WO2018196410A1 - 散热装置、散热器、电子设备及散热控制的方法 - Google Patents
散热装置、散热器、电子设备及散热控制的方法 Download PDFInfo
- Publication number
- WO2018196410A1 WO2018196410A1 PCT/CN2017/117751 CN2017117751W WO2018196410A1 WO 2018196410 A1 WO2018196410 A1 WO 2018196410A1 CN 2017117751 W CN2017117751 W CN 2017117751W WO 2018196410 A1 WO2018196410 A1 WO 2018196410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat dissipating
- component
- adjustable
- heat
- fixed substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3672—Foil-like cooling fins or heat sinks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20436—Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
- H05K7/20509—Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
Definitions
- the present application relates to the field of electronic devices, and in particular, to a heat sink, a heat sink, an electronic device, and a method of heat dissipation control.
- a heat sink In order to control the temperature of the electronic components within a suitable temperature range, a heat sink is usually fixed on the surface of the electronic component, and the fins on the heat sink are used to spread the heat outward, thereby lowering the temperature of the electronic component.
- a wide range of radiation such as an antenna, etc., which is to adjust the installation of electronic components in such electronic devices to expand the radiation range.
- the embodiment of the present application provides a heat dissipating device, a heat sink, an electronic device, and a heat dissipation control method, which can achieve the purpose of simultaneously rotating the electronic component and the adjustable heat dissipating component by adjusting the connecting component, thereby not affecting the heat dissipating effect.
- the complexity of deploying electronic components and heat sinks is reduced, thereby facilitating the convenience of operation.
- an embodiment of the present disclosure provides a heat dissipating device, including: an adjustable heat dissipating component, a fixed substrate, a rotating shaft, and a connecting component, wherein one side of the adjustable heat dissipating component is used for placing electronic components, and The other side of the heat-dissipating component is provided with a rotating shaft, which is also called a mechanical shaft, and functions as a connection and a rotation.
- a rotating shaft which is also called a mechanical shaft, and functions as a connection and a rotation.
- One end of the connecting component is connected to the adjustable heat dissipating component, and the other end of the connecting component is connected to the fixed substrate.
- the adjustable heat dissipating component is mainly used for reducing the temperature generated by the electronic component during operation, and the electronic component is fixedly connected with the adjustable heat dissipating component, in other words, the electronic component and the adjustable heat dissipating component are
- the contact surface between the two is also fixed.
- the connecting component acts as a "bridge" for connecting the adjustable heat sink assembly and the fixed substrate, and the fixed substrate is relatively stable.
- the adjustable heat sink can be angled to enhance the flexibility of the heat sink.
- a heat dissipating device includes an adjustable heat dissipating component, a fixed substrate, a rotating shaft, and a connecting component, wherein one side of the adjustable heat dissipating component is provided with an electronic component, and the adjustable heat dissipating component is further A rotating shaft is disposed on one side, one end of the connecting component is connected to the adjustable heat dissipating component, and the other end of the connecting component is connected to the fixed substrate, and the connecting component can drive the adjustable heat dissipating component to rotate through the rotating shaft.
- the purpose of simultaneously rotating the electronic component and the adjustable heat dissipating component can be realized by adjusting the connecting component, thereby reducing the complexity of deploying the electronic component and the heat dissipating device without affecting the heat dissipating effect, thereby facilitating the complexity. Enhance the convenience of the operation.
- the fixed substrate is provided with a first heat dissipating tooth row, and the first heat dissipating tooth row includes a plurality of first heat dissipating teeth.
- the first heat dissipating tooth is mainly used for the purpose of enhancing heat transfer.
- the fixed substrate may be a steel plate, a stainless steel plate or a copper tube, and the first heat dissipating fin may also be a steel sheet, a stainless steel sheet, a copper sheet or an aluminum sheet.
- the first heat dissipating tooth row formed by the first heat dissipating tooth piece is disposed on the fixed substrate, so that the heat dissipating amount of the heat dissipating device can be further improved, thereby facilitating efficient heat dissipation of the electronic component.
- the utility of the lifting device is disposed on the fixed substrate, so that the heat dissipating amount of the heat dissipating device can be further improved, thereby facilitating efficient heat dissipation of the electronic component.
- the adjustable heat dissipation component includes an adjustable heat dissipation substrate and a second heat dissipation tooth row.
- the adjustable heat dissipation substrate is provided with a second heat dissipation tooth row, and the second heat dissipation tooth row includes a plurality of second heat dissipation teeth.
- the second heat dissipating fins are arranged in parallel with the first heat dissipating fins, and the second heat dissipating fins and the first heat dissipating fins are adjacent heat dissipating fins.
- the first heat dissipating fin and the second heat dissipating fin are staggered, and the two are kept in parallel, that is, no rubbing or rubbing occurs.
- a second heat dissipating tooth row formed by the second heat dissipating tooth piece is disposed on the adjustable heat dissipating substrate, and each of the second heat dissipating tooth piece and the first heat dissipating tooth piece are parallel to each other, so as to avoid Wiping occurs between the heat dissipating fins, causing wear of the heat sink, thereby increasing the service life of the heat sink.
- the second heat dissipating fins are arranged adjacent to the first heat dissipating fins, and can also transfer heat, thereby facilitating the improvement of heat dissipation efficiency.
- the distance between the first heat dissipating tooth piece and the second heat dissipating tooth piece is greater than or equal to a critical distance, wherein the critical distance is that the first heat dissipating tooth piece and the second heat dissipating tooth piece do not collide The minimum distance.
- the critical distance is that the first heat dissipating tooth piece and the second heat dissipating tooth piece do not collide The minimum distance.
- the distance between the first heat dissipating tooth piece and the second heat dissipating tooth piece is further limited, and the distance should be greater than or equal to a critical distance, and the critical distance is the first heat dissipating tooth and the first The minimum distance between the two heat dissipating teeth will not be the same.
- the gap between two adjacent heat dissipating teeth can be made very small. The smaller the gap, the smaller the thermal resistance of the air layer, and the higher the heat dissipation efficiency of the staggered heat dissipating teeth.
- the first heat dissipating fin has an arch shape with a low height on both sides, and similarly, the second heat dissipating fin is also an arch having a low height on both sides. Radial fins with curvature ensure that there is a maximum amount of staggered area between adjacent fins during angle adjustment.
- the first heat dissipating tooth piece and the second heat dissipating tooth piece are both designed with an arch structure, and the design can make a large angle when adjusting the adjustable heat dissipating component.
- the rotating shaft is parallel to the fixed substrate, and the plane where the rotating shaft is located is perpendicular to the plane where the connecting component is located, and the rotating shaft is specifically disposed on both sides of the adjustable heat dissipating component.
- the rotating shaft is located at the center of both sides of the adjustable heat dissipation substrate, so as to ensure the balance of the heat sink when rotating.
- the connecting component is also perpendicular to the fixed substrate.
- the plane where the rotating shaft is located is perpendicular to the plane where the connecting component is located, so that the connecting component can maximize the force of the rotating shaft.
- the rotating shaft is disposed on both sides of the adjustable heat dissipating component, which is beneficial for maintaining heat dissipation. Structural stability.
- the connecting component comprises a nut and a screw
- the nut is fixedly connected with the adjustable heat dissipating component
- one end of the screw is connected with the fixed substrate
- the other end of the screw is connected with the nut
- the inner side of the nut has an internal thread
- the outer side of the screw has The external thread that cooperates with the internal thread passes through a cooperation between the nut and the screw to increase or decrease the distance between one end of the adjustable heat dissipating component and the fixed substrate.
- the nut is connected to the adjustable heat dissipation substrate in various manners.
- an aperture is disposed on the adjustable heat dissipation substrate, and the nut is embedded in the aperture to form a fixed connection structure.
- the nut and the adjustable heat sink substrate are fixed by welding.
- the nut in the connecting component is fixedly connected with the adjustable heat dissipating component, and one end of the screw in the connecting component is connected to the fixed substrate, and the other end is connected to the nut.
- the screw can be utilized.
- the interaction with the nut controls the adjustable heat sink to rotate, thereby enhancing the feasibility of the solution.
- the adjustable heat dissipation substrate has a certain angle with the parallel surface of the fixed substrate during the rotation, and the angle can range from 0 degrees to 90 degrees, wherein the adjustable heat dissipation The substrate can be rotated 90 degrees clockwise or 90 degrees counterclockwise. When rotated to 90 degrees, the adjustable heat dissipation substrate and the fixed substrate are perpendicular to each other.
- the parallel surface of the adjustable heat dissipation substrate and the fixed substrate also has a certain angle, and the angle is the angle of adjusting the electronic component according to actual needs, thereby making the heat dissipation device Better adaptability when adjusting angles.
- the angle range of the angle may be specifically 0 to 15 degrees from the viewpoint of practicality.
- the angle between the adjustable heat dissipation substrate and the parallel surface of the fixed substrate may range from 0 degrees to 15 degrees, which may limit the electronic components when adjusting the angle in the electronic device. In order to achieve a reasonable angle adjustment, to avoid collision with other devices in the electronic device.
- an embodiment of the present application provides a heat sink including a housing and a heat dissipation device according to the above first aspect, wherein the heat dissipation device is disposed inside the housing.
- the heat dissipating device can be fixed in the housing or can be detachably connected to the housing.
- the heat dissipating device comprises an adjustable heat dissipating component, a fixed heat dissipating component, a rotating shaft and a connecting component, wherein the adjustable heat dissipating component comprises an adjustable heat dissipating substrate and a plurality of
- the second heat dissipating tooth piece comprises a fixed substrate and a first heat dissipating tooth piece
- the connecting component comprises a nut and a screw
- the electronic component is fixed on the adjustable heat dissipating substrate.
