した圧力に基づき、給気用電磁弁502、排気用電磁弁503を開閉して、エアシリンダ22の空気室Aへ供給される圧縮空気の圧力を調整する。
 制御基板40は、圧力調整手段である電空レギュレータ22に圧縮空気の圧力の指令値を出力信号として出力する装置であり、微分回路41、推定回路42及び係数乗算回路43を備える。
 微分回路41は、圧力センサ100で検出されたエアシリンダ22の圧力の微分値を算出する回路である。
 推定回路42は、微分回路41で算出された微分値のパターンに基づいて、台車10が浮き上がり始めたタイミングを推定する回路である。どのような微分値のパターンを用いて推定するかは後述する。
 ここで、台車10が浮き上がり始めたタイミングとは、台車10のキャスター11が床面から離れ、台車10の重量と台車10に積載された荷物30の重量を加えた総重量がAGV20のエアシリンダ22のみにより支えられるタイミングのことを言う。
 例えば、図6において、台車10の高さが急激に上昇する前の比較的緩やかに上昇する裾野の領域を言う。
 係数乗算回路43は、推定回路42により推定されたタイミングにおける圧力センサ100で検出された圧力に1未満の係数を乗算して、電空レギュレータ22への指令値を算出する回路である。
 このように算出された指令値を制御基板40から電空レギュレータ22へ出力すると、台車10の重量と台車10に積載された荷物30の重量を加えた総重量はエアシリンダ22のみにより支えられるのではなく、床面に接地した台車10のキャスター11によっても支えられることになる。
 その結果、台車10及び荷物30の総重量が、AGV20の二つの駆動輪23及び二つの従動輪24だけでなく、台車10の4個のキャスター11によって分散して支えられるために、台車10を安定して搬送することができる。
 制御基板40による電空レギュレータ50の圧力制御について以下に説明する。
 電空レギュレータ50への入力信号を制御基板40からランプ関数状で与えると、受け板25を支えているエアシリンダ22の上昇側(空気室A)の圧力が高まり、受け板25が上昇を開始する。受け板25が上昇して台車10に接触するまで間は、エアシリンダ22内の圧力は略一定となっている。
 そして、受け板25が台車10に接触する程度に近づくと、近接センサ225がON状態となる。その後、受け板25が台車10に接触すると、エアシリンダ22内の圧力が徐々に高まっていき、更にエアシリンダ22の圧力が上昇すると台車10が浮き上がり始める。そして、台車10が緩やかに浮き上がり始めた状態では、エアシリンダ22内の圧力の微分値は小さくなる。つまり、圧力は、略一定値となる。
 一例として、エアシリンダ22内の圧力Pと台車の上昇高さHの関係を図6に示す。
 図6に示すように、電空レギュレータ50へ入力信号が与えられると、時刻t0から受け板25の上昇が開始する時刻t1までの間は、エアシリンダ22の上昇側の圧力Pが上昇する。
 そして、時刻t1で受け板25の上昇が開始すると、時刻t1から受け板25が台車10に接触するまでの間は、エアシリンダ22内の圧力Pは略一定となる。
 その後、受け板25が台車10に接触する程度に近づいて近接センサ225がONとなり、受け板25が台車10に接触すると、エアシリンダ22内の圧力Pが徐々に増大し、更にエアシリンダ22内の圧力Pが増大すると、時刻t2で台車10が浮き上がり始める。その後、台車10の上昇高さHが0から緩やかに大きくなり、台車10が浮き上がり始めたタイミングにおいてエアシリンダ22内の圧力Pは略一定となる。そのため、台車10が浮き上がり始めて暫くした後の時刻t3においては、エアシリンダ22内の圧力Pの微分値は略0となる。
 ここで、エアシリンダ22内の圧力Pの微分値は略0となるとき、エアシリンダ22により台車10はあまり持ち上げられていない状態においても、台車10の重量と台車10に積載された荷物30の重量を加えた総重量はエアシリンダ22のみにより支えられた状態となる。
 その後、図6においては、エアシリンダ22を最大ストロークまでリフトアップする際に、エアシリンダ22内の圧力Pは上昇を再開すると共に台車10の上昇高さHは急激に上昇して最大値を迎えることとなる。この状態では、エアシリンダ22内の圧力Pの一部は、ストッパ223に負荷されることになる。
 上記の過程から、推定回路42は、以下の(1)~(3)の条件を満たすときに、台車10が浮き上がり始めたタイミングであると推定する。
(1)近接センサ225がON状態であること。
(2)エアシリンダ22内の圧力の微分値が第1所定値(0.03MPa/secなど)以上に上昇したこと。
(3)エアシリンダ22内の圧力の微分値が第2所定値(0.05MPa/secなど)以下に低下したこと。
 但し、(2)の条件を満たした後に(3)の条件を満たすものとする。即ち、(1)~(3)の条件を満たすとは、近接センサ225がON状態で、エアシリンダ22内の圧力の微分値が第1所定値以上となった後に、第2所定値以下に低下する時のことである。少なくとも、微分値のパターンが(2)(3)の条件を満たすことが必要である。
 このような(1)~(3)の条件が満たされると、係数乗算回路43は、上記(3)の時の圧力値に1未満の係数(0.9倍など)を乗算して指令値を算出する。算出された指令値は制御基板40から電空レギュレータ50に出力される。電空レギュレータ50からエアシリンダ22に一定圧の圧縮空気が供給されることにより、台車10のキャスター11が床面から離れることなく、適当な圧力で台車10を支えることができる。
 つまり、電空レギュレータ50からエアシリンダ22に与える圧力が、上記(3)のときの圧力値の0.9倍とすると、台車10及び荷物の総荷重の約90%がエアシリンダ22で支えられ、残りの約10%が台車10により支持されることになる。
 圧力値に乗算する係数は、上記(3)のタイミングで得られた圧力値により変更することで、さらに最適な圧力を得ることもできる。
 例えば、圧力測定値(MPa)<0.3(MPa)のときは係数を0.9とし、圧力測定値(MPa)>0.3(MPa)のときは係数を0.7とする。
