WO2018181480A1 - 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 - Google Patents
一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 Download PDFInfo
- Publication number
- WO2018181480A1 WO2018181480A1 PCT/JP2018/012778 JP2018012778W WO2018181480A1 WO 2018181480 A1 WO2018181480 A1 WO 2018181480A1 JP 2018012778 W JP2018012778 W JP 2018012778W WO 2018181480 A1 WO2018181480 A1 WO 2018181480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- integrally formed
- formed body
- metal
- fiber
- body according
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
- C25D15/02—Combined electrolytic and electrophoretic processes with charged materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0094—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/14—Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1655—Process features
- C23C18/1662—Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/03—Contact members characterised by the material, e.g. plating, or coating materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/0278—Polymeric fibers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/0287—Unidirectional or parallel fibers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/0293—Non-woven fibrous reinforcement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249927—Fiber embedded in a metal matrix
Definitions
- the present invention is a novel integrated formation capable of achieving higher strength, lighter weight, and improved sliding characteristics while suppressing deterioration of material properties such as excellent conductivity inherent to the metal itself as much as possible.
- the present invention relates to a body, a composite material having the integrally formed body, an electrical contact terminal, and a printed wiring board.
- metal materials are widely used in various applications because of their excellent material properties such as conductivity. Further, as a means for increasing the strength of the metal material, it is useful to achieve alloying by adding an alloy component to the matrix metal.
- the alloying of metal materials is a disordered atomic arrangement in which crystal atoms with disordered atomic arrangement are arranged by replacing alloy atoms with different atomic radii at the positions of metal atoms in the matrix metal constituting the regularly arranged crystal lattice. As a result of distortion of the lattice, there is a problem that material properties such as conductivity are likely to deteriorate.
- nanoparticles such as carbon fibers and glass fibers are dispersed in a matrix metal.
- a suitable material is selected according to the required performance of the material.
- cellulose fibers have excellent tensile strength (about 3 GPa), and have a weight (light weight) of 1/5 and strength (high strength) five times that of iron-based materials.
- Cellulose fiber is made from plants, so it is very advantageous for Japan, where 70% of the land is forest, and because it is made from plants, it has less environmental impact and is lighter and stronger than iron. Use is expected in a wide range of fields.
- the cellulose fiber is a form of nanocellulose obtained by chemically and mechanically unraveling (defibrating) plant fibers, and the diameter of one fiber is 4 to 100 nm and the length is 5 ⁇ m or more. It is a substance. A substance having such a shape is generally called a fiber.
- Biologically-derived fibers are (1) lightweight but have high strength, (2) little deformation by heat, (3) large specific surface area, (4) high gas barrier properties, (5) viscosity in water It has characteristics such as (6) high transparency and (7) hydrophilicity.
- carbon fibers are hydrophobic, it may be difficult to uniformly mix and disperse with other substances, solvents, etc. constituting the composite material unless surface modification treatment is performed in the production of the composite material. Many.
- carbon fibers have been reported to emit carcinogenic toxic substances when heated to high temperatures, and there are environmental problems in their use. For this reason, with respect to biologically derived fibers, research for practical application as a reinforcing material for synthetic resins such as plastics and rubbers in place of carbon fibers and the like is being promoted.
- Patent Document 1 discloses a method for obtaining cellulose nanofibers carrying metal nanoparticles. However, the obtained metal particles remain in the surface layer portion of cellulose, and sufficient electrical conductivity that can be industrially used as a metal material cannot be obtained.
- Patent Document 2 discloses a method for controlling the size of metal particles combined with cellulose. However, Patent Document 2 does not suggest a method for obtaining an integrally formed body and a composite material having both electrical conductivity and strength sufficient to withstand the processing of members.
- the present invention can achieve high strength, light weight, and improved sliding characteristics while suppressing deterioration of material properties such as excellent conductivity inherent to the metal itself as much as possible. It is an object of the present invention to provide a novel integrally formed body and a composite material having the same.
- the gist of the present invention is as follows.
- the metal and the living body-derived fiber dispersedly arranged in the metal are integrally formed, and the mass ratio of the living body-derived fiber contained in the integrally formed body is controlled within a specific range.
- a new integration that can achieve high strength, light weight, and improved sliding characteristics while suppressing deterioration of material properties such as excellent conductivity inherent to the metal itself as much as possible. It is possible to provide a formed body and a composite material having the formed body.