- a heat sink which realizes the simultaneous rotation of the electronic component and the adjustable heat dissipation component by adjusting the connection component, thereby reducing the deployment of the electronic component without affecting the heat dissipation effect. And the complexity of the heat sink, thereby facilitating the convenience of operation.
- the heat sink has a housing that can be better deployed in electronic devices to enhance the utility of the heat sink.
- the housing includes a first outer casing and a second outer casing, and the first outer casing and the fixed substrate in the heat dissipating device are connected by the waterproof rubber strip, so that the first outer casing and the heat dissipating device form a sealed structure.
- the second outer casing and the first outer casing are detachably connected to facilitate adjustment and take-up of the heat sink.
- the heat dissipating device is installed in the casing 60 together with the electronic component 50, and the first casing 601 and the fixed substrate 201 included in the casing 60 are connected by a waterproof rubber strip 70 to This achieves the waterproof function of the heat sink, thereby improving the practicality of the solution.
- an embodiment of the present application provides an electronic device, including the heat sink provided by the second aspect.
- the embodiment of the present application provides a heat sink control method, which is related to the heat dissipating device provided by the first aspect, and the method specifically includes:
- the connecting component in the heat sink When the connecting component in the heat sink is subjected to the first force, the first force acts on the adjustable heat sink component, so the heat sink can control the adjustable heat sink to rotate in the first direction of the rotating shaft, thereby enabling adjustable heat dissipation
- the distance between one end of the assembly and the fixed substrate increases.
- the connecting component in the heat sink When the connecting component in the heat sink is subjected to the second force, the second force acts on the adjustable heat sink component, so that the heat sink can control the adjustable heat sink to rotate in the second direction of the rotating shaft, thereby enabling adjustable heat dissipation
- the distance between one end of the assembly and the fixed substrate is reduced.
- a method for controlling heat dissipation is provided.
- the adjustable heat-dissipating component can be controlled to rotate through a rotating shaft by adjusting a connecting component, and an electronic component can usually be deployed on the adjustable heat-dissipating component, thereby realizing electronic components and
- the purpose of rotating the heat dissipating component at the same time is to reduce the complexity of deploying the electronic components and the heat dissipating device without affecting the heat dissipating effect, thereby facilitating the convenience of operation.
- the embodiments of the present application have the following advantages:
- a heat dissipating device includes an adjustable heat dissipating component, a fixed substrate, a rotating shaft, and a connecting component, wherein one side of the adjustable heat dissipating component is provided with an electronic component, and the adjustable heat dissipating component is further A rotating shaft is disposed on one side, one end of the connecting component is connected to the adjustable heat dissipating component, and the other end of the connecting component is connected to the fixed substrate, and the connecting component can drive the adjustable heat dissipating component to rotate through the rotating shaft.
- the purpose of simultaneously rotating the electronic component and the adjustable heat dissipating component can be realized by adjusting the connecting component, thereby reducing the complexity of deploying the electronic component and the heat dissipating device without affecting the heat dissipating effect, thereby facilitating the complexity. Enhance the convenience of the operation.
- FIG. 1 is a schematic exploded view of a heat dissipating device according to an embodiment of the present application
- FIG. 2 is a front view of a heat sink according to an embodiment of the present application.
- FIG. 3 is a side view of a heat sink according to an embodiment of the present application.
- FIG. 4 is a partial cross-sectional view showing a heat dissipating device in an embodiment of the present application
- FIG. 5 is another partial cross-sectional view of a heat dissipating device according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of an explosion structure of a heat sink according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of an embodiment of a method for heat dissipation control according to an embodiment of the present application.
- the embodiment of the present application provides a heat dissipating device, a heat sink, an electronic device, and a heat dissipation control method, which can achieve the purpose of simultaneously rotating the electronic component and the adjustable heat dissipating component by adjusting the connecting component, thereby not affecting the heat dissipating effect.
- the complexity of deploying electronic components and heat sinks is reduced, thereby facilitating the convenience of operation.
- the electronic component in the embodiment of the present application may be directly connected to the heat dissipating device, or may be fixedly connected to the heat dissipating device through a printed circuit board (PCB).
- PCB printed circuit board
- Electronic components are an integral part of electronic devices and are usually made up of several parts that can be used in the same category.
- electronic components include, but are not limited to, resistors, capacitors, potentiometers, tubes, electromechanical components, connectors, semiconductor discrete devices, electroacoustic devices, laser devices, electronic display devices, optoelectronic devices, sensors, power supplies, switches , micro-motors, electronic transformers, relays, PCBs, integrated circuits and piezoelectrics.
- FIG. 1 is a schematic diagram of an explosion structure of a heat dissipating device according to an embodiment of the present application.
- the heat dissipating device includes an adjustable heat dissipating component 10 and is fixed.
- the assembly 10 is connected, and the other end of the connection assembly 40 is connected to the fixed substrate 201.
- the connection assembly 40 drives the adjustable heat dissipation assembly 10 to rotate through the rotating shaft 30.
- the adjustable heat dissipating component 10 is mainly used to reduce the temperature generated by the electronic component 50 during operation, and the electronic component 50 and the adjustable heat dissipating component 10 are in a fixed connection state, in other words, the electronic component 50 and The contact surface between the adjustable heat dissipating components 10 is also fixed. Generally, it is necessary to increase the contact surface between the two as much as possible, so that a better heat dissipation effect can be achieved.
- the connecting component 40 functions as a "bridge" for connecting the adjustable heat dissipating component 10 and the fixed substrate 201. As the name implies, the fixed substrate 201 is relatively stable, and the adjustable heat dissipating component 10 can be angularly adjusted with respect to the fixed substrate 201, thereby Increase the flexibility of the use of heat sinks.
- the adjustable heat dissipating component 10 also needs to have the support of the rotating shaft 30 during the rotation process, that is, if an upward force is applied to the connecting component 40, the rotating shaft 30 will be counterclockwise due to the force. Rotation, since the rotating shaft 30 can be fixedly connected to the heat dissipating component 10, the rotating shaft 30 rotating counterclockwise will drive the adjustable heat dissipating component 10 to also rotate counterclockwise. If a downward force is applied to the connecting component 40, the rotating shaft 30 will rotate clockwise due to the force. Since the rotating shaft 30 is fixedly connected to the heat dissipating component 10, the rotating shaft 30 rotating clockwise will drive the adjustable heat dissipating component. 10 do a clockwise rotation.
- a heat dissipating device includes an adjustable heat dissipating component, a fixed substrate, a rotating shaft, and a connecting component, wherein one side of the adjustable heat dissipating component is provided with an electronic component, and the adjustable heat dissipating component is further A rotating shaft is disposed on one side, one end of the connecting component is connected to the adjustable heat dissipating component, and the other end of the connecting component is connected to the fixed substrate, and the connecting component can drive the adjustable heat dissipating component to rotate through the rotating shaft.
- the purpose of simultaneously rotating the electronic component and the adjustable heat dissipating component can be realized by adjusting the connecting component, thereby reducing the complexity of deploying the electronic component and the heat dissipating device without affecting the heat dissipating effect, thereby facilitating the complexity. Enhance the convenience of the operation.
- the first heat dissipation tooth row and the first heat dissipation tooth row are disposed on the fixed substrate 201.
- a plurality of first heat dissipating teeth 202 are included.
- a row of heat dissipating fins is fixed on the fixed substrate 201.
- the heat dissipating fins are the first heat dissipating fins 202 in FIG. 1 , and the plurality of first heat dissipating fins 202 constitute a first heat dissipating tooth row.
- the first heat dissipating tooth piece 202 is mainly added to the fixed substrate 201 for the purpose of enhancing heat transfer.
- the fixed substrate 201 may be a steel plate, a stainless steel plate or a copper tube.
- the first heat dissipating tooth piece 202 may also be a steel sheet, a stainless steel sheet, a copper sheet or an aluminum sheet. It can be understood that the higher the heat transfer coefficient of the first heat dissipating tooth piece 202, the better the heat dissipating performance, and the heat dissipating amount of the heat dissipating device can be improved. It is possible to increase the heat dissipation area of the outer wall to improve the air flow velocity around the blade heat sink and increase the radiation intensity of the heat sink.
- a row of the first heat dissipating tooth rows formed by the first heat dissipating fins 202 is disposed on the fixed substrate 201, which can further improve the heat dissipating amount of the heat dissipating device, thereby facilitating efficient electronic components. Cooling, the practicality of the lifting device.
- the adjustable heat dissipating component 10 includes the adjustable heat dissipating substrate 101 and the second a second heat dissipating tooth row 101 is disposed on the adjustable heat dissipating substrate 101, and the second heat dissipating tooth row 102 includes a plurality of second heat dissipating teeth 102.
- the second heat dissipating tooth piece 102 and the first heat dissipating tooth piece 202 are arranged in parallel.
- the second heat dissipating fins 202 and the first heat dissipating fins 102 are adjacent heat dissipating fins.
- FIG. 2 is a front view of a heat dissipating device according to an embodiment of the present invention. As shown, an electronic component 50 is disposed on one side of the adjustable heat dissipation substrate 101, and a second portion is disposed on the other side. The heat dissipating tooth piece 102 and the second heat dissipating tooth piece 102 of the same row constitute a second heat dissipating tooth row.
