WO2018186278A1 - ポリヒドロキシアルカノエート粒子及びその水分散液 - Google Patents
ポリヒドロキシアルカノエート粒子及びその水分散液 Download PDFInfo
- Publication number
- WO2018186278A1 WO2018186278A1 PCT/JP2018/013238 JP2018013238W WO2018186278A1 WO 2018186278 A1 WO2018186278 A1 WO 2018186278A1 JP 2018013238 W JP2018013238 W JP 2018013238W WO 2018186278 A1 WO2018186278 A1 WO 2018186278A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pha
- particles
- aqueous dispersion
- polyhydroxyalkanoate
- weight
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/16—Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/53—Core-shell polymer
Definitions
- the present invention relates to polyhydroxyalkanoate particles and an aqueous dispersion in which the particles are dispersed in an aqueous medium.
- PHA Polyhydroxyalkanoate
- Patent Document 1 discloses a method for producing an aqueous dispersion by dissolving PHA in an organic solvent and then extruding it together with a surfactant, PVA or the like.
- Patent Document 2 a slurry containing a polymer containing a low-crystallinity or amorphous PHA dispersed in a high-pressure homogenizer is heated to a temperature equal to or higher than the melting point of the polymer, and then cooled to PHA.
- Patent Document 3 discloses a method of adding a water-soluble copolymer in order to disperse PHA particles.
- an object of the present invention is to have excellent dispersibility of PHA particles in an aqueous dispersion and to have excellent film forming properties, and to suppress the odor of a molded product obtained from PHA particles or an aqueous dispersion thereof and to have a color tone.
- the object is to provide good PHA particles and an aqueous dispersion thereof.
- the present inventors have found that PHA particles having peptidoglycan on part or all of the surface thereof, the amount of PHA and the amount of peptidoglycan are controlled within a specific range.
- the present inventors have found that an emulsion (aqueous dispersion) stably dispersed without aggregation of PHA particles in water can be obtained.
- the said aqueous dispersion was excellent in film forming property, and the molded object manufactured using the said aqueous dispersion and the said PHA particle was suppressed in odor, and was excellent also in color tone.
- the present invention has been completed based on these findings.
- the present inventor indicated that the aqueous PHA dispersion of the present invention is not limited to the case where the PHA is a crystalline PHA having a relatively high degree of crystallinity, but may be either a PHA having a low degree of crystallinity or an amorphous PHA. It was also found out that it has excellent film-forming properties.
- the present invention relates to the following inventions, for example.
- [1] having a particulate polyhydroxyalkanoate and a peptidoglycan covering a part or all of the surface of the polyhydroxyalkanoate;
- Polyhydroxyalkanoate particles having a polyhydroxyalkanoate content of 98.0% by weight or more and a peptidoglycan content of 0.1% by weight or more and 1.0% by weight or less.
- [3] A polyhydroxyalkanoate aqueous dispersion having an aqueous medium and the polyhydroxyalkanoate particles according to [1] or [2] dispersed in the aqueous medium.
- the PHA particles of the present invention have the above-described configuration, an aqueous dispersion (emulsion) in which particles are not aggregated in water is obtained, and by using the emulsion, odor is suppressed and excellent color tone is obtained.
- a molded body such as a good PHA film can be formed. Further, even when the PHA particles are settled by long-term storage, the emulsion can loosen the PHA particles by simple stirring such as shaking and can be easily redispersed.
- the PHA particle of the present invention is a particle having at least particulate PHA and peptidoglycan covering a part or all of the surface of the PHA.
- the PHA constituting the PHA particles of the present invention is a polymer having hydroxyalkanoic acid as a monomer component.
- the PHA is preferably a microorganism-produced PHA produced from a microorganism in that the PHA particles of the present invention can be easily obtained, and more preferably the following general formula (1) [—CHR—CH 2 —CO—O—] (1)
- R is an alkyl group represented by C n H 2n + 1
- n is an integer of 1 or more and 15 or less.
- a microorganism-produced PHA (aliphatic polyester) containing a repeating unit represented by:
- PHA is classified into the above-mentioned microorganism-produced PHA and chemically synthesized PHA obtained by chemical synthesis such as ring-opening polymerization of lactone.
- These PHAs have different structures, and the microorganism-produced PHA has optical activity with its monomer structural unit consisting only of D-form (R-form), whereas chemically synthesized PHA has D-form (R-form) and L-form ( Monomer structural units derived from S-form) are randomly bonded and optically inactive.
- PHA PHA containing 3-hydroxybutyrate units is preferable.
- PHA poly (3-hydroxybutyrate) (PHB), poly (3-hydroxybutyrate-co-3-hydroxy). Valerate) (PHBV), [poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (P3HB3HV3HH), poly (3-hydroxybutyrate-co-3-hydroxy Hexanoate) (PHBH), poly (3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), poly (3-hydroxybutyrate-co-3-hydroxyoctanoate), poly (3- Hydroxybutyrate-co-3-hydroxyoctadecanoate) From the viewpoint of easy industrial production, it preferred.
- PHB is a PHA containing a 3-hydroxybutyrate unit structure
- the average composition ratio of repeating units is determined from the viewpoint of the balance between flexibility and strength
- the composition ratio of poly (3-hydroxybutyrate) Is preferably 60 to 99 mol%, more preferably 70 to 99 mol%, still more preferably 80 to 99 mol%, still more preferably 85 to 97 mol%.
- PHA or amorphous PHA having low crystallinity examples include, for example, literature: Y.M. Doi, S .; kitamura, H .; Abe. , Macromolecules. , 28, pp. Examples include PHA having a crystallinity of 30% or less as described in 4822-4828 (1995). More specifically, the PHA or amorphous PHA having a low crystallinity is PHBH having a composition ratio of 3-hydroxyhexanoate (hereinafter abbreviated as “3HH”) of 15 mol% or more in the PHBH. Preferably used.
- 3HH 3-hydroxyhexanoate
- the crystallinity when the composition ratio of 3HH is 15 mol%, the crystallinity is 26 ⁇ 5%, and as the composition ratio of 3HH increases, the crystallinity decreases, and when the 3HH composition is 25 mol%, the crystallinity is 18 ⁇ 5%. It becomes. Moreover, when 3HH composition exceeds 15 mol%, the adhesiveness of PHBH particle
- the crystallinity can usually change over time or due to the environment or the like, but the crystallinity described in the above-mentioned document means the maximum value of crystallinity that can be taken.
- the PHA in the PHA particles of the present invention can be produced by a known or conventional method.
- the microorganism used for production of the PHA is not particularly limited as long as it is a microorganism capable of producing PHAs.
- PHB poly (3-hydroxybutyrate)
- PHB poly (3-hydroxybutyrate)
- Bacillus megaterium discovered in 1925 was first, and other Capriavidus necator (formerly) Classification: Natural microorganisms such as Alkaligenes eutrophus, Ralstonia eutropha (Ralstonia eutropha), Alkagenes latus (Alcaligenes latus) are known, and PHB is accumulated in the cells in these microorganisms.
- bacteria that produce copolymers containing hydroxybutyrate units and other hydroxyalkanoate units include poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and poly (3-hydroxybutyrate- co-3-hydroxyhexanoate) producing bacteria such as Aeromonas caviae, poly (3-hydroxybutyrate-co-4-hydroxybutyrate) producing bacteria such as Alcaligenes eutrophus Are known.
- Alkaligenes eutrophus AC32 strain Alcaligenes eutrophus AC32, FERM BP-6038 into which genes of the PHA synthase group have been introduced (T. Fukui, Y.
- microorganisms obtained by culturing these microorganisms under appropriate conditions and accumulating PHBH in the cells are used.
- genetically modified microorganisms introduced with various PHA synthesis-related genes may be used in accordance with the PHA to be produced, or the culture conditions including the type of substrate may be optimized.
- one type of PHA may be used alone, or two or more types may be used in combination.
- the PHA content in the PHA particles of the present invention is 98.0% by weight or more, preferably 98.5% by weight or more, and more preferably 99.0% by weight or more with respect to 100% by weight of the PHA particles.
- the upper limit of the PHA content is not particularly limited, but is preferably 99.9% by weight or less, more preferably 99.8% by weight or less, and still more preferably 99.5% by weight or less.
- the PHA content in the PHA particles of the present invention can be determined by, for example, gas chromatography or TG-DTA, and more specifically can be measured by the method described in the examples.
- the PHA constituting the PHA particles of the present invention is a particulate PHA.
- the shape is not particularly limited as long as it is in the form of particles, and may be any of granular, substantially spherical, spherical, fibrous, needle-like, columnar, rod-like, plate-like, similar shapes, and indefinite shapes.
- the shape of the PHA particles in the PHA aqueous dispersion of the present invention produced from a microorganism-produced PHA is usually granular.
- the peptidoglycan constituting the PHA particles of the present invention is a glycopeptide polymer that forms the cell wall component of most prokaryotes such as microorganisms.
- Peptidoglycan contains N-acetylmuric acid or N-glycosyllamic acid and D-amino acid, and the glycan chain and peptide chain are linked in a network structure to form a three-dimensional structure to form a physically very rigid structure. Yes.
- Peptidoglycan is preferably a peptidoglycan of a microorganism that has produced PHA. That is, as the peptidoglycan constituting the PHA particles of the present invention, it is preferable to use the peptidoglycan derived from the microorganism that produced PHA as it is.
- the content of peptidoglycan in the PHA particles of the present invention is 0.1% by weight or more, preferably 0.2% by weight or more, more preferably 0.5% by weight or more, and 1.0% by weight or less. Preferably, it is 0.98 weight% or less, More preferably, it is 0.95 weight% or less.
- an aqueous dispersion excellent in dispersibility and film forming property can be obtained.
- the content of peptidoglycan to 1.0% by weight or less, it is possible to obtain a molded body (thin film or the like) with good color tone and suppressed odor.
- the content of peptidoglycan in the PHA particles of the present invention can be measured, for example, by the method described in the examples.
- the PHA particles of the present invention may contain only PHA and peptidoglycan as constituent components, and may further contain other components.
- Representative examples of other components include impurities derived from microorganisms.
- a typical example of the impurity is protein.
- the protein is an amino acid polymer that is a component of most prokaryotes such as microorganisms. Amino acids are linked by peptide bonds to form a protein. Proteins usually account for about 40% of impurities derived from microorganisms other than PHA.
- the protein content in the PHA particles of the present invention is preferably 1.0% by weight or less, more preferably 0.5% by weight or less. By controlling the protein content to 1.0% by weight or less, coloring of a molded product produced using PHA particles or an aqueous dispersion thereof is suppressed, and generation of odor during heating of the molded product is suppressed. Tend to be.
- the lower limit of the protein content is not particularly limited and is most preferably 0% by weight, but may be, for example, 0.01% by weight or more.
- the protein content in the PHA particles of the present invention can be measured, for example, as an amount in terms of bovine serum albumin by the method described in the Examples.
- the PHA particles of the present invention may further contain impurities derived from microorganisms other than proteins.
- impurities include nucleic acids, lipids, polysaccharides, and other carbides.
- the PHA particles of the present invention can be used in any form. For example, it can be used in a substantially dry state, or can be used in the form of a dispersion dispersed in a dispersion medium.
- the particle diameter of the PHA particles is not particularly limited.
- the average particle diameter of the primary particles is preferably 0.05 to 10 ⁇ m, more preferably 0.3 to 5.0 ⁇ m, and still more preferably 0.5 to 3. 0 ⁇ m.