- FIG. 1 is a schematic cross-sectional perspective view showing a representative embodiment of an integrally formed body according to the present invention, and shows a part of the surface or the inside of the integrally formed body with an enlarged view.
- FIG. 2 is a schematic cross-sectional perspective view showing a representative embodiment of a composite material according to the present invention.
- FIG. 1 shows a typical embodiment of an integrally formed body according to the present invention.
- reference numeral 4 denotes an integrally formed body
- reference numeral 2 denotes a metal (matrix metal)
- reference numeral 3 denotes a biological fiber.
- FIG. 2 also shows an exemplary embodiment of a composite material according to the present invention.
- reference numeral 1 denotes a composite material
- reference numeral 4 denotes an integrally formed body
- reference numeral 5 denotes a base material.
- the integrally formed body 4 of the present invention has a metal 2 and living body-derived fibers 3 arranged in a dispersed state in the metal 2.
- the composite material 1 of the present invention includes an integrally formed body 4 and a base material 5 having a surface on which the integrally formed body 4 is formed.
- the base material 5 may be a conductive base material or an insulating base material.
- a conductive base material for example, a metal such as copper and copper alloy, aluminum and aluminum alloy, iron, carbon steel, stainless steel alloy, or an alloy containing the metal as a main component, carbon
- conductive base materials including conductive resins and conductive ceramics.
- an insulating base material such as glass, ceramics, or elastomer may be used.
- integrally formed body 4 of the present invention a biological fiber 3 that has not been reported to be used so far is used as a fiber for forming the integrally formed body 4 together with the metal 2. Since the integrally formed body 4 has such a configuration, it is possible to increase strength, reduce weight, and slide characteristics while suppressing deterioration of material properties such as excellent conductivity inherent to the metal itself as much as possible. Improvement can be realized.
- the metal 2 is not particularly limited in material, and the shape is not particularly limited.
- the shape of the metal 2 includes various shapes such as a thin plate, a thick plate, a wire rod, a tube, and a square in addition to a foil such as a copper foil, a nickel foil, and an aluminum foil.
- cellulose fiber As the biological fiber 3, it is preferable to use cellulose fiber, chitin or chitosan fiber.
- cellulose fiber As a fiber derived from a living body, it is preferable to use cellulose fiber, and more preferable to use cellulose microfibril industrially because it has less environmental burden and low material cost.
- Cellulose microfibrils are fine fibers made up of several dozen cellulose molecular chains. Cellulose fibers are made up of bundles of cellulose microfibrils. The cellulose fiber has a diameter of several tens of ⁇ m, while the cellulose microfibril has a diameter of several nm to 0.1 ⁇ m.
- Cellulose microfibrils or derivatives thereof have characteristics that are superior in dispersibility (hydrophilicity), affinity with other substances, capture / adsorption of fine particles, and the like as compared with cellulose fibers. Moreover, chitin or chitosan fiber not only has excellent adsorption ability, but also can be easily hydrophilized by forming a derivative.
- the living body-derived fiber 3 is a short fiber, and it is more preferable that the short fiber is arranged in a dispersed state, particularly a uniform dispersed state, in the metal 2. Thereby, the integrally formed body 4 can obtain a stable high strength.
- the short fibers preferably have a diameter of 4 to 10 nm and a length of 5 to 10 ⁇ m.
- the biological fiber 3, particularly the short fiber is dispersed in the metal 2 in a state aligned in one direction.
- the biological fibers 3, particularly the short fibers are dispersed in the metal 2 in a state of being arranged in a random direction.
- the integrally formed body 4 is preferably formed by, for example, an electroplating method.
- the biological fiber 3 is hydrophilic, when the biological fiber 3 is added to various metal 2 plating solutions made of an aqueous solution (particularly an acidic aqueous solution), the biological fiber 3 is made of the metal 2. It is possible to disperse without agglomeration in the plating solution.
- electroplating dispersion plating
- the biogenic fibers 3 do not particularly change in characteristics such as thermal decomposition, and the matrix.
- the integrally formed body 4 disposed in a dispersed state in the metal 2 can be manufactured. For this reason, in the present invention, the integrally formed body 4 is preferably formed by electroplating.