- first heat dissipating tooth piece 202 is also disposed on the fixed substrate 201, so that the first heat dissipating tooth piece 202 and the second heat dissipating block
- the teeth 102 are staggered and the two remain parallel, i.e., no rubbing or rubbing occurs.
- a second heat dissipating tooth row formed by the second heat dissipating tooth piece 102 is disposed on the adjustable heat dissipating substrate 101, and each of the second heat dissipating tooth piece 102 and the first heat dissipating tooth piece 202 are mutually Parallel to avoid rubbing between the fins, causing wear of the heat sink, thereby increasing the service life of the heat sink.
- the second heat dissipating fins 202 are arranged adjacent to the first heat dissipating fins 102, and can also transfer heat, thereby facilitating the improvement of heat dissipation efficiency.
- the first heat dissipating tooth piece 202 and the second heat dissipating tooth piece 102 are provided on the basis of the second embodiment corresponding to FIG.
- the distance between the first heat dissipating fins 202 and the second heat dissipating fins 102 does not touch the critical distance.
- each first heat dissipating tooth piece 202 and the adjacent second heat dissipating tooth piece 102 should maintain a certain distance between each other. This distance is a critical distance, and the critical distance is the first heat dissipating tooth piece 202 and the second. The minimum distance that the heat dissipating teeth 102 do not touch. In practical applications, as far as possible, the first heat dissipating tooth piece 202 and the second heat dissipating tooth piece 102 are not as close as possible, because the closer the air layer resistance is, the smaller the air layer resistance is.
- the distance between the first heat dissipating tooth piece 202 and the second heat dissipating tooth piece 102 is further limited, and the distance should be greater than or equal to the critical distance, and the critical distance is the first heat dissipating tooth piece.
- the minimum distance between the 202 and the second heat dissipating fins 102 does not occur.
- the gap between the adjacent two radiating fins can be made very small, the smaller the gap is, the smaller the thermal resistance of the air layer is, and the more the heat dissipating efficiency of the staggered heat dissipating teeth is. high.
- the shape and the shape of the first heat dissipating tooth 202 are the same as those of the second or third embodiment corresponding to FIG.
- the shape of the two heat dissipating teeth 102 is arched.
- FIG. 3 is a side view of a heat dissipating device according to an embodiment of the present application, as shown in the figure.
- a heat dissipating tooth piece 202 has an arch shape with a low height on both sides of the middle, and similarly, the second heat dissipating tooth piece 102 is also arched at a low height on both sides. Radial fins with curvature ensure that there is a maximum amount of staggered area between adjacent fins during angle adjustment.
- the arc of the arch may be a part of a circle, or may be a part of a parabola or an ellipse, which is not limited herein.
- the first heat dissipating tooth piece 202 and the second heat dissipating tooth piece 102 are both designed with an arch structure, and the design can be used when the adjustable heat dissipating component 10 is adjusted.
- the rotating shaft 30 is parallel to the fixed substrate 201, and the plane and the connecting component 40 where the rotating shaft 30 is located.
- the plane is perpendicular, and the rotating shaft 30 is disposed on both sides of the adjustable heat dissipation assembly 10.
- FIG. 2 is a front view of a heat dissipating device according to an embodiment of the present application.
- the rotating shaft 30 and the fixed substrate 201 are in a parallel state, and generally, the rotating shaft 30 is in an adjustable state.
- the central position of both sides of the heat dissipation substrate 101 can ensure the balance of the heat sink when rotating.
- the plane in which the rotating shaft 30 is located is perpendicular to the plane in which the connecting member 40 is located, and the plane in which the rotating shaft 30 is located is parallel to the fixed substrate 201, so that the connecting member 40 is also perpendicular to the fixed substrate 201.
- the plane of the rotating shaft 30 is perpendicular to the plane in which the connecting component 40 is located, so that the force of the connecting component 40 to the rotating shaft 30 can be maximized.
- the rotating shaft 30 is disposed on the adjustable heat dissipating component 10 The side is beneficial to maintain the stability of the heat dissipation structure.
- the connecting component 40 includes a nut 401 and a screw 402, a nut 401 and an adjustable heat dissipating component. 10 is fixedly connected, one end of the screw 402 is connected to the fixed substrate 201, the other end of the screw 402 is connected with the nut 401, the inner side of the nut 401 has an internal thread, and the outer side of the screw 402 has an external thread matched with the internal thread, through the nut 401 and the screw 402 The cooperation is such that the distance between one end of the adjustable heat dissipation assembly 10 and the fixed substrate 201 is increased or decreased.
- the connecting component 40 may specifically include a nut 401 and a screw 402.
- the nut 401 is fixedly connected to the adjustable heat dissipating component 10.
- the nut 401 is fixedly connected to the adjustable heat dissipating substrate 101, and one end of the screw 402 is The fixed substrate 201 is connected and the other end is connected to the nut 401, thus constituting a connection assembly 40.
- the nut 401 is connected to the adjustable heat dissipation substrate 101 in various manners.
- an aperture is disposed on the adjustable heat dissipation substrate 101, and the nut 401 is embedded in the aperture to form a fixed connection structure.
- the nut 401 and the adjustable heat dissipation substrate 101 are fixed by soldering.
- the connection may be made in other manners, which is merely illustrative, but this should not be construed as limiting the application.
- FIG. 4 is a partial cross-sectional view of a heat dissipating device according to an embodiment of the present application
- FIG. 5 is another partial cross-sectional view of a heat dissipating device according to an embodiment of the present application, such as
- one end of the screw 402 is connected to the nut 401, and the other end can be connected with a bolt.
- the screw can be rotated to drive the screw 402 to rotate.
- One end of the screw 402 connected to the nut 401 has an external thread, and the nut 401 has an internal thread, and the external thread cooperates with the internal thread.
- Rotating the screw 402 in the other direction can reduce the distance between one end of the adjustable heat dissipation assembly 10 and the fixed substrate 201.
- the nut 401 in the connecting component 40 is fixedly connected to the adjustable heat dissipating component 10, and one end of the screw 402 in the connecting component 40 is connected to the fixed substrate 201, and the other end is connected to the nut 401.
- the connection mode can be controlled by the mutual cooperation between the screw 402 and the nut 401 to control the rotation of the adjustable heat dissipation assembly 10, thereby enhancing the feasibility of the solution.
- the adjustable heat dissipating substrate 101 and the fixing are fixed on the basis of any one of the first to third embodiments corresponding to FIG.
- the parallel faces of the substrate 201 have an included angle.
- the adjustable heat dissipation substrate 101 has a certain angle with the parallel surface of the fixed substrate 201 during the rotation, and the angle may range from 0 to 90 degrees, wherein the adjustable heat dissipation substrate 101 It can be rotated 90 degrees clockwise or 90 degrees counterclockwise, which is not limited here. When rotated to 90 degrees, the adjustable heat dissipation substrate 101 and the fixed substrate 201 are perpendicular to each other.
- the parallel surface of the adjustable heat dissipation substrate 101 and the fixed substrate 201 also has a certain angle, and the angle is the angle adjusted by the electronic component 50 according to actual needs, thereby The heat sink is more adaptable when adjusting the angle.
- the angle of the included angle ranges from 0 degrees to 15 degrees.
- the adjustable heat dissipation substrate 101 during the rotation of the adjustable heat dissipation substrate 101, there is a certain angle with the parallel surface of the fixed substrate 201.
- the adjustable heat dissipation substrate 101 can be rotated 15 degrees clockwise or counterclockwise. 15 degrees, so the range of the angle can be specifically 0 degrees to 15 degrees.
- the angle between the adjustable heat dissipation substrate 201 and the parallel surface of the fixed substrate 101 may range from 0 degrees to 15 degrees, so that the electronic component 50 has an angle when adjusting the angle in the electronic device. A certain limit, so as to achieve a reasonable angle adjustment, to avoid collision with other devices in the electronic device.
- the present application also provides a heat sink.
- the heat sink will be described in detail below. Please refer to FIG. 6 , which is a schematic diagram of an explosion structure of a heat sink according to an embodiment of the present application.
- the heat sink includes a housing and a heat dissipating device.
- the heat dissipating device is any one of the first to eighth embodiments corresponding to FIG. 1 and FIG. 1 described above, and the heat dissipating device is disposed inside the housing 60.
- the heat dissipating device may be fixed in the housing 60 or may be detachably connected to the housing 60.
- the heat dissipating device includes an adjustable heat dissipating component 10, a fixed heat dissipating component 20, a rotating shaft 30, and a connecting component 40, wherein
- the adjustable heat dissipating component 10 includes an adjustable heat dissipating substrate 101 and a plurality of second heat dissipating teeth 102.
- the fixed heat dissipating component 20 includes a fixed substrate 201 and a first heat dissipating tooth piece 202.
- the connecting component 40 includes a nut 401 and a screw 402, and the electronic component 50 is fixed on the adjustable heat dissipation substrate 101.
- the first heat dissipating tooth piece 202 and the second heat dissipating tooth piece 102 are disposed to each other, that is, the second heat dissipating tooth piece 102 is included between each of the two first heat dissipating teeth 202, and similarly, each of the second second heat dissipating teeth
- a first heat dissipating tooth piece 202 is included between the sheets 102 to effect heat transfer between the teeth, and finally heat is transferred to the environment through the fixed substrate 201.
- the cooperation between the nut 401 and the screw 402 can be utilized to rotate the screw 402 in one direction, so that the nut 401 can be rotated upward or downward along the screw 402, thereby driving
- the adjustable heat dissipation assembly 10 is rotated by the rotating shaft 30 to achieve an adjustment of the angle of the adjustable heat dissipation assembly 10.