- the average particle size is determined by using a general-purpose particle sizer such as a Microtrac particle size meter (manufactured by Nikkiso Co., Ltd.). As measured.
- the PHA aqueous dispersion (polyhydroxyalkanoate aqueous dispersion) of the present invention is an aqueous dispersion having at least an aqueous medium and PHA particles (PHA particles of the present invention) dispersed in the aqueous medium.
- the PHA aqueous dispersion of the present invention may contain other components.
- the “PHA aqueous dispersion” in the present invention is not limited to a dispersion containing water as a medium, and is a term including a dispersion containing an organic solvent compatible with water as a medium as described later. is there.
- the concentration of the PHA particles in the PHA aqueous dispersion of the present invention is not particularly limited, but is preferably 300 g / L or more, more preferably 400 g / L or more, and further preferably 500 g / L or more.
- the upper limit of the concentration is not particularly limited, but is preferably 700 g / L or less, more preferably 600 g / L or less.
- the pH of the aqueous dispersion is not particularly limited, but is preferably 4.0 to 9.0 in terms of dispersibility of the PHA particles.
- Examples of the aqueous medium contained in the aqueous dispersion of the present invention include water, an organic solvent compatible with water, or a mixed solvent of water and the organic solvent.
- the organic solvent may be used alone or in combination of two or more.
- the concentration of the organic solvent in the mixed solvent of water and the organic solvent is not particularly limited as long as it is not more than the solubility of the organic solvent to be used in water.
- the organic solvent compatible with water is not particularly limited, but for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, pentanol, hexanol , Alcohols such as heptanol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and dioxane; nitriles such as acetonitrile and propionitrile; amides such as dimethylformamide and acetamide; dimethyl sulfoxide, pyridine and piperidine Can be mentioned.
- methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, propionitrile, etc. are easy to remove. Is preferred. Further, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, acetone and the like are more preferable because they are easily available. More preferred are methanol, ethanol, and acetone. In addition, as long as the essence of the present invention is not impaired, other solvents and components derived from bacterial cells and compounds generated during purification may be included.
- the PHA aqueous dispersion of the present invention may contain other components.
- other components include surfactants, dispersants, preservatives, and the like.
- Surfactants include anionic surfactants (for example, sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, sodium cholate, sodium deoxycholate and sodium oleate), nonionic surfactants (for example, polyoxyethylene) Alkyl ethers, polyoxyalkylene alkyl ethers, etc.) are preferred in terms of price, amount used and effect of addition.
- dispersant examples include water-soluble polymers such as polyvinyl alcohol, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, and polysodium methacrylate.
- water-soluble polymers such as polyvinyl alcohol, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, polymethacrylic acid, and polysodium methacrylate.
- preservatives include hydrogen peroxide, potassium sorbate, sodium benzoate, hinokitiol, and parabens.
- the average particle diameter of the PHA particles in the PHA aqueous dispersion of the present invention is not particularly limited, but is preferably 0.05 to 10 ⁇ m, more preferably 0.3 to 5.0 ⁇ m, still more preferably 0.5 to 3.0 ⁇ m. It is.
- the average particle size is a particle size (volume average particle size) with respect to a 50% accumulation amount of all particles of a normal distribution using a general-purpose particle size meter such as a Microtrac particle size meter (manufactured by Nikkiso Co., Ltd.) and using a PHA aqueous dispersion as a measurement sample. As measured. When the average particle size is in the above range, handling property, water dispersibility and film forming property tend to be further improved.
- the PHA particles of the present invention are not particularly limited, and can be produced by a production method using a known or conventional technique.
- microorganisms that accumulate PHA in the body microorganisms capable of producing PHAs
- decompose solubilize and / or remove components derived from microorganisms other than PHA (especially organic substances)
- collect particulate PHA The method including the process to do is mentioned.
- a cell wall degrading enzyme in order to remove other impurities while leaving the peptidoglycan derived from the cell wall of the microorganism at a predetermined amount (0.1 wt% or more and 1.0 wt% or less), for example, a cell wall degrading enzyme is used. Do not use or reduce the amount of use; set the pressure during high-pressure crushing to a range that is not too low and not too high; control the time of high-pressure crushing; It is preferable to do.
- the pressure during high-pressure crushing is not particularly limited, but is preferably 100 to 500 kg / cm 2 .
- a method for decomposing, solubilizing and / or removing impurities such as microorganism-derived components other than PHA particles in the above production method a method of physically treating, chemically treating or biologically treating PHA-containing cells is preferable. .
- the method of physical treatment, chemical treatment or biological treatment is not particularly limited, but fluid shear such as conventionally known French press, high pressure homogenizer, X-press, ball mill, colloid mill, DYNO mill, ultrasonic homogenizer, etc.
- a method using force, solid shear force, or grinding can be used.
- peptidoglycan is 0.1% by weight or more, protein is 1.0% by weight or less, and PHA is 98% by weight or more. It is better to adjust the operating pressure.
- methods using drugs such as acids, alkalis, surfactants, organic solvents, cell wall synthesis inhibitors, methods using enzymes such as protease, pectinase, thymolyase, methods using supercritical fluids, osmotic crushing methods, freezing Method, dry pulverization method and the like.
- a self-digestion method using the action of protease, esterase and the like contained in the cell itself is also a kind of disruption method.
- these crushing methods may be used independently and may combine several methods. Further, batch processing may be performed, or continuous processing may be performed.
- a method for decomposing and / or removing impurities such as microorganism-derived components other than PHA particles is not particularly limited, and examples thereof include a method using an enzyme.
- the enzyme used include proteolytic enzymes, lipolytic enzymes, cell wall degrading enzymes, and nucleolytic enzymes. Specific examples of these enzymes include the following. These may be used alone or in combination of two or more.
- PHA Enzymes used for decomposing impurities such as microbial-derived components other than particles are not limited to those described above, and have an activity of decomposing microbial-derived components as long as they can be used for industrial products. It can be any enzyme. In addition, commercially available enzyme detergents for washing can be used.
- it may be an enzyme composition containing an enzyme stabilizer, a recontamination preventive agent and the like and an enzyme, and is not limited to the enzyme alone.
- proteolytic enzymes that are included in the above examples, protease A, protease P, protease N (above, Amano Enzyme), esperase, alcalase, zabinase, Everase (above, Novozyme) etc. are industrial. It can be preferably used from the viewpoint of decomposition activity. However, it is not limited to these.
- the cell wall degrading enzyme may be used in a range that can be controlled so that the content of peptidoglycan contained in the PHA particles is 0.1% by weight or more.
- the enzyme treatment time is preferably carried out until a desired treatment degree is achieved. ⁇ 2 hours.
- the amount of the enzyme used depends on the type and activity of the enzyme and is not particularly limited, but is preferably 0.001 to 10 parts by weight with respect to 100 parts by weight of the PHA particles, and more preferably 0.001 to 5 parts by weight is more preferred.
- Other methods for decomposing impurities such as biological components other than PHA particles include methods using hypochlorous acid and hydrogen peroxide.
- hypochlorous acid When using hypochlorous acid, the pH of the system is set to an alkaline region, and hypochlorous acid treatment is carried out under the conditions of suppressing contact with heat, light, and metal to obtain PHA particles having a low amount of chlorine. be able to.
- the pH of the system is desirably 8 or more, more desirably 10 or more, and further desirably 12 or more.
- the treatment temperature is preferably 40 ° C. or lower, more preferably 30 ° C. or lower, further preferably 20 ° C. or lower, and preferably 10 ° C. or lower in order to reliably exhibit the effect.
- PHA aqueous suspensions obtained by physical treatment, chemical treatment or biological treatment of PHA-containing cells by the above-mentioned method include proteins and nucleic acids in cells, lipids, sugar components and other bacteria. Constituents of the body and residual culture substrate are mixed. It is preferable to carry out a dehydration step for separating water containing these proteins and the like. Thereby, the amount of impurities contained in the PHA aqueous suspension can be reduced. Although it does not specifically limit as a method of dehydration, The method by filtration, centrifugation, and sedimentation separation is mentioned.
- filtration, centrifugation, or the like can be performed to separate PHA particles and water containing impurities such as other biological components.
- the filtration method is not particularly limited, but a method using Nutsche or the like, or a method such as suction filtration or pressure filtration is desirable.
- filtration devices with pressing functions such as filter presses, tube presses, plate presses, gauge presses, belt presses, screw presses, disc presses, centrifugal dehydrators, and multi-chamber cylindrical filters can be selected. is there.
- a continuous filter such as a multi-chamber cylindrical filter is desirable.
- Examples of a method for removing particles from a continuous filter include a string method, a scraper method, and a precoat scraper method.
- a membrane separation method may be used.
- a filtration method including membrane separation dead-end filtration or cross-flow filtration can be selected. Any of these can be selected based on filterability, the degree of blockage of the filter medium, membrane, and the like.
- the pressure may be reduced, vacuumed, or pressurized.
- a method using centrifugal force may be used.
- Various materials such as paper, woven fabric, non-woven fabric, screen, sintered plate, unglazed, polymer film, punching metal, and wedge wire can be selected as the filter medium.
- a filter aid may or may not be used. Even when a filter aid is used, there are a method of pre-coating the filter medium (pre-coating method) and a method of pre-adding to the filtrate stock solution (body feed method).
- the method of centrifugation in the dehydration step is not particularly limited, but a centrifugal sedimentator, a centrifugal dehydrator, or the like can be used. If it is a centrifugal settling machine, a separator plate type, a cylindrical type, and a decanter type are mentioned. Examples of the separation plate type include a disk type, a self-cleaning type, a nozzle type, a screw decanter type, and a skimming type. There are a batch type and a continuous type depending on the method of discharging sedimentation components. As for the centrifugal dehydrator, there are a batch type and a continuous type. With these devices, it is possible to separate the sediment containing the PHA particles from the culture solution components by the specific gravity difference.
- dehydration step Other methods that can be used in the dehydration step include flotation, electrophoresis, and cyclone treatment. Methods such as filtration, centrifugation, and flotation may be used alone or in combination.
- the recovered PHA particles are washed with an aqueous medium such as water, whereby PHA particles having a further increased degree of purification can be obtained.
- an organic solvent other than water may be used, or water and an organic solvent may be mixed and used. The pH of water may be adjusted.
- a hydrophilic solvent specifically methanol, ethanol, acetone, acetonitrile, tetrahydrofuran, ketones, amines, or the like is used.
- a surfactant or the like may be added to water.
- a mixture of a plurality of these organic solvents and water may be used.
- water and these organic solvents can be heated or sprayed as vapor to improve the cleaning performance.
- the method for producing PHA particles of the present invention may include a step of obtaining a microorganism in which the above-described PHA is accumulated in the body (a step of culturing a microorganism having the ability to produce PHAs to produce PHA). Moreover, each process in the manufacturing method of the PHA particle
- grains of this invention may be implemented continuously, and may be implemented discontinuously.
- the PHA aqueous dispersion of the present invention can be produced, for example, by dispersing the PHA particles obtained by the above-described method in an aqueous medium so as to have a predetermined concentration.
- the method for dispersing is not particularly limited, and known or commonly used dispersing means such as a method using a stirrer or a homogenizer can be used.
- the PHA particles for dispersion in the aqueous medium are preferably in a wet state after being washed with the aqueous medium from the viewpoint of ease of production of the aqueous dispersion.