 上記の動作において、近接センサ225を省略することも可能である。例えば、受け板25を支える最低圧力(例えば、上記時刻t1でのエアシリンダ22内の圧力P)を予め求めておき、エアシリンダ22に最低圧力を加えて一定時間後(数秒後)にエアシリンダ22内の圧力を徐々に高くすると、推定回路42は、上記(2)、(3)の条件のみで、台車10が浮き上がり始めたタイミングであると推定することもできる。
 更には、微分値のパターンのみに基づいて、台車10が浮き上がり始めたタイミングを推定することも可能である。
 例えば、図6に示す通り、エアシリンダ22内の圧力Pの微分値が略0となるタイミングは2回ある。
 先ず、時刻t1から時刻t2までに、エアシリンダ22内の圧力Pの微分値が0となるタイミングがあるが、この段階では、台車10が浮き上がり始めていない。
 そして、時刻t2で台車10が浮き上がり始め、時刻t2の後に、エアシリンダ22内の圧力Pが一定値となる、つまり、その微分値が0となるタイミングがある。
 そこで、推定回路42は、エアシリンダ22内の圧力Pの微分値が2回目に0となるタイミングを以て、台車10が浮き上がり始めたタイミングであると推定する。
 上記(3)で得られる圧力値は、台車10の偏荷重に関わらず、常に台車10の車輪が床面に接地し、且つ、搬送に必要な圧力を与える事ができるため、台車10内の荷の積み方、重心位置、重量がどのようであっても走行させることが可能となる。
 本実施例では、前側2つ、後側2つのエアシリンダ22をそれぞれ1つの電空レギュレータ50で制御しているが、4つのエアシリンダ22をそれぞれ1つの電空レギュレータ50で制御することもできる。1つのエアシリンダ22につき1つの電空レギュレータ50で制御することにより、複雑な圧力のかけ方が可能となり、偏荷重に対してよりロバスト性が高くなる。
 本実施例のように前側よりに駆動輪23がある場合、前側のエアシリンダ22に対して後側のエアシリンダ22の圧力が高い(台車10を支える荷重が大きい)と駆動輪23が空回りしてしまうおそれがある。
 そのため、上記(3)で前側のエアシリンダ22の圧力値を決定した後、前側のエアシリンダ22よりも後側のエアシリンダ22の圧力が一定値(0.2MPaなど)以上になると、前側のエアシリンダ22の圧力値に一定値を足した値を後側のエアシリンダ22の圧力指令値とし、駆動輪23が空回りしないようにすると良い。
 各エアシリンダ22は台車10からの負荷の50~100%の圧力でリフトアップするとした場合、仮にエアシリンダ22に与えることができる圧力が最高0.7MPaであったとしても、0.7×100(%)/50(%)=1.4MPaとなり、上記で述べた通り、台車10の車輸が浮き上がらない場合は圧力への係数を1とすると、エアシリンダ22へ与えることができる圧力の2倍(0.7MPaに対して1.4MPa)まで搬送することができ、台車10の車輪が浮き上がらなくてもエアシリンダ22の圧力を決定することができる。
 本発明の第2の実施例に係るAGVについて、図5を参照して説明する。
 本実施例は、第1の実施例に比較して、AGV20の前後左右に配置される各エアシリンダ22a,22b,22c,22d毎に圧縮空気の圧力を調整する電空レギュレータ(図示省略)及び圧力センサ(図示省略)を各々設けた点に特徴がある。その他の構成は前述した実施例と同様であり、同一符号を付して説明を省略する。
 本実施例においては、図5に示すように、荷物を含む台車10の重心の位置Gが中央にない場合、即ち、荷物を含む台車10の偏荷重の場合に好適なものである。
 図5に示すように、荷物を含む台車10の総重量の重心位置Gが台車10の中央にない場合には、その総重量を4個のエアシリンダ22a,22b,22c,22dで均等に分担するのではなく、重心位置Gに近い程分担する割合が高くなる。例えば、図5の例では、エアシリンダ22a,22b,22c,22dを示す○の大きさが大きいほど負担する割合が高い状態を示す。
 このような偏荷重の場合には、エアシリンダ22a,22b,22c,22dは、重心位置Gに近い程、その総重量を分担する割合が高くなり、その結果、各エアシリンダ22a,22b,22c,22dに各々設けられた圧力センサで各々検出される圧力値は高いものとなる。
 各圧力センサで検出された各エアシリンダ22a,22b,22c,22dの圧力を微分回路(図示省略)により各々微分値を算出し、算出した各々の微分値のパターンに基づいて、推定回路(図示省略)で台車10が浮き上がり始めたタイミングを推定する。
 ここでは、台車10は水平状態保つものとし、何れの微分値のパターンに基づいても、推定される台車10が浮き上がり始めたタイミングは同一とする。
 そして、推定された同一のタイミングにおける圧力センサで検出された各エアシリンダ22a,22b,22c,22dの各圧力に係数乗算回路(図示省略)で1未満の係数(全て同一とする)を乗算して指令値を算出し、制御基板(図示省略)から各電空レギュレータへ指令値として各々出力する。
 このように指令値が各々出力された各電空レギュレータで調整される各エアシリンダ22a,22b,22c,22dの圧力は、各エアシリンダ22a,22b,22c,22dが負担する総重量を分担する割合に応じたものとなる。つまり、分担する割合が高いほど圧力は高くなる。
 そのため、荷物を含む台車10の総重量が、偏荷重の場合であっても、AGV20の二つの駆動輪(図示省略)及び二つの従動輪(図示省略)だけでなく、台車10の4個のキャスター(図示省略)によって分散して支えられるために、水平を保ったまま、台車10を安定して搬送することができる。
 つまり、本実施例においては、荷物を含む台車10の偏荷重の場合においても、水平を保ったまま台車10を安定して搬送することができるという利点がある。
 本発明は、台車を安定して搬送できる無人搬送車として広く産業上利用可能なものである。
 1 床面
 2 底面
 10 台車
 11 キャスター
 20 AGV(無人搬送車)
 21 車体
 22 エアシリンダ
 23 駆動輪
 24 従動輪
 30 荷物
 40 制御基板
 41 微分回路
 42 推定回路
 43 係数乗算回路
 50 電空レギュレータ
 60 エアタンク
 70 エアコンプレッサ
 80 減圧弁
 90 ソレノイドバルブ
 100 圧力センサ
 225 近接スイッチ