- the housing 60 includes a first outer casing 601 and a second outer casing 602, the first outer casing.
- the fixing substrate 201 of the 601 and the heat sink is connected by the waterproof rubber strip 70, and the second outer casing 602 is detachably connected to the first outer casing 601.
- a waterproof heat sink structure is designed. Specifically, the first housing 601 in the housing 60 is connected to the fixed substrate 201 in the heat sink, and the first housing 601 covers the electronic The first housing 601 is connected to the fixed substrate 20 by using a waterproof rubber strip 70.
- the waterproof rubber strip 70 can be disposed at the edge of the entire fixed substrate 201, thereby making the first housing 601 and the heat dissipation.
- the device forms a sealed structure.
- the heat sink also needs to have a complete outer casing, that is, the first outer casing 601 and the second outer casing 602 are spliced to form a complete heat sink. It should be noted that there are a plurality of methods for splicing the first outer casing 601 and the second outer casing 602, which may be fixed splicing or detachable splicing, which is not limited herein.
- the heat dissipating device is installed in the casing 60 together with the electronic component 50, and the first casing 601 and the fixed substrate 201 included in the casing 60 are connected by a waterproof rubber strip 70 to This achieves the waterproof function of the heat sink, thereby improving the practicality of the solution.
- the present application further provides an electronic device including at least one heat sink as described in FIG. 6.
- the electronic device may be a communication device or a production device, and may also be It is another type of device and is not limited here.
- FIG. 7 is A schematic diagram of an embodiment of a method for dissipating heat dissipation in an embodiment of the present application, as shown in the figure, a method for controlling heat dissipation includes:
- connection component When receiving the first force through the connection component, controlling the adjustable heat dissipation component to rotate in a first direction of the rotation axis, so that a distance between one end of the adjustable heat dissipation component and the fixed substrate is increased;
- connection component in the heat dissipation device when the connection component in the heat dissipation device receives the first force, the first force acts on the adjustable heat dissipation component, so that the heat dissipation device can control the adjustable heat dissipation component to rotate through the first direction of the rotation axis. Thereby, the distance between one end of the adjustable heat dissipating component and the fixed substrate is increased.
- the first force is usually a force generated by the cooperation between the nut and the screw in the connecting component, for example, rotating the screw such that it generates an upward first force, and one side of the adjustable heat sink component is upwardly After the first force, the shaft will also rotate counterclockwise due to the force. Since the adjustable shaft heat dissipating component is fixedly connected, the rotating shaft rotating counterclockwise will drive the adjustable heat dissipating component to rotate counterclockwise. At this time, the first direction can be considered as a counterclockwise direction.
- the first force may also be a downward pointing force.
- the first direction may be regarded as a clockwise direction, which is merely an indication herein, and should not be construed as being limited.
- connection component When receiving the second force through the connection component, controlling the adjustable heat dissipation component to rotate through the second direction of the rotation axis, so that the distance between one end of the adjustable heat dissipation component and the fixed substrate is reduced.
- connection component in the heat dissipation device when the connection component in the heat dissipation device receives the second force, the second force acts on the adjustable heat dissipation component, so that the heat dissipation device can control the adjustable heat dissipation component to rotate through the second direction of the rotation axis. Thereby, the distance between one end of the adjustable heat dissipating component and the fixed substrate is reduced.
- the second force is usually a force generated by the cooperation between the nut and the screw in the connecting component, for example, rotating the screw so that it generates a downward second force, and one side of the adjustable heat dissipating component is subjected to After the upward second force, the shaft will also rotate clockwise due to the force. Since the adjustable shaft heat dissipating component is fixedly connected, the rotating shaft rotating clockwise will drive the adjustable heat dissipating component to rotate clockwise. At this time, the second direction can be considered to be clockwise.
- the second force may also be a pointing force.
- the second direction may be regarded as a counterclockwise direction.
- it is only a schematic diagram, and should not be construed as being limited.
- first force is opposite to the second force direction, and the first direction and the second direction are also opposite.
- a method for controlling heat dissipation is provided.