- the mass ratio of the fiber 3 derived from the living body contained in the integrally formed body 4 is controlled to a range of 0.02 mass% or more and 10 mass% or less, and a range of 0.02 mass% or more and 7 mass% or less. It is preferable that When the mass ratio is less than 0.02 mass%, the reinforcing effect of the metal 2 by the biological fiber 3 is not sufficient. Therefore, the strength of the integrally formed body 4 does not show a significant improvement compared to a metal material that does not contain living body-derived fibers.
- the integrally formed body 4 is formed by electroplating, if a certain amount or more of impurities (here, fibers derived from a living body) are contained in the plating solution of the metal 2, the composition of the plating solution breaks down and the metal is deposited. There is a risk that it will not be possible. In particular, when the mass ratio exceeds 10 mass%, it tends to be difficult to produce the integrally formed body 4 by electroplating. Further, from the viewpoint of suppressing the rate of decrease in conductivity from becoming too large due to the increase in the proportion of the biological fiber 3 in the matrix metal 2, the mass ratio of the biological fiber 3 is 7 It is preferable that it is below mass%.
- the metal 2 is not particularly limited as long as it is a metal that can be electroplated.
- nickel, copper, palladium, or tin which is a metal that can be electrodeposited (deposited) on a conductive substrate by electroplating using an aqueous solution, particularly a plating solution of metal 2 that is an acidic aqueous solution, is more
- copper or tin is particularly preferable.
- Tables 1 to 6 show examples of nickel, copper, palladium, silver, tin or gold plating bath compositions and plating conditions.
- the integrally formed body 4 preferably has a decrease rate of 30% or less of the conductivity of the metal 2 as the conductivity of the integrally formed body 4. More preferably, it is 25% or less.
- the integrally formed body 4 preferably has an increase rate of 5% or more with respect to the tensile strength of the metal 2 as the tensile strength of the integrally formed body 4 and 30%. More preferably.
- the composite material 1 functions as a surface treatment material composed of the integrally formed body 4 and a base material 5 having a surface on which the integrally formed body 4 is formed.
- the integrally formed body 4 is preferably a surface treatment film laminated on the substrate 5, for example, a plating film formed on the substrate 5 by electroplating.
- the base material 5 may be a conductive base material or an insulating base material depending on the use of the surface treatment material.
- a conductive base material and an insulating base material are not specifically limited, For example, the conductive base material illustrated by the base material 5 mentioned above, and an insulating base material can be used.
- the dynamic friction coefficient representing the sliding characteristics is low in order to reduce a decrease in the surface treatment film thickness due to wear during sliding of electrical contacts.
- a dynamic friction coefficient of the integrally formed body 4 is, for example, within a range of 20 to 50 sliding times in a reciprocating sliding test in which a steel ball is used as a slider with a load of 100 gf on the surface of the integrally formed body 4.
- the maximum value of the dynamic friction coefficient under the above conditions is preferably 0.8 or less with respect to the metal 2, and more preferably in the range of 0.3 to 0.65.
- the integrally formed body 4 is configured as a foil such as the copper foil described above, for example, after the integrally formed body 4 is formed on a rotating cathode drum (conductive base), the integrally formed body is formed from the cathode drum.
- a foil can be formed by peeling 4.
- the thickness of the integrally formed body 4 is not particularly limited, but if the thickness of the integrally formed body 4 is too thick, the production cost becomes too high, and therefore the upper limit value of the thickness is preferably 500 ⁇ m or less. Further, when the composite material 1 is configured as a surface treatment material, the sliding characteristics are improved if the surface treatment is slightly performed on the base material 5. Therefore, from the viewpoint of durability, the lower limit value of the thickness of the integrally formed body 4 is preferably 0.1 ⁇ m or more.
- the average particle diameter of the metal crystal grains in the integrally formed body 4 is relative to the average particle diameter in the thickness direction of the integrally formed body 4. Further, since the average particle diameter in the direction parallel to the surface of the integrally formed body 4 (longitudinal direction) is smaller, the effect of increasing the strength can be obtained.
- the average particle diameter of the metal crystal grains in the direction parallel to the surface of the integrally formed body 4 is preferably 0.2 ⁇ m or more and 5.0 ⁇ m or less.
- the integrally formed body 4 is manufactured mainly by an electroplating method.
- the integrally formed body 4 is integrally formed at a temperature (for example, 200 ° C. or less) at which the material properties of the biological fiber 3 do not change.
- the method is not particularly limited as long as it is a method capable of producing a body.
- Other manufacturing methods of the integrally formed body 4 include, for example, an electroless plating method, a sol-gel method, various coating methods, and mixing with a molten metal of a low melting point metal such as a low melting point solder.