- the PHA particles of the present invention and the PHA aqueous dispersion of the present invention can be used in various applications, and are not particularly limited.
- the PHA particles can be used in various applications for obtaining various molded products by subjecting them to known or conventional molding methods. Can be used.
- the aqueous dispersion of the present invention is excellent in film-forming properties, the aqueous dispersion is applied onto a substrate (for example, a substrate of metal, paper, plastic, fiber, etc.) and dried to obtain PHA.
- a substrate for example, a substrate of metal, paper, plastic, fiber, etc.
- Tanehaha medium 1w / v% Meat-extract, 1w / v% Bacto-Tryptone, 0.2w / v% Yeast-extract, 0.9w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.15w / V% KH 2 PO 4 (pH 6.8).
- the composition of the preculture medium is 1.1 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.19 w / v% KH 2 PO 4 , 1.29 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 ⁇ 7H 2 O , 0.5v / v% trace metal salt solution (1.6 w in 0.1N HCl / v% FeCl 3 ⁇ 6H 2 O, 1w / v% CaCl 2 ⁇ 2H 2 O, 0 0.02 w / v% CoCl 2 .6H 2 O, 0.016 w / v% CuSO 4 .5H 2 O, 0.012 w / v% NiCl 2 .6H 2 O). Palm oil was used as a carbon source, and this was added at a concentration of 10 g / L.
- the composition of the PHA production medium is 0.385 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.067 w / v% KH 2 PO 4 , 0.291 w / v% (NH 4 ) 2 SO 4 , 0.1 w / v% MgSO 4 .7H 2 O, 0.5 v / v% trace metal salt solution (1.6 W / v% FeCl 3 .6H 2 O in 0.1N hydrochloric acid, 1 w / v% CaCl 2 .2H 2 O, 0 0.02 w / v% CoCl 2 ⁇ 6H 2 O, 0.016 w / v% CuSO 4 ⁇ 5H 2 O, 0.012 w / v% NiCl 2 ⁇ 6H 2 O), 0.05 w / v% BIOSPUREX 200K (Antifoamer: manufactured by Cognis Japan).
- a glycerol stock (50 ⁇ l) of the KNK-631 strain was inoculated into a seed medium (10 ml) and cultured for 24 hours to perform seed culture.
- 1.0 V / v% of the seed mother culture solution was inoculated into a 3 L jar fermenter (MDL-300, manufactured by Maruhishi Bioengine) containing 1.8 L of preculture medium.
- the operating conditions were a culture temperature of 33 ° C., a stirring speed of 500 rpm, an aeration rate of 1.8 L / min, and the culture was performed for 28 hours while controlling the pH between 6.7 and 6.8.
- a 14% aqueous ammonium hydroxide solution was used for pH control.
- the preculture solution was inoculated at 1.0 v / v% into a 10 L jar fermenter (MDS-1000, manufactured by Marubishi Bioengineer) containing 6 L of PHA production medium.
- the operating conditions were a culture temperature of 28 ° C., a stirring speed of 400 rpm, an aeration rate of 6.0 L / min, and a pH controlled between 6.7 and 6.8.
- a 14% aqueous ammonium hydroxide solution was used for pH control.
- palm oil was used as a carbon source in the culture. Culturing was carried out for 64 hours to obtain a cell culture solution containing PHB, which is PHBH.
- the bacterial cell culture solution containing PHA obtained above was centrifuged to collect bacterial cells, washed with methanol, and freeze-dried to obtain dried bacterial cells.
- the dry cell weight was 230 g / L, and the PHA concentration was 70%.
- the 3HH (3-hydroxyhexanoate) composition ratio, crystallinity, and weight average molecular weight of PHA in the cell culture solution containing PHA obtained above were measured according to the following methods. 30% or 1.2 million.
- 3HH composition ratio analysis of the obtained purified PHA was measured by gas chromatography as follows. To 20 mg of purified PHA, 2 ml of a sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain a methyl ester of a PHA decomposition product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After adding 4 ml of diisopropyl ether and mixing well, the mixture was centrifuged, and the monomer unit composition ratio of the polyester degradation product in the supernatant was capillary gas chromatography Shimadzu GC-17A. The capillary column was NU Science's NETRA BOND-1 ( Column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m).
- Production Example 2 A cell culture solution containing PHA, which is PHBH, was obtained in the same manner as in Production Example 1, except that the KNK-005 strain was used instead of the KNK-631 strain.
- the dry cell weight of the cell culture solution containing PHA obtained above was measured by the same method as in Production Example 1 and found to be 250 g / L, and the PHA concentration was 80%. Moreover, when the 3HH composition ratio, crystallinity, and weight average molecular weight of PHA were measured by the same method as in Production Example 1, they were 5.8 mol%, 40%, and 1,500,000, respectively.
- the PHA which is PHBH
- the PHA was prepared by the method described in Production Example 1 except that the KNK-252 strain was used instead of the KNK-631 strain, and PFAD (Palm Fatty Acid Distillate) was used instead of palm oil as the carbon source.
- PFAD Palm Fatty Acid Distillate
- the dry cell weight was measured in the same manner as in Production Example 1 and found to be 255 g / L, and the PHA concentration was 82%.
- the 3HH composition ratio, crystallinity, and weight average molecular weight of PHA were measured by the same method as in Production Example 1, they were 16.9 mol%, 26%, and 1,200,000, respectively.
- Example 1 The bacterial cell culture solution containing PHA obtained in Production Example 1 was sterilized by heating at 80 ° C. for 1 hour. Next, 1/100 amount of PHA protease (Novozyme, Esperase) was added, and the mixture was stirred for 2 hours while maintaining at pH 8.0 at 50 ° C. Thereafter, a 30% sodium dodecyl sulfate aqueous solution was added to the solution so that the sodium dodecyl sulfate was 1.0% by weight, and a 30% sodium hydroxide aqueous solution was further added so that the pH was 11.5. Thereafter, the mixture was kept at 50 ° C. for 1 hour.
- PHA protease Novozyme, Esperase
- high-pressure crushing was performed at a pressure of about 200 kgf / cm 2 using a high-pressure crusher (high-pressure homogenizer model PA2K manufactured by Niroso Avi).
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 50% to obtain a PHA aqueous dispersion.
- the PHA particles contained in the aqueous dispersion are those whose particle surfaces are coated with peptidoglycan.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.). Further, a photograph obtained by observing an aqueous dispersion diluted about 100 times with a NIKON H550S lens at a magnification of 300 times is shown in FIG.
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are determined by the method described later. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1. Moreover, the photograph which image
- Example 2 The bacterial cell culture solution containing PHA obtained in Production Example 2 was sterilized by heating at 80 ° C. for 1 hour. Thereafter, a 30.0% sodium dodecyl sulfate aqueous solution is added to the solution so that the sodium dodecyl sulfate is 1.0% by weight, and a 30% sodium hydroxide aqueous solution is added so that the pH is 11.5. After the addition, the mixture was kept at 50 ° C. for 1 hour. Thereafter, high-pressure crushing was performed at a pressure of about 200 kgf / cm 2 using a high-pressure crusher (high-pressure homogenizer model PA2K manufactured by Niroso Avi).
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 50% to obtain a PHA aqueous dispersion.
- the PHA particles contained in the aqueous dispersion are those whose particle surfaces are coated with peptidoglycan.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are determined by the method described later. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1.
- Example 3 The cell culture solution containing PHA obtained in Production Example 3 was sterilized by heating at 80 ° C. for 1 hour. Thereafter, a 30.0% sodium dodecyl sulfate aqueous solution is added to the solution so that the sodium dodecyl sulfate is 1.0% by weight, and a 30% sodium hydroxide aqueous solution is added so that the pH is 11.5. After the addition, the mixture was kept at 50 ° C. for 1 hour. Thereafter, high-pressure crushing was performed at a pressure of about 200 kgf / cm 2 using a high-pressure crusher (high-pressure homogenizer model PA2K manufactured by Niroso Avi).
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 50% to obtain a PHA aqueous dispersion.
- the PHA particles contained in the aqueous dispersion are those whose particle surfaces are coated with peptidoglycan.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are determined by the method described later. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1.
- high-pressure crushing was performed at a pressure of about 550 kgf / cm 2 using a high-pressure crusher (high-pressure homogenizer model PA2K manufactured by Niroso Avi).
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 30% to obtain a PHA aqueous dispersion.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.). Further, a photograph obtained by observing an aqueous dispersion diluted about 100 times with a NIKON H550S lens at a magnification of 300 times is shown in FIG.
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are obtained by the above-described method. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1. Moreover, the photograph which image
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 50% to obtain a PHA aqueous dispersion.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are obtained by the above-described method. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1.
- the crushing liquid after high-pressure crushing was centrifuged, and then the supernatant was removed.
- the obtained precipitate was further washed with water by centrifugation six times, and water was added to the finally obtained precipitate to adjust the PHA particle concentration to 50% to obtain a PHA aqueous dispersion.
- the average particle diameter of PHA particles in the aqueous dispersion was measured with Microtrac MT3300EXII (manufactured by Nikkiso Co., Ltd.).
- the obtained aqueous dispersion is dehydrated with Nutsche, dried under heating and reduced pressure to obtain a dry sample of PHA particles, and the amount of PHA, protein and peptidoglycan in the PHA particles are obtained by the above-described method. It was. Further, 1 to 3 g of the obtained aqueous dispersion was thinly applied to the bottom of a glass dish having a diameter of 800 mm, and water was evaporated in an oven heated to 120 ° C. After confirming that the water had sufficiently evaporated, it was cooled and it was confirmed that a thin film of PHA was formed on the surface of the glass dish. The appearance and odor of the obtained thin film were confirmed. The results are shown in Table 1.
- Examples 1 to 3 can obtain a uniform translucent film or transparent film having good dispersibility of the PHA aqueous dispersion and excellent film forming properties, and the formed thin film has no odor. I could't feel it.
- Comparative Example 1 the dispersibility of the aqueous PHA dispersion was poor and the film formability was poor, and the formed thin film was cracked, and was white and opaque as shown in FIG.
- Comparative Example 2 the film formability was poor, and the formed thin film contained a brown insoluble component, had a strong yellowish color, and felt odor.
