WO2022215653A1 - ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法 - Google Patents

ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法 Download PDF

Info

Publication number
WO2022215653A1
WO2022215653A1 PCT/JP2022/016649 JP2022016649W WO2022215653A1 WO 2022215653 A1 WO2022215653 A1 WO 2022215653A1 JP 2022016649 W JP2022016649 W JP 2022016649W WO 2022215653 A1 WO2022215653 A1 WO 2022215653A1
Authority
WO
WIPO (PCT)
Prior art keywords
pha
acid
polyhydroxyalkanoic acid
fine particles
microparticles
Prior art date
Application number
PCT/JP2022/016649
Other languages
English (en)
French (fr)
Inventor
浩三 井上
ケー スデッシュ クマール
宏長 宮内
Original Assignee
株式会社 フューエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 フューエンス filed Critical 株式会社 フューエンス
Priority to JP2023512999A priority Critical patent/JPWO2022215653A1/ja
Priority to KR1020237036769A priority patent/KR20230167379A/ko
Priority to CN202280040426.2A priority patent/CN117460764A/zh
Priority to EP22784637.5A priority patent/EP4321557A1/en
Publication of WO2022215653A1 publication Critical patent/WO2022215653A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention provides microparticles containing polyhydroxyalkanoic acid (PHA), containing 3-hydroxybutanoic acid (3-HB) units as repeating units of polyhydroxyalkanoic acid (PHA), and having a particle diameter of 0.2 to
  • PHA polyhydroxyalkanoic acid
  • 3-HB 3-hydroxybutanoic acid
  • the present invention relates to microparticles having a size of less than 10 ⁇ m and a method for producing the same.
  • Fine particles made of synthetic resin are used as modifiers such as modifiers for plastic resins and modifiers for cosmetics, as additives for paints, additives for toners, additives for cosmetics, liquid crystals, etc.
  • DDS drug delivery systems
  • test particles for medical diagnostics It has become an indispensable material in the industrial field.
  • fine particles made of synthetic resin have the problem of unstable supply of raw materials due to fluctuations in the price of petroleum as a raw material. After being used later, either directly or through wastewater treatment plants and flowing into rivers, oceans, etc., various problems arise, and solutions on a global scale are under pressure.
  • Non-Patent Document 2 Non-Patent Document 2
  • Patent Document 3 discloses biocompatible and biodegradable polymer-injectable microparticles using a copolymer of 3-hydroxybutanoic acid and 4-hydroxybutanoic acid (poly(4 -hydroxybutyrate-co-3-hydroxybutyrate)) is described.
  • Patent Document 4 describes a cosmetic composition in the form of fine particles containing polyhydroxyalkanoate (PHA).
  • Patent Document 5 discloses porous resin particles containing polyhydroxyalkanoate, wherein the polyhydroxyalkanoate is a copolymer of 3-hydroxybutyrate units and 3-hydroxyhexanoate units. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) is mentioned as a suitable example.
  • US Pat. No. 6,200,000 discloses a nonwoven fabric comprising polyhydroxyalkanoate, more preferably poly-4-hydroxybutyrate and copolymers thereof, prepared by a dry spinning process comprising fine fibers having a specific average diameter and burst strength. Nonwovens are described.
  • poly-3-hydroxybutanoic acid has physical properties such as brittleness and hardness, and is expensive to produce and refine. Practical use of fine particles having
  • the present inventors have found that: preparing a microorganism that produces polyhydroxyalkanoic acid (PHA); growing the microorganism in a medium; Based on the finding that polyhydroxyalkanoic acid (PHA) having excellent melt fluidity is produced by a method comprising the step of ingesting and the step of recovering polyhydroxyalkanoic acid (PHA) from excrement of the animal, To complete the present invention by discovering that fine particles containing 3-hydroxybutanoic acid (3-HB) as a repeating unit of polyhydroxyalkanoic acid (PHA) and having a particle size of 0.2 to less than 10 ⁇ m have desired physical properties.
  • 3-hydroxybutanoic acid 3-hydroxybutanoic acid
  • the polyhydroxyalkanoic acid (PHA) further contains a 4-hydroxybutanoic acid (4-HB) unit as its repeating unit.
  • PHA polyhydroxyalkanoic acid
  • Mw average molecular weight
  • Step 1 preparing a microorganism that produces polyhydroxyalkanoic acid (PHA);
  • Step 2 growing the microorganisms of step 1 in a medium;
  • Step 3 a step of ingesting the grown microorganisms into an animal;
  • Step 4 A step of recovering and purifying polyhydroxyalkanoic acid (PHA) from the excrement of the animal in Step 3;
  • Step 5 A step of micronizing the polyhydroxyalkanoic acid (PHA) obtained in Step 4.
  • step 5 is a step of micronizing the resin composition containing polyhydroxyalkanoic acid (PHA) obtained in step 4.
  • microparticles comprising polyhydroxyalkanoic acid (PHA), comprising 3-hydroxybutanoic acid (3-HB) as a repeating unit of the polyhydroxyalkanoic acid (PHA), such polyhydroxyalkane Microparticles containing acid (PHA) are excellent in biodegradability and workability in the natural environment. Further, since the particle diameter of the fine particles containing polyhydroxyalkanoic acid (PHA) is 0.2 to less than 10 ⁇ m, the physical properties that can be used in a wide range of applications are melting point, particle diameter, and porosity. It can have properties such as elasticity, compressive strength, and substance retention.
  • microparticles containing polyhydroxyalkanoic acid (PHA) that are biodegradable, have excellent processability, are biocompatible, and have physical properties that can be used in a wide range of applications.
  • the microparticles according to the present invention can be provided as microparticles having excellent biodegradability in the natural environment, they can contribute to solving problems such as marine pollution and microplastics.
  • biodegradation treatment is possible in disposal, the effect of reducing incineration treatment and reducing the burden on the environment can be expected.
  • the fine particles according to the present invention can have physical properties that can be used in a wide range of applications in addition to the biocompatibility and biodegradability of polyhydroxyalkanoic acid (PHA). In addition, it has a high possibility of being widely used in medical applications.
  • PHA polyhydroxyalkanoic acid
  • FIG. 1 is a conceptual diagram showing the basic configuration of an electrospray deposition apparatus.
  • 2 is an SEM observation image of fine particles produced from P(3-HB) in Example 1.
  • FIG. 3 is an SEM observation image of porous fine particles produced from P(3-HB) in Example 2.
  • FIG. 4 is an SEM observation image of fine particles produced from P(3-HB-co-3-HH) in Example 3.
  • FIG. 5 is an SEM observation image of fine particles produced from P(3-HB-co-4-HB) in Example 4.
  • FIG. FIG. 6 is an SEM observation image showing that fine particles produced from P(3-HB) in Example 5 retained silica particles on their surfaces.
  • FIG. 7 is an SEM observation image showing that the fine particles produced from P(3-HB) in Example 5 retained silica particles inside.
  • FIG. 8 is an SEM BSE observation image showing that fine particles produced from P(3-HB) in Example 5 retained silica particles.
  • Polyhydroxyalkanoic acid (PHA) is a polyester of hydroxyalkanoic acid exemplified by the following chemical formula (1), and is a biodegradable polymer.
  • R represents an alkyl group.
  • the 3-hydroxyalkanoic acid unit (3-HA) as the repeating unit of the polyhydroxyalkanoic acid (PHA) according to the present invention is represented by the chemical formula (2), and the 4-hydroxyalkanoic acid unit (4-HA) is represented by the chemical formula (3). as described below.
  • R represents an alkyl group.
  • the 3-hydroxyalkanoic acid unit (3-HA) includes, as the alkyl group (R), a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group. , an undecyl group, a dodecyl group, a tridecyl group, etc., but the repeating unit of the polyhydroxyalkanoic acid (PHA) according to the present invention is 3-hydroxybutanoic acid ( 3-HB: characterized by including the following chemical formula (4)).
  • 3-hydroxyhexanoic acid (3-HH: the following chemical formula (5)) in which the alkyl group is a propyl group is included as a repeating unit of polyhydroxyalkanoic acid (PHA).
  • PHA polyhydroxyalkanoic acid
  • the polyhydroxyalkanoic acid (PHA) according to the present invention contains 3-hydroxybutanoic acid units (3-HB) and 3-hydroxyheptanoic acid units (3-HH) as repeating units, the following It is preferably contained as a copolymer (P(3-HB-co-3-HH)) of 3-hydroxybutanoic acid (3-HB) and 3-hydroxyhexanoic acid (3-HH) exemplified in .
  • the proportion of 3-hydroxyhexanoic acid (3-HH) in the repeating unit of the polyhydroxyalkanoic acid (PHA) according to the present invention is It is 30% or less (weight ratio), preferably 27% or less, relative to the total amount of repeating units of alkanoic acid (PHA).
  • Porous microparticles can be produced when the proportion of 3-hydroxyhexanoic acid (3-HH) is 27% or less with respect to the total amount of repeating units of polyhydroxyalkanoic acid. %, it may be difficult to produce porous microparticles.
  • 4-hydroxybutanoic acid represented by the above chemical formula (3) is used as the repeating unit of the polyhydroxyalkanoic acid (PHA) according to the present invention.
  • (4-HB) 4-hydroxybutanoic acid unit
  • the 3-hydroxy It is preferably included as a copolymer of butanoic acid (3-HB) and 4-hydroxybutanoic acid (4-HB) (P(3-HB-co-4-HB)).
  • the proportion of 4-hydroxybutanoic acid (4-HB) in the repeating units of the polyhydroxyalkanoic acid (PHA) according to the present invention is 40 to 50% (weight ratio), preferably at a rate of 40 to 45%, more preferably at a rate of 40 to 42%.
  • 4-hydroxybutanoic acid (4-HB) is contained within the range of the ratio described above with respect to the total amount of repeating units of polyhydroxyalkanoic acid (PHA), good biocompatibility and biodegradability are obtained. can be expected, and it is possible to produce fine particles that can be widely used in medical applications. Therefore, it may be difficult to manufacture fine particles that can be widely used in medical applications.
  • the polyhydroxyalkanoic acid (PHA) has a weight average molecular weight of 1.0 ⁇ 10 5 to 13.0 ⁇ 10 5 g/mol, It is preferably 3.0 ⁇ 10 5 to 10.0 ⁇ 10 5 g/mol, more preferably 3.0 ⁇ 10 5 to 8.0 ⁇ 10 5 g/mol.
  • the weight average molecular weight of the polyhydroxyalkanoic acid (PHA) is within the above range, it is possible to control the solubility in solvents and the hardness, softness, heat resistance and durability of fine particles. Hydroxyalkanoic acid (PHA) can be provided, but if the amount is outside the above range, such effects may not be obtained.
  • the melting point of the polyhydroxyalkanoic acid (PHA) is 55° C. or higher and 170° C. or lower, preferably 60° C. to 160° C., more preferably is from 80°C to 120°C.
  • the melting point of polyhydroxyalkanoic acid (PHA) may be measured by any method, but can be measured by DSC analysis, for example.
  • the method for producing the polyhydroxyalkanoic acid (PHA) according to the present invention may be any method as long as the polyhydroxyalkanoic acid (PHA) having the characteristics of the polyhydroxyalkanoic acid according to the present invention can be obtained. It is not particularly limited.
  • one embodiment of the method for producing polyhydroxyalkanoic acid (PHA) of the present invention can include the following steps. Step 1: preparing a microorganism that produces polyhydroxyalkanoic acid (PHA); Step 2: growing the microorganisms of step 1 in a medium; Step 3: A step of ingesting the grown microorganisms into an animal, and Step 4: A step of recovering and purifying polyhydroxyalkanoic acid (PHA) from the excreta of the animal in Step 3.
  • the polyhydroxyalkanoic acid (PHA) according to the present invention is preferably produced using microorganisms.
  • microorganisms include microorganisms capable of producing polyhydroxyalkanoic acid, such as Bacillus megaterium, Cupriavidus necator, Ralstonia eutropha, and Alcaligenes latus. .
  • Capriavidus necator is particularly preferred.
  • the microorganism is preferably a microorganism in which a gene involved in the synthesis of polyhydroxyalkanoic acid (PHA) has been deleted or introduced.
  • PHA polyhydroxyalkanoic acid
  • the content of 3-hydroxyhexanoic acid units (3-HB) contained in the polyhydroxyalkanoic acid can be increased.
  • to produce a copolymer P (3HB-co-3HH) composed of 3-hydroxybutanoic acid (3-HB) and 3-hydroxyhexanoic acid (3-HH) which has high melt fluidity and excellent processability. can be done.
  • the medium used for culturing microorganisms is not particularly limited as long as the microorganisms grow.
  • carbon sources include alcohols such as methanol, ethanol and butanol;
  • a medium containing fatty acids such as unsaturated fatty acids, sugars such as glucose and fructose, organic acids such as lactic acid, and oils and fats containing a large amount of saturated/unsaturated fatty acids having 10 or more carbon atoms.
  • oils and fats include vegetable oils such as coconut oil, palm kernel oil, palm oil, palm olein, rapeseed oil, soybean oil, rice oil and sesame oil, animal oils such as lard and beef tallow, and fish oils.
  • oils and fats unrefined oils and waste cooking oils can also be used. Palm kernel oil or coconut oil containing lauric acid is preferable as fats and oils added to the medium as a carbon source.
  • the content of polyhydroxyalkanoic acid (PHA) can be increased by including palm kernel oil or coconut oil.
  • Aerobic conditions are preferred as conditions for culturing microorganisms for producing the polyhydroxyalkanoic acid (PHA) according to the present invention.
  • a nitrogen source or an inorganic substance may be added.
  • Nitrogen sources include ammonia, ammonium salts such as ammonium chloride, ammonium sulfate and ammonium phosphate.
  • examples of inorganic substances include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, and sodium chloride.
  • the culture temperature is preferably 20°C to 40°C, more preferably 25°C to 35°C. Although the culture time is not particularly limited, it is preferably 48 to 72 hours.
  • 3-hydroxybutanoic acid (3-HB) and 3-hydroxyhexanoic acid (3-HH) content of 3-hydroxyhexanoic acid (3-HH) can be controlled.
  • 3-hydroxybutanoic acid (3-HB) and 3-hydroxyhexanoic acid (3-hydroxybutanoic acid (3-HB) and 3-hydroxyhexanoic acid ( 3-HH) it is possible to control the content of 3-hydroxyhexanoic acid (3-HH).
  • the method for recovering and purifying polyhydroxyalkanoic acid is not particularly limited, but a method of recovering from the medium by centrifugation and extracting with a solvent or the like, or a method of digesting and absorbing the above-mentioned microorganisms by animals and recovering them as excrement. etc.
  • a method of digesting and absorbing microorganisms by animals and recovering granular polyhydroxyalkanoic acid (PHA) contained in excrement is preferable.
  • the above animals include animals such as rodents, goats, sheep, cattle, and birds, aquatic organisms, beetles, insects, and the like.
  • larvae of beetles such as mealworms are preferable, and 35-day-old housefly larvae (Tenebrio molitor) are more preferable.
  • fecal pellets are collected, sieved using a mesh, washed with water and a base such as sodium hydroxide, and dried to obtain polyhydroxyalkanes.
  • Acid (PHA) can be recovered.
  • PHA polyhydroxyalkanoic acid
  • Method for producing P(3-HB) Using Cupriavidus necator H16 strain, 10 g/L after pre-culture The mixture was transferred to a 500 mL conical flask containing palm oil, 0.54 g/L urea and 100 ⁇ L of MM composition (the composition is described in (3) below), and cultured at 30° C. with shaking at 200 rpm for 24 hours. After culturing, the cells were freeze-dried, and about 5 g thereof was dissolved in 500 mL of chloroform and stirred at room temperature for 5 days. Cell residue was separated from the liquid with a filter.
  • the solution was concentrated on a rotary evaporator, added dropwise to cold methanol, stirred for about 2 hours until a precipitate formed, and polyhydroxyalkanoic acid (PHA), poly3 without 3-hydroxyhexanoic acid (3-HH), was used.
  • PHA polyhydroxyalkanoic acid
  • 3-HH 3-hydroxyhexanoic acid
  • -Hydroxybutanoic acid P(3-HB) was purified.
  • the resulting precipitate was vacuum filtered through a 0.2 ⁇ m PTFE filter and dried.
  • the polyhydroxyalkanoic acid (PHA) of the present invention can be mixed with other additives to form a resin composition as long as its physical properties are not impaired.
  • resins other than the polyhydroxyalkanoic acid (PHA) of the present invention antioxidants, ultraviolet absorbers, plasticizers, flame retardants, inorganic fillers, crystal nucleating agents, etc. can be used. .
  • thermoplastic resins such as polyethylene and polypropylene, polyimides, polyamides, polyphenylene ethers, and polyether ketones. , polyether ketone ketone, polybutadiene, polystyrene, polyester, polylactic acid, phenol resin, poly(meth)acrylic acid, norbornene resin and the like. Among these, biodegradable resins are desirable.
  • the shape of the fine particles containing the polyhydroxyalkanoic acid (PHA) of the present invention can take various shapes such as spherical, plate-like, spindle-like, and needle-like, but a spherical shape is preferable.