- the adjustable heat-dissipating component can be controlled to rotate through a rotating shaft by adjusting a connecting component, and an electronic component can usually be deployed on the adjustable heat-dissipating component, thereby realizing electronic components and
- the purpose of rotating the heat dissipating component at the same time is to reduce the complexity of deploying the electronic components and the heat dissipating device without affecting the heat dissipating effect, thereby facilitating the convenience of operation.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种散热装置,包括:可调散热组件(10)、固定基板(201)、转轴(30)以及连接组件(40);可调散热组件(10)的一侧设置电子元器件(50),可调散热组件(10)的另一侧设置有转轴(30);连接组件(40)的一端与可调散热组件(10)相连,连接组件(40)的另一端与固定基板(201)相连,连接组件(40)带动可调散热组件(10)通过转轴(30)转动。一种散热器、电子设备及散热控制的方法,通过调节连接组件(40)来实现电子元器件(50)与可调散热组件(10)同时转动的目的,在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
Description
本申请要求于2017年4月28日提交中国专利局、申请号为CN201710296123.8,发明名称为“散热装置、散热器、电子设备及散热控制的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电子设备领域,尤其涉及散热装置、散热器、电子设备及散热控制的方法。
随着集成技术和微电子技术的发展,电子元器件的应用也越来越广泛。但是在电子元器件工作时会产生热量,随着热量的积累,电子元器件的温度会也不断升高,进而影响到电子元器件的性能和可靠性。
为了将电子元器件的温度控制在一个合适的温度范围内,通常会在电子元器件表面固定一个散热器,利用散热器上的翅片将热量向外扩散,进而降低电子元件的温度。对于一部分的电子设备而言还需要具有较宽的辐射范围,例如天线等,这就要对这类电子设备中电子元器件的安装方式进行调整,以扩大辐射范围。
然而在调整电子元器件的安装方式时,由于电子元器件表面与散热器呈固定连接,因此,散热器的安装方式也需要随着电子元器件安装方式的改变而作出及时调整,从而增加了部署电子元器件以及散热器的复杂度,不利于操作的便利性。
发明内容
本申请实施例提供了一种散热装置、散热器、电子设备及散热控制的方法,可以通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
第一方面,本申请实施例提供了一种散热装置,包括:可调散热组件、固定基板、转轴以及连接组件,其中,可调散热组件的一侧是用于放置电子元器件的,而可调散热组件的另一侧设置有转轴,转轴又称为机械轴,起到连接和转动的功能。连接组件的一端与可调散热组件相连,而连接组件的另一端则与固定基板相连,这样的结构可以使得连接组件带动可调散热组件通过转轴转动。可以理解的是,可调散热组件主要用于降低电子元器件在工作时所产生的温度,且电子元器件与可调散热组件呈固定连接状态的,换言之,电子元器件与可调散热组件之间的接触面也是固定的,通常情况下,需要尽量增大两者之间的接触面,这样可以起到更好的散热效果。连接组件到了“桥梁”的作用,用于连接可调散热组件和固定基板,固定基板是相对稳定的。可调散热组件可以进行角度的调整,从而增强散热装置的使用的灵活性。
本申请实施例中,提供了一种散热装置,该散热装置包括可调散热组件、固定基板、 转轴以及连接组件,其中,可调散热组件的一侧设置电子元器件,可调散热组件的另一侧设置有转轴,连接组件的一端与可调散热组件相连,而连接组件的另一端则与固定基板相连,该连接组件可以带动可调散热组件通过转轴转动。采用上述散热装置,可以通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
在一种可能的实现方式中,固定基板上设置有第一散热齿列,第一散热齿列包含多个第一散热齿片。其中,第一散热齿片主要用于达到强化传热的目的。固定基板可以用钢板、不锈钢板或者铜管等,第一散热齿片也可以用钢片、不锈钢片,铜片或者铝片等。第一散热齿片的传热系数越高,说明其散热性能越好,也就能够提高散热装置的散热量。可以采用增加外壁散热面积,以提高齿片式散热装置周围空气流动速度和增加散热装置向外辐射强度等途径。
其次,本申请实施例中,在固定基板设置一排由第一散热齿片构成的第一散热齿列,可以进一步提升了散热装置的散热量,从而有利于对电子元器件进行高效地散热,提升装置的实用性。
在一种可能的实现方式中,可调散热组件包括可调散热基板以及第二散热齿列,可调散热基板上设置有第二散热齿列,第二散热齿列包含多个第二散热齿片,第二散热齿片与第一散热齿片呈平行排列,第二散热齿片与第一散热齿片互为相邻的散热齿片。第一散热齿片与第二散热齿片交错排列,且两者保持平行,也就是不会发生擦碰或者摩擦。
再次,本申请实施例中,在可调散热基板设置一排由第二散热齿片构成的第二散热齿列,且每个第二散热齿片与第一散热齿片都互为平行,以免散热齿片之间发生擦碰,造成散热装置的磨损,从而增加散热装置的使用寿命。此外,第二散热齿片与第一散热齿片相邻排列,还可以传递热量,从而有利于提升散热效率。
在一种可能的实现方式中,第一散热齿片与第二散热齿片之间的距离大于或等于临界距离,其中,临界距离为第一散热齿片与第二散热齿片不会相碰的最小距离。在实际应用中,尽量让第一散热齿片与第二散热齿片在不相碰的情况下,越接近越好,这是因为越接近,空气层阻力会越小。
进一步地,本申请实施例中,对第一散热齿片与第二散热齿片之间距离做了进一步的限定,该距离应该大于或等于临界距离,而临界距离是第一散热齿片与第二散热齿片不会相碰的最小距离,这样的话,可以使得相邻两个散热齿片的间隙非常小,间隙越小空气层热阻越小,交错散热齿的散热效率越高
在一种可能的实现方式中,第一散热齿片呈中间高两边低的拱形,类似地,第二散热齿片也为中间高两边低的拱形。具有弧度的散热齿片可以保证在调角度的过程中,相邻散热齿片之间可以存在最大的交错面积。
更进一步地,本申请实施例中,第一散热齿片与第二散热齿片均采用拱形结构的设计,这种设计能够使得在对可调散热组件进行调角的时候,存在较大的交错面积,而第一散热齿片与第二散热齿片的齿片交错面积越大,散热效率越高。
在一种可能的实现方式中,转轴与固定基板平行,且转轴所在的平面与连接组件所在 的平面垂直,转轴具体设置于可调散热组件的两侧。通常情况下,转轴位于可调散热基板两侧的中心位置,这样可以保证散热装置在转动时的平衡性。此外,若转轴所在的平面与连接组件所在的平面垂直,转轴所在的平面与固定基板平行,则连接组件也与固定基板垂直。
其次,本申请实施例中,转轴所在的平面与连接组件所在的平面垂直,这样可以使得连接组件对转轴的作用力最大化,此外,转轴设置于可调散热组件的两侧,有利于保持散热结构的稳定性。
在一种可能的实现方式中,连接组件包括螺母以及螺杆,螺母与可调散热组件固定连接,螺杆的一端与固定基板相连,螺杆的另一端与螺母相连,螺母内侧具有内螺纹,螺杆外侧具有与内螺纹相配合的外螺纹,通过螺母与螺杆之间的配合,以使可调散热组件的一端与固定基板之间的距离增大或者减小。可以理解的是,螺母与可调散热基板的连接方式有多种,例如,在可调散热基板上设置一个孔径,让螺母镶嵌在该孔径内,构成固定连接的结构。或者,采用焊接的方式固定螺母与可调散热基板。
其次,本申请实施例中,连接组件中的螺母与可调散热组件固定连接,而连接组件中的螺杆的一端与固定基板相连,另一端则与螺母相连,通过这样的连接方式,可以利用螺杆与螺母之间的相互配合控制可调散热组件进行转动,从而增强方案的可行性。
在一种可能的实现方式中,可调散热基板在转动的过程中,会与固定基板的平行面具有一定的夹角,该夹角的范围可以在0度至90度,其中,可调散热基板在可以顺时针旋转90度,也可以逆时针旋转90度。当旋转到90度时,即说明可调散热基板与固定基板相互垂直。
其次,本申请实施例中,说明了可调散热基板与固定基板的平行面之间还具有一定的夹角,这个夹角也就是根据实际需求对电子元器件调整的角度,从而使得该散热装置在调整角度时候更好的适应性。
在一种可能的实现方式中,从实用性的角度来考虑,夹角的角度范围具体可以为0度至15度。
再次,本申请实施例中,可调散热基板与固定基板的平行面之间具有的夹角范围可以是0度至15度,这样可以使得电子元器件在电子设备中调整角度时具有一定的限制,从而实现合理的角度调整,避免与电子设备中的其他器件发生擦碰等情况。
第二方面,本申请实施例提供了一种散热器,包括壳体和如上述第一方面提供的散热装置,散热装置安置于壳体内部。散热装置可固定于壳体中,也可以与壳体呈可拆卸连接,散热装置包含有可调散热组件、固定散热组件、转轴以及连接组件,其中,可调散热组件包含可调散热基板以及多个第二散热齿片,固定散热组件包含固定基板以及第一散热齿片,连接组件包含螺母以及螺杆,电子元器件固定于可调散热基板上。
本申请实施例中,提供了一种散热器,该散热器通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。与此同时,散热器具有外壳,能够更好地部署于电子设备中,提升散热装置的实用性。
在一种可能的实现方式中,壳体包括第一外壳以及第二外壳,第一外壳与散热装置中的固定基板通过防水胶条相连,以此使得第一外壳和散热装置构成一个密封的结构。第二外壳与第一外壳为可拆卸连接,方便调整和拿取散热装置。
其次,本申请实施例中,散热装置连同电子元器件50一起安装在壳体60中,且壳体60中所包含的第一外壳601与固定基板201之间采用防水胶条70进行连接,以此实现对散热器的防水功能,从而提升方案的实用性。
第三方面,本申请实施例提供了一种电子设备,包括上述第二方面提供的散热器。
第四方面,本申请实施例提供了一种散热器控制的方法,该方法依赖于上述第一方面提供的散热装置,方法具体包括:
当散热装置内的连接组件受到第一作用力时,第一作用力会作用于可调散热组件,于是散热装置可以控制可调散热组件通过转轴向第一方向进行转动,从而使得可调散热组件的一端与固定基板之间的距离增大。
当散热装置内的连接组件受到第二作用力时,第二作用力会作用于可调散热组件,于是散热装置可以控制可调散热组件通过转轴向第二方向进行转动,从而使得可调散热组件的一端与固定基板之间的距离减小。
本申请实施例中,提供了一种散热控制的方法,可以通过调节连接组件控制可调散热组件通过转轴进行转动,可调散热组件上通常可以部署电子元器件,以此实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,提供了一种散热装置,该散热装置包括可调散热组件、固定基板、转轴以及连接组件,其中,可调散热组件的一侧设置电子元器件,可调散热组件的另一侧设置有转轴,连接组件的一端与可调散热组件相连,而连接组件的另一端则与固定基板相连,该连接组件可以带动可调散热组件通过转轴转动。采用上述散热装置,可以通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种散热装置的爆炸结构示意图;
图2为本申请实施例中一种散热装置的主视图;
图3为本申请实施例中一种散热装置的侧视图;
图4为本申请实施例中一种散热装置的一个局部剖面示意图;
图5为本申请实施例中一种散热装置的另一个局部剖面示意图;
图6为本申请实施例中一种散热器的爆炸结构示意图;
图7为本申请实施例中散热控制的方法一个实施例示意图。
本申请实施例提供了一种散热装置、散热器、电子设备及散热控制的方法,可以通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本申请实施例中的电子元器件可以直接与散热装置固定连接,也可以通过印刷电路板(Printed Circuit Board,PCB)与散热装置固定连接。电子元器件是电子设备的组成部分,其本身通常由若干零件构成,可以在同类产品中通用。
需要说明的是,电子元器件包含但不仅限于电阻、电容器、电位器、电子管、机电元件、连接器、半导体分立器件、电声器件、激光器件、电子显示器件、光电器件、传感器、电源、开关、微特电机、电子变压器、继电器、PCB、集成电路以及压电等。