Claims (5)

  1.  台車の底面と床面との間に形成される一定のスペースに潜り込んで、前記台車を搬送する無人搬送車において、
     前記台車の床面に上向きの押上力を作用させる上下方向に伸縮自在な流体圧シリンダと、
     前記流体圧シリンダに対して流体を供給する流体圧供給装置と、
     前記流体圧供給装置から前記流体圧シリンダに供給される流体の流体圧を調整する圧力調整手段と、
     前記圧力調整手段に流体圧の指令値を出力する制御基板と、
     前記流体圧シリンダに供給される流体の流体圧を検出する圧力センサと、が設けられ、
     前記制御基板は、
     前記圧力センサで検出された流体圧の微分値を算出する微分回路と、
     前記微分回路で算出された微分値のパターンに基づいて、前記台車が浮き上がり始めたタイミングを推定する推定回路と、
     前記推定回路で推定されたタイミングにおける前記圧力センサで検出された流体圧に1未満の係数を乗算して前記指令値を算出する係数乗算回路と
     を備えることを特徴とする無人搬送車。
  2.  前記流体圧シリンダは、シリンダ本体にピストンを上下動自在に挿入してなり、前記ピストンに接続するピストンロッドの上端には前記台車の底面に接触する受け板が設けられると共に前記受け板には、前記台車の床面に一定以上接近したときにオンとなる近接スイッチが設けられ、
     前記推定回路は、前記近接スイッチがオンとなった状態において、前記微分回路で算出された微分値が第1所定値以上に上昇した後、第2所定値以下に低下した時を以て、前記台車が浮き上がり始めたタイミングとして推定する
     ことを特徴とする請求項1記載の無人搬送車。
  3.  前記推定回路は、前記流体圧シリンダが伸長を開始して、一定時間経過した後において、前記微分回路で算出された微分値が第1所定値以上に上昇した後、第2所定値以下に低下した時を以て、前記台車が浮き上がり始めたタイミングとして推定する
     ことを特徴とする請求項1記載の無人搬送車。
  4.  前記推定回路は、前記微分回路で算出された微分値が略0となる時を以て、前記台車が浮き上がり始めたタイミングとして推定する
     ことを特徴とする請求項1記載の無人搬送車。
  5.  前記流体圧シリンダが複数のときは、前記各流体圧シリンダに対して、前記圧力調整手段及び前記圧力センサが各々設けられ、
     前記係数乗算回路は、前記各圧力センサで検出された圧力に応じた指令値を前記各圧力調整手段へ各々出力する
      ことを特徴とする請求項1記載の無人搬送車。
PCT/JP2018/017112 2017-04-27 2018-04-27 無人搬送車 WO2018199272A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/608,559 US11452256B2 (en) 2017-04-27 2018-04-27 Auto guide vehicle
CN201880027697.8A CN110573401B (zh) 2017-04-27 2018-04-27 无人搬运车
KR1020197032353A KR102241677B1 (ko) 2017-04-27 2018-04-27 무인 반송차