  • the particle size of the microparticles containing polyhydroxyalkanoic acid (PHA) of the present invention is 0.2 to less than 10 ⁇ m, preferably 7 ⁇ m or less, in consideration of application to medical applications.
  • the method for measuring the particle size of the microparticles containing polyhydroxyalkanoic acid (PHA) of the present invention will be described in detail below, but processing using SEM observation images and software (ImageJ) and dynamic light scattering method are used. Using. Additionally, the microparticles containing the polyhydroxyalkanoic acid (PHA) of the present invention can have a porous morphology to increase surface area.
  • the microparticles containing polyhydroxyalkanoic acid (PHA) of the present invention can retain other substances not only on the surface of the microparticles but also inside.
  • Other substances are not particularly limited as long as the characteristics of the fine particles containing polyhydroxyalkanoic acid of the present invention are not impaired, but examples include calcium carbonate, aluminum oxide, magnesium oxide, magnesium carbonate, mica, talc, Examples include inorganic powdery substances such as silica, organic powdery substances such as magnesium stearate and zinc stearate, and solvent-soluble substances.
  • the fine particles containing polyhydroxyalkanoic acid (PHA) of the present invention can have a 10% compressive strength of 0.23 to 2.20 MPa.
  • the 10% compressive strength of the fine particles according to the present invention can be adjusted, for example, by mixing a resin such as cellulose.
  • the fine particles containing polyhydroxyalkanoic acid (PHA) of the present invention include a mode in which they can be dispersed in an aqueous solvent.
  • the water-based solvent is exemplified by water, but is not limited to water, and may be a mixed solvent of water and a hydrophilic solvent such as alcohol.
  • the microparticles containing polyhydroxyalkanoic acid (PHA) according to the present invention can be dispersed in an aqueous solvent, so that it can be expected to have the effect of being applicable to various uses.
  • PHA polyhydroxyalkanoic acid
  • various methods such as a spray drying method and a dispersion method can be applied.
  • the electrospray deposition method is suitable because it is possible, the particle size and strength of the fine particles can be varied in a wide range, and the manufacturing process is simple.
  • the electrospray deposition method (ESD method) will be described below, but the method for producing fine particles from the polyhydroxyalkanoic acid (PHA) according to the present invention is not limited to the electrospray deposition method. .
  • Electrospray deposition method The principle of the electrospray deposition method used as a specific embodiment of the present invention and the electrospray deposition apparatus (ESD: electrostatic atomization apparatus) used for carrying out the electrospray deposition method will be described.
  • ESD electrostatic atomization apparatus
  • Fig. 1 shows a conceptual diagram showing the basic configuration of an electrospray deposition apparatus.
  • the container CNT contains the sample solution SL.
  • the sample solution SL is, for example, an organic polymer solution or a polymer solution.
  • the sample solution is a polyhydroxyalkanoic acid (PHA) solution dissolved in a solvent, or a silica fine particle dispersion.
  • PHA polyhydroxyalkanoic acid
  • the ESD method is a very complex physical phenomenon, and the entire process has not been elucidated, but it is generally considered to be the following phenomenon.
  • a sample solution is contained in a thin capillary-shaped nozzle NZL, and a voltage of several thousand to several tens of thousands of volts is applied to a target substrate TS (counter electrode) facing it.
  • a target substrate TS counter electrode
  • a strong electric field is generated due to the effect of electric field concentration, and charged microdroplets gather on the liquid surface to form a cone (called a Taylor cone).
  • the sample solution from this tip breaks the surface tension and becomes a jet.
  • the jet is strongly charged and becomes a spray due to the repulsion of the electrostatic force (Coulombic explosion).
  • the droplets formed by spraying are very small, and the solvent evaporates and dries within a short period of time, forming fine nanoparticles and nanofibers.
  • the charged fine nanoparticles and narrow-diameter nanofibers are attracted to the target substrate TS functioning as a counter electrode by electrostatic force.
  • the deposited pattern can be controlled by an insulator mask and auxiliary electrodes (not shown).
  • the sample is not limited to a solution as long as it is liquid, and may be a dispersion liquid.
  • the sample solution in the container CNT is pushed out toward the nozzle NZL side by a pneumatic/syringe pump, plunger, or the like (ejection means, not shown).
  • Pushing pressure is applied, for example, by a stepping motor and a screw feed mechanism (not shown).
  • the sample solution SL subjected to the pushing pressure increases the internal pressure inside the container CNT and is discharged from the tip of the nozzle NZL.
  • an adjustment mechanism stepping motor and screw feed mechanism
  • the nozzle NZL is made of metal and is supplied with a positive voltage from a high voltage power supply HPS via a conductor wire WL.
  • the negative side of the high voltage power supply HPS is connected to the target substrate TS (substrate serving as a counter electrode).
  • a positive voltage is applied to the sample solution SL via the nozzle NZL, and the solution is positively charged.
  • the polarity of the voltage applied to the sample solution SL may be negative.
  • the material that is sprayed becomes fibers and droplets, and due to the repulsion caused by the electric charge, it repeatedly splits while flying, forming nanofibers and nanoparticles. Since the sprayed material is nano-sized and has a large surface area, it is almost dry when it reaches the substrate or liquid receiving tank.
  • the shape and size can be changed depending on the spray conditions. For example, when using a polymer solution, thick nanofibers are formed if the molecular weight is high and the concentration is high, and thin nanofibers or nanoparticles are formed if the molecular weight is low and the concentration is low. be done.
  • various conditions such as the voltage and distance between the nozzle and the substrate, ambient temperature and humidity have an effect.
  • various solvent-soluble polyhydroxyalkanoic acids were used as samples, microparticles were produced under various conditions, and the particle size, shape, surface shape, etc. of the microparticles were confirmed by the method described in Examples. .
  • the electrospray deposition apparatus not only the apparatus described above but also other types of ESD apparatus can be used, and especially for mass production, the air flow described in Retable 2009/060898 is used. A method is preferred.
  • any solvent that sufficiently dissolves the PHA polymer, strongly suppresses the formation of nanofibers, promotes the formation of fine particles, and has a useful effect of changing the particle size can be used as the solvent. It is not particularly limited. From this point of view, chloroform and dimethyl carbonate were used as suitable solvents in the following examples.
  • Example 1 Production of fine particles from P(3-HB) 1.5 g of P(3-HB) resin consisting of 3-HB without containing 3-HH as a repeating unit of polyhydroxyalkanoic acid (PHA) was dissolved in chloroform to prepare 100 g of a sample solution having a concentration of 1.5% by weight. 1 mL of this sample solution is placed in a container CNT of a glass syringe (Tsubasa Kogyo white hard syringe 1 mL) equipped with a metal double nozzle NZL (Musashi Engineering Co., Ltd. DN-24G) with an inner diameter of 0.29 mm shown in FIG.
  • an electrospray deposition apparatus (Esprayer ES-2000 manufactured by Fuence Co., Ltd.).
  • the electrospray conditions at this time were as follows: voltage between nozzle NZL and collector (target substrate TS): 25 KV, nozzle-collector distance: 4 cm, liquid flow rate: 20 ⁇ l/min. and dispersed to obtain fine particles of P(3-HB).
  • a solution containing fine particles of P(3-HB) was obtained with a solution concentration of 0.7 to 3.0% by weight and the other conditions being the same. By drying the liquid, fine particles shown in FIG. 2 were obtained.
  • the average particle size was determined from this SEM observation image by particle size analysis using ImageJ, the average particle size was 6.70 ⁇ m.
  • Example 2 Production of porous fine particles from P(3-HB) Resin 1 of P(3-HB) consisting of 3-HB without containing 3-HH as a repeating unit of polyhydroxyalkanoic acid (PHA) 0.5 g was dissolved in chloroform to prepare 100 g of a sample solution having a concentration of 1.5% by weight. 1 mL of this sample solution was placed in a container CNT of a glass syringe (Tsubasa Kogyo white hard syringe 1 mL) equipped with a metal nozzle NZL (Musashi Engineering Co., Ltd. 27G) with an inner diameter of 0.21 mm shown in FIG.
  • a glass syringe Tsubasa Kogyo white hard syringe 1 mL
  • NZL Metal nozzle NZL
  • Liquids containing fine particles of P(3-HB) were also obtained under the conditions of other nozzle diameters and flow velocities with a solution concentration of 0.7 to 3.0% by weight. By drying the liquid, fine particles shown in FIG. 3 were obtained.
  • the SEM observation image confirmed that the fine particles had a spherical shape and a porous surface.
  • the average particle size was about 6.4 ⁇ m. It is considered that the physical properties of the resin itself are related to the factors that make it porous. When it is large, no porous fine particles are generated. was hardly seen.
  • Example 3 Production of fine particles from P(3-HB-co-3-HH) P(3-HB-co-3-HH containing 27% 3-hydroxyhexanoic acid (3-HH) as a repeating unit ) was dissolved in chloroform to prepare 100 g of a sample solution having a concentration of 1.5% by weight. 1 mL of this sample solution is placed in a container CNT of a glass syringe (Tsubasa Kogyo white hard syringe 1 ml) equipped with a metal nozzle NZL (Musashi Engineering Co., Ltd. SNA-22G) with an inner diameter of 0.42 mm shown in FIG.
  • the liquid containing fine particles of P(3-HB-co-3-HH) was prepared under the same conditions (metal nozzles 24G, 21G, DN-24) with a solution concentration of 0.7 to 3.0% by weight. Obtained. By drying the liquid, the microparticles shown in FIG. 4 were obtained. An SEM observation image revealed that the fine particles had a substantially spherical shape, and almost no porosity was observed. When the particle size was measured using an SEM observation image and software (ImageJ) in the same manner as in Example 1, the average particle size was about 6.6 ⁇ m.
  • Example 4 Production of microparticles from P(3-HB-co-4-HB) P(3-HB-co-4-HB containing 42% 4-hydroxybutanoic acid (4-HB) as a repeating unit ) was dissolved in dimethyl carbonate to prepare 150 g of a sample solution having a concentration of 1.0% by weight. 1 mL of this sample solution is placed in a container CNT of a glass syringe (Tsubasa Kogyo white hard syringe 1 mL) equipped with a metal nozzle NZL (Musashi Engineering Co., Ltd. DN-24G) with an inner diameter of 0.29 mm shown in FIG.
  • the particle size of the obtained fine particles was measured by a measurement method based on SEM observation images and software (ImageJ) processing, and by a dynamic scattered light intensity method.
  • the measurement conditions are as described above.
  • the particle size measured by the SEM observation image and software (ImageJ) processing was 0.42 ⁇ m as the average particle size.
  • the mode diameter measured by the dynamic scattered light intensity method was 0.34 ⁇ m (335.1 nm). Therefore, the particle diameter 420 nm (0.42 ⁇ m) measured by the SEM observation image and software (ImageJ) processing and the mode diameter 335.1 nm measured by the dynamic scattered light intensity method show very similar results. It was confirmed that the measurement of particle size by image and software (ImageJ) processing is a highly reliable measurement method.
  • Example 5 Production of fine particles holding other compounds 1.5 g of P(3-HB) resin consisting only of 3-HB as the repeating unit of polyhydroxyalkanoic acid (PHA), 0.5 g of the weight % silica particles ADMAFINE SC2500-SPJ (manufactured by Admatechs) was added and dissolved in chloroform to prepare about 100 g of a 1.5% by weight solution of P(3-HB). 1 mL of this sample solution is placed in a container CNT of a glass syringe (Tsubasa Kogyo white hard syringe 1 mL) equipped with a metal nozzle NZL (Musashi Engineering Co., Ltd.
  • DN-24G with an inner diameter of 0.29 mm shown in FIG. It was mounted on an electrospray deposition apparatus (Esprayer ES-2000 manufactured by Fuence Co., Ltd.).
  • the electrospray conditions at this time were as follows: nozzle NZL-collector (target substrate TS) voltage 25 KV, nozzle-collector distance 4 cm, liquid flow rate 20 ⁇ l/min (double nozzle, 10 ⁇ l/min per nozzle).
  • the particle diameter of the fine particles was about 6-10 ⁇ m, and silica particles were held on the surface thereof.
  • the silica particles were also held inside the P(3-HB) fine particles.
  • Surface exposure was performed by the ultra-thin section method according to the following procedure, and observed with an SEM. 1) Place the sample on a slide glass. 2) Place a drop of embedding resin on top of the powder and allow it to harden. EPON812 (epoxy resin) was used, and the test was performed at 60° C. for 48 hours. 3) Cover the cured resin with the beam capsule filled with the embedding resin. 4) The embedding resin is cured (60°C for 48 hours). 5) Peel off the beam capsule in which the embedding resin is hardened by warming the slide glass.
  • FIG. 7 shows an observation image of a BSE image of SEM.
  • the BSE image of the SEM is a backscattered electron image of the SEM, and is a technique that allows confirmation of the composition distribution in the sample. It was confirmed that particles with different chemical compositions were retained.
  • Example 6 Compressive strength measurement of fine particles containing polyhydroxyalkanoic acid (PHA) Breaking strength and deformation strength as physical properties of fine particles are practically important when considering the application of such fine particles to various uses. Since it is a factor, the fine particles containing polyhydroxyalkanoic acid (PHA) according to the present invention were subjected to a compression test to confirm the 10% compressive strength. The following were used as samples. Sample (1) Fine particles produced from P(3-HB) (fine particles produced in Example 1) Sample (2) Fine particles produced from P(3-HB-co-3-HH) (produced in Example 3 fine particles) The compression test was performed using a Shimadzu Micro Compression Tester MCT-510 under the following conditions. A very small amount of the sample was dispersed on a glass plate, and a compression test was performed on each fine particle. The test results were evaluated as average values.
  • the sample of fine particles containing polyhydroxyalkanoic acid (PHA) according to the present invention showed 0.23 to 2.20 (MPa) as 10% compressive strength. It was confirmed to have In addition, the microparticles produced from P(3-HB) are 10% higher than the microparticles produced from P(3-HB-co-3-HH) containing 27% 3-hydroxyhexanoic acid (3-HH) as a repeating unit. A high value as a % compressive strength was shown, and it was confirmed that the strength was higher.
  • the fine particles containing polyhydroxyalkanoic acid (PHA) according to the present invention can be adjusted in strength by adjusting the blending ratio of 3-hydroxyhexanoic acid (3-HH) as the repeating unit, and can be used in various ways. It can be applied according to the environment and usage.
  • Example 7 Thermal properties of polyhydroxyalkanoic acid (PHA) polymer
  • PHA polyhydroxyalkanoic acid
  • the melting point is a factor for applying the microparticles to actual applications. It is one of the important physical properties from the standpoint of ease of processing and the like, and if it becomes possible to change the melting point, it can be an advantageous physical property in processing.
  • the melting point of P (3-HB) which has been relatively studied so far, is reported to be 170 to 180 ° C. in many cases.
  • the melting point of P (3-HB-co-3-HH) containing % is unknown, and the melting point of P (3-HB-co-4-HB) varies considerably depending on the literature, so the following method Confirmed with The measurement was performed with a differential scanning calorimeter DSC8500 manufactured by PerkinElmer. The measurement conditions were as follows: about 6 mg of sample was used, and the temperature was raised from 5.00°C to 200.00°C at a rate of 5.00°C/min in a nitrogen gas atmosphere. gone. As a result, it was confirmed that the melting point of P(3-HB-co-3-HH) was 79.8°C and the melting point of P(3-HB-co-4-HB) was 56°C.
  • the fine particles containing polyhydroxyalkanoic acid (PHA) according to the present invention are excellent in processability, biodegradability in natural environments, biocompatibility, biodegradability, etc., and have a wide melting point, particle diameter, and moderate compressive strength. It can be used for many industrial and medical purposes, and does not cause any environmental problems such as microplastics.