- the integrally formed body of the present invention by selecting a suitable metal according to the application, while suppressing as much as possible the deterioration of excellent material properties such as conductivity inherent to the metal itself, while increasing the strength and weight. Since the improvement of the sliding characteristics can be realized, it can be applied to various products in various technical fields.
- an integrally formed body in which copper and biological fibers are formed as a foil can be used as an alternative to a copper foil used for forming a printed wiring board.
- a printed wiring board provided with such an integrally formed body can increase the strength without lowering the conductivity.
- the thin foil can be used for high-density, thin, miniaturized, and multi-layered printed wiring boards used in small electronic devices such as mobile phones. It is possible to cope with the increase in strength and strength.
- a surface-treated copper plate in which a surface-treated film (integrated body) is formed of copper and biological fibers on a copper plate (conductive substrate) is used as an electrical contact terminal that is a component of the connector.
- the electrical contact terminal provided with such a composite material can increase the strength of the electrical contact terminal as a whole without reducing the electrical conductivity. Furthermore, it is possible to reduce the size, thickness and strength of the electrical contact terminal corresponding to the miniaturization of the connector.
- an integrally formed body integrally formed of tin and biological fibers can also be used as an electrical contact terminal that is a component part of the connector.
- the electrical contact terminal provided with such an integrally formed body can improve the sliding characteristics without lowering the electrical conductivity. Further, it is possible to suppress a failure due to sliding of the contacts between the terminals and to improve the product life.
- Examples 1 to 9 On a copper plate (C1100) having a thickness of 0.3 mm, a metal shown in Table 7 and cellulose fibers as biological fibers are integrally formed at a mass ratio shown in Table 7 to form an integrally formed body (surface treatment film). It was confirmed whether or not.
- the cellulose fiber by the Sugino machine company whose diameter is about 20 nm and length is several micrometers was used for the cellulose fiber.
- cellulose fibers are added to the copper plating bath shown in Table 2 in an amount of about 0.01 to 30% by volume with respect to the copper plating bath, and the mixture is stirred and dispersed in the copper plating bath.
- Example 10 In the same manner as in Examples 1 to 9, a metal shown in Table 7 and chitosan fiber as a biological fiber were integrally formed on a 0.3 mm thick copper plate (C1100) at a mass ratio shown in Table 7. Then, it was confirmed whether or not an integrally formed body (surface treatment film) can be formed.
- chitosan fiber chitosan fiber manufactured by Sugino Machine Co., Ltd. having a diameter of about 20 nm and a length of several ⁇ m was used.
- Comparative Example 1 It was produced by the same method as in Example 1 except that the integrally formed body was prepared so that the mass ratio of the cellulose fibers contained in the integrally formed body (surface treatment coating) was 0.002%.
- Example 3 It was produced by the same method as in Example 1 except that the integrally formed body was prepared so that the mass ratio of the cellulose fibers contained in the integrally formed body (surface treatment coating) was 11%.
- Example 11 Whether a metal shown in Table 7 and cellulose fibers are integrally formed on a copper plate (C1100) having a thickness of 0.3 mm at a mass ratio shown in Table 7 to form an integrally formed body (surface treatment film).
- the cellulose fiber by the Sugino machine company whose diameter is about 20 nm and length is several micrometers was used for the cellulose fiber.
- cellulose fibers are added to a tin plating bath shown in Table 5 in an amount of about 0.01 to 30% by volume with respect to the tin plating bath, stirred and dispersed in the tin plating bath. Electrotin plating was performed under the plating conditions shown in Table 5 in a tin plating bath in which the fibers were dispersed, so that the thickness of the integrally formed body was 5 ⁇ m.
- Example 12 Except for the nickel plating conditions shown in Table 1 and the mass ratios shown in Table 7, a metal and cellulose fibers were integrally formed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Example 11. Then, it was confirmed whether or not an integrally formed body (surface treatment film) can be formed.
- Example 13 Except for the palladium plating conditions shown in Table 3 and the mass ratios shown in Table 7, a metal and cellulose fibers were integrally formed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Example 11. Then, it was confirmed whether or not an integrally formed body (surface treatment film) can be formed.
- Electropalladium plating was performed on a copper plate (C1100) having a thickness of 0.3 mm using a palladium plating bath and plating conditions shown in Table 3 to form a palladium plating film having a thickness of 5 ⁇ m, thereby preparing a palladium-plated copper plate.