- Comparative Example 3 the film formability was poor, the formed thin film was white and opaque, and an odor was felt.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
水分散液中のPHA粒子の分散性に優れ、なおかつ優れた製膜性を有し、PHA粒子またはその水分散液から得られる成形体の臭気が抑制され色調が良好なPHA粒子及びその水分散液を提供する。粒子状のポリヒドロキシアルカノエートと、該ポリヒドロキシアルカノエートの表面の一部又は全部を被覆するペプチドグリカンとを有し、ポリヒドロキシアルカノエートの含有量が98.0重量%以上、ペプチドグリカンの含有量が0.1重量%以上1.0重量%以下である、ポリヒドロキシアルカノエート粒子。
Description
本発明は、ポリヒドロキシアルカノエート粒子及び該粒子が水系媒体に分散した水分散液に関する。
ポリヒドロキシアルカノエート(以下、PHAと称する場合がある)は、細菌や植物が産生可能な樹脂として知られている。このようなPHAは、原料を植物由来とし優れた生分解性を有するため、環境に優しいプラスチック材料として利用することの各種試みが精力的になされている。
PHAをプラスチック材料として利用する試みの一つとして、PHAの水分散液(エマルジョン)の形態で使用することが検討されている。例えば、特許文献1には、PHAを有機溶剤に溶解させた後、界面活性剤やPVA等と共に押し出して水分散液を製造する方法が開示されている。また、例えば、特許文献2には、高圧ホモジナイザーで分散状態にした結晶化度が低い又は非晶性のPHAを含むポリマーを含むスラリーをそのポリマーの融点以上に加熱し、その後冷却することでPHA分散液を製造する方法が開示されている。また、特許文献3には、PHA粒子を分散させるために、水溶性共重合体を添加する方法が開示されている。
しかしながら、特許文献1、2に記載されるような従来の方法では、有機溶剤の使用により環境負荷が増大したり、分散剤の添加により製品品質を損なうおそれがある。さらに、予め精製したPHAとして用い、その後PHAを含むスラリーに加熱冷却を繰り返すことでエマルジョンを得るためエネルギー的に不利である。また、特許文献3に記載される方法では、PHA粒子同士の凝集を防ぐために、一定濃度以上の分散剤が必要であり、PHA本来の生分解性を損ねたり、加熱時に臭気や色調が悪化するおそれがある。
したがって、本発明の目的は、水分散液中のPHA粒子の分散性に優れ、なおかつ優れた製膜性を有し、PHA粒子またはその水分散液から得られる成形体の臭気が抑制され色調が良好なPHA粒子及びその水分散液を提供することにある。
本発明者らは、上記課題を解決するために鋭意検討した結果、表面の一部又は全部にペプチドグリカンを有するPHA粒子であって、そのPHA量とペプチドグリカン量が特定範囲に制御されたものによると、水中にてPHA粒子同士が凝集することなく安定に分散したエマルジョン(水分散液)が得られることを見出した。また、上記水分散液は製膜性に優れ、当該水分散液や前記PHA粒子を用いて製造した成形体は臭気が抑制され、色調にも優れることを見出した。本発明は、これらの知見に基づき完成された発明である。さらに本発明者は、本発明のPHA水分散液は、PHAが結晶化度が比較的高い結晶性PHAの場合のみならず、結晶化度が低いPHA又は非晶性PHAのいずれであっても、優れた製膜性を有することも併せて見出した。
すなわち、本発明は、例えば以下の発明に関する。
[1]粒子状のポリヒドロキシアルカノエートと、該ポリヒドロキシアルカノエートの表面の一部又は全部を被覆するペプチドグリカンとを有し、
ポリヒドロキシアルカノエートの含有量が98.0重量%以上、ペプチドグリカンの含有量が0.1重量%以上1.0重量%以下である、ポリヒドロキシアルカノエート粒子。
[2]タンパク質の含有量が1.0重量%以下である[1]に記載のポリヒドロキシアルカノエート粒子。
[3]水系媒体と、該水系媒体中に分散した[1]又は[2]に記載のポリヒドロキシアルカノエート粒子と、を有するポリヒドロキシアルカノエート水分散液。
[4]水系媒体中に分散したポリヒドロキシアルカノエート粒子の平均粒子径が0.05μm以上10μm以下である、[3]に記載のポリヒドロキシアルカノエート水分散液。
[1]粒子状のポリヒドロキシアルカノエートと、該ポリヒドロキシアルカノエートの表面の一部又は全部を被覆するペプチドグリカンとを有し、
ポリヒドロキシアルカノエートの含有量が98.0重量%以上、ペプチドグリカンの含有量が0.1重量%以上1.0重量%以下である、ポリヒドロキシアルカノエート粒子。
[2]タンパク質の含有量が1.0重量%以下である[1]に記載のポリヒドロキシアルカノエート粒子。
[3]水系媒体と、該水系媒体中に分散した[1]又は[2]に記載のポリヒドロキシアルカノエート粒子と、を有するポリヒドロキシアルカノエート水分散液。
[4]水系媒体中に分散したポリヒドロキシアルカノエート粒子の平均粒子径が0.05μm以上10μm以下である、[3]に記載のポリヒドロキシアルカノエート水分散液。
本発明のPHA粒子は上記構成を有するため、水中にて粒子同士が凝集することなく分散した水分散液(エマルジョン)が得られ、当該エマルジョンを用いることにより、臭気が抑制され色調に優れた、良好なPHA膜等の成形体を形成することができる。また、上記エマルジョンは、長期保管によりPHA粒子が沈降した場合であっても、振り混ぜる等の簡便な撹拌によりPHA粒子をほぐすことが可能であり、容易に再分散可能である。
[ポリヒドロキシアルカノエート粒子]
本発明のPHA粒子は、粒子状のPHAと、該PHAの表面の一部又は全部を被覆するペプチドグリカンとを少なくとも有する粒子である。
本発明のPHA粒子は、粒子状のPHAと、該PHAの表面の一部又は全部を被覆するペプチドグリカンとを少なくとも有する粒子である。
(A)ポリヒドロキシアルカノエート(PHA)
本発明のPHA粒子を構成するPHAは、ヒドロキシアルカン酸をモノマー成分とする重合体である。中でも、PHAとしては、本発明のPHA粒子を容易に得られる点で、微生物から生産される微生物産生PHAが好ましく、より好ましくは下記一般式(1)
[-CHR-CH2-CO-O-] (1)
(式中、RはCnH2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含む微生物産生PHA(脂肪族ポリエステル)である。
本発明のPHA粒子を構成するPHAは、ヒドロキシアルカン酸をモノマー成分とする重合体である。中でも、PHAとしては、本発明のPHA粒子を容易に得られる点で、微生物から生産される微生物産生PHAが好ましく、より好ましくは下記一般式(1)
[-CHR-CH2-CO-O-] (1)
(式中、RはCnH2n+1で表されるアルキル基で、nは1以上15以下の整数である。)で示される繰り返し単位を含む微生物産生PHA(脂肪族ポリエステル)である。
なお、一般的にPHAは上述の微生物産生PHAと、ラクトンの開環重合といった化学合成により得られる化学合成PHAとに分類される。これらPHAは構造が異なり、微生物産生PHAは、そのモノマー構造単位がD体(R体)のみからなり光学活性を有するのに対して、化学合成PHAは、D体(R体)及びL体(S体)から誘導されたモノマー構造単位がランダムに結合したものであって光学的に不活性である。
PHAとしては、3-ヒドロキシブチレート単位を含むPHAが好ましく、このようなPHAとしては、例えば、ポリ(3-ヒドロキシブチレート)(PHB)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート)(PHBV)、〔ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート-co-3-ヒドロキシヘキサノエート)(P3HB3HV3HH)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)(PHBH)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)(P3HB4HB)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタノエート)、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシオクタデカノエート)等が、工業的に生産が容易である点から、好ましい。これらの中でも特に、PHB、PHBV、P3HB3HV3HH、PHBH、P3HB4HBがより好ましい。PHAが3-ヒドロキシブチレート単位構造を含むPHAである場合、繰り返し単位(モノマー構造単位)の平均組成比は、柔軟性と強度のバランスの観点から、ポリ(3-ヒドロキシブチレート)の組成比が60~99モル%が好ましく、より好ましくは70~99モル%、さらに好ましくは80~99モル%、さらに好ましくは85~97モル%である。
結晶化度が低いPHA又は非晶性PHAとしては、例えば、文献:Y.Doi,S.kitamura,H.Abe.,Macrolecules.,28,pp.4822-4828(1995)に記載の結晶化度が30%以下のPHAが挙げられる。結晶化度が低いPHA又は非晶性PHAとしては、より具体的には、前記PHBHにおいて、3-ヒドロキシヘキサノエート(以下、「3HH」と略称する)の組成比が15mol%以上のPHBHが好適に用いられる。例えば、3HHの組成比が15mol%の場合、結晶化度は26±5%となり、3HHの組成比が増えるにつれて結晶化度は低下し、3HH組成が25mol%では結晶化度は18±5%となる。また、3HH組成が15mol%を超えると、PHBH粒子の付着性が高まり、25mol%では、室温でガム状となる。なお、結晶化度は通常、経時的に又は環境等により変化し得るが、上述の文献に記載の結晶化度は、とり得る結晶化度の最大値の意味である。
本発明のPHA粒子におけるPHAは、公知乃至慣用の方法により製造することができる。PHAが微生物産生PHAの場合、当該PHAの生産に用いる微生物としては、PHA類生産能を有する微生物であれば特に限定されない。例えば、ポリ(3-ヒドロキシブチレート)(以下、「PHB」と略称する。)生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus)、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)などの天然微生物が知られており、これらの微生物ではPHBが菌体内に蓄積される。
また、ヒドロキシブチレート単位とその他のヒドロキシアルカノエート単位とを含む共重合体の生産菌としては、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシバレレート)およびポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)などが知られている。特に、PHBHに関し、PHBHの生産性を上げるために、PHA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))などがより好ましく、これらの微生物を適切な条件で培養して菌体内にPHBHを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいPHAに合わせて、各種PHA合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。
本発明のPHA粒子においてPHAは、1種類を単独で用いても良いし、2種以上を組み合わせて用いてもよい。
本発明のPHA粒子におけるPHAの含有量は、PHA粒子100重量%に対し、98.0重量%以上であり、好ましくは98.5重量%以上、さらに好ましくは99.0重量%以上である。PHAの含有量の上限は特に限定されないが、99.9重量%以下が好ましく、より好ましくは99.8重量%以下、さらに好ましくは99.5重量%以下である。PHAの含有量を98.0重量%以上とすることにより、溶融加工がしやすく、加熱成形時の臭気が低減された成形体が得られる。一方、PHAの含有量を99.9重量%以下とすることにより、これによりある程度のペプチドグリカン量を確保でき、PHA水分散液の分散性がいっそう向上する傾向がある。本発明のPHA粒子におけるPHAの含有量は、例えば、ガスクロマトグラフやTG-DTAより求めることができ、より具体的には実施例に記載した方法により測定できる。
本発明のPHA粒子を構成するPHAは、粒子状のPHAである。粒子状であればその形状は特に限定されず、粒状、略球状、球状、繊維状、針状、柱状、棒状、板状、これらに類する形状、不定形状等のいずれであってもよい。微生物産生PHAから製造した本発明のPHA水分散液におけるPHA粒子の形状は、通常、粒状である。
(B)ペプチドグリカン
本発明のPHA粒子を構成するペプチドグリカンは、微生物など大部分の原核生物の細胞壁成分をなす糖ペプチドのポリマーである。ペプチドグリカンは、N-acetylmuramic acidまたはN-glycosylmuramic acidとD-アミノ酸を含み、グリカン鎖とペプチド鎖とが網目状に結合して三次元構造を構築し、物理的に極めて堅固な構造を形成している。
本発明のPHA粒子を構成するペプチドグリカンは、微生物など大部分の原核生物の細胞壁成分をなす糖ペプチドのポリマーである。ペプチドグリカンは、N-acetylmuramic acidまたはN-glycosylmuramic acidとD-アミノ酸を含み、グリカン鎖とペプチド鎖とが網目状に結合して三次元構造を構築し、物理的に極めて堅固な構造を形成している。
ペプチドグリカンとしては、PHAを産生した微生物のペプチドグリカンが好ましい。即ち、本発明のPHA粒子を構成するペプチドグリカンとしては、PHAを産生した微生物由来のペプチドグリカンをそのまま残して利用することが好ましい。