Abstract

本発明は、生分解性ポリマーであるポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)を含み、粒子径0.2~10μm未満である微粒子、及びその製造方法を提供する。本発明の微粒子は、生分解性であり、加工性に優れ、生体適合性を備えた微粒子であることから、医薬用途を含めた広い用途への適用が可能である。

Description

ポリヒドロキシアルカン酸(PHA)を含む微粒子及びその製造方法
 本発明は、ポリヒドロキシアルカン酸(PHA)を含む微粒子であって、ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)単位を含み、粒子径が0.2~10μm未満であることを特徴とする微粒子、及びその製造方法に関する。
 合成樹脂からなる微粒子は、プラスチック樹脂改質剤、化粧品用改質剤等の改質剤としての用途、塗料用添加剤、トナー用添加剤、化粧品用添加剤等の添加剤としての用途、液晶用スペーサ、クロマト充填剤、接着テープ用充填剤等の充填剤としての用途等に加え、薬物送達システム(DDS)、医療診断用検査粒子等の医療分野における様々な用途を有することから、多くの産業分野で欠かせない素材となってきている。しかしながら、合成樹脂からなる微粒子には、原料となる石油価格が変動し、原料供給が一定しないといった問題に加え、環境へのマイナスの影響として、温室効果ガスを産生すると共に、製造過程においてあるいは製造後に使用された後、直接または排水処理場を通り抜け、河川・海洋などに流入することにより、様々な問題を生じるなど、世界的規模での解決が迫られている。
 特に、最近では、海洋でのマイクロプラスチックの汚染が問題となっている。例えば、プラスチックごみが波や紫外線で粉砕されると長さ5ミリメートル以下のマイクロプラスチックとなり、魚の体内にマイクロプラスチックが蓄積している。50年後には海のプラスチックごみは魚の総重量を超えるとされ、プラスチックごみを削減させることは人類にとって喫緊の課題となってきている。とりわけ、合成樹脂からなる微粒子はそれ自体がマイクロプラスチックであることから、その使用については既に大きな制限を受けている。したがって、合成樹脂からなる微粒子の使用が必須の産業分野においては、微粒子の原料について従来の合成樹脂からの転換が迫られている(非特許文献1)。
 また、合成樹脂からなる微粒子は、前記のとおり医療分野においても薬物送達システム(DDS)等への適用を目的として大きな期待が持たれているが、医療分野においては前記の合成樹脂からなる微粒子の抱える課題に加えて、生体内での安全な使用を可能とするために生体適合性などの条件を満たすことも必要となっている(非特許文献2)。
 これらの課題の解決方法の一つとして、微粒子の原料として生分解性バイオポリマーを使用することが提案されている。既に、ポリ乳酸(PLA)、ポリヒドロキシアルカン酸(PHA)、セルロース等のバイオポリマーを用いた微粒子の開発も提案されているが(特許文献1、及び特許文献2)、コンポストなどの高温多湿環境ではなく、実際の河川や海洋環境中においても“生分解性”と言えるのは、ポリヒドロキシアルカン酸(PHA)とセルロースを原料として用いた場合のみであるとの指摘もある。
 一方、生分解性バイオポリマーとしてポリヒドロキシアルカン酸(PHA)を微粒子の原料として用いた微粒子の製造に関しては、主にポリ-3-ヒドロキシブタン酸(3-PHB)を用いた開発が進められてきた。特許文献3には、生体適合性及び生物分解性のポリマーからなる、注射器により注入可能な微粒子であって、ポリマーとして3-ヒドロキシブタン酸と4-ヒドロキシブタン酸との共重合体(ポリ(4-ヒドロキシブチレート-co-3-ヒドロキシブチレート))を用いた微粒子が記載されている。また、特許文献4には、ポリヒドロキシアルカノエート(PHA)を含む微粒子形態である化粧品組成物が記載されており、PHAとして、ポリ-3-ヒドロキシブチレート(PHB)、ポリ-3-ヒドロキシヘキサノエート(PHH)、ポリ(3-ヒドロキシブチレート-co-4-ヒドロキシブチレート)が例示されている。また、特許文献5には、ポリヒドロキシアルカノエートを含む多孔質樹脂粒子であって、ポリヒドロキシアルカノエートとしては、3-ヒドロキシブチレート単位と3-ヒドロキシヘキサノエート単位との共重合体であるポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)が好適な例として挙げられている。さらに、特許文献6には、ポリヒドロキシアルカノエート、より好ましくはポリ-4-ヒドロキシブチレート及びそのコポリマーを含む不織布であって、特定の平均直径及び破裂強度を有する微細繊維を備える乾式紡糸工程による不織布が記載されている。
 しかしながら、ポリ-3-ヒドロキシブタン酸にはもろさや硬さ等の物性に問題があり、また、生産・精製のコストがかかることから、ポリ-3-ヒドロキシブタン酸を主原料とし、所望の物性を有する微粒子の実用化には至っていない。
特許第5133478号公報 米国特許出願公開第2006/0177513号明細書 米国特許第10463619号明細書 国際公開第2018/178899号 国際公開第2017/056908号 特表2013-534978号公報
平成28年度化学物質安全対策(マイクロプラスチック国内排出実態調査)報告書 平成29年2月JFE テクノリサーチ株式会社 平成28年度経済産業省委託調査報告書 Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery, Sci. Pharm. 2019, 87,20
 そこで、医療用途を含めた広範囲な用途に使用可能な微粒子を提供するために、それぞれの用途において求められる物性、特に、重要な物性としての適切な粒子径分布及び他の物質の保持性といった物性を有する微粒子を製造するための好適な生分解性ポリマーが求められていたと共に、それらの生分解性ポリマーから広範囲な用途に使用可能となる物性を有する微粒子をより簡便に製造する方法を確立することが求められていた。
 本発明者らは、上記課題を解決するために検討した結果、ポリヒドロキシアルカン酸(PHA)を産生する微生物を準備するステップ、前記微生物を培地内で増殖するステップ、増殖した前記微生物を動物に摂取させるステップ、及び前記動物の排泄物からポリヒドロキシアルカン酸(PHA)を回収するステップを含む方法により溶融流動性に優れるポリヒドロキシアルカン酸(PHA)が産生されるとの知見に基づいて、かかるポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)を含み、粒子径が0.2~10μm未満の微粒子が所望の物性を有することを見いだし、本発明を完成するに至った(上記知見については、特願2019-086889:提出日平成31年4月26日参照)。
 すなわち、ポリヒドロキシアルカン酸(PHA)を含む微粒子であって、その繰り返し単位として3-ヒドロキシブタン酸(3-HB)単位を含み、粒子径が0.2~10μm未満の微粒子が所望の物性を有することを確認し、本発明を完成するに至った。
 本発明は、以下の特定事項により特定されるとおりのものである。
 (1)ポリヒドロキシアルカン酸(PHA)を含む微粒子であって、ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)を含み、粒子径が0.2~10μm未満であることを特徴とする微粒子。
 (2)粒子径が7μm以下である(1)に記載の微粒子。
 (3)ポリヒドロキシアルカン酸(PHA)が、その繰り返し単位として、さらに3-ヒドロキシヘキサン酸(3-HH)を含む(1)又は(2)に記載の微粒子。
 (4)3-ヒドロキシヘキサン酸(3-HH)の割合が、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全重量に対して27%(重量比)以下である(3)に記載の微粒子。
 (5)ポリヒドロキシアルカン酸(PHA)が、3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とのコポリマーを含む(3)又は(4)に記載の微粒子。
 (6)ポリヒドロキシアルカン酸(PHA)が、その繰り返し単位として、さらに4-ヒドロキシブタン酸(4-HB)単位を含む(1)~(5)のいずれかに記載の微粒子。
 (7)4-ヒドロキシブタン酸(4-HB)の割合が、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全重量に対して40~50%(重量比)である(6)に記載の微粒子。
 (8)ポリヒドロキシアルカン酸(PHA)が、3-ヒドロキシブタン酸(3-HB)と4-ヒドロキシブタン酸(4-HB)とのコポリマーを含む(6)又は(7)に記載の微粒子。
 (9)ポリヒドロキシアルカン酸(PHA)の平均分子量(Mw)が、10万から130万である(1)~(8)のいずれかに記載の微粒子。
 (10)ポリヒドロキシアルカン酸(PHA)の融点が、55℃以上170℃以下である(1)~(9)のいずれかに記載の微粒子。
 (11)微粒子が、ポリヒドロキシアルカン酸(PHA)以外の樹脂を含む(1)~(10)のいずれかに記載の微粒子。
 (12)ポリヒドロキシアルカン酸(PHA)以外の樹脂が生分解性樹脂である(11)に記載の微粒子。
 (13)微粒子が、球状である(1)~(12)のいずれかに記載の微粒子。
 (14)微粒子が、多孔質である(1)~(13)のいずれかに記載の微粒子。
 (15)微粒子が、その表面及び/又は内部に他の物質を保持している(1)~(14)のいずれかに記載の微粒子。
 (16)微粒子の10%圧縮強度が、0.23~2.20(MPa)である(1)~(15)のいずれかに記載の微粒子。
 (17)微粒子が、水系溶媒中に分散できる(1)~(16)のいずれかに記載の微粒子。
 (18)以下の工程を含む、(1)~(17)のいずれに記載の微粒子の製造方法。
工程1:ポリヒドロキシアルカン酸(PHA)を産生する微生物を準備する工程、
工程2:工程1の微生物を培地内で増殖する工程、
工程3:増殖した微生物を動物に摂取させる工程、
工程4:工程3の動物の排泄物からポリヒドロキシアルカン酸(PHA)を回収・精製する工程、及び
工程5:工程4により得られたポリヒドロキシアルカン酸(PHA)を微粒子化する工程。
 (19)工程5が、工程4により得られたポリヒドロキシアルカン酸(PHA)を含む樹脂組成物を微粒子化する工程である、(18)に記載の微粒子の製造方法。
 本発明によれば、ポリヒドロキシアルカン酸(PHA)を含む微粒子であって、ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)を含むことにより、かかるポリヒドロキシアルカン酸(PHA)を含む微粒子は自然環境での生分解性及び加工性に優れたものである。また、本発明によれば、ポリヒドロキシアルカン酸(PHA)を含む微粒子の粒子径が0.2~10μm未満であることにより、広範囲な用途に使用可能な物性として、融点・粒子径・多孔質性・圧縮強度・物質保持性などを有することができるものである。また、本発明によれば、かかるポリヒドロキシアルカン酸(PHA)を含む微粒子の簡便な製造方法を提供するものである。
 したがって、本発明によれば、生分解性であり、加工性に優れ、生体適合性を備えた広い用途で使用可能な物性を有するポリヒドロキシアルカン酸(PHA)を含む微粒子を提供することができる。
 そして、本発明に係る微粒子は、自然環境下での生分解性に優れた微粒子として提供することができることから、海洋汚染やマイクロプラスチック問題等の解消に寄与することができる。また、廃棄処分において生分解処理が可能となるため、焼却処理を減らし、環境への負荷を低減するという効果も期待できる。さらに、本発明に係る微粒子は、ポリヒドロキシアルカン酸(PHA)の有する生体適合性や生体内分解性に加えて、広範囲な用途に使用可能な物性を有することができることから、これまでの用途に加えて、医療用途において幅広く使用できる可能性が高いものである。
図1は、エレクトロスプレー・デポジション装置の基本的な構成を示す概念図である。 図2は、実施例1においてP(3-HB)から製造した微粒子のSEM観察画像である。 図3は、実施例2においてP(3-HB)から製造した多孔質微粒子のSEM観察画像である。 図4は、実施例3においてP(3-HB-co-3-HH)から製造した微粒子のSEM観察画像である。 図5は、実施例4においてP(3-HB-co-4-HB)から製造した微粒子のSEM観察画像である。 図6は、実施例5においてP(3-HB)から製造した微粒子がシリカ粒子を表面に保持したことを示すSEM観察画像である。 図7は、実施例5においてP(3-HB)から製造した微粒子がシリカ粒子を内部に保持したことを示すSEM観察画像である。 図8は、実施例5においてP(3-HB)から製造した微粒子がシリカ粒子を保持したことを示すSEMのBSE観察画像である。
 次に、本発明を実施するための最良の形態を含め、具体的な形態について説明する。
 [ポリヒドロキシアルカン酸(PHA)]
 ポリヒドロキシアルカン酸(PHA)は、下記化学式(1)で例示されるヒドロキシアルカン酸のポリエステルであり、生分解性の重合体である。
Figure JPOXMLDOC01-appb-C000001
(化学式(1)、Rはアルキル基を表す。)
 本発明に係るポリヒドロキシアルカン酸(PHA)の繰り返し単位としての3-ヒドロキシアルカン酸単位(3-HA)を化学式(2)として、4-ヒドロキシアルカン酸単位(4-HA)を化学式(3)として以下に記載する。
Figure JPOXMLDOC01-appb-C000002
(化学式(2)、Rはアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000003
(化学式(3))
 3-ヒドロキシアルカン酸単位(3-HA)は、アルキル基(R)として、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基などを取ることができるが、本発明に係るポリヒドロキシアルカン酸(PHA)の繰り返し単位は、以下に記載するアルキル基がメチル基である3-ヒドロキシブタン酸(3-HB:下記化学式(4))を含むことを特徴とするものである。さらに、本発明の別な実施態様としては、ポリヒドロキシアルカン酸(PHA)の繰り返し単位として、アルキル基がプロピル基である3-ヒドロキシヘキサン酸(3-HH:下記化学式(5))を含むことを特徴し、本発明に係るポリヒドロキシアルカン酸(PHA)がその繰り返し単位として、3-ヒドロキシブタン酸単位(3-HB)と3-ヒドロキシヘプタン酸単位(3-HH)とを含む場合、以下に例示する3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とのコポリマー(P(3-HB-co-3-HH))として含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 本発明に係るポリヒドロキシアルカン酸(PHA)の別の実施態様としては、本発明に係るポリヒドロキシアルカン酸(PHA)の繰り返し単位における3-ヒドロキシヘキサン酸(3-HH)の割合が、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全量に対して30%以下(重量比)であり、好ましくは27%以下である。3-ヒドロキシヘキサン酸(3-HH)の割合が、ポリヒドロキシアルカン酸の繰り返し単位全量に対して27%以下である場合には、多孔質である微粒子を製造することが可能であるが、27%を超えて含まれる場合には、多孔質である微粒子を製造することが困難となるおそれがある。