- Example 14 Except for the silver plating conditions shown in Table 4 and the mass ratios shown in Table 7, a metal and a cellulose fiber were integrally formed on a copper plate (C1100) having a thickness of 0.3 mm in the same manner as in Example 11. Then, it was confirmed whether or not an integrally formed body (surface treatment film) can be formed.
- Example 15 Except for the gold plating conditions shown in Table 6 and the mass ratios shown in Table 7, an integrally formed body (surface treatment film) was formed in the same manner as in Example 11, and the integrally formed body (surface treatment film) was formed. It was confirmed whether it was possible.
- the mass ratio of the cellulose fibers of Examples 2 to 8 is in the range of 0.2% by mass or more and 7% by mass or less, the rate of increase in tensile strength is 30% or more and the rate of decrease in conductivity is 25%.
- the dynamic friction coefficient ratio was smaller than 0.65 and particularly excellent.
- Example 9 in which the mass ratio of the cellulose fibers contained in the integrally formed body (surface-treated film) is 8% by mass is included in the integrally formed body (surface-treated film), although the rate of increase in tensile strength is large. Compared with the case where the mass ratio of the cellulose fiber to be produced is 0.02 mass% or more and 7 mass% or less, the rate of decrease in conductivity was large.
- Comparative Example 2 the composite material could not be formed because the mass ratio of cellulose fibers was too large.
- Comparative Example 3 the rate of decrease in conductivity was significantly greater than the rate of increase in tensile strength.
- Example 10 where the biologically derived fiber is chitosan fiber, the rate of increase in tensile strength was significantly greater than the rate of decrease in conductivity.
- Example 11 When Example 11 in which the metal was tin plating was compared with Conventional Example 2, Example 11 had a lower rate of decrease in conductivity and a significantly higher rate of increase in tensile strength than Conventional Example 2.
- Example 12 When Example 12 in which the metal was nickel plating was compared with Conventional Example 3, Example 12 had a lower rate of decrease in conductivity and a significantly higher rate of increase in tensile strength than Conventional Example 3.
- Example 13 When Example 13 in which the metal was palladium plating was compared with Conventional Example 4, Example 13 had a lower rate of decrease in conductivity and a significantly higher rate of increase in tensile strength than Conventional Example 4.
- Example 14 When Example 14 in which the metal was silver plating was compared with Conventional Example 5, Example 14 had a smaller decrease rate of conductivity and a significantly higher increase rate of tensile strength than Conventional Example 5.