本発明のPHA粒子におけるペプチドグリカンの含有量は、0.1重量%以上であり、好ましくは0.2重量%以上、より好ましくは0.5重量%以上であり、また、1.0重量%以下であり、好ましくは0.98重量%以下、より好ましくは0.95重量%以下である。ペプチドグリカンの含有量を0.1重量%以上とすることにより、分散性及び製膜性に優れた水分散液が得られる。一方、ペプチドグリカンの含有量を1.0重量%以下とすることにより、色調が良好であり臭気が抑制された成形体(薄膜等)を得ることができる。本発明のPHA粒子におけるペプチドグリカンの含有量は、例えば、実施例に記載した方法により測定できる。
(C)その他の成分
本発明のPHA粒子は、PHAとペプチドグリカンのみを構成成分とするものであってもよく、さらにその他の成分を含むものであってもよい。その他の成分の代表例としては、微生物由来の不純物が挙げられる。当該不純物として代表的なものとして、タンパク質が挙げられる。当該タンパク質は、微生物など大部分の原核生物を構成する成分である、アミノ酸のポリマーである。アミノ酸同士がペプチド結合にて結合し、タンパク質となる。タンパク質は通常、PHA以外の微生物由来の不純物の40%程度を占める。
本発明のPHA粒子は、PHAとペプチドグリカンのみを構成成分とするものであってもよく、さらにその他の成分を含むものであってもよい。その他の成分の代表例としては、微生物由来の不純物が挙げられる。当該不純物として代表的なものとして、タンパク質が挙げられる。当該タンパク質は、微生物など大部分の原核生物を構成する成分である、アミノ酸のポリマーである。アミノ酸同士がペプチド結合にて結合し、タンパク質となる。タンパク質は通常、PHA以外の微生物由来の不純物の40%程度を占める。
本発明のPHA粒子におけるタンパク質の含有量は、1.0重量%以下が好ましく、より好ましくは0.5重量%以下である。タンパク質の含有量を1.0重量%以下に制御することにより、PHA粒子又はその水分散液を使用して製造した成形物の着色が抑制されたり、当該成形物の加熱時の臭気発生が抑制される傾向がある。タンパク質の含有量の下限は、特に限定されず、0重量%であることが最も好ましいが、例えば0.01重量%以上であってもよい。本発明のPHA粒子におけるタンパク質の含有量は、例えば、実施例に記載した方法により牛血清アルブミン換算の量として測定できる。
本発明のPHA粒子は、さらにタンパク質以外の微生物由来の不純物等を含むものであってもよい。当該不純物として、核酸、脂質、多糖やその他の炭化物等が挙げられる。
本発明のPHA粒子は、あらゆる形態で使用することができる。例えば、実質的に乾燥した状態で使用することもできるし、分散媒に分散させた分散液の形態で使用することもできる。PHA粒子の粒子径は特に限定されないが、例えば、その一次粒子の平均粒子径は、0.05~10μmが好ましく、より好ましくは0.3~5.0μm、さらに好ましくは0.5~3.0μmである。上記平均粒子径は、マイクロトラック粒度計(日機装社製)などの汎用粒度計を用い、PHA粒子を水に分散させて、正規分布の全粒子50%蓄積量に対する粒子径(体積平均粒径)として測定される。
[PHA水分散液]
本発明のPHA水分散液(ポリヒドロキシアルカノエート水分散液)は、水系媒体と、当該水系媒体中に分散したPHA粒子(本発明のPHA粒子)とを少なくとも有する水分散液である。後述のように本発明のPHA水分散液は、その他の成分を含んでいてもよい。本発明における「PHA水分散液」とは、媒体として水を含有する分散液に限定されず、後述するように、媒体として、水と相溶性のある有機溶媒を含有する分散液も含む用語である。
本発明のPHA水分散液(ポリヒドロキシアルカノエート水分散液)は、水系媒体と、当該水系媒体中に分散したPHA粒子(本発明のPHA粒子)とを少なくとも有する水分散液である。後述のように本発明のPHA水分散液は、その他の成分を含んでいてもよい。本発明における「PHA水分散液」とは、媒体として水を含有する分散液に限定されず、後述するように、媒体として、水と相溶性のある有機溶媒を含有する分散液も含む用語である。
本発明のPHA水分散液におけるPHA粒子の濃度は特に限定されないが、好ましくは300g/L以上、より好ましくは400g/L以上、さらに好ましくは500g/L以上である。濃度の上限値も特に限定されないが、好ましくは700g/L以下、より好ましくは600g/L以下である。また、水分散液のpHは特に限定されないが、PHA粒子の分散性の面で、4.0~9.0が好ましい。
本発明の水分散液に含まれる水系媒体としては、水、水と相溶性のある有機溶媒、又は、水と前記有機溶媒との混合溶媒等が挙げられる。前記有機溶媒は1種類のみを使用してもよいし、2種類以上を併用してもよい。また、水と前記有機溶媒との混合溶媒中の前記有機溶媒の濃度としては、使用する有機溶媒の水への溶解度以下であれば特に限定されない。また、水と相溶性のある有機溶媒としては特に限定されるものではないが、例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、iso-ブタノール、ペンタノール、ヘキサノール、ヘプタノールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;アセトニトリル、プロピオニトリルなどのニトリル類;ジメチルホルムアミド、アセトアミドなどのアミド類;ジメチルスルホキシド、ピリジン、ピペリジンなどが挙げられる。なかでも、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、iso-ブタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、プロピオニトリルなどが除去の容易さの面などから好適である。さらに、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、iso-ブタノール、アセトンなどが入手容易であることからより好ましい。さらに好ましくは、メタノール、エタノール、アセトンである。なお、本発明の本質を損なわない限り、他の溶媒や菌体由来の成分および精製時に発生する化合物を含んでいても構わない。
本発明のPHA水分散液は、その他の成分を含んでいてもよい。その他の成分としては、例えば、界面活性剤、分散剤、防腐剤等が挙げられる。界面活性剤としては、陰イオン界面活性剤(例えば、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウム及びオレイン酸ナトリウム等)、非イオン界面活性剤(例えば、ポリオキシエチレンアルキルエーテルやポリオキシアルキレンアルキルエーテル等)が価格、使用量や添加効果の点で好ましい。分散剤としては、ポリビニルアルコール、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム等の水溶性高分子が挙げられる。中でも、ポリビニルアルコール、メチルセルロースが好ましい。また、防腐剤としては、過酸化水素、ソルビン酸カリウム、安息香酸ナトリウム、ヒノキチオール、パラベン等が挙げられる。
本発明のPHA水分散液におけるPHA粒子の平均粒子径は、特に限定されないが、0.05~10μmが好ましく、より好ましくは0.3~5.0μm、さらに好ましくは0.5~3.0μmである。上記平均粒子径は、マイクロトラック粒度計(日機装社製)などの汎用粒度計を用い、PHA水分散液を測定サンプルとし、正規分布の全粒子50%蓄積量に対する粒子径(体積平均粒径)として測定される。平均粒子径が上記範囲にあることにより、ハンドリング性、水分散性及び製膜性がいっそう向上する傾向がある。
(PHA粒子及びPHA水分散液の製造方法)
本発明のPHA粒子は、特に限定されず、公知乃至慣用の技術を利用した製造方法により製造することができる。例えば、PHAを体内に蓄積した微生物(PHA類生産能を有する微生物)について、PHA以外の微生物由来の成分(特に有機物)を分解、可溶化及び/又は除去し、その後、粒子状のPHAを回収する工程を含む方法等が挙げられる。本方法において、微生物の細胞壁由来のペプチドグリカンが所定量(0.1重量%以上1.0重量%以下)となるように残しつつ、その他の不純物を除去するためには、例えば、細胞壁分解酵素を使用しないか、その使用量を少なくすること;高圧破砕時の圧力を低過ぎず高過ぎない範囲に設定すること;高圧破砕の時間を制御すること;これらを組み合わせて制御すること等、を実施することが好ましい。高圧破砕時の圧力は特に限定されないが、100~500kg/cm2が好ましい。
本発明のPHA粒子は、特に限定されず、公知乃至慣用の技術を利用した製造方法により製造することができる。例えば、PHAを体内に蓄積した微生物(PHA類生産能を有する微生物)について、PHA以外の微生物由来の成分(特に有機物)を分解、可溶化及び/又は除去し、その後、粒子状のPHAを回収する工程を含む方法等が挙げられる。本方法において、微生物の細胞壁由来のペプチドグリカンが所定量(0.1重量%以上1.0重量%以下)となるように残しつつ、その他の不純物を除去するためには、例えば、細胞壁分解酵素を使用しないか、その使用量を少なくすること;高圧破砕時の圧力を低過ぎず高過ぎない範囲に設定すること;高圧破砕の時間を制御すること;これらを組み合わせて制御すること等、を実施することが好ましい。高圧破砕時の圧力は特に限定されないが、100~500kg/cm2が好ましい。
上記製造方法においてPHA粒子以外の微生物由来成分等の不純物を分解、可溶化及び/又は除去する方法としては、PHAを含有する細胞を物理的処理、化学的処理または生物学的処理する方法が好ましい。これにより、微生物由来成分の不純物の分解及び/又は除去工程を効率的に実施することができる。物理的処理、化学的処理または生物学的処理の方法としては特に限定されないが、従来公知のフレンチプレスや高圧ホモジナイザー、X-プレス、ボールミル、コロイドミル、DYNOミル、超音波ホモジナイザーなどの、流体せん断力や固体せん断力、磨砕を利用した方法が使用しうる。高圧ホモジナイザーを用いる場合、操作圧力を高めると、微生物由来の不純物が減少する傾向があるので、ペプチドグリカンが0.1重量%以上、タンパク質が1.0重量%以下、PHAが98重量%以上になるように操作圧力を調整すると良い。
また、酸やアルカリ、界面活性剤、有機溶剤、細胞壁合成阻害剤などの薬剤を用いる方法、プロテアーゼ、ペクチナーゼ、チモリアーゼなどの酵素を用いる方法、超臨界流体を用いる方法や、浸透圧破砕法、凍結法、乾燥粉砕法などが挙げられる。また、細胞自身に含まれるプロテアーゼやエステラーゼなどの作用を利用する自己消化法も破砕法の一種として挙げられる。これらの破砕方法においては、一連の処理によるPHAの分子量低下を抑える方法を選択することが望ましい。また、これらの破砕方法は単独で用いても良いし、複数の方法を組み合わせても良い。また、バッチ処理でも良いし、連続処理を行っても良い。
PHA粒子以外の微生物由来成分等の不純物を分解及び/又は除去する方法としては、特に限定されないが、例えば酵素を用いる方法を挙げることができる。使用する酵素としては、蛋白質分解酵素、脂質分解酵素、細胞壁分解酵素、核酸分解酵素等が挙げられる。これらの酵素の具体例としては下記のものが挙げられる。これらは、単独で用いてもよいし、2種以上を併用してもよい。
(1)蛋白質分解酵素
エスペラーゼ、アルカラーゼ、ペプシン、トリプシン、パパイン、キモトリプシン、アミノペプチダーゼ、カルボキシペプチダーゼ等
(2)脂質分解酵素
リパーゼ、ホスホリパーゼ、コリンエステラーゼ、ホスファターゼ等
(3)核酸分解酵素
リボヌクレアーゼ、デオキシリボヌクレアーゼ等
PHA粒子以外の微生物由来成分等の不純物の分解に用いられる酵素は、上記のものに限定されるわけではなく、工業的な製品に用いられ得るものであれば、微生物由来成分を分解する活性を有する任意の酵素であってよい。また、一般に市販されている洗濯用酵素洗剤等も用いることができる。さらには、例えば、酵素の安定化剤や再汚染防止剤等と酵素とを含有する酵素組成物であってもよく、酵素のみには限定されない。好ましい蛋白質分解酵素としては、上記例示に含まれるもののうち、プロテアーゼA、プロテアーゼP、プロテアーゼN(以上、天野エンザイム社製)、エスペラーゼ、アルカラーゼ、ザビナーゼ、エバラーゼ(以上、ノボザイム社製)等が工業的に使用可能なものとして挙げられ、分解活性の点からも好適に使用できる。しかし、これらに限られるものではない。
エスペラーゼ、アルカラーゼ、ペプシン、トリプシン、パパイン、キモトリプシン、アミノペプチダーゼ、カルボキシペプチダーゼ等
(2)脂質分解酵素
リパーゼ、ホスホリパーゼ、コリンエステラーゼ、ホスファターゼ等
(3)核酸分解酵素
リボヌクレアーゼ、デオキシリボヌクレアーゼ等
PHA粒子以外の微生物由来成分等の不純物の分解に用いられる酵素は、上記のものに限定されるわけではなく、工業的な製品に用いられ得るものであれば、微生物由来成分を分解する活性を有する任意の酵素であってよい。また、一般に市販されている洗濯用酵素洗剤等も用いることができる。さらには、例えば、酵素の安定化剤や再汚染防止剤等と酵素とを含有する酵素組成物であってもよく、酵素のみには限定されない。好ましい蛋白質分解酵素としては、上記例示に含まれるもののうち、プロテアーゼA、プロテアーゼP、プロテアーゼN(以上、天野エンザイム社製)、エスペラーゼ、アルカラーゼ、ザビナーゼ、エバラーゼ(以上、ノボザイム社製)等が工業的に使用可能なものとして挙げられ、分解活性の点からも好適に使用できる。しかし、これらに限られるものではない。
一方で、細胞壁分解酵素は、PHA粒子に含まれるペプチドグリカンの含有量が0.1重量%以上となるように制御できる範囲で使用してもよい。
(1)細胞壁分解酵素
リゾチーム、アミラーゼ、セルラーゼ、マルターゼ、サッカラーゼ、α-グリコシダーゼ、β-グリコシダーゼ、N-グリコシダーゼ等
酵素処理時間は、所望の処理度を達成するまで行うのが好ましく、通常0.5~2時間である。酵素の使用量は、酵素の種類及び活性に依存し、特に制限はされないが、PHA粒子100重量部に対して、0.001~10重量部が好ましく、さらにはコストの点から0.001~5重量部がより好ましい。