下面将对本申请提供的一种散热装置进行详细介绍,请参阅图1,图1为本申请实施例中一种散热装置的爆炸结构示意图,具体地,该散热装置包括可调散热组件10、固定基板201、转轴30以及连接组件40,其中,可调散热组件10的一侧设置电子元器件50,可调散热组件10的另一侧设置有转轴30,、连接组件40的一端与可调散热组件10相连,连接组件40的另一端与固定基板201相连,连接组件40带动可调散热组件10通过转轴30转动。
本实施例中,可调散热组件10主要用于降低电子元器件50在工作时所产生的温度,且电子元器件50与可调散热组件10呈固定连接状态的,换言之,电子元器件50与可调散热组件10之间的接触面也是固定的,通常情况下,需要尽量增大两者之间的接触面,这样可以起到更好的散热效果。连接组件40到了“桥梁”的作用,用于连接可调散热组件10和固定基板201,顾名思义,固定基板201是相对稳定的,可调散热组件10相对于固定基板201可以进行角度的调整,从而增强散热装置的使用的灵活性。
在实际应用中,可调散热组件10在转动的过程中还需要有转轴30的支持,转动过程即为,若给连接组件40一个向上的作用力,则转轴30会因为该作用力做逆时针转动,由于转轴30可调散热组件10固定连接,因此做逆时针转动的转轴30会带动可调散热组件10也做逆时针旋转。若给连接组件40一个向下的作用力,则转轴30会因为该作用力做顺时针转动,由于转轴30可调散热组件10固定连接,因此做顺时针转动的转轴30会带动可调散热组件10做顺时针旋转。
本申请实施例中,提供了一种散热装置,该散热装置包括可调散热组件、固定基板、转轴以及连接组件,其中,可调散热组件的一侧设置电子元器件,可调散热组件的另一侧设置有转轴,连接组件的一端与可调散热组件相连,而连接组件的另一端则与固定基板相连,该连接组件可以带动可调散热组件通过转轴转动。采用上述散热装置,可以通过调节连接组件来实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
可选地,在上述图1对应的实施例的基础上,本申请实施例提供的散热装置第一个可选实施例中,固定基板201上设置有第一散热齿列,第一散热齿列包含多个第一散热齿片202。
本实施例中,在固定基板201上还固定有一排散热齿片,这些散热齿片即为图1中的第一散热齿片202,多个第一散热齿片202构成第一散热齿列。
其中,在固定基板201上加装第一散热齿片202主要用于达到强化传热的目的。固定基板201可以用钢板、不锈钢板或者铜管等,第一散热齿片202也可以用钢片、不锈钢片,铜片或者铝片等。可以理解的是,第一散热齿片202的传热系数越高,说明其散热性能越好,也就能够提高散热装置的散热量。可以采用增加外壁散热面积,以提高齿片式散热装置周围空气流动速度和增加散热装置向外辐射强度等途径。
其次,本申请实施例中,在固定基板201设置一排由第一散热齿片202构成的第一散热齿列,可以进一步提升了散热装置的散热量,从而有利于对电子元器件进行高效地散热,提升装置的实用性。
可选地,在上述图1对应的第一个实施例的基础上,本申请实施例提供的散热装置第二个可选实施例中,可调散热组件10包括可调散热基板101以及第二散热齿列,可调散热基板101上设置有第二散热齿列,第二散热齿列包含多个第二散热齿片102,第二散热齿片102与第一散热齿片202呈平行排列,第二散热齿片202与第一散热齿片102互为相邻的散热齿片。
本实施例中,还将具体介绍第一散热齿片202与第二散热齿片102之间的排布方式。请参阅图2,图2为本申请实施例中一种散热装置的主视图,如图所示,在可调散热基板101的一侧设置有电子元器件50,另一侧则设置有第二散热齿片102,同一排第二散热齿片102构成了第二散热齿列,类似地,在固定基板201上也设置有第一散热齿片202,于是第一散热齿片202与第二散热齿片102交错排列,且两者保持平行,也就是不会发生擦碰或者摩擦。
再次,本申请实施例中,在可调散热基板101设置一排由第二散热齿片102构成的第二散热齿列,且每个第二散热齿片102与第一散热齿片202都互为平行,以免散热齿片之间发生擦碰,造成散热装置的磨损,从而增加散热装置的使用寿命。此外,第二散热齿片202与第一散热齿片102相邻排列,还可以传递热量,从而有利于提升散热效率。
可选地,在上述图1对应的第二个实施例的基础上,本申请实施例提供的散热装置第三个可选实施例中,第一散热齿片202与第二散热齿片102之间的距离大于或等于临界距离,其中,临界距离为第一散热齿片202与第二散热齿片102不会相碰的最小距离。
本实施例中,每个第一散热齿片202与相邻的第二散热齿片102之间应该保持一定的距离,这个距离即为临界距离,临界距离是第一散热齿片202与第二散热齿片102不会相碰的最小距离。在实际应用中,尽量让第一散热齿片202与第二散热齿片102在不相碰的情况下,越接近越好,这是因为越接近,空气层阻力会越小。
进一步地,本申请实施例中,对第一散热齿片202与第二散热齿片102之间距离做了进一步的限定,该距离应该大于或等于临界距离,而临界距离是第一散热齿片202与第二散热齿片102不会相碰的最小距离,这样的话,可以使得相邻两个散热齿片的间隙非常小,间隙越小空气层热阻越小,交错散热齿的散热效率越高。
可选地,在上述图1对应的第二个或第三个实施例的基础上,本申请实施例提供的散热装置第四个可选实施例中,第一散热齿片202的形状与第二散热齿片102的形状均为拱形。
本实施例中,介绍了第一散热齿片202和第二散热齿片102的形状,请参阅图3,图3为本申请实施例中一种散热装置的侧视图,如图所示,第一散热齿片202呈中间高两边低的拱形,类似地,第二散热齿片102也为中间高两边低的拱形。具有弧度的散热齿片可以保证在调角度的过程中,相邻散热齿片之间可以存在最大的交错面积。
可以理解的是,拱形的弧度可以是圆形的一部分,也可以是抛物线或者椭圆的一部分,此处不做限定。
更进一步地,本申请实施例中,第一散热齿片202与第二散热齿片102均采用拱形结构的设计,这种设计能够使得在对可调散热组件10进行调角的时候,存在较大的交错面积,而第一散热齿片202与第二散热齿片102的齿片交错面积越大,散热效率越高。
可选地,在上述图1对应的实施例的基础上,本申请实施例提供的散热装置第五个可选实施例中,转轴30与固定基板201平行,转轴30所在的平面与连接组件40所在的平面垂直,转轴30设置于可调散热组件10的两侧。
本实施例中,将介绍转轴30与散热装置中各部件之间的关系。具体地,请继续参阅图2,图2为本申请实施例中一种散热装置的主视图,如图所示,转轴30与固定基板201呈平行状态,且通常情况下,转轴30位于可调散热基板101两侧的中心位置,这样可以保证散热装置在转动时的平衡性。此外,转轴30所在的平面与连接组件40所在的平面垂直,而转轴30所在的平面与固定基板201平行,故连接组件40也与固定基板201垂直。
其次,本申请实施例中,转轴30所在的平面与连接组件40所在的平面垂直,这样可以使得连接组件40对转轴30的作用力最大化,此外,转轴30设置于可调散热组件10的两侧,有利于保持散热结构的稳定性。
可选地,在上述图1对应的实施例的基础上,本申请实施例提供的散热装置第六个可选实施例中,连接组件40包括螺母401以及螺杆402,螺母401与可调散热组件10固定连接,螺杆402的一端与固定基板201相连,螺杆402的另一端与螺母401相连,螺母401内侧具有内螺纹,螺杆402外侧具有与内螺纹相配合的外螺纹,通过螺母401与螺杆402之间的配合,以使可调散热组件10的一端与固定基板201之间的距离增大或者减小。
本实施例中,连接组件40具体可以包括螺母401以及螺杆402,其中,螺母401与可 调散热组件10固定连接,具体地,螺母401与可调散热基板101固定连接,而螺杆402的一端与固定基板201相连,另一端则是与螺母401相连,这样也就构成了一个连接组件40。
可以理解的是,螺母401与可调散热基板101的连接方式有多种,例如,在可调散热基板101上设置一个孔径,让螺母401镶嵌在该孔径内,构成固定连接的结构。或者,采用焊接的方式固定螺母401与可调散热基板101,在实际应用中,还可以采取其他的方式进行连接,此处仅为示意,然而这并不应理解为对本申请的限定。
为了便于说明,请参阅图4和图5,图4为本申请实施例中一种散热装置的一个局部剖面示意,图5为本申请实施例中一种散热装置的另一个局部剖面示意图,如图所示,螺杆402的一端与螺母401连接,另一端可以连接一个螺栓,拧动螺栓可以带动螺杆402进行转动。螺杆402与螺母401相连的一端有外螺纹,而螺母401具有内螺纹,外螺纹与内螺纹相互配合。通过往一个方向转动螺杆402,可以使可调散热组件10的一端与固定基板201之间的距离增大。往另一个方向转动螺杆402,可以使可调散热组件10的一端与固定基板201之间的距离减小。
其次,本申请实施例中,连接组件40中的螺母401与可调散热组件10固定连接,而连接组件40中的螺杆402的一端与固定基板201相连,另一端则与螺母401相连,通过这样的连接方式,可以利用螺杆402与螺母401之间的相互配合控制可调散热组件10进行转动,从而增强方案的可行性。
可选地,在上述图1对应的第一至第三个实施例中任一项的基础上,本申请实施例提供的散热装置第七个可选实施例中,可调散热基板101与固定基板201的平行面之间具有夹角。
本实施例中,可调散热基板101在转动的过程中,会与固定基板201的平行面具有一定的夹角,该夹角的范围可以在0度至90度,其中,可调散热基板101在可以顺时针旋转90度,也可以逆时针旋转90度,此处不做限定。当旋转到90度时,即说明可调散热基板101与固定基板201相互垂直。
其次,本申请实施例中,说明了可调散热基板101与固定基板201的平行面之间还具有一定的夹角,这个夹角也就是根据实际需求对电子元器件50调整的角度,从而使得该散热装置在调整角度时候更好的适应性。
可选地,在上述图1对应的第七个实施例的基础上,本申请实施例提供的散热装置第八个可选实施例中,夹角的角度范围为0度至15度。
本实施例中,在可调散热基板101转动的过程中,会与固定基板201的平行面具有一定的夹角,其中,可调散热基板101在可以顺时针旋转15度,也可以逆时针旋15度,故夹角的范围具体可以是0度到15度。
再次,本申请实施例中,可调散热基板201与固定基板101的平行面之间具有的夹角范围可以是0度至15度,这样可以使得电子元器件50在电子设备中调整角度时具有一定的限制,从而实现合理的角度调整,避免与电子设备中的其他器件发生擦碰等情况。
本申请还提供了一种散热器,下面将对散热器进行详细介绍,请参阅图6,图6为本申请实施例中一种散热器的爆炸结构示意图,如图所示,具体地,该散热器包含了一个壳 体以及散热装置,该散热装置是如上述图1以及图1对应的第一至第八个实施例中任意一个散热装置,且该散热装置安置于壳体60内部。
本实施例中,散热装置可固定于壳体60中,也可以与壳体60呈可拆卸连接,散热装置包含有可调散热组件10、固定散热组件20、转轴30以及连接组件40,其中,可调散热组件10包含可调散热基板101以及多个第二散热齿片102,固定散热组件20包含固定基板201以及第一散热齿片202,连接组件40包含螺母401以及螺杆402,电子元器件50固定于可调散热基板101上。
第一散热齿片202与第二散热齿片102相互配置,即排列方式为每两个第一散热齿片202之间包括一个第二散热齿片102,同样地,每两个第二散热齿片102之间包括一个第一散热齿片202,以此实现齿片之间的热传递,最后通过固定基板201将热量传递到环境中。
为了对可调散热组件10的转动角度进行调节,可以利用螺母401和螺杆402之间的配合,通过向一个方向旋转螺杆402,使得螺母401可以沿着螺杆402向上旋转或者向下旋转,进而带动可调散热组件10通过转轴30进行转动,以实现可调散热组件10角度的调整。
可选地,在上述图6对应的实施例的基础上,本申请实施例提供的散热器第一个可选实施例中,壳体60包括第一外壳601以及第二外壳602,第一外壳601与散热装置中的固定基板201通过防水胶条70相连,第二外壳602与第一外壳601为可拆卸连接。
本实施例中,设计了一种可防水的散热器结构,具体为,将壳体60中的第一壳体601与散热装置中的固定基板201连接,且该第一壳体601覆盖于电子元器件50之上,并采用防水胶条70将第一壳体601与固定基板20连接起来,其中,防水胶条70可以设置在整个固定基板201的边缘,以此使得第一外壳601和散热装置构成一个密封的结构。
此外,在实际应用中,散热器还需要有一个完整的外壳,即将第一外壳601与第二外壳602进行拼接,以构成一个完整的散热器。需要说明的是,拼接第一外壳601和第二外壳602的方法有多种,可以采用固定式拼接,或者采用可拆卸式拼接,此处不作限定。