- Example 15 When Example 15 in which the metal is gold plating was compared with Conventional Example 6, Example 15 had a lower rate of decrease in conductivity and a significantly higher rate of increase in tensile strength than Conventional Example 6.
- Examples 16 to 19 Except for the mass ratios shown in Table 8, in the same manner as in Examples 1 to 9, a metal and a cellulose fiber are integrally formed on a copper plate (C1100) having a thickness of 0.3 mm, and surface treatments having different film thicknesses are performed. A film (integral formed body) was formed.
- the present invention it is possible to achieve high strength, light weight and improved sliding characteristics while suppressing deterioration of excellent material properties such as conductivity inherent to the metal itself as much as possible. It has become possible to provide an integrally formed body and a composite material having the same.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Coupling Device And Connection With Printed Circuit (AREA)
- Multi-Conductor Connections (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
[1]金属と、該金属中に分散状態で配置された生体由来の繊維との一体形成体であって、
前記一体形成体中に含まれる前記生体由来繊維の質量割合が、0.02質量%以上、10質量%以下の範囲である一体形成体。
[2]前記生体由来の繊維が、セルロース繊維である、上記[1]に記載の一体形成体。
[3]前記生体由来の繊維が、キチンまたはキトサン繊維である、上記[1]に記載の一体形成体。
[4]前記生体由来繊維が、前記金属中に一方向に揃った状態で分散されている、上記[1]~[3]のいずれかに記載の一体形成体。
[5]前記生体由来繊維が、前記金属中にランダム方向に配列した状態で分散されている、上記[1]~[3]のいずれかに記載の一体形成体。
[6]前記一体形成体の導電率として、前記金属の導電率に対する低下率が30%以下である、上記[1]~[5]のいずれかに記載の一体形成体。
[7]前記一体形成体の引張強度として、前記金属の引張強度に対する増加率が5%以上である、上記[1]~[6]のいずれかに記載の一体形成体。
[8]前記一体形成体の動摩擦係数として、前記一体形成体の表面に100gfの荷重で鋼球を摺動子として使用する往復摺動試験において、摺動回数20~50回の範囲内の条件下での動摩擦係数の最大値が、前記金属に対して0.8以下である、上記[1]~[7]までのいずれかに記載の一体形成体。
[9]前記金属が、ニッケル、銅、パラジウム、銀、錫または金である、上記[1]~[8]のいずれかに記載の一体形成体。
[10]前記金属が、銅または錫である、上記[1]~[9]のいずれかに記載の一体形成体。
[11]前記一体形成体中に含まれる前記生体由来繊維の質量割合が、0.02質量%以上7質量%以下の範囲である、上記[1]~[10]のいずれかに記載の一体形成体。
[12]電気めっき法によって形成する、上記[1]~[11]のいずれかに記載の一体形成体の製造方法。
[13]上記[1]~[11]のいずれかに記載の一体形成体と、該一体形成体が形成された表面をもつ基材と、を有する複合材。
[14]基材が導電性基材である、上記[13]に記載の複合材。
[15]基材が絶縁性基材である、上記[13]に記載の複合材。
[16]上記[1]~[11]のいずれかに記載の一体形成体を備える電気接点用端子。
[17]上記[1]~[11]のいずれかに記載の一体形成体を備えるプリント配線板。
本発明の一体形成体は、用途に応じて適した金属を選択することによって、金属自体が本来有する導電性等の優れた材料特性の低下をできる限り抑制しつつ、高強度化と軽量化・摺動特性の向上の実現を図ることができるため、様々な技術分野で種々の製品に適用することができる。
厚さ0.3mmの銅板(C1100)上に、表7に示す金属と、生体由来の繊維としてセルロース繊維とを表7に示す質量割合で一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。なお、セルロース繊維は、直径が約20nm、長さが数μmのスギノマシン社製のセルロース繊維を使用した。一体形成体は、表2に示す銅めっき浴に、セルロース繊維を、銅めっき浴に対して、0.01~30体積%程度添加し、攪拌して銅めっき浴中に分散させた後、セルロース繊維が分散した状態の銅めっき浴中で、表2に示すめっき条件で電気銅めっきを行い、一体形成体の厚さが5μmになるように作製した。一体形成体中に含まれるセルロース繊維の質量割合については、一体形成体の質量と、一体形成体を希硫酸にて溶解した後に残る残留物の質量から求めた。なお、一体形成体を希硫酸にて溶解した後に残留物は、フーリエ変換赤外分光分析によりセルロースであると同定した。