リゾチーム、アミラーゼ、セルラーゼ、マルターゼ、サッカラーゼ、α-グリコシダーゼ、β-グリコシダーゼ、N-グリコシダーゼ等
酵素処理時間は、所望の処理度を達成するまで行うのが好ましく、通常0.5~2時間である。酵素の使用量は、酵素の種類及び活性に依存し、特に制限はされないが、PHA粒子100重量部に対して、0.001~10重量部が好ましく、さらにはコストの点から0.001~5重量部がより好ましい。
PHA粒子以外の生物由来成分等の不純物を分解するその他の方法としては、次亜塩素酸や過酸化水素を用いる方法が挙げられる。次亜塩素酸を用いる際は、系のpHをアルカリ領域とし、熱や光、金属との接触を抑制した条件で次亜塩素酸処理を実施することで、塩素残量の低いPHA粒子を得ることができる。系のpHは8以上が望ましく、より望ましくは10以上、さらに望ましくは12以上である。処理温度は40℃以下が望ましく、より望ましくは30℃以下であり、さらに望ましくは20℃以下、確実に効果を発揮するためには10℃以下で実施することが望ましい。
通常、上記方法にてPHA含有菌体を物理的処理、化学的処理もしくは生物学的処理して得たPHA水性懸濁液には、細胞中のタンパク質や核酸、脂質、糖成分およびその他の菌体構成成分や、培養基質残分などが混入している。これらのタンパク質等を含む水を分離する脱水工程を実施することが好ましい。これにより、PHA水性懸濁液に含まれる不純物の量を低減することができる。脱水の方法としては特に限定されないが、ろ過や遠心分離、沈降分離による方法が挙げられる。
上述したように前記脱水工程では、PHA粒子と、それ以外の生物由来成分等の不純物を含む水を分離するために、ろ過や遠心分離等を実施することができる。ろ過の方法は特に制限がないが、ヌッチェなどを用いる方法や、吸引ろ過や加圧ろ過などの方法が望ましい。工業的にはフィルタープレス、チューブプレス、プレートプレス、ゲージプレス、ベルトプレス、スクリュープレス、円板プレスなどの圧搾機能を有したろ過装置や、遠心脱水機、多室円筒ろ過機なども選択可能である。生産性を高める場合には多室円筒ろ過機などの連続式ろ過機が望ましい。連続式ろ過機の粒子の除滓方法として、ストリング方式、スクレパー方式、プレコートスクレパー方式などが挙げられる。また、膜分離方式を用いてもよい。膜分離を含めたろ過の方法としては、デッドエンドろ過、クロスフローろ過を選択することができる。いずれもろ過性やろ材、膜などへの閉塞の程度などから選択できる。また減圧、あるいは真空にしてもよいし、加圧してもよい。また、遠心力を用いる方法であってもよい。ろ材としては、紙、織布、不織布、スクリーン、焼結板、素焼、高分子膜、パンチングメタル、ウェッジワイヤーなど様々な素材を選択できる。いずれも生産性や閉塞の程度などから選択できる。また、ろ過助剤を用いてもよいし、用いなくともよい。ろ過助剤を用いる場合にも、ろ材に予めプレコートしておく方法(プレコート方式)、ろ過原液に予め添加しておく方法がある(ボディーフィード法)。
前記脱水工程での遠心分離の方法は特に限定されないが、遠心沈降機や遠心脱水機等を使用できる。遠心沈降機であれば分離板型、円筒型、デカンター型が挙げられる。分離板型であれば、ディスク型、セルフクリーニング型、ノズル型、スクリューデカンター型、スキミング型などが挙げられる。それぞれ沈降成分の排出の方法により回分式と連続式がある。また遠心脱水機についても回分式と連続式が挙げられる。これらの機器によって比重差により、PHA粒子を含む沈降物と、培養液成分とを分離することが可能である。
前記脱水工程で使用可能な他の方法としてはフローテーション法、電気泳動法、サイクロン処理などが挙げられる。ろ過や遠心分離、またフローテーションなどの方法を単独で用いてもよいし、組み合わせてもよい。
前記脱水工程でろ過や遠心分離などの方法でPHA粒子を回収した後、回収したPHA粒子を水等の水系媒体で洗浄することで、更に精製度を高めたPHA粒子を得ることができる。洗浄は水以外にも有機溶媒を使用してもよいし、水と有機溶媒を混合して用いても良い。また水のpHを調整してもよい。有機溶媒を洗浄溶媒として用いる場合、好ましくは、親水性溶媒、具体的にはメタノール、エタノール、アセトン、アセトニトリル、テトラヒドロフラン、ケトン類、アミン類などを用いる。また界面活性剤などを水に添加してもよい。これらの有機溶媒や水を複数種類混合して用いてもよい。また、短時間であれば水やこれらの有機溶媒を加温したり蒸気として噴霧することで洗浄性を高めることもできる。
本発明のPHA粒子の製造方法は、上述のPHAを体内に蓄積した微生物を得る工程(PHA類生産能を有する微生物を培養してPHAを製造する工程)を含むものであってもよい。また、本発明のPHA粒子の製造方法における各工程は、連続的に実施してもよいし、非連続的に実施してもよい。
本発明のPHA水分散液は、例えば上述のような方法で得られたPHA粒子を、所定の濃度となるように水系媒体に分散させることにより、製造することができる。分散させる方法は特に限定されず、攪拌機、ホモジナイザーを用いる方法等の公知乃至慣用の分散手段を利用することができる。水系媒体に分散させる際のPHA粒子は、水系媒体で洗浄した後の湿潤状態であることが、水分散液の製造のしやすさの観点で好ましい。
本発明のPHA粒子及び本発明のPHA水分散液は各種用途に使用することができ、特に限定されないが、例えば、公知乃至慣用の成形方法に付すことにより、各種成形体を得るための用途に使用することができる。特に、本発明の水分散液は製膜性に優れるため、当該水分散液を基材(例えば、金属、紙、プラスチック、繊維等の基材)上に塗工し、乾燥させることによって、PHAの膜(被膜)やフィルム等を得ることができる。
以下、実施例に基づいて本発明をより詳細に説明するが、本発明は当該実施例に限定されるものではない。
(製造例1)
PHAを含む菌体培養液の製造
培養生産にはKNK-631株(国際公開第2009/145164号参照)を用いた。
PHAを含む菌体培養液の製造
培養生産にはKNK-631株(国際公開第2009/145164号参照)を用いた。
種母培地の組成は1w/v% Meat-extract、1w/v% Bacto-Tryptone、0.2w/v% Yeast-extract、0.9w/v% Na2HPO4・12H2O、0.15w/v% KH2PO4、(pH6.8)とした。
前培養培地の組成は1.1w/v% Na2HPO4・12H2O、0.19w/v% KH2PO4、1.29w/v% (NH4)2SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)、とした。炭素源としてはパーム油を用い、これを10g/Lの濃度で一括添加した。
PHA生産培地の組成は0.385w/v% Na2HPO4・12H2O、0.067w/v% KH2PO4、0.291w/v% (NH4)2SO4、0.1w/v% MgSO4・7H2O、0.5v/v% 微量金属塩溶液(0.1N 塩酸に1.6w/v% FeCl3・6H2O、1w/v% CaCl2・2H2O、0.02w/v% CoCl2・6H2O、0.016w/v% CuSO4・5H2O、0.012w/v% NiCl2・6H2Oを溶かしたもの)、0.05w/v% BIOSPUREX200K(消泡剤:コグニスジャパン社製)とした。
まず、KNK-631株のグリセロールストック(50μl)を種母培地(10ml)に接種して24時間培養し、種母培養を行った。次に、種母培養液を1.8Lの前培養培地を入れた3Lジャーファーメンター(丸菱バイオエンジ製MDL-300型)に1.0v/v%接種した。運転条件は、培養温度33℃、攪拌速度500rpm、通気量1.8L/minとし、pHは6.7~6.8の間でコントロールしながら28時間培養し、前培養を行なった。pHコントロールには14%水酸化アンモニウム水溶液を使用した。
次に、前培養液を、6LのPHA生産培地を入れた10Lジャーファーメンター(丸菱バイオエンジ製MDS-1000型)に1.0v/v%接種した。運転条件は、培養温度28℃、攪拌速度400rpm、通気量6.0L/minとし、pHは6.7から6.8の間でコントロールした。pHコントロールには14%水酸化アンモニウム水溶液を使用した。上述のように、培養においては、炭素源としてパーム油を使用した。培養は64時間行い、PHBHであるPHAを含む菌体培養液を得た。
上記で得たPHAを含む菌体培養液について、遠心分離を行うことによって菌体を回収し、メタノールで洗浄、凍結乾燥し、乾燥菌体を得た。この乾燥菌体の重量を測定しところ、乾燥菌体重量は230g/Lであり、PHA濃度は70%であった。また、上記で得たPHAを含む菌体培養液におけるPHAの3HH(3-ヒドロキシヘキサノエート)組成比、結晶化度、重量平均分子量を以下の方法に従って測定したところ、それぞれ11.5mol%、30%、120万であった。
(PHAの3HH組成比の測定方法)
上記の方法で得た乾燥菌体1gに100mlのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のPHAを抽出した。菌体残渣をろ別後、エバポレーターで総容量が30mlになるまで濃縮後、90mlのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したPHAをろ別後、50℃で3時間真空乾燥し、精製PHAを得た。
上記の方法で得た乾燥菌体1gに100mlのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のPHAを抽出した。菌体残渣をろ別後、エバポレーターで総容量が30mlになるまで濃縮後、90mlのヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したPHAをろ別後、50℃で3時間真空乾燥し、精製PHAを得た。
得られた精製PHAの3HH組成比分析は、以下のようにガスクロマトグラフィーによって測定した。精製PHA20mgに2mlの硫酸-メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱して、PHA分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mlのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のポリエステル分解物のモノマーユニット組成比をキャピラリーガスクロマトグラフィー島津製作所GC-17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)により分析した。
(PHAの結晶化度の測定方法)
上記の方法で得た精製PHAについて、DSC(エスアイアイ・ナノテクノロジー(株)製DSC220)を用い、25℃から樹脂の融点より高い温度まで10℃/minで昇温して2分間ホールドし、樹脂を融解させたあと、10℃/分で冷却した。この冷却過程において見られる、結晶化を示すピークの温度と大きさ(結晶化熱量)により結晶化度を評価した。
上記の方法で得た精製PHAについて、DSC(エスアイアイ・ナノテクノロジー(株)製DSC220)を用い、25℃から樹脂の融点より高い温度まで10℃/minで昇温して2分間ホールドし、樹脂を融解させたあと、10℃/分で冷却した。この冷却過程において見られる、結晶化を示すピークの温度と大きさ(結晶化熱量)により結晶化度を評価した。
(PHAの重量平均分子量の測定方法)
上記の方法で得た精製PHAについて、ゲル浸透クロマトグラフィー(昭和電工社製「Shodex GPC-101」)を用い、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相として、標準ポリスチレン換算の分子量を測定し、当該分子量から重量平均分子量を算出した。
上記の方法で得た精製PHAについて、ゲル浸透クロマトグラフィー(昭和電工社製「Shodex GPC-101」)を用い、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相として、標準ポリスチレン換算の分子量を測定し、当該分子量から重量平均分子量を算出した。
(製造例2)
KNK-631株の代わりにKNK-005株を用いたこと以外は製造例1と同様の方法で、PHBHであるPHAを含む菌体培養液を得た。
KNK-631株の代わりにKNK-005株を用いたこと以外は製造例1と同様の方法で、PHBHであるPHAを含む菌体培養液を得た。
上記で得たPHAを含む菌体培養液について、製造例1と同様の方法で乾燥菌体重量を測定しところ250g/Lであり、PHA濃度は80%であった。また、製造例1と同様の方法でPHAの3HH組成比、結晶化度、重量平均分子量を測定したところ、それぞれ5.8mol%、40%、150万であった。
(製造例3)
KNK-631株の代わりにKNK-252株を用い、炭素源としてパーム油の代わりにPFAD(Palm Fatty Acid Distillate)を使用したこと以外は、製造例1に記載の方法で、PHBHであるPHAを含む菌体培養液を得た。
KNK-631株の代わりにKNK-252株を用い、炭素源としてパーム油の代わりにPFAD(Palm Fatty Acid Distillate)を使用したこと以外は、製造例1に記載の方法で、PHBHであるPHAを含む菌体培養液を得た。
上記で得たPHAを含む菌体培養液について、製造例1と同様の方法で乾燥菌体重量を測定しところ255g/Lであり、PHA濃度は82%であった。また、製造例1と同様の方法でPHAの3HH組成比、結晶化度、重量平均分子量を測定したところ、それぞれ16.9mol%、26%、120万であった。
(実施例1)