其次,本申请实施例中,散热装置连同电子元器件50一起安装在壳体60中,且壳体60中所包含的第一外壳601与固定基板201之间采用防水胶条70进行连接,以此实现对散热器的防水功能,从而提升方案的实用性。
基于上述各个实施例,本申请还提供了一种电子设备,该电子设备包含了至少一个图6所介绍的散热器,具体地,这类电子设备可以通信设备,也可以是生产设备,还可以是其他类型的设备,此处不作限定。
图1至图6所示的实施例对散热装置的具体结构进行详细说明,以下结合图6所示的实施例对基于该散热装置的散热控制方法进行详细说明,请参阅图7,图7为本申请实施例中散热控制的方法一个实施例示意图,如图所示,中散热控制的方法包括:
101、当通过连接组件接收第一作用力时,控制可调散热组件通过转轴向第一方向进行转动,以使可调散热组件的一端与固定基板之间的距离增大;
本实施例中,当散热装置内的连接组件受到第一作用力时,第一作用力会作用于可调散热组件,于是散热装置可以控制可调散热组件通过转轴向第一方向进行转动,从而使得可调散热组件的一端与固定基板之间的距离增大。
具体地,第一作用力通常是通过连接组件中螺母与螺杆之间的配合所产生的力,比如,旋转螺杆,使得其产生一个向上的第一作用力,可调散热组件的一侧受到向上的第一作用力后,即转轴也会因为该作用力做逆时针转。,由于转轴可调散热组件固定连接,因此做逆时针转动的转轴会带动可调散热组件也做逆时针旋转。此时第一方向可以认为是逆时针方向。
需要说明的是,在实际应用中,第一作用力也可以是指向下的作用力,则此时第一方向可以认为是顺时针方向,此处仅为一个示意,并不应理解为对本申请的限定。
102、当通过连接组件接收第二作用力时,控制可调散热组件通过转轴向第二方向进行转动,以使可调散热组件的一端与固定基板之间的距离减小。
本实施例中,当散热装置内的连接组件受到第二作用力时,第二作用力会作用于可调散热组件,于是散热装置可以控制可调散热组件通过转轴向第二方向进行转动,从而使得可调散热组件的一端与固定基板之间的距离减小。
具体地,第二作用力通常是通过连接组件中螺母与螺杆之间的配合所产生的力,比如,旋转螺杆,使得其产生一个向下的第二作用力,可调散热组件的一侧受到向上的第二作用力后,即转轴也会因为该作用力做顺时针转动。由于转轴可调散热组件固定连接,因此做顺时针转动的转轴会带动可调散热组件也做顺时针旋转。此时第二方向可以认为是顺时针方向。
需要说明的是,在实际应用中,第二作用力也可以是指向上的作用力,则此时第二方向可以认为是逆时针方向,此处仅为一个示意,并不应理解为对本申请的限定。
可以理解的是,第一作用力与第二作用力方向相反,第一方向与第二方向方向也相反。
本申请实施例中,提供了一种散热控制的方法,可以通过调节连接组件控制可调散热组件通过转轴进行转动,可调散热组件上通常可以部署电子元器件,以此实现电子元器件与可调散热组件同时转动的目的,从而在不影响散热效果的同时,降低了部署电子元器件以及散热装置的复杂度,从而有利于增强操作的便利性。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既 可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (13)
- 一种散热装置,其特征在于,包括:可调散热组件、固定基板、转轴以及连接组件;所述可调散热组件的一侧设置电子元器件,所述可调散热组件的另一侧设置有所述转轴;所述连接组件的一端与所述可调散热组件相连,所述连接组件的另一端与所述固定基板相连,所述连接组件带动所述可调散热组件通过所述转轴转动。
- 根据权利要求1所述的散热装置,其特征在于,所述固定基板上设置有第一散热齿列,所述第一散热齿列包含多个第一散热齿片。
- 根据权利要求2所述的散热装置,其特征在于,所述可调散热组件包括可调散热基板以及第二散热齿列,所述可调散热基板上设置有所述第二散热齿列,所述第二散热齿列包含多个第二散热齿片;所述第二散热齿片与所述第一散热齿片呈平行排列,所述第二散热齿片与所述第一散热齿片互为相邻的散热齿片。
- 根据权利要求3所述的散热装置,其特征在于,所述第一散热齿片与所述第二散热齿片之间的距离大于或等于临界距离,其中,所述临界距离为第一散热齿片与所述第二散热齿片不会相碰的最小距离。
- 根据权利要求3或4所述的散热装置,其特征在于,所述第一散热齿片的形状与所述第二散热齿片的形状均为拱形。
- 根据权利要求1所述的散热装置,其特征在于,所述转轴与所述固定基板平行,所述转轴所在的平面与所述连接组件所在的平面垂直;所述转轴设置于所述可调散热组件的两侧。
- 根据权利要求1所述的散热装置,其特征在于,所述连接组件包括螺母以及螺杆;所述螺母与所述可调散热组件固定连接,所述螺杆的一端与所述固定基板相连,所述螺杆的另一端与所述螺母相连;所述螺母内侧具有内螺纹,所述螺杆外侧具有与所述内螺纹相配合的外螺纹,通过所述螺母与所述螺杆之间的配合,以使所述可调散热组件的一端与所述固定基板之间的距离增大或者减小。
- 根据权利要求2至4中所述的散热装置,其特征在于,所述可调散热基板与所述固定基板的平行面之间具有夹角。
- 根据权利要求8中所述的散热装置,其特征在于,所述夹角的角度范围为0度至15度。
- 一种散热器,其特征在于,包括壳体和如权利要求1至9任一项所述的散热装置,所述散热装置设置于所述壳体内部。
- 根据权利要求10所述的散热器,其特征在于,所述壳体包括第一外壳以及第二外壳,所述第一外壳与所述散热装置中的固定基板通过防水胶条相连,所述第二外壳与所述第一外壳为可拆卸连接。
- 一种电子设备,其特征在于,包括如权利要求10或11所述的散热器。
- 一种散热器控制的方法,其特征在于,所述方法依赖于上述权利要求1至9中任一项所述的散热装置,所述方法包括:当通过连接组件接收第一作用力时,控制可调散热组件通过转轴向第一方向进行转动,以使所述可调散热组件的一端与固定基板之间的距离增大;当通过所述连接组件接收第二作用力时,控制所述可调散热组件通过所述转轴向第二方向进行转动,以使所述可调散热组件的一端与所述固定基板之间的距离减小。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17907577.5A EP3608953B1 (en) | 2017-04-28 | 2017-12-21 | Cooling apparatus, heat sink, electronic device, and method for cooling control |
US16/663,567 US11432432B2 (en) | 2017-04-28 | 2019-10-25 | Heat dissipation apparatus, heat dissipator, electronic device, and heat dissipation control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710296123.8A CN107087377B (zh) | 2017-04-28 | 2017-04-28 | 散热装置、散热器、电子设备及散热控制的方法 |
CN201710296123.8 | 2017-04-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/663,567 Continuation US11432432B2 (en) | 2017-04-28 | 2019-10-25 | Heat dissipation apparatus, heat dissipator, electronic device, and heat dissipation control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196410A1 true WO2018196410A1 (zh) | 2018-11-01 |
Family
ID=59612251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/117751 WO2018196410A1 (zh) | 2017-04-28 | 2017-12-21 | 散热装置、散热器、电子设备及散热控制的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11432432B2 (zh) |
EP (1) | EP3608953B1 (zh) |
CN (1) | CN107087377B (zh) |
WO (1) | WO2018196410A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021174319A1 (en) * | 2020-03-06 | 2021-09-10 | NetComm Wireless Pty Ltd | Telecommunications housing with improved thermal load management |
CN113422575A (zh) * | 2021-07-26 | 2021-09-21 | 阳光电源股份有限公司 | 光伏电站、电力设备及其散热结构 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107087377B (zh) | 2017-04-28 | 2019-04-26 | 华为技术有限公司 | 散热装置、散热器、电子设备及散热控制的方法 |
CN108417445A (zh) * | 2018-05-15 | 2018-08-17 | 苏州胜璟电磁科技有限公司 | 一种散热式电磁开关 |
DE102018221321B4 (de) * | 2018-12-10 | 2022-01-13 | Audi Ag | Entwärmungsvorrichtung zum Abführen von Wärme und Sensoranordnung mit einer Entwärmevorrichtung |
CN112197182B (zh) * | 2020-09-17 | 2022-08-23 | 广东良友科技有限公司 | 一种贴片式固晶大功率led光源结构 |
CN116779560B (zh) * | 2023-06-30 | 2024-01-16 | 苏州顺哲光电科技有限公司 | 一种大功率半导体散热结构 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307258A (zh) * | 2000-01-31 | 2001-08-08 | 仁宝电脑工业股份有限公司 | 旋转开合式散热模组 |
US6318451B1 (en) * | 2000-03-15 | 2001-11-20 | Foxconn Precision Components Co., Ltd. | Heat sink for integrated circuit |
TW200538021A (en) * | 2004-05-10 | 2005-11-16 | Asustek Comp Inc | Heat sink assambley with rotatable fins |
CN1955837A (zh) * | 2005-10-24 | 2007-05-02 | 精工爱普生株式会社 | 投影机 |
CN101908513A (zh) * | 2009-06-05 | 2010-12-08 | 鸿富锦精密工业(深圳)有限公司 | 散热器 |
CN104808756A (zh) * | 2015-05-26 | 2015-07-29 | 王远志 | 一种笔记本电脑角度可调移动式散热座 |
CN205812134U (zh) * | 2016-01-05 | 2016-12-14 | 深圳市锐硕五金有限公司 | 一种带有散热板的手机支架 |
CN107087377A (zh) * | 2017-04-28 | 2017-08-22 | 华为技术有限公司 | 散热装置、散热器、电子设备及散热控制的方法 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4279292A (en) * | 1978-09-29 | 1981-07-21 | The United States Of America As Represented By The Secretary Of The Navy | Charge coupled device temperature gradient and moisture regulator |