実施例1~9と同様の方法で、厚さ0.3mmの銅板(C1100)上に、表7に示す金属と、生体由来の繊維としてキトサン繊維とを表7に示す質量割合で一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。なお、キトサン繊維は、直径が約20nm、長さが数μmのスギノマシン社製のキトサン繊維を使用した。
一体形成体(表面処理被膜)中に含まれるセルロース繊維の質量割合が0.002%になるように一体形成体を作製したこと以外は、実施例1と同様の方法で作製した。
一体形成体(表面処理被膜)中に含まれるセルロース繊維の質量割合が20%になるように一体形成体の作製を試みたが、一体形成体を形成することができなかった。
一体形成体(表面処理被膜)中に含まれるセルロース繊維の質量割合が11%になるように一体形成体を作製したこと以外は、実施例1と同様の方法で作製した。
厚さ0.3mmの銅板(C1100)上に、表2に示す銅めっき浴およびめっき条件で電気銅めっきを行い、厚さ5μmの銅めっき被膜を形成し、銅めっき銅板を作製した。
厚さ0.3mmの銅板(C1100)上に、表7に示す金属と、セルロース繊維とを表7に示す質量割合で一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。なお、セルロース繊維は、直径が約20nm、長さが数μmのスギノマシン社製のセルロース繊維を使用した。一体形成体は、表5に示す錫めっき浴に、セルロース繊維を、錫めっき浴に対して、0.01~30体積%程度添加し、攪拌して錫めっき浴中に分散させた後、セルロース繊維が分散した状態の錫めっき浴中で、表5に示すめっき条件で電気錫めっきを行い、一体形成体の厚さが5μmになるように作製した。
厚さ0.3mmの銅板(C1100)上に、表5に示す錫めっき浴およびめっき条件で電気錫めっきを行い、厚さ5μmの錫めっき被膜を形成し、錫めっき銅板を作製した。
表1に示すニッケルめっき条件、および表7に示す質量割合以外は、実施例11と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。
厚さ0.3mmの銅板(C1100)上に、表1に示すニッケルめっき浴およびめっき条件で電気ニッケルめっきを行い、厚さ5μmのニッケルめっき被膜を形成し、ニッケルめっき銅板を作製した。
表3に示すパラジウムめっき条件、および表7に示す質量割合以外は、実施例11と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。
厚さ0.3mmの銅板(C1100)上に、表3に示すパラジウムめっき浴およびめっき条件で電気パラジウムめっきを行い、厚さ5μmのパラジウムめっき被膜を形成し、パラジウムめっき銅板を作製した。
表4に示す銀めっき条件、および表7に示す質量割合以外は、実施例11と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。
厚さ0.3mmの銅板(C1100)上に、表4に示す銀めっき浴およびめっき条件で電気銀めっきを行い、厚さ5μmの銀めっき被膜を形成し、銀めっき銅板を作製した。
表6に示す金めっき条件、および表7に示す質量割合以外は、実施例11と同様の方法で、一体形成体(表面処理被膜)を形成し、一体形成体(表面処理被膜)の形成が可能か否かの確認を行った。
厚さ0.3mmの銅板(C1100)上に、表6に示す金めっき浴およびめっき条件で電気金めっきを行い、厚さ5μmの金めっき被膜を形成し、金めっき銅板を作製した。
1.引張強度の測定
カソード電極(チタン板)上に、厚さ10μmの表面処理被膜(めっき被膜)を形成した後に、チタン板から表面処理被膜を剥離し、表面処理被膜(めっき被膜)からなる箔(供試材)を作製した。作製した各3枚ずつの箔(供試材)について、JIS Z2241:2011に準じて引張試験を行い、それらの平均値を求めた。
引張強度の測定と同様に、カソード電極(チタン板)上に、厚さ10μmの表面処理被膜(めっき被膜)を形成した後に、チタン板から表面処理被膜を剥離し、表面処理被膜(めっき被膜)からなる箔(供試材)を作製した。作製した各3枚ずつの箔(供試材)について、20℃(±0.5℃)に保持した恒温漕中で、四端子法により、比抵抗値を測定した。測定した比抵抗値から導電率を算出し、それらの平均値を求めた。なお、端子間距離は200mmとした。
厚さ0.3mmの銅板(C1100)上に、表7に示す一体形成体(表面処理被膜)が形成された複合材(表面処理材)を作製した。作製した各3枚ずつの複合材(供試材)において、摺動試験装置(HEIDON Type:14FW、商品名、新東科学社製)を用いて、動摩擦係数測定を行った。測定条件は以下の通りである。R=3.0mm 鋼球プローブ、摺動距離 10mm、摺動速度 100mm/分、摺動回数 往復50回、荷重100gf。動摩擦係数は、摺動回数20~50回の範囲における動摩擦係数の最大値を生体由来の繊維を含有しない元の金属膜との比(動摩擦係数比)で評価した。
表8に示す質量割合以外は、実施例1~9と同様の方法で、厚さ0.3mmの銅板(C1100)上に、金属と、セルロース繊維とを一体形成し、膜厚の異なる表面処理被膜(一体形成体)を形成した。
厚さ0.3mmの銅板(C1100)上に、表2に示す銅めっき浴およびめっき条件で電気銅めっきを行い、厚さ20mの銅めっき被膜を形成し、銅めっき銅板を作製した。
2 金属(マトリックス金属)
3 生体由来の繊維
4 一体形成体
5 基材
Claims (17)
- 金属と、該金属中に分散状態で配置された生体由来の繊維との一体形成体であって、
前記一体形成体中に含まれる前記生体由来の繊維の質量割合が、0.02質量%以上、10質量%以下の範囲であることを特徴とする一体形成体。 - 前記生体由来の繊維が、セルロース繊維である、請求項1に記載の一体形成体。
- 前記生体由来の繊維が、キチンまたはキトサン繊維である、請求項1に記載の一体形成体。
- 前記生体由来の繊維が、前記金属中に一方向に揃った状態で分散されている、請求項1~3までのいずれか1項に記載の一体形成体。
- 前記生体由来の繊維が、前記金属中にランダム方向に配列した状態で分散されている、請求項1~3までのいずれか1項に記載の一体形成体。
- 前記一体形成体の導電率として、前記金属の導電率に対する低下率が30%以下である、請求項1~5までのいずれか1項に記載の一体形成体。
- 前記一体形成体の引張強度として、前記金属の引張強度に対する増加率が5%以上である、請求項1~6までのいずれか1項に記載の一体形成体。