 また、本発明に係るポリヒドロキシアルカン酸(PHA)の別の実施態様としては、本発明に係るポリヒドロキシアルカン酸(PHA)の繰り返し単位として、上記化学式(3)に記載の4-ヒドロキシブタン酸(4-HB)を含むことを特徴とし、本発明に係るポリヒドロキシアルカン酸(PHA)がその繰り返し単位として4-ヒドロキシブタン酸単位(4-HB)を含む場合、以下に例示する3-ヒドロキシブタン酸(3-HB)と4-ヒドロキシブタン酸(4-HB)とのコポリマー(P(3-HB-co-4-HB))として含まれることが好ましい。
Figure JPOXMLDOC01-appb-C000005
 本発明に係るポリヒドロキシアルカン酸(PHA)の繰り返し単位における4-ヒドロキシブタン酸(4-HB)の割合は、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全量に対して40~50%(重量比)であり、好ましくは40~45%の割合であり、より好ましくは40~42%の割合である。4-ヒドロキシブタン酸(4-HB)がポリヒドロキシアルカン酸(PHA)の繰り返し単位の全量に対して前記した割合の範囲内で含まれる場合には、良好な生体適合性と生体内分解性とが期待でき、医療用途において広く使用可能な微粒子の製造が可能となるが、前記した割合の範囲を逸脱して含まれる場合には良好な生体適合性と生体内分解性とが期待できない可能性があり、医療用途において広く使用可能な微粒子の製造が困難となるおそれがある。
 本発明に係るポリヒドロキシアルカン酸(PHA)の別の実施態様としては、ポリヒドロキシアルカン酸(PHA)の重量平均分子量が1.0×10~13.0×10g/molであり、好ましくは3.0×10~10.0×10g/molであり、より好ましくは3.0×10~8.0×10g/molである。ポリヒドロキシアルカン酸(PHA)の重量平均分子量が上記した範囲にある場合には、溶媒への溶解性、及び微粒子とした際の硬さ・柔らかさ、耐熱性や耐久性を制御可能とするポリヒドロキシアルカン酸(PHA)を提供することができるが、上記した範囲を逸脱した場合には、こうした効果が得られないおそれがある。
 本発明に係るポリヒドロキシアルカン酸(PHA)の別な実施態様としては、ポリヒドロキシアルカン酸(PHA)の融点が55℃以上170℃以下であり、好ましくは60℃から160℃であり、より好ましくは80℃から120℃である。ポリヒドロキシアルカン酸(PHA)の融点を上記の範囲とすることで、種々の用途における使用条件に適した微粒子を製造できるポリヒドロキシアルカン酸(PHA)を提供することが可能となる。なお、ポリヒドロキシアルカン酸(PHA)の融点は、いずれの方法で測定してもかまわないが、例えば、DSC分析により測定可能である。
 [ポリヒドロキシアルカン酸(PHA)の製造方法]
 本発明に係るポリヒドロキシアルカン酸(PHA)の製造方法は、本発明に係るポリヒドロキシアルカン酸の特徴を備えるポリヒドロキシアルカン酸(PHA)が得られるのであれば、どのような製造方法でもよく、特に制限されるものではない。
 例えば、本発明のポリヒドロキシアルカン酸(PHA)の製造方法の一実施態様としては、以下の工程を含むことができる。
 工程1:ポリヒドロキシアルカン酸(PHA)を産生する微生物を準備する工程、
 工程2:工程1の微生物を培地内で増殖する工程、
 工程3:増殖した微生物を動物に摂取させる工程、及び
 工程4:工程3の動物の排泄物からポリヒドロキシアルカン酸(PHA)を回収・精製する工程
 本発明に係るポリヒドロキシアルカン酸(PHA)は、微生物を用いて製造することが好ましい。例えば、微生物としてはバチルス・ベガテリウム(Bacillus megaterium)、カプリアビダス・ネカトール(Cupriavidus necator)、ラルストニア・ユートロフア(Ralstonia eutropha)、アルカリゲネス・ラタス(Alcaligenes latus)等のポリヒドロキシアルカン酸産生能を有する微生物が挙げられる。これらの中でもカプリアビダス・ネカトールが特に好ましい。
 微生物としては、ポリヒドロキシアルカン酸(PHA)の合成に関与する遺伝子が欠失又は導入された微生物であることが好ましい。例えば、アセトアセチル-CoAレダクターゼ遺伝子を欠失させた微生物を用いることが好ましい。また、ヒドロキシアルカン酸シンターゼ遺伝子や、エノイル-CoAヒドラターゼ遺伝子を導入することが好ましい。これにより、ポリヒドロキシアルカン酸に含まれる3-ヒドロキシヘキサン酸単位(3-HB)の含有量を高めることができる。また、溶融流動性が高く、加工性に優れた3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とからなるコポリマーP(3HB-co-3HH)を製造することができる。
 微生物の培養に使用する培地は、微生物が増殖するものであれば、特に制限されない。例えば、炭素源として、メタノール、エタノール、ブタノール等のアルコール類、酢酸、プロピオン酸、ヘキサン酸、オクタン酸、デカン酸、ラウリン酸、オレイン酸、パルミチン酸、リノール酸、リノレン酸、ミリスチン酸等の飽和・不飽和脂肪酸などの脂肪酸類、グルコース、フルクトース等の糖類、乳酸等の有機酸類、炭素数が10以上である飽和・不飽和脂肪酸を多く含む油脂類を含有する培地である。油脂類としては、例えば、ヤシ油、パーム核油、パーム油、パームオレイン、菜種油、大豆油、米油、ゴマ油等の植物油脂、ラード、牛脂等の動物油脂、魚油等が挙げられる。なお、油脂類は精製前のものや、廃棄食用油等も使用することができる。培地に炭素源として添加する油脂類としては、ラウリン酸を含有するパーム核油又はヤシ油が好ましい。パーム核油又はヤシ油を含有することにより、ポリヒドロキシアルカン酸(PHA)の含有量を高めることができる。
 本発明に係るポリヒドロキシアルカン酸(PHA)を生産するための、微生物の培養条件としては、好気性条件下であることが好ましい。また、必要であれば、窒素源や無機物を添加してもよい。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩等が挙げられる。無機物としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。
 培養温度は20℃~40℃が好ましく、より好ましくは25℃~35℃である。培養時間は特に限定されないが、好ましくは48~72時間である。
 本発明に係るポリヒドロキシアルカン酸(PHA)の製造方法において、上記のアセトアセチル-CoAレダクターゼ遺伝子と、エノイル-CoAヒドラターゼ遺伝子の発現量を制御することで、3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とのコポリマーにおける3―ヒドロキシヘキサン酸(3-HH)の含有量を制御することができる。
 また、炭素源の残存量の制御や、培養液における無機成分濃度の調整、酸素の通気量及び培養時間を調整することでも、3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とのコポリマーにおける3―ヒドロキシヘキサン酸(3-HH)の含有量を制御することが可能である。
 ポリヒドロキシアルカン酸(PHA)の回収・精製方法は特に限定されないが、培地から遠心分離によって回収し、溶媒等で抽出する方法や、上記微生物を動物により消化・吸収させ、排泄物として回収する方法などが挙げられる。ポリヒドロキシアルカン酸(PHA)の濃度を簡便に濃縮できるという観点から、動物により微生物を消化・吸収させ、排泄物に含まれる顆粒状のポリヒドロキシアルカン酸(PHA)として回収する方法が好ましい。
 上記動物としては、げっ歯類、ヤギ、ヒツジ、ウシ、トリ等の動物、水生生物、甲虫、虫等が挙げられる。中でもミールワーム等の甲虫の幼虫が好ましく、35日齢のイエバエの虫食い(ダニカムシの幼虫、Tenebrio molitor)がより好ましい。
 ミールワーム等の幼虫に上記微生物を餌として与えた後に、糞便ペレットを回収し、メッシュを用いて篩い分けした後、水、水酸化ナトリウム等の塩基で洗浄、乾燥を行うことで、ポリヒドロキシアルカン酸(PHA)を回収することができる。
 ポリヒドロキシアルカン酸(PHA)の製造方法についての具体的な態様を以下に例示する。
 (1)P(3-HB)の製造方法
 Cupriavidus necator H16株を用い、前培養した後10g/L
パーム油と0.54g/Lの尿素及び100μLのMM組成液(組成は以下(3)に記載)を含む500mLコニカルフラスコに移し、200rpmで24時間30°Cで振盪培養した。培養後菌体は凍結乾燥し、約5gを500mLのクロロフォルムに溶かし、5日間室温で攪拌した。その液からフィルターで菌体残渣を分離した。この溶液をロータリーエバポレーターで濃縮し、冷メタノールに滴下し、沈殿物が生じるまで約2時間攪拌し、ポリヒドロキシアルカン酸(PHA)として、3-ヒドロキシヘキサン酸(3-HH)を含有しないポリ3-ヒドロキシブタン酸P(3-HB)を精製した。生じた沈殿物を0.2μmPTFEフィルターで真空濾過し、乾燥させた。
 (2)P(3-HB-co-3-HH)の製造方法
(ア)P(3HB-co-3HH)製造のためのミネラル培地調製
 P(3HB-co-3HH)製造のためのミネラル培地は、4.0g/LのNaHPO、4.6g/LのNaHPO、0.45g/LのKSO、0.39g/LのMgSO、62mg/LのCaCl、1mL/Lの微量元素溶液(微量元素溶液は0.1MのHClに溶解した15g/LのFeSO・7HO、2.4g/LのMnSO・HO、2.4g/LのZnSO・7HOおよび0.48g/LのCuSO・5HOを含む。)からなり、オートクレーブにより滅菌する前に、培地のpHを7.0に調整した。
(イ)13L発酵槽を用いたP(3HB-co-3HH)の生合成
 P(3HB-co-3HH)の生合成は、ポリヒドロキシアルカン酸シンターゼ遺伝
子を導入したカプリアビダス・ネカトールを用いて行った。
 まず、ポリヒドロキシアルカン酸シンターゼをコードする遺伝子を導入したカプリアビダス・ネカトールを寒天プレート上に画線し、30℃で24時間培養した。次に、前培養として、50mLの培養液に白金耳を用いて2回前記カプリアビダス・ネカトールを接種し、30℃のインキュベーターシェーカーで、培養液のOD600nmが4になるまで8時間振とうした。尿素0.54g/L、MgSO0.39g/L、CaCl62mg/L、微量元素溶液1mL/L及び粗パーム核油1質量%となるように添加されたミネラル培地100mLに対して、前記培養液約3mLを接種した。粗パーム核油はミネラル培地へ添加する前に、オートクレーブ処理を行った。さらに、このミネラル培地を、18時間培養して、6Lの発酵槽に接種した。接種された前記カプリアビダス・ネカトールの形態を、発酵槽に移す前にチェックした(10%v/v)。培養培地の温度は30℃に維持しつつ、培地のpHについては3MのNaOH及び3MのHPOの添加により7.0±0.1に設定した。攪拌は、Rushtonタービンを用いて200~900rpm攪拌速度で攪拌を行った。フィルターカートリッジ(Sartorius stedim、Germany)を通して、1vvm(空気体積/発酵槽の作業体積/分)で空気を供給し、溶存酸素濃度を40%以上に維持した。MgSO・7HOは培養後18時間目に、尿素は6時間ごとに添加した。微量元素は植え付けの間及び培養の18時間目に1mLを添加した。粗パーム核油は、微生物による油の消費に応じて、6時間ごとに10g/L~20g/Lの濃度で供給した。細菌培養物の残留油分、湿潤細胞重量および光学密度を決定するために、サンプリングを6時間ごとに行った。培養時間は、細菌の増殖に応じて48時間から72時間の範囲であった。
(ウ)P(3HB-co-3HH)の生物学的回収
 35日齢のミールワーム(ダニカムシの幼虫、Tenebrio molitor)を周囲温度(約25℃)でプラスチック容器で飼育した。前記飼育したミールワーム100gに対して、上記P(3HB-co-3HHx)を含む乾燥微生物を給した。
給された微生物の量は、ミールワームの体重に基づいて供給した(体重の1日あたり5%)。新しいバッチの微生物を供給する前に、ミールワームの糞便ペレットを回収し、0.50mmおよび0.25mmのサイズのメッシュを用いて篩い分けした。二重ふるい分けを行うことにより、他の不純物を取り除き、その後の洗浄工程を容易にすることができた。
(エ)蒸留水を用いたP(3HB-co-3HH)の精製
 約10%(w/v)の糞便ペレットを水道水に加え、100g/Lの濃度とした。糞便ペレット懸濁液を数回すすぎ、上清を捨てる前に沈降させた。上清を除去し、回収したP(3HB-co-3HH)を一定質量になるまで50℃のオーブンで乾燥させた。
 さらに、前記乾燥させたP(3HB-co-3HH)を0.25M NaOH中で1時間すすぎ、混合物を沈降させ、上清を除去し、回収したペレットをpHが9.5未満に低下するまで水道水中でさらに1時間撹拌した。次いで、回収されたP(3HB-co-3HH)顆粒を50℃のオーブンで一定質量になるまで乾燥させ、目的とするP(3HB-co-3HH)を回収した。
 (3)P(3HB-co-4HB)の製造方法
Cupriavidus necator Re2058/pHT1phaCCs株を用
い、NR寒天培地(50μg/mLカナマイシン添加)30℃で平板培養し、増殖させる。増殖させた細胞を集め50mlのMM培地に移し、48℃、200rpmで48時間培養する。培養後、8000rpmで10分遠心分離して菌体を集め、2日間凍結乾燥する。P(3HB-co-4HB)の抽出は、クロロフォルムにより上記(1)と同様に行った。
MM培地の組成 
果糖   10 g/L
4-ヒドロキシブタン酸ナトリウム   9g/L
リン酸二水素ナトリウム   4.0g/L
リン酸水素二ナトリウム   4.6g/L
硫酸カリウム   0.45g/L
硫酸マグネシウム   0.39g/L
塩化カルシウム   62mg/L
尿素   0.54g/L
TE溶液   1.0g/L