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087864 2017-04-27
JP2017087864A JP6848651B2 (ja) 2017-04-27 2017-04-27 無人搬送車

Publications (1)

Publication Number Publication Date
WO2018199272A1 true WO2018199272A1 (ja) 2018-11-01

Family

ID=63920271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017112 WO2018199272A1 (ja) 2017-04-27 2018-04-27 無人搬送車

Country Status (5)

Country Link
US (1) US11452256B2 (ja)
JP (1) JP6848651B2 (ja)
KR (1) KR102241677B1 (ja)
CN (1) CN110573401B (ja)
WO (1) WO2018199272A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017119421A1 (de) * 2017-08-24 2019-02-28 Linde Material Handling Gmbh Autonomes Flurförderzeug, insbesondere Kommissionier-Flurförderzeug
JP2019156289A (ja) * 2018-03-15 2019-09-19 株式会社東芝 搬送装置
DE102018118261B4 (de) * 2018-07-27 2022-08-11 HAWE Altenstadt Holding GmbH Fahrerloses Transportsystem
JP2023042914A (ja) * 2021-09-15 2023-03-28 株式会社アマダ 自動搬送装置
DE102021214969A1 (de) * 2021-12-23 2023-06-29 Continental Automotive Technologies GmbH Fahrerloses Transportfahrzeug mit einer Nutzlast-Hubvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075853A (en) * 1989-02-17 1991-12-24 Whs Robotics, Inc. Replaceable vehicle control prom
JPH05162620A (ja) * 1991-12-16 1993-06-29 Hitachi Techno Eng Co Ltd 運搬台車
JPH0925095A (ja) * 1995-07-12 1997-01-28 Suzuki Motor Corp リフタ付無人搬送車
JP2017047996A (ja) * 2015-09-01 2017-03-09 愛知機械テクノシステム株式会社 無人搬送車のリフター装置およびこれを備える無人搬送車
JP2017119451A (ja) * 2015-12-28 2017-07-06 株式会社明電舎 無人搬送車