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、PHAの1/100量のプロテアーゼ(ノボザイム社、エスペラーゼ)を添加し、pH8.0で50℃に保持したまま、2時間攪拌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、PHAの1/100量のプロテアーゼ(ノボザイム社、エスペラーゼ)を添加し、pH8.0で50℃に保持したまま、2時間攪拌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、当該水分散液を約100倍希釈したものを、NIKON製H550Sレンズで300倍の倍率で観察し、撮影した写真を図1に示す。
また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、後述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。また、得られた薄膜を撮影した写真を図2に示す。
(実施例2)
製造例2で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
製造例2で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、後述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。
(実施例3)
製造例3で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
製造例3で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約200kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。該水分散体に含まれるPHA粒子は、粒子表面がペプチドグリカンで被覆されたものである。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、後述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。
(PHA粒子中のPHA量の算出法)
上記で得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥サンプルを得た。当該乾燥サンプル5mgをTG-DTA(エスアイアイ・ナノテクノロジ社製)にて室温から600℃まで加熱し、加熱前重量に対する300~320℃における残存重量からPHA量を求めた。
上記で得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥サンプルを得た。当該乾燥サンプル5mgをTG-DTA(エスアイアイ・ナノテクノロジ社製)にて室温から600℃まで加熱し、加熱前重量に対する300~320℃における残存重量からPHA量を求めた。
(PHA粒子中のペプチドグリカン量の算出法)
上記で得られた水分散液に、(株)和光純薬工業 SLP-HS Single Reagent Setにて調製した溶液を加え、これを30℃の条件でパワースキャンHT(DSファーマバイオメディカル製)にて、吸光度(650nm)を120分間測定した。既知の濃度に調整されたペプチドグリカンの吸光度から検量線を作製し、測定した水分散液の吸光度と比較することでPHAに含まれるペプチドグリカン量を求めた。
上記で得られた水分散液に、(株)和光純薬工業 SLP-HS Single Reagent Setにて調製した溶液を加え、これを30℃の条件でパワースキャンHT(DSファーマバイオメディカル製)にて、吸光度(650nm)を120分間測定した。既知の濃度に調整されたペプチドグリカンの吸光度から検量線を作製し、測定した水分散液の吸光度と比較することでPHAに含まれるペプチドグリカン量を求めた。
(PHA粒子中の残存タンパク量の算出法)
上記で得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥サンプルを得た。当該乾燥サンプル1mgを、蒸留水1mlに懸濁させたのち、(株)タカラバイオBCATM Protein Assay Kitにて調製した溶液を加え、60℃で30分間処理した。これを冷却後、(株)島津製作所吸光度計UV-1700にて分析して、PHA粒子中の残存タンパク量を牛血清アルブミン換算で求めた。
上記で得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥サンプルを得た。当該乾燥サンプル1mgを、蒸留水1mlに懸濁させたのち、(株)タカラバイオBCATM Protein Assay Kitにて調製した溶液を加え、60℃で30分間処理した。これを冷却後、(株)島津製作所吸光度計UV-1700にて分析して、PHA粒子中の残存タンパク量を牛血清アルブミン換算で求めた。
(PHA水分散液の分散性評価)
上記で得たPHA水分散液の分散性は、以下の基準で評価した。
上記で得たPHA水分散液の分散性は、以下の基準で評価した。
○(分散性良好):平均粒子径が0.05~10μmの範囲
×(分散性不良):平均粒子径が10μm超
(PHA水分散液の製膜性評価)
上記で得たPHA水分散液の製膜性は、上述の方法で形成させた薄膜を目視で観察することにより評価した。均一な半透明膜又は透明膜が得られた場合には、製膜性に優れている(すなわち、良好な膜を形成できる)と評価できる。
×(分散性不良):平均粒子径が10μm超
(PHA水分散液の製膜性評価)
上記で得たPHA水分散液の製膜性は、上述の方法で形成させた薄膜を目視で観察することにより評価した。均一な半透明膜又は透明膜が得られた場合には、製膜性に優れている(すなわち、良好な膜を形成できる)と評価できる。
(臭気評価)
上述の方法で形成させた薄膜の臭いを嗅ぎ、臭気の有無を評価した。
上述の方法で形成させた薄膜の臭いを嗅ぎ、臭気の有無を評価した。
(比較例1)
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、PHAの1/100量のプロテアーゼ(ノボザイム社、エスペラーゼ)を添加し、pH8.0で50℃に保持したまま、2時間攪拌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約550kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を30%に調整し、PHA水分散液を得た。
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、PHAの1/100量のプロテアーゼ(ノボザイム社、エスペラーゼ)を添加し、pH8.0で50℃に保持したまま、2時間攪拌した。その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約550kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を30%に調整し、PHA水分散液を得た。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、当該水分散液を約100倍希釈したものを、NIKON製H550Sレンズで300倍の倍率で観察し、撮影した写真を図1に示す。
また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、上述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。また、得られた薄膜を撮影した写真を図2に示す。
(比較例2)
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約10kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。
製造例1で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、その後、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約10kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、上述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。
(比較例3)
製造例2で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約10kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。
製造例2で得られたPHAを含む菌体培養液を、80℃で1時間加熱して滅菌した。次に、この液に対してドデシル硫酸ナトリウムが1.0重量%になるように30.0%ドデシル硫酸ナトリウム水溶液を添加し、さらに、pHが11.5になるように30%水酸化ナトリウム水溶液を添加した後、50℃で1時間保温した。その後、高圧破砕機(ニロソアビ社製高圧ホモジナイザーモデルPA2K型)で約10kgf/cm2の圧力で高圧破砕を行った。高圧破砕後の破砕液を遠心分離した後、上清を除去した。得られた沈殿物について、遠心分離による水洗をさらに6回繰り返し、最終的に得られた沈殿物に水を加えてPHA粒子濃度を50%に調整し、PHA水分散液を得た。
当該水分散液におけるPHA粒子の平均粒子径を、マイクロトラックMT3300EXII(日機装社製)にて測定した。また、得られた水分散液をヌッチェで脱水後、加熱・減圧下で乾燥させてPHA粒子の乾燥サンプルを取得し、上述の方法で該PHA粒子中のPHA量、タンパク量およびペプチドグリカン量を求めた。また、得られた水分散液1~3gをφ800mmのガラス皿の底に薄く塗布し、120℃に熱したオーブンにて水分を蒸発させた。水分が十分に蒸発したのを確認した後、冷却し、ガラス皿の表面にPHAの薄膜が形成していることを確認した。得られた薄膜の外観と臭気を確認した。結果を表1に示す。
表1より、実施例1~3は、PHA水分散液の分散性が良好で、かつ、成膜性に優れ均一な半透明膜または透明膜を得ることができ、形成された薄膜は臭気が感じられないものであった。一方、比較例1は、PHA水分散液の分散性が不良で、成膜性も悪く、形成された薄膜はひび割れており、図2でも示しているように白色で不透明のものであった。比較例2は、成膜性が悪く、形成された薄膜は褐色の不溶分を含み、強い黄色みを帯びたものであり、しかも、臭気が感じられるものであった。比較例3は、成膜性が悪く、形成された薄膜が白色で不透明であり、しかも、臭気が感じられるものであった。
Claims (4)
- 粒子状のポリヒドロキシアルカノエートと、該ポリヒドロキシアルカノエートの表面の一部又は全部を被覆するペプチドグリカンとを有し、
ポリヒドロキシアルカノエートの含有量が98.0重量%以上、ペプチドグリカンの含有量が0.1重量%以上1.0重量%以下である、ポリヒドロキシアルカノエート粒子。 - タンパク質の含有量が1.0重量%以下である請求項1に記載のポリヒドロキシアルカノエート粒子。
- 水系媒体と、該水系媒体中に分散した請求項1又は2に記載のポリヒドロキシアルカノエート粒子と、を有するポリヒドロキシアルカノエート水分散液。
- 水系媒体中に分散したポリヒドロキシアルカノエート粒子の平均粒子径が0.05μm以上10μm以下である、請求項3に記載のポリヒドロキシアルカノエート水分散液。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/500,306 US11332612B2 (en) | 2017-04-05 | 2018-03-29 | Polyhydroxyalkanoate particles and aqueous dispersion of same |
JP2019511194A JP7123909B2 (ja) | 2017-04-05 | 2018-03-29 | ポリヒドロキシアルカノエート粒子及びその水分散液 |
CN201880022407.0A CN110475868B (zh) | 2017-04-05 | 2018-03-29 | 聚羟基烷酸酯粒子及其水分散液 |
EP18780481.0A EP3608415A4 (en) | 2017-04-05 | 2018-03-29 | POLYHYDROXY ALKANOATE PARTICLES AND AQUATIC DISPERSION OF THE SAME |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-075282 | 2017-04-05 | ||
JP2017075282 | 2017-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186278A1 true WO2018186278A1 (ja) | 2018-10-11 |
Family
ID=63712565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/013238 WO2018186278A1 (ja) | 2017-04-05 | 2018-03-29 | ポリヒドロキシアルカノエート粒子及びその水分散液 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11332612B2 (ja) |
EP (1) | EP3608415A4 (ja) |
JP (1) | JP7123909B2 (ja) |
CN (1) | CN110475868B (ja) |
WO (1) | WO2018186278A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022059592A1 (ja) * | 2020-09-17 | 2022-03-24 | 株式会社カネカ | 積層体及び成形体 |
WO2022091685A1 (ja) * | 2020-10-26 | 2022-05-05 | 株式会社カネカ | ポリヒドロキシ酪酸共重合体の製造方法およびその利用 |
WO2022118554A1 (ja) * | 2020-12-04 | 2022-06-09 | 株式会社カネカ | 推定システム、推定方法、及びプログラム |