TE溶液の組成
硫酸第一鉄   15g/L
硫酸マンガン   2.4g/L
硫酸亜鉛   2.4g/L
硫酸銅   0.48g/L
 [ポリヒドロキシアルカン酸(PHA)を含む樹脂組成物]
 本発明のポリヒドロキシアルカン酸(PHA)は、その物性が損なわれない限り、その他の添加物と混合して樹脂組成物とすることもできる。その他の添加剤としては、本発明のポリヒドロキシアルカン酸(PHA)以外のその他の樹脂、酸化防止剤、紫外線吸収剤、可塑剤、難燃剤、無機充填剤、結晶核剤等を用いることができる。
 本発明のポリヒドロキシアルカン酸(PHA)以外のその他の樹脂としては、熱可塑性樹脂、熱硬化性樹脂等が挙げられ、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリイミド、ポリアミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルケトンケトン、ポリブタジエン、ポリスチレン、ポリエステル、ポリ乳酸、フェノール樹脂、ポリ(メタ)アクリル酸、ノルボルネン樹脂等が挙げられる。その中でも、生分解性樹脂が望ましい。
 [ポリヒドロキシアルカン酸(PHA)を含む微粒子]
 本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子の形状は、球状、板状、紡錘状、針状など種々の形状を取ることができるが、球状である形状が好適である。
 また、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子の粒子径は、医療用途への適用も考慮すると、0.2~10μm未満であり、好ましくは7μm以下である。なお、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子の粒子径の測定方法については、下記に詳細に記載するが、SEM観察画像とソフトウェア(ImageJ)による処理、及び動的光散乱法を用いた。
 さらに、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子は、表面積を大きくするために、多孔質の形態をとることができる。
 さらに、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子は、微粒子の表面だけでなく、内部に他の物質を保持することができる。他の物質としては本発明のポリヒドロキシアルカン酸を含む微粒子の特徴が損なわれない限り、特に制限されるものではないが、例えば、炭酸カルシウム、酸化アルミニウム、酸化マグネシウム、炭酸マグネシウム、マイカ、タルク、シリカなどの無機粉体物質類、あるいはステアリン酸マグネシウム、ステアリン酸亜鉛などの有機粉体物質類や溶媒可溶性物質が挙げられる。
 さらに、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子は、10%圧縮強度が0.23~2.20MPaである態様を取ることができる。本発明に係る微粒子の10%圧縮強度は、例えば、セルロースなどの樹脂を混在させることにより調整することが可能である。
 また、本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子は、水系溶媒中に分散できる態様を含むものである。水系溶媒としては、水が例示されるが、水に限定されるものではなく水とアルコール等の親水性溶媒との混合溶媒が挙げられる。本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子は、水系溶媒に分散できることから様々な用途への適用が可能となる効果が期待できるものである。
 [ポリヒドロキシアルカン酸(PHA)を含む微粒子の製造]
 本発明に係るポリヒドロキシアルカン酸(PHA)から微粒子を製造する方法としては、スプレードライ法、分散法など種々の方法が適用可能であるが、多種類のポリヒドロキシアルカン酸(PHA)に適用が可能で、かつ微粒子の粒子径や強度を広い範囲で変化させることが可能であり、製造プロセスも簡便であることなどから、エレクトロスプレー・デポジション法が好適である。以下に、エレクトロスプレー・デポジション法(ESD法)について説明するが、本発明に係るポリヒドロキシアルカン酸(PHA)から微粒子を製造する方法としてはエレクトロスプレー・デポジション法に限定されるものではない。
 [ エレクトロスプレー・デポジション法]
 本発明の具体的な実施態様として使用するエレクトロスプレー・デポジション法の原理及びエレクトロスプレー・デポジション法の実施に使用するエレクトロスプレー・デポジション装置(ESD:静電噴霧装置)を説明する。
 図1に、エレクトロスプレー・デポジション装置の基本的な構成を示す概念図を示す。図に示すように、容器CNTは、試料溶液SLを収容している。試料溶液SLは、例えば、有機高分子溶液あるいはポリマー溶液などである。本実施態様では、試料溶液としては、溶媒に溶解したポリヒドロキシアルカン酸(PHA)溶液であり、又はシリカ微粒子分散液である。
 ESD法は非常に複雑な物理現象であり、そのすべての過程は解明されていないが、一般的には次のような現象と考えられている。試料溶液は細いキャピラリー状のノズルNZLに収められ、これと対向するターゲット基板TS(対向電極)に対して数千~数万ボルトの電圧が印加される。キャピラリー先端では電界集中の効果により強力な電界が発生し、液体表面に荷電を持つ微小液滴が集まりコーンが形成される(Taylor Coneと呼ばれる)。さらにこの先端から試料溶液が、表面張力を打ち破りジェットとなる。ジェットは強く帯電しており、静電気力の反発によりスプレーとなる(クーロン爆発)。スプレーにより形成された液滴は非常に小さく、短時間のうちに溶媒が蒸発乾燥し、微細なナノパーティクルや、ナノファイバーとなる。もちろん、蒸発・乾燥しないウェット状態で堆積させることも可能である。この帯電した微細なナノパーティクルや、径の細いナノファイバーは、静電気力により対向電極として機能するターゲット基板TSに引き寄せられる。堆積するパターンは、図示しない絶縁体マスクや補助電極により制御することが可能である。試料は、液状であれば溶液に限らず、分散液でも問題ない。
 また、好適には、容器CNT内の試料溶液は空気圧・シリンジポンプやプランジャー等(吐出手段、図示せず)で、ノズルNZL側に向けて押し出しの圧力を加える。押し出しの圧力は、例えば、ステッピング・モータとネジ送り機構(図示せず)によって与えられる。押し出し圧力を受けた試料溶液SLは、容器CNT内で内圧が増加し、ノズルNZLの先端から排出される。上述したように、試料溶液を吐出する速度を調整する調整機構(ステッピング・モータとネジ送り機構)を設けることによって、適切な吐出速度に調整することが可能となる。
 ノズルNZLは、金属製であり、高電圧電源HPSからプラスの電圧が導体のワイヤWLを介して供給されている。高電圧電源HPSのマイナス側は、ターゲット基板TS(対向電極となる基板)に繋がっている。高電圧電源HPSから電圧を印加することで、ノズルNZLを経由して試料溶液SLにはプラスの電圧が印加され溶液はプラスに帯電される。なお、試料溶液SLに与える電圧の極性はマイナスであってもよい。
本発明の実施のためは、ナノファイバーの形成を押さえ微粒子のみを作製し、その粒径や物性の制御が必要であり、試料及び溶媒の選択、試料溶液の濃度、電圧の高低、スプレー距離、温度・湿度等環境条件、等を調整する必要がある。
 スプレーされた材料は繊維や液滴となり、帯電による反発によって飛んでいる間に分裂を繰り返し、ナノファイバーやナノ粒子を形成する。スプレーされた材料は、ナノサイズで表面積が大きいため、基板或いは受液槽に届いた時にはほぼ乾燥した状態になる。スプレー条件により形状やサイズを変えることができ、例えば高分子溶液を使った場合、分子量を大きく濃度を高くすれば太いナノファイバー、分子量を小さく濃度を低くすれば細いナノファイバー、またはナノ粒子が形成される。その他に、ノズル-基板間の電圧や距離、周辺温度や湿度など様々な条件が影響してくる。本実施態様では、試料として種々の溶媒可溶性のポリヒドロキシルアルカン酸を用い、様々の条件下で微粒子を作製し、微粒子の粒径、形状、表面形状などの確認を実施例記載の方法で行った。エレクトロスプレー・デポジション装置としては、上記した装置だけでなく他のタイプのESD装置も使用可能であり、特に量産を目的とする場合には、再表2009/060898号に記載された気流を用いる方法が好適である。
 本発明のポリヒドロキシアルカン酸(PHA)を含む微粒子を製造するためには、適切な溶媒を選択することが重要である。溶媒としては、当該PHAポリマーを十分に溶解しかつナノファイバーの形成をより強く抑制し、微粒子形成を促進するものであり、さらに、粒子径を変化させるのに有用な効果を持つものであれば特に限定されない。以下の実施例では、このような点から、クロロフォルムと炭酸ジメチルとを好適な溶媒として使用した。
[ポリヒドロキシアルカン酸(PHA)を含む微粒子の回収方法]
 製造された微粒子の回収方法としては、ポリヒドロキシアルカン酸(PHA)から製造される物がナノファイバーの場合には、着地部でナノ繊維構造を作らせることが可能であるが、製造される物が微粒子の場合は、これらの微粒子を癒着させることなく、着地部から回収する必要がある。そのため、着地部の環境条件にもよるが、ポリヒドロキシアルカン酸(PHA)の物性や用いる溶媒により、固体面上ではなく、液中で回収することが必要である。
 微粒子の具体的な回収方法としては、微粒子同士が表面電位等により結合することなく回収する必要があり、製造された微粒子を水道水を用いて回収した場合には、表面電位等の影響で粒子同士が結合することが見られたため、微粒子同士が結合することなく、粒子が分散した状態で回収するためには、エタノールを用いた回収が好適である。エタノールとしては無水エタノールが使用可能であるが、製造される微粒子によっては10~30%程度の水で希釈して使用することも可能である。なお、水道水であってもアニオン系界面活性剤等を適宜配合することで、微粒子同士が結合せず、分散した状態で回収することも可能である。
 乾燥した粒子を回収するためには、エタノールを用いて回収した場合には真空乾燥が好適であるが、自然乾燥でも回収可能である。界面活性剤を配合した水道水で回収した場合には、真空乾燥が好適である。
 [ポリヒドロキシアルカン酸(PHA)を含む微粒子の粒子径の測定方法]
(1)SEM観察画像とソフトウェア(ImageJ)による処理
 SEMによって得られた画像をImageJで処理して粒子径を得る測定方法であり、ImageJはオープンソースでパブリックドメインの画像処理ソフトウェアであって、科学研究における画像解析に広く利用され、生物学ではデファクト・スタンダードの解析ツールとなっているものである。ImageJによる処理により、SEM画像写真から粒子径を計算することが可能である。具体的な手順としては、1.画像入力、2.自動二値化、3.不要粒子削除、4.二値画穴埋め、及び5.測定結果である。検討の結果、特に数μm以上の微粒子の場合にはこの方法を用いることが好適であって、本方法による測定結果の正確性については、P(3-HB-co-4-HB)から得られた数百nmオーダーの微粒子を用いて、本方法と動的光散乱法との両法により粒子径を測定することで確認した。その結果、以下に、実施例4において記載するとおり、両法で得られた測定結果はほぼ一致した。特に、粒子径が500nm未満という非常に微小であることを考慮すると、本方法の測定結果の正確性は非常に高いと判断できる。
(2)動的光散乱法
 微粒子の粒子径(粒径)測定には、上記以外にも多くの方法がある。電気的検知体法、遠心沈降法、レーザー回折法、FFF法などが使用されており、それぞれ特長があるが、電子顕微鏡測定レベルの大きさを測定できるのは動的光散乱法のみと言われており、超微粒子測定に活用されている。本開発では、サブミクロンレベルの微粒子の粒径測定には動的光散乱法を用いた。
使用した装置は、HORIBA NANO PARTICLE ANALYZER SZ-100であり、測定条件は以下の通りである。
検出角度:90
ホルダ温度:25.0℃
試料屈折率:1.500-0.000i
分散媒ファイル:水
分散媒屈折率:1.333
分散媒粘度:0.896mPa・s
分子形態(分散度):多分散
粒子径基準:散乱光強度
カウントレート:1285kCPS
 以下に、実施例を挙げて本発明をさらに詳細に説明する。なお、これらは本発明を何ら限定するものではない。
[実施例1]P(3-HB)からの微粒子の製造
 ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-HHを含まず、3-HBからなるP(3-HB)の樹脂1.5gをクロロフォルムに溶解し、濃度1.5%重量のサンプル溶液を100g作製した。このサンプル溶液1mLを、図1に示した、内径0.29mmの金属ダブルノズルNZL(武蔵エンジニアリング株式会社DN-24G)を取り付けたガラス製シリンジ(翼工業白硬注射筒1ml)の容器CNTに入れ、エレクトロスプレー・デポジション装置(株式会社フューエンス製EsprayerES-2000)に装着した。ターゲット基板TS(コレクタ基板)上には厚さ0.25ミリ、直径5cm高さ1cmの鉄製8.9gの容器を載せ、中に無水メタノール15mlを注入した。このときのエレクトロスプレーの条件は、ノズルNZL-コレクタ(ターゲット基板TS)間電圧25KV、ノズル-コレクタ間距離4cm、送液流速20μl/分とし、基板上を前後左右にまんべんなくスキャンさせて全体にスプレーを行い分散し、P(3-HB)の微粒子を得た。なお、溶液濃度を0.7~3.0重量%とし、他の条件は同様としてP(3-HB)の微粒子を含む液を得た。その液を乾燥させたことにより、図2に示す微粒子を得た。このSEM観察画像からImageJの粒子径分析により平均粒径が求めたところ、平均粒子径は6.70μmであった。