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698056B2 (ja) * 1995-06-22 1998-01-19 イチビキ株式会社 L−グルタミン酸・l−ピログルタミン酸相互変換酵素
JPH09185414A (ja) * 1995-12-28 1997-07-15 Shinko Electric Co Ltd ワゴン台車の配送システム
JP3928193B2 (ja) 1996-09-26 2007-06-13 マツダ株式会社 台車の積込み装置
JPH10291798A (ja) 1997-04-18 1998-11-04 Shinko Electric Co Ltd 潜り込み式無人搬送車の非常停止装置
JP4127001B2 (ja) 2002-09-18 2008-07-30 株式会社明電舎 ピッキング・カート及びこれによるデジタルピッキング
CN2635644Y (zh) * 2003-08-22 2004-08-25 河北科技大学 自动搬运车
JP5557510B2 (ja) * 2009-11-10 2014-07-23 株式会社シンテックホズミ 自動搬送車
JP5304723B2 (ja) * 2010-05-17 2013-10-02 株式会社安川電機 自走搬送装置及び台車搬送方法
JP5793407B2 (ja) 2011-11-25 2015-10-14 矢崎化工株式会社 無人搬送車による台車の自動搬送システム
JP6548465B2 (ja) * 2015-06-04 2019-07-24 フマキラー株式会社 薬剤放散装置
JP2017000047A (ja) * 2015-06-08 2017-01-05 株式会社 伊藤園 目盛り付き茶漉しを配設する急須

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075853A (en) * 1989-02-17 1991-12-24 Whs Robotics, Inc. Replaceable vehicle control prom
JPH05162620A (ja) * 1991-12-16 1993-06-29 Hitachi Techno Eng Co Ltd 運搬台車
JPH0925095A (ja) * 1995-07-12 1997-01-28 Suzuki Motor Corp リフタ付無人搬送車
JP2017047996A (ja) * 2015-09-01 2017-03-09 愛知機械テクノシステム株式会社 無人搬送車のリフター装置およびこれを備える無人搬送車
JP2017119451A (ja) * 2015-12-28 2017-07-06 株式会社明電舎 無人搬送車

Also Published As

Publication number Publication date
JP6848651B2 (ja) 2021-03-24
CN110573401A (zh) 2019-12-13
US20200189623A1 (en) 2020-06-18
KR102241677B1 (ko) 2021-04-19
CN110573401B (zh) 2020-09-15
KR20190134725A (ko) 2019-12-04
US11452256B2 (en) 2022-09-27
JP2018184113A (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
WO2018199272A1 (ja) 無人搬送車
JP6641994B2 (ja) 無人搬送車
CN102712280B (zh) 运输车辆
EP2045207B1 (en) Load controlled stabilizer system
JP5299882B2 (ja) 車両用リフト装置
US20160185269A1 (en) Trailer and frame thereof
KR101710031B1 (ko) 랙모듈 상하차용 리프트 및 상차 방법
CN103482530A (zh) 运输车
CN103671294A (zh) 悬挂油缸同步升降控制系统、控制方法及工程车辆
CN103086164A (zh) 货物装载卸下装置及使用该装置的货物装载卸下方法
JP5280138B2 (ja) 昇降載置台付台車
JP6524038B2 (ja) 運搬車両
EP3868632A1 (en) Transfer carriage
CN110586688B (zh) 钢卷车及其触卷检测方法
JP2011131694A (ja) 無人搬送車における荷台支持装置及び荷台支持方法
CN217554039U (zh) 运输车
KR102561521B1 (ko) 차량의 가변축 제어 장치
US11591114B2 (en) Aircraft loader
KR20230021744A (ko) 운반차
KR101506233B1 (ko) 트레일러의 상판 리프팅 장치
JP2024006577A (ja) フォークリフト
KR20230023679A (ko) 자가 상차가 가능한 지게차
CN105752893A (zh) 一种用于搬运车装卸货物的液压升降架
JP2019123609A (ja) 搬送システム
KR20220144898A (ko) 화물차의 가변축 자동 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032353

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18792157

Country of ref document: EP

Kind code of ref document: A1