WO2022215653A1 (ja) * | 2021-04-06 | 2022-10-13 | 株式会社 フューエンス | ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法 |
WO2023008959A1 (ko) * | 2021-07-30 | 2023-02-02 | 씨제이제일제당(주) | 폴리하이드록시알카노에이트(pha) 분산액 및 이의 제조 방법 |
US11866606B2 (en) | 2018-08-13 | 2024-01-09 | Danimer Ipco, Llc | Biodegradable coatings based on aqueous PHA dispersions |
WO2024063042A1 (ja) * | 2022-09-21 | 2024-03-28 | 積水化成品工業株式会社 | 樹脂粒子及びその用途 |
SE2330129A1 (en) * | 2023-03-20 | 2024-09-21 | Stora Enso Oyj | Pha dispersion coating composition and coated fiber-based substrate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114450416A (zh) * | 2019-09-25 | 2022-05-06 | 株式会社钟化 | 聚羟基烷酸酯的制造方法 |
KR20240134154A (ko) * | 2022-01-12 | 2024-09-06 | 데니머 아이피씨오 엘엘씨 | 폴리히드록시알카노에이트 (pha) 케이크로 만들어진 수성 코팅 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500157A (ja) * | 1993-07-14 | 1997-01-07 | ゼネカ・リミテッド | 接着法 |
WO1997021762A1 (en) | 1995-12-12 | 1997-06-19 | Monsanto Company | Dispersions of polyhydroxyalkanoates in water |
JPH09506303A (ja) * | 1993-11-30 | 1997-06-24 | ゼネカ・リミテッド | フィルム |
US6228934B1 (en) | 1998-06-09 | 2001-05-08 | Metabolix, Inc. | Methods and apparatus for the production of amorphous polymer suspensions |
WO2005085461A1 (ja) * | 2004-03-04 | 2005-09-15 | Kaneka Corporation | 核酸の分解方法及びその用途 |
WO2009145164A1 (ja) | 2008-05-26 | 2009-12-03 | 株式会社カネカ | 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法 |
US20130225761A1 (en) | 2011-04-29 | 2013-08-29 | Metabolix, Inc | Process for latex production by melt emulsification |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1079835C (zh) * | 1994-06-01 | 2002-02-27 | 普罗克特和甘保尔公司 | 利用空气分级作用回收聚羟基链烷酸酯的方法 |
TW200508393A (en) * | 2003-01-20 | 2005-03-01 | Kaneka Corp | Method of collecting highly pure polyhydroxyalkanoate from microbial cells |
US7435567B2 (en) | 2004-03-04 | 2008-10-14 | Kaneka Corporation | Method for degradation of nucleic acids and use thereof |
JP2012115145A (ja) * | 2009-03-30 | 2012-06-21 | Kaneka Corp | ポリヒドロキシアルカノエートの回収方法 |
CN102202260B (zh) | 2010-03-22 | 2016-04-13 | 中兴通讯股份有限公司 | 实现mbms业务接收的方法、系统及mbms接收装置 |
-
2018
- 2018-03-29 CN CN201880022407.0A patent/CN110475868B/zh active Active
- 2018-03-29 JP JP2019511194A patent/JP7123909B2/ja active Active
- 2018-03-29 EP EP18780481.0A patent/EP3608415A4/en active Pending
- 2018-03-29 WO PCT/JP2018/013238 patent/WO2018186278A1/ja unknown
- 2018-03-29 US US16/500,306 patent/US11332612B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09500157A (ja) * | 1993-07-14 | 1997-01-07 | ゼネカ・リミテッド | 接着法 |
JPH09506303A (ja) * | 1993-11-30 | 1997-06-24 | ゼネカ・リミテッド | フィルム |
WO1997021762A1 (en) | 1995-12-12 | 1997-06-19 | Monsanto Company | Dispersions of polyhydroxyalkanoates in water |
US6228934B1 (en) | 1998-06-09 | 2001-05-08 | Metabolix, Inc. | Methods and apparatus for the production of amorphous polymer suspensions |
WO2005085461A1 (ja) * | 2004-03-04 | 2005-09-15 | Kaneka Corporation | 核酸の分解方法及びその用途 |
WO2009145164A1 (ja) | 2008-05-26 | 2009-12-03 | 株式会社カネカ | 改良されたポリヒドロキシアルカノエート生産微生物及びそれを用いたポリヒドロキシアルカノエートの製造方法 |
US20130225761A1 (en) | 2011-04-29 | 2013-08-29 | Metabolix, Inc | Process for latex production by melt emulsification |
Non-Patent Citations (4)
Title |
---|
See also references of EP3608415A4 |
T. FUKUIY. DOI, J. BATERIOL., vol. 179, 1997, pages 4821 - 4830 |
Y DOIS. KITAMURAH. ABE, MACROMOLECULES, vol. 28, 1995, pages 4822 - 4828 |
ZHAOLIN D. ET AL.: "A new method of recovering polyhydroxyalkanoate from azotobactor chroococcum", CHINESE SCIENCE BULLETIN, vol. 45, no. 3, 1 February 2000 (2000-02-01), pages 252 - 256, XP055635166, ISSN: 1001-6538, DOI: 10.1007/BF02884685 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11866606B2 (en) | 2018-08-13 | 2024-01-09 | Danimer Ipco, Llc | Biodegradable coatings based on aqueous PHA dispersions |
WO2022059592A1 (ja) * | 2020-09-17 | 2022-03-24 | 株式会社カネカ | 積層体及び成形体 |
WO2022091685A1 (ja) * | 2020-10-26 | 2022-05-05 | 株式会社カネカ | ポリヒドロキシ酪酸共重合体の製造方法およびその利用 |
WO2022118554A1 (ja) * | 2020-12-04 | 2022-06-09 | 株式会社カネカ | 推定システム、推定方法、及びプログラム |
WO2022215653A1 (ja) * | 2021-04-06 | 2022-10-13 | 株式会社 フューエンス | ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法 |
WO2023008959A1 (ko) * | 2021-07-30 | 2023-02-02 | 씨제이제일제당(주) | 폴리하이드록시알카노에이트(pha) 분산액 및 이의 제조 방법 |
WO2024063042A1 (ja) * | 2022-09-21 | 2024-03-28 | 積水化成品工業株式会社 | 樹脂粒子及びその用途 |
SE2330129A1 (en) * | 2023-03-20 | 2024-09-21 | Stora Enso Oyj | Pha dispersion coating composition and coated fiber-based substrate |
Also Published As
Publication number | Publication date |
---|---|
EP3608415A4 (en) | 2021-01-13 |
US20210054191A1 (en) | 2021-02-25 |
JPWO2018186278A1 (ja) | 2020-02-13 |
EP3608415A1 (en) | 2020-02-12 |
JP7123909B2 (ja) | 2022-08-23 |
CN110475868A (zh) | 2019-11-19 |
CN110475868B (zh) | 2023-06-20 |
US11332612B2 (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018186278A1 (ja) | ポリヒドロキシアルカノエート粒子及びその水分散液 | |
JP5334994B2 (ja) | ポリ−3−ヒドロキシアルカン酸の製造方法およびその凝集体 | |
JP2019097518A (ja) | ポリヒドロキシアルカノエート分散液の製造方法 | |
JP2012115145A (ja) | ポリヒドロキシアルカノエートの回収方法 | |
JPWO2004065608A1 (ja) | 微生物菌体からの高純度ポリヒドロキシアルカノエートの回収方法 | |
US7435567B2 (en) | Method for degradation of nucleic acids and use thereof | |
JP4553733B2 (ja) | 生分解性ポリエステル水性分散液およびその製造方法 | |
JP5651017B2 (ja) | ポリ−3−ヒドロキシアルカン酸の生産方法 | |
CN116323643A (zh) | 聚羟基丁酸共聚物的制造方法及其利用 | |
WO2024029514A1 (ja) | ポリヒドロキシアルカノエートの製造方法およびその利用 | |
JP5608096B2 (ja) | ポリ−3−ヒドロキシアルカン酸及びその製造方法 | |
WO2024029220A1 (ja) | ポリヒドロキシアルカノエートの製造方法およびその利用 | |
JP6864585B2 (ja) | ポリヒドロキシアルカノエートの製造方法 | |
US20230102977A1 (en) | Method for producing polyhydroxyalkanoate and use of same | |
WO2023120193A1 (ja) | ポリヒドロキシアルカノエートの製造方法およびその利用 | |
US20230123797A1 (en) | Method for producing polyhydroxyalkanoate and use of same | |
JP2023108910A (ja) | ポリヒドロキシアルカノエートケーキの製造方法およびその利用 | |
WO2023120310A1 (ja) | ポリヒドロキシアルカノエートの製造方法およびその利用 | |
CN115298318A (zh) | 聚羟基丁酸酯系树脂的制造方法 | |
JP2024037032A (ja) | ポリヒドロキシ酪酸共重合体の製造方法およびポリヒドロキシ酪酸共重合体粉体 | |
JPWO2008026619A1 (ja) | 3−ヒドロキシアルカン酸共重合体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18780481 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511194 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018780481 Country of ref document: EP Effective date: 20191105 |