 [実施例2]P(3-HB)からの多孔質微粒子の製造
 ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-HHを含まず、3-HBからなるP(3-HB)の樹脂1.5gをクロロフォルムに溶解し、濃度1.5%重量のサンプル溶液を100g作製した。このサンプル溶液1mLを図1に示した、内径0.21mmの金属ノズルNZL(武蔵エンジニアリング株式会社27G)を取り付けたガラス製シリンジ(翼工業白硬注射筒1ml)の容器CNTに入れ、エレクトロスプレー・デポジション装置(株式会社フューエンス製EsprayerES-2000)に装着した。ターゲット基板TS(コレクタ基板)上には厚さ0.5ミリ、縦8cm×横10cm、
高さ約5mmのアルミ製11.5gの容器を載せ、中に無水エタノール15mlを注入し微粒子回収に使用した。このときのエレクトロスプレーの条件は、ノズルNZL-コレクタ(ターゲット基板TS)間電圧25KV、ノズル-コレクタ間距離2.5cm、送液流速10μl/分とし、基板上を前後左右にまんべんなくスキャンさせて全体にスプレーを行い分散した3-PHB(PHA0%)の微粒子を得た。なお、溶液濃度を0.7~3.0重量%とし他のノズル径、流速の条件でもP(3-HB)からなる微粒子含む液を得た。その液を乾燥させたことにより図3に示す微粒子を得た。SEM観察画像により、この微粒子の形状は球形であり、表面は多孔状になっていることが確認された。また、実施例1と同様にSEM観察画像とソフトウェア(ImageJ)により粒子径を測定したところ粒子径の平均は約6.4μmであった。多孔質になる要因として樹脂自体の物性が関係していると考えられ、本発明に係るポリヒドロキシアルカン酸(PHA)を構成する繰り返し単位として3-ヒドロキシヘキサン酸(3-HH)の含有割合が大きい場合には多孔質微粒子の発生は見られず、例えば、3-ヒドロキシヘキサン酸(3-HH)を27%配合したP(3-HB-co-3-HH)では多孔質微粒子の発生は殆んど見られなかった。
 [実施例3]P(3-HB-co-3-HH)からの微粒子の製造
 繰り返し単位として3-ヒドロキシヘキサン酸(3-HH)を27%含むP(3-HB-co-3-HH)の樹脂1.5gをクロロフォルムに溶解し、濃度1.5%重量のサンプル溶液を100g作製した。このサンプル溶液1mLを、図1に示した、内径0.42mmの金属ノズルNZL(武蔵エンジニアリング株式会社SNA-22G)を取り付けたガラス製シリンジ(翼工業白硬注射筒1ml)の容器CNTに入れ、エレクトロスプレー・デポジション装置(株式会社フューエンス製EsprayerES-2000)に装着した。ターゲット基板TS(コレクタ基板)上には厚さ0.25ミリ、直径5.5cm高さ1cmの鉄製の8.9gの容器を載せ、中に90%濃度エタノール15mlを注入した。このときのエレクトロスプレーの条件は、ノズルNZL-コレクタ(ターゲット基板TS)間電圧25KV、ノズル-コレクタ間距離5cm、送液流速20μl/分とし、基板上を前後左右にまんべんなくスキャンさせて全体にスプレーを行い分散し、P(3-HB-co-3-HH)の微粒子を得た。なお、溶液濃度を0.7~3.0重量%として他は同様の条件(金属ノズル24G、21G、DN-24)でもP(3-HB-co-3-HH)の微粒子を含む液を得た。その液を乾燥させたことにより図4の微粒子を得た。SEM観察画像により、この微粒子の形状はほぼ球形であり、多孔質はほとんど見られなかった。実施例1と同様にSEM観察画像とソフトウェア(ImageJ)により粒子径を測定したところ、平均粒径は約6.6μmであった。
 [実施例4]P(3-HB-co-4-HB)からの微粒子の製造
 繰り返し単位として4-ヒドロキブタン酸(4-HB)を42%含むP(3-HB-co-4-HB)の樹脂1.5gを炭酸ジメチルに溶解し、濃度1.0%重量のサンプル溶液を150g作製した。このサンプル溶液1mLを、図1に示した、内径0.29mmの金属ノズルNZL(武蔵エンジニアリング株式会社DN-24G)を取り付けたガラス製シリンジ(翼工業白硬注射筒1ml)の容器CNTに入れ、エレクトロスプレー・デポジション装置(株式会社フューエンス製EsprayerES-2000)に装着した。ターゲット基板TS(コレクタ基板)上には厚さ0.25ミリ、直径5cm高さ1cmの鉄製の8.9gの容器を載せ、中に水道水(50mlに界面活性剤5滴)15mlを注入した。このときのエレクトロスプレーの条件は、ノズルNZL-コレクタ(ターゲット基板TS)間電圧25KV、ノズル-コレクタ間距離5cm、送液流速20μl/分とし、基板上を前後左右にまんべんなくスキャンさせて全体にスプレーを行い分散し、P(3-HB-co-4-HB)の微粒子を得た。なお、溶液濃度を0.7~3.0重量%とし他は同様の条件でもP(3-HB-co-4-HB)の微粒子を含む液を得た。その液を乾燥させたことにより図5の微粒子を得た。
 得られた微粒子の粒子径をSEM観察画像とソフトウェア(ImageJ)処理による測定方法と動的散乱光強度法とにより測定した。測定条件は、前記のとおりである。
 その結果、SEM観察画像とソフトウェア(ImageJ)処理により測定した粒子径は平均粒子径として、0.42μmであった。一方、動的散乱光強度法により測定したモード径は0.34μm(335.1nm)であった。したがって、SEM観察画像とソフトウェア(ImageJ)処理により測定した粒子径420nm(0.42μm)と動的散乱光強度法により測定したモード径335.1nmとは極めて近似した結果を示しており、SEM観察画像とソフトウェア(ImageJ)処理による粒子径の測定は信頼性の高い測定方法であることが確認できた。
 [実施例5]他の化合物を保持した微粒子の製造
 ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-HBのみからなるP(3-HB)の樹脂1.5g、その重量に対し0.5%のシリカ粒子アドマファインSC2500-SPJ(アドマテックス社製)を加え、これをクロロフォルムで溶解し、P(3-HB)で1.5重量パーセントの溶液約100gを作製した。このサンプル溶液1mLを、図1に示した、内径0.29mmの金属ノズルNZL(武蔵エンジニアリング株式会社DN-24G)を取り付けたガラス製シリンジ(翼工業白硬注射筒1ml)の容器CNTに入れ、エレクトロスプレー・デポジション装置(株式会社フューエンス製EsprayerES-2000)に装着した。ターゲット基板TS(コレクタ基板)上には厚さ0.25ミリ、直径5cm高さ1cmの鉄製の8.9gの容器を載せ、中に無水アルコール15mlを注入した。このときのエレクトロスプレーの条件は、ノズルNZL-コレクタ(ターゲット基板TS)間電圧25KV、ノズル-コレクタ間距離4cm、送液流速20μl/分(ダブルノズルなので1本当たり10μl/分)とし、基板上を前後左右にまんべんなくスキャンさせて全体にスプレーを行い分散したP(3-HB)の微粒子の分散液を得た。この微粒子を自然乾燥し、図6に示した微粒子を得た。この微粒子の粒子径は約6-10μmであり、その表面にはシリカ粒子を保持していた。
 上記したシリカ粒子を保持したP(3-HB)微粒子について、かかるシリカ粒子がP(3-HB)微粒子の内部においても保持されていることを以下の方法により確認した。
 以下の手順により、超薄切片法による面出しを行い、SEMで観察した。
1)スライドグラス上に試料を載せる。
2)粉末の上に包埋樹脂を1滴たらし、硬化させる。EPON812(エポキシ樹脂)を用い、60℃48時間で実施した。
3)硬化した樹脂に、包埋樹脂を満たしたビームカプセルをかぶせる。
4)包埋樹脂を硬化(60℃48時間)させる。
5)スライドグラスを温め包埋樹脂が硬化したビームカプセルをはがす。
6)ビームカプセルから硬化した樹脂を取り出す。
7)光学顕微鏡で粉末の位置を確認し印をつける。
8)粉末の周りをトリミングする。
9)試料をウルトラミクロトームにセットし、ダイヤモンドナイフで面出しを行う。
10)サンプル台に載る高さに試料をカットする。
11)試料を銅板に導電性の両面テープで張り付ける。
12)カーボン蒸着する。
 SEMの観察画像を図7に示すが、観察画像からは、P(3-HB)微粒子内にもシリカ粒子に相当する粒子が存在することが確認できた。さらに、SEMのBSE像の観察画像を図8に示す。SEMのBSE像はSEMの反射電子像であり、試料中の組成分布を確認することが可能な手法であり、この観察画像からは、P(3-HB)微粒子がP(3-HB)微粒子とは化学組成が異なる粒子を保持していることが確認できた。
 以上の結果から、この微粒子のシリカ粒子を保持する強さについては明らかではないが、エレクトロスプレー・デポジション操作後にシリカ粒子がP(3-HB)粒子表面及び内部において保持されていることが確認された。これは、エレクトロスプレー・デポジション操作によりポリヒドロキシアルカン酸(PHA)が微粒子化されるのみならず、その過程で他の物質をスプレー溶液に溶解または分散させることにより、本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子に他物質を保持せしめ混入または一体化したことを示しており、本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子が他の物資の担体として有用であることの可能性を示した。
 [実施例6]ポリヒドロキシアルカン酸(PHA)を含む微粒子の圧縮強度測定
 微粒子の有する物性としての破壊強度や変形強度は、かかる微粒子の様々な用途への適用を検討する場合に実用上重要なファクターとなることから、本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子について、圧縮試験を行い、10%圧縮強度を確認した。サンプルとしては、以下のものを使用した。
サンプル(1)P(3-HB)から製造した微粒子(実施例1において製造した微粒子)サンプル(2)P(3-HB-co-3-HH)から製造した微粒子(実施例3において製造した微粒子)
 圧縮試験は島津微小圧縮試験機MCT-510を用い、下記の条件で実施した。なお、ガラス板の上にサンプルを極微量散布し、一微粒子ずつ圧縮試験した。試験結果は平均値で評価した。
Figure JPOXMLDOC01-appb-T000006
 圧縮試験の結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子のサンプルは10%圧縮強度として0.23~2.20(MPa)を示したことから、相当する圧縮強度に耐える強度を有することが確認された。また、P(3-HB)から製造した微粒子は、繰り返し単位として3-ヒドロキシヘキサン酸(3-HH)を27%含むP(3-HB-co-3-HH)から製造した微粒子よりも10%圧縮強度として高い値を示し、より高い強度であることが確認された。したがって、本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子は、その繰り返し単位としての3-ヒドロキシヘキサン酸(3-HH)の配合割合を調整することで、強度を調整し、様々な使用環境と用途に応じた適用が可能である。
 [実施例7]ポリヒドロキシアルカン酸(PHA)ポリマーの熱的性質
 本発明に係る微粒子の原料であるポリヒドロキシアルカン酸(PHA)の物性のうち、融点は微粒子を実際の用途に適用するための加工容易性等から見て、重要な物性の一つであり、融点を変化させることが可能となれば、加工等において有利な物性となりうるものである。これまで比較的研究の進んでいるP(3-HB)の融点については、多くの場合170~180℃と報告されているに対し、繰り返し単位として3-ヒドロキシヘキサン酸(3-HH)を27%含むP(3-HB-co-3-HH)の融点については未知であるし、P(3-HB-co-4-HB)の融点については文献によってかなり変動があるので、以下の方法で確認した。
 測定はパーキンエルマー社製示差走査熱量計DSC8500で行い、測定条件としては、サンプル約6mgを用い、窒素ガス雰囲気で、5.00℃/分で5.00℃から200.00℃に昇温で行った。
 その結果、P(3-HB-co-3-HH)の融点は79.8℃であり、P(3-HB-co-4-HB)の融点は56℃であることを確認した。
 本発明に係るポリヒドロキシアルカン酸(PHA)を含む微粒子は、加工性、自然環境下での生分解性、生体適合性・生体内分解性等に優れ、広い融点、粒子径と適度な圧縮強度を持ち、多くの産業用途や医療用に用いる事ができ、かつマイクロプラスチック等の環境への問題を全く生じない。
 CNT  容器
 HPS  高電圧電源
 NZL  ノズル
 SL   試料溶液
 TS   ターゲット基板
 ESD  エレクトロスプレー・デポジション装置
 WL   ワイヤ