DE3477101D1 (en) * | 1983-03-25 | 1989-04-13 | Mitsubishi Electric Corp | Heat radiator assembly for cooling electronic parts |
JPS60126853A (ja) * | 1983-12-14 | 1985-07-06 | Hitachi Ltd | 半導体デバイス冷却装置 |
US5923179A (en) * | 1996-03-29 | 1999-07-13 | Intel Corporation | Thermal enhancing test/burn in socket for C4 and tab packaging |
US6166906A (en) * | 2000-01-31 | 2000-12-26 | Compal Electronics, Inc | Heat-dissipating module for an electronic device |
US6447322B1 (en) * | 2000-08-22 | 2002-09-10 | Intle Corporation | Test socket for an electronic assembly which reduces damage to the electronic assembly |
GB2401250B (en) * | 2003-04-29 | 2006-05-17 | Agilent Technologies Inc | Heat sink |
JP3920256B2 (ja) * | 2003-10-02 | 2007-05-30 | 日本航空電子工業株式会社 | カード用コネクタ |
TWI274985B (en) * | 2005-07-08 | 2007-03-01 | Asustek Comp Inc | Extendable cooling apparatus |
CN100499979C (zh) * | 2006-04-28 | 2009-06-10 | 富准精密工业(深圳)有限公司 | 散热装置 |
KR100743268B1 (ko) * | 2006-08-10 | 2007-07-27 | 한국과학기술원 | 방열핀과 방열핀의 배치구조 및 고정된 핀 사이의 공간에 움직이는 핀을 삽입한 히트싱크 |
US8570744B2 (en) * | 2009-10-30 | 2013-10-29 | Hewlett-Packard Development Company, L.P. | Cold plate having blades that interleave with memory modules |
CN102056461A (zh) * | 2009-11-05 | 2011-05-11 | 鸿富锦精密工业(深圳)有限公司 | 散热装置 |
CN102065665A (zh) * | 2009-11-12 | 2011-05-18 | 富准精密工业(深圳)有限公司 | 散热器风扇组合 |
CN102131371B (zh) * | 2010-11-11 | 2014-03-26 | 华为技术有限公司 | 一种导热装置及其应用的电子装置 |
US20120293952A1 (en) * | 2011-05-19 | 2012-11-22 | International Business Machines Corporation | Heat transfer apparatus |
TWI469716B (zh) * | 2011-07-26 | 2015-01-11 | Compal Electronics Inc | 電子裝置 |
CN103687423A (zh) * | 2012-09-07 | 2014-03-26 | 宏碁股份有限公司 | 电子装置及其散热模块 |
JP5725050B2 (ja) * | 2013-01-29 | 2015-05-27 | トヨタ自動車株式会社 | 半導体モジュール |
US20160178289A1 (en) * | 2013-08-21 | 2016-06-23 | CoolChip Technologies, Inc. | Kinetic heat-sink with interdigitated heat-transfer fins |
US9912107B2 (en) * | 2014-04-01 | 2018-03-06 | Te Connectivity Corporation | Plug and receptacle assembly having a thermally conductive interface |
EP2999320A1 (de) * | 2014-09-19 | 2016-03-23 | Pentair Technical Solutions GmbH | Vorrichtung zur Übertragung von Wärme |
CN204145981U (zh) * | 2014-10-27 | 2015-02-04 | 广州三晶电气有限公司 | 散热结构及具有该散热结构的变频器 |
US10021813B2 (en) * | 2015-10-13 | 2018-07-10 | Asia Vital Components Co., Ltd. | Thermal module assembling structure |
CN205229959U (zh) * | 2015-12-16 | 2016-05-11 | 陕西工业职业技术学院 | 一种笔记本电脑用多功能支架 |
CN205521138U (zh) * | 2016-01-29 | 2016-08-31 | 中国石油天然气集团公司 | 一种法兰扩张器 |
-
2017
- 2017-04-28 CN CN201710296123.8A patent/CN107087377B/zh active Active
- 2017-12-21 EP EP17907577.5A patent/EP3608953B1/en active Active
- 2017-12-21 WO PCT/CN2017/117751 patent/WO2018196410A1/zh unknown
-
2019
- 2019-10-25 US US16/663,567 patent/US11432432B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307258A (zh) * | 2000-01-31 | 2001-08-08 | 仁宝电脑工业股份有限公司 | 旋转开合式散热模组 |
US6318451B1 (en) * | 2000-03-15 | 2001-11-20 | Foxconn Precision Components Co., Ltd. | Heat sink for integrated circuit |
TW200538021A (en) * | 2004-05-10 | 2005-11-16 | Asustek Comp Inc | Heat sink assambley with rotatable fins |
CN1955837A (zh) * | 2005-10-24 | 2007-05-02 | 精工爱普生株式会社 | 投影机 |
CN101908513A (zh) * | 2009-06-05 | 2010-12-08 | 鸿富锦精密工业(深圳)有限公司 | 散热器 |
CN104808756A (zh) * | 2015-05-26 | 2015-07-29 | 王远志 | 一种笔记本电脑角度可调移动式散热座 |
CN205812134U (zh) * | 2016-01-05 | 2016-12-14 | 深圳市锐硕五金有限公司 | 一种带有散热板的手机支架 |
CN107087377A (zh) * | 2017-04-28 | 2017-08-22 | 华为技术有限公司 | 散热装置、散热器、电子设备及散热控制的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3608953A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021174319A1 (en) * | 2020-03-06 | 2021-09-10 | NetComm Wireless Pty Ltd | Telecommunications housing with improved thermal load management |
CN113422575A (zh) * | 2021-07-26 | 2021-09-21 | 阳光电源股份有限公司 | 光伏电站、电力设备及其散热结构 |
CN113422575B (zh) * | 2021-07-26 | 2024-04-12 | 阳光电源股份有限公司 | 光伏电站、电力设备及其散热结构 |
Also Published As
Publication number | Publication date |
---|---|
US20200060045A1 (en) | 2020-02-20 |
CN107087377B (zh) | 2019-04-26 |
EP3608953B1 (en) | 2023-02-01 |
US11432432B2 (en) | 2022-08-30 |
EP3608953A1 (en) | 2020-02-12 |
EP3608953A4 (en) | 2020-05-06 |
CN107087377A (zh) | 2017-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018196410A1 (zh) | 散热装置、散热器、电子设备及散热控制的方法 | |
US6181556B1 (en) | Thermally-coupled heat dissipation apparatus for electronic devices | |
CN102918934B (zh) | 柔性电路基板 | |
EP2738804B1 (en) | Flexible thermal transfer strips | |
JP2010141279A (ja) | 素子の放熱構造及び方法 | |
CN110494018B (zh) | 一种光模块 | |
JP5638505B2 (ja) | 電力変換装置、およびそれを備えた空気調和装置 | |
US11125968B2 (en) | Optical module | |
TWI467116B (zh) | 散熱模組結合構造 | |
JP6606581B2 (ja) | 半導体の熱伝導及び放熱構造 | |
CN106959538B (zh) | 一种散热结构及显示装置 | |
US20160308106A1 (en) | Floating heat sink support with copper sheets and led package assembly for led flip chip package | |
CN220417604U (zh) | 控制板、电控组件及空调器 | |
EP3209102B1 (en) | Communication system and communication device therefor | |
CN219437215U (zh) | 一种智能散热多层线路板 | |
CN104244581A (zh) | 多层电路的高导热装置 | |
JP2005109254A (ja) | 集積回路搭載基板およびこれを備えた表示装置 | |
TWI702887B (zh) | 軟性線路板結構 | |
JP6907672B2 (ja) | 放熱装置 | |
CN209845431U (zh) | 一种驱动模组和显示装置 | |
JP5177794B2 (ja) | 放熱器 | |
CN209861447U (zh) | 电机控制器的散热结构 | |
CN112040721B (zh) | 散热结构、伺服驱动器和电机 | |
CN219876650U (zh) | Pcb板散热结构及功能板卡 | |
CN217639863U (zh) | 显示模组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17907577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017907577 Country of ref document: EP Effective date: 20191104 |