Claims (19)

  1.  ポリヒドロキシアルカン酸(PHA)を含む微粒子であって、ポリヒドロキシアルカン酸(PHA)の繰り返し単位として3-ヒドロキシブタン酸(3-HB)を含み、粒子径が0.2~10μm未満であることを特徴とする微粒子。
  2.  粒子径が7μm以下であることを特徴とする請求項1に記載の微粒子。
  3.  ポリヒドロキシアルカン酸(PHA)が、その繰り返し単位として、さらに3-ヒドロキシヘキサン酸(3-HH)を含むことを特徴とする請求項1又は2に記載の微粒子。
  4.  3-ヒドロキシヘキサン酸(3-HH)の割合が、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全重量に対して27%(重量比)以下であることを特徴とする請求項3に記載の微粒子。
  5.  ポリヒドロキシアルカン酸(PHA)が、3-ヒドロキシブタン酸(3-HB)と3-ヒドロキシヘキサン酸(3-HH)とのコポリマーを含むことを特徴とする請求項3又は4に記載の微粒子。
  6.  ポリヒドロキシアルカン酸(PHA)が、その繰り返し単位として、さらに4-ヒドロキシブタン酸(4-HB)単位を含むことを特徴とする請求項1~5のいずれか1項に記載の微粒子。
  7.  4-ヒドロキシブタン酸(4-HB)の割合が、ポリヒドロキシアルカン酸(PHA)の繰り返し単位の全重量に対して40~50%(重量比)であることを特徴とする請求項6に記載の微粒子。
  8.  ポリヒドロキシアルカン酸(PHA)が、3-ヒドロキシブタン酸(3-HB)と4-ヒドロキシブタン酸(4-HB)とのコポリマーを含むことを特徴とする請求項6又は7に記載の微粒子。
  9.  ポリヒドロキシアルカン酸(PHA)の平均分子量(Mw)が、10万から130万であることを特徴とする請求項1~8のいずれか1項に記載の微粒子。
  10.  ポリヒドロキシアルカン酸(PHA)の融点が、55℃以上170℃以下であることを特徴とする請求項1~9のいずれか1項に記載の微粒子。
  11.  微粒子が、ポリヒドロキシアルカン酸(PHA)以外の樹脂を含むことを特徴とする請求項1~10のいずれか1項に記載の微粒子。
  12.  ポリヒドロキシアルカン酸(PHA)以外の樹脂が生分解性樹脂であることを特徴とする請求項11に記載の微粒子。
  13.  微粒子が、球状であることを特徴とする請求項1~12のいずれか1項に記載の微粒子。
  14.  微粒子が、多孔質であることを特徴とする請求項1~13のいずれか1項に記載の微粒子。
  15.  微粒子が、その表面及び/又は内部に他の物質を保持していることを特徴とする請求項1~14のいずれか1項に記載の微粒子。
  16.  微粒子の10%圧縮強度が、0.23~2.20(MPa)であることを特徴とする請求項1~15のいずれか1項に記載の微粒子。
  17.  微粒子が、水系溶媒中に分散できることを特徴とする請求項1~16のいずれか1項に記載の微粒子。
  18.  以下の工程を含む、請求項1~17のいずれ1項に記載の微粒子の製造方法。
    工程1:ポリヒドロキシアルカン酸(PHA)を産生する微生物を準備する工程、
    工程2:工程1の微生物を培地内で増殖する工程、
    工程3:増殖した微生物を動物に摂取させる工程、
    工程4:工程3の動物の排泄物からポリヒドロキシアルカン酸(PHA)を回収・精製する工程、及び
    工程5:工程4により得られたポリヒドロキシアルカン酸(PHA)を微粒子化する工程。
  19.  工程5が、工程4により得られたポリヒドロキシアルカン酸(PHA)を含む樹脂組成物を微粒子化する工程である、請求項18に記載の微粒子の製造方法。
PCT/JP2022/016649 2021-04-06 2022-03-31 ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法 WO2022215653A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023512999A JPWO2022215653A1 (ja) 2021-04-06 2022-03-31
KR1020237036769A KR20230167379A (ko) 2021-04-06 2022-03-31 폴리하이드록시알칸산(pha)을 포함하는 미립자 및 그 제조방법
CN202280040426.2A CN117460764A (zh) 2021-04-06 2022-03-31 包含多羟基烷酸(pha)的微粒及其制造方法
EP22784637.5A EP4321557A1 (en) 2021-04-06 2022-03-31 Microparticles containing polyhydroxyalkanoic acid (pha) and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021064686 2021-04-06
JP2021-064686 2021-04-06

Publications (1)

Publication Number Publication Date
WO2022215653A1 true WO2022215653A1 (ja) 2022-10-13

Family

ID=83546119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016649 WO2022215653A1 (ja) 2021-04-06 2022-03-31 ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法

Country Status (5)

Country Link
EP (1) EP4321557A1 (ja)
JP (1) JPWO2022215653A1 (ja)
KR (1) KR20230167379A (ja)
CN (1) CN117460764A (ja)
WO (1) WO2022215653A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060177513A1 (en) 2005-01-28 2006-08-10 Tepha, Inc. Embolization using poly-4-hydroxybutyrate particles
WO2009060898A1 (ja) 2007-11-07 2009-05-14 Fuence Co., Ltd. 固定化装置
JP5133478B2 (ja) 2001-06-12 2013-01-30 ユニチカ株式会社 生分解性ポリエステル樹脂微粒子の製造方法
JP2013534978A (ja) 2010-06-15 2013-09-09 テファ, インコーポレイテッド ポリ−4−ヒドロキシブチレートおよびコポリマーの乾式紡糸不織布を含む医療装置
JP2015001590A (ja) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 静電荷像現像用トナー、その製造方法、及び画像形成方法
WO2017056908A1 (ja) 2015-09-30 2017-04-06 積水化成品工業株式会社 多孔質樹脂微粒子及びその製造方法
WO2017159461A1 (ja) * 2016-03-16 2017-09-21 株式会社カネカ 飼料組成物、動物プランクトンの製造方法、動物プランクトン、並びに動物プランクトンの成長促進剤及び生残率向上剤
WO2018178899A1 (en) 2017-03-30 2018-10-04 Bio-On S.P.A. Cosmetic composition comprising a biodegradable polyester and an oily phase
WO2018186278A1 (ja) * 2017-04-05 2018-10-11 株式会社カネカ ポリヒドロキシアルカノエート粒子及びその水分散液
JP2019086889A (ja) 2017-11-02 2019-06-06 オムロン株式会社 評価装置、評価システム、車両、およびプログラム
US10463619B2 (en) 2008-06-27 2019-11-05 Tepha, Inc. Injectable delivery of microparticles and compositions therefor
WO2020218565A1 (ja) * 2019-04-26 2020-10-29 株式会社フューエンス ポリヒドロキシアルカン酸及びその製造方法
WO2021059762A1 (ja) * 2019-09-25 2021-04-01 株式会社カネカ ポリヒドロキシアルカン酸の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033007A (ja) 2001-07-09 2003-01-31 Sanyo Electric Co Ltd チャージポンプ回路の制御方法
KR101790959B1 (ko) 2015-11-16 2017-10-30 한국항공우주연구원 다이어프램 방식 극저온 밸브

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133478B2 (ja) 2001-06-12 2013-01-30 ユニチカ株式会社 生分解性ポリエステル樹脂微粒子の製造方法
US20060177513A1 (en) 2005-01-28 2006-08-10 Tepha, Inc. Embolization using poly-4-hydroxybutyrate particles
WO2009060898A1 (ja) 2007-11-07 2009-05-14 Fuence Co., Ltd. 固定化装置
US10463619B2 (en) 2008-06-27 2019-11-05 Tepha, Inc. Injectable delivery of microparticles and compositions therefor
JP2013534978A (ja) 2010-06-15 2013-09-09 テファ, インコーポレイテッド ポリ−4−ヒドロキシブチレートおよびコポリマーの乾式紡糸不織布を含む医療装置
JP2015001590A (ja) * 2013-06-14 2015-01-05 コニカミノルタ株式会社 静電荷像現像用トナー、その製造方法、及び画像形成方法
WO2017056908A1 (ja) 2015-09-30 2017-04-06 積水化成品工業株式会社 多孔質樹脂微粒子及びその製造方法
WO2017159461A1 (ja) * 2016-03-16 2017-09-21 株式会社カネカ 飼料組成物、動物プランクトンの製造方法、動物プランクトン、並びに動物プランクトンの成長促進剤及び生残率向上剤
WO2018178899A1 (en) 2017-03-30 2018-10-04 Bio-On S.P.A. Cosmetic composition comprising a biodegradable polyester and an oily phase
JP2020512365A (ja) * 2017-03-30 2020-04-23 バイオ−オン エス.ピー.エイBio−On S.P.A. 生分解性ポリエステルと油相を含む化粧品組成物
WO2018186278A1 (ja) * 2017-04-05 2018-10-11 株式会社カネカ ポリヒドロキシアルカノエート粒子及びその水分散液
JP2019086889A (ja) 2017-11-02 2019-06-06 オムロン株式会社 評価装置、評価システム、車両、およびプログラム
WO2020218565A1 (ja) * 2019-04-26 2020-10-29 株式会社フューエンス ポリヒドロキシアルカン酸及びその製造方法
WO2021059762A1 (ja) * 2019-09-25 2021-04-01 株式会社カネカ ポリヒドロキシアルカン酸の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery", SCI. PHARM., vol. 87, 2019, pages 20
JFE TECHNO-RESEARCH CORPORATION: "FY 2016 Report on a Survey Commissioned by the Ministry of Economy, Trade and Industry; FY 2016 Report on Safety Measures for Chemical Substances", FACT-FINDING SURVEY ON DOMESTIC MICROPLASTIC EMISSION, February 2017 (2017-02-01)

Also Published As

Publication number Publication date
CN117460764A (zh) 2024-01-26
KR20230167379A (ko) 2023-12-08
EP4321557A1 (en) 2024-02-14
JPWO2022215653A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
US10895023B2 (en) Nanofiber-nanowire composite and preparation method therefor
US9707734B2 (en) Microstructured composite particles
JP7063513B2 (ja) ポリヒドロキシアルカン酸及びその製造方法
Chen et al. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures
JP7123909B2 (ja) ポリヒドロキシアルカノエート粒子及びその水分散液
Arcana et al. Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability
Nam et al. Aliphatic polyester-based biodegradable microbeads for sustainable cosmetics
WO2022215653A1 (ja) ポリヒドロキシアルカン酸(pha)を含む微粒子及びその製造方法
More et al. Graphene oxide reinforcement enhances the piezoelectric and mechanical properties of poly (3-hydroxybutyrate-co-3-hydroxy valerate)-based nanofibrous scaffolds for improved proliferation of chondrocytes and ECM production
US20240093409A1 (en) Method for producing bone regeneration material having cotton-wool like structure
Pryadko et al. Comprehensive study on the reinforcement of electrospun PHB scaffolds with composite magnetic Fe3O4–rGO fillers: structure, physico-mechanical properties, and piezoelectric response
Tanir et al. Electrospinning of chitosan/poly (lactic acid-co-glycolic acid)/hydroxyapatite composite nanofibrous mats for tissue engineering applications
White et al. Comparative study of the biological degradation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) microbeads in municipal wastewater in environmental and controlled laboratory conditions
EP3467176B1 (en) Nanofiber structure constituted of polyhydroxyalkanoic acid, and non-woven fabric
Yi et al. Synthesis of poly (l-lactide)/β-cyclodextrin/citrate network modified hydroxyapatite and its biomedical properties
Manikandan et al. A novel rotating wide gap annular bioreactor (Taylor-Couette type flow) for polyhydroxybutyrate production by Ralstonia eutropha using carob pod extract
JP2021195470A (ja) ポリヒドロキシアルカン酸の製造方法およびその利用
WO2023100258A1 (ja) 2種以上の1価有機アニオンを有する海洋生分解促進剤及び海洋生分解性組成物
JP2020007468A (ja) ポリ乳酸共重合体及びその製造方法
WO2023100257A1 (ja) 炭化水素基を有する海洋生分解促進剤及び海洋生分解性組成物
CN117651748A (zh) 包含生物降解性生物聚合物的粘接性组合物、粘接剂以及改变粘接剂的粘接强度的方法
Chobchuenchom et al. Production of medium chain length polyhydroxyalkanoates by Pseudomonas putida ATCC47054 using glycerol and sodium octanoate as substrates
JP4328170B2 (ja) 被覆樹脂粒子の製造方法
JP2004210848A (ja) 被覆粒子の製造方法
CN117757109A (zh) 一种非球形手性聚乳酸微粒及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512999

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237036769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022784637

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784637

Country of ref document: EP

Effective date: 20231106