- 前記一体形成体の動摩擦係数として、前記一体形成体の表面に100gfの荷重で鋼球を摺動子として使用する往復摺動試験において、摺動回数20~50回の範囲内の条件下での動摩擦係数の最大値が、前記金属に対して0.8以下である、請求項1~7までのいずれか1項に記載の一体形成体。
- 前記金属が、ニッケル、銅、パラジウム、銀、錫または金である、請求項1~8までのいずれか1項に記載の一体形成体。
- 前記金属が、銅または錫である請求項1~9までのいずれか1項に記載の一体形成体。
- 前記一体形成体中に含まれる前記生体由来の繊維の質量割合が、0.02質量%以上、7質量%以下の範囲である、請求項1~10までのいずれか1項に記載の一体形成体。
- 電気めっき法によって形成する請求項1~11までのいずれか1項に記載の前記一体形成体の製造方法。
- 請求項1~11までのいずれか1項に記載の前記一体形成体と、該一体形成体が形成された表面をもつ基材とを有する、複合材。
- 前記基材が導電性基材である、請求項13に記載の複合材。
- 前記基材が絶縁性基材である、請求項13に記載の複合材。
- 請求項1~11までのいずれか1項に記載の一体形成体を備える電気接点用端子。
- 請求項1~11までのいずれか1項に記載の一体形成体を備えるプリント配線板。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880020155.8A CN110462111B (zh) | 2017-03-29 | 2018-03-28 | 一体形成体、以及具有该一体形成体的复合材料、电触头用端子及印刷线路板 |
JP2019509977A JP7129402B2 (ja) | 2017-03-29 | 2018-03-28 | 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 |
EP18774867.8A EP3604628A4 (en) | 2017-03-29 | 2018-03-28 | ONE-PIECE SHAPED BODY, COMPOSITE MATERIAL WITH THE SAYED ONE-PIECE SHAPED BODY, ELECTRIC CONTACT CLAMP AND CIRCUIT BOARD |
KR1020197027426A KR20190133165A (ko) | 2017-03-29 | 2018-03-28 | 일체 형성체, 그리고 그 일체 형성체를 갖는 복합재, 전기 접점용 단자 및 프린트 배선판 |
US16/584,825 US11361876B2 (en) | 2017-03-29 | 2019-09-26 | Integrally formed product, and composite material, terminal for electrical contact and printed wiring board including the integrally formed product |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017066042 | 2017-03-29 | ||
JP2017-066042 | 2017-03-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/584,825 Continuation US11361876B2 (en) | 2017-03-29 | 2019-09-26 | Integrally formed product, and composite material, terminal for electrical contact and printed wiring board including the integrally formed product |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018181480A1 true WO2018181480A1 (ja) | 2018-10-04 |
Family
ID=63676249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/012778 WO2018181480A1 (ja) | 2017-03-29 | 2018-03-28 | 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11361876B2 (ja) |
EP (1) | EP3604628A4 (ja) |
JP (1) | JP7129402B2 (ja) |
KR (1) | KR20190133165A (ja) |
CN (1) | CN110462111B (ja) |
TW (1) | TWI787247B (ja) |
WO (1) | WO2018181480A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017389A1 (ja) * | 2018-07-19 | 2020-01-23 | 古河電気工業株式会社 | 皮膜材及びその製造方法、複合材、並びに電気接点用端子 |
JP2021102793A (ja) * | 2019-12-24 | 2021-07-15 | 古河電気工業株式会社 | 複合めっき、めっき付き金属基材及び電気接点用端子 |
JPWO2022191190A1 (ja) * | 2021-03-09 | 2022-09-15 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7129402B2 (ja) | 2017-03-29 | 2022-09-01 | 古河電気工業株式会社 | 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 |
WO2021049183A1 (ja) * | 2019-09-13 | 2021-03-18 | エセックス古河マグネットワイヤジャパン株式会社 | 電気導線、絶縁電線、コイル、並びに電気・電子機器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11277217A (ja) * | 1998-01-19 | 1999-10-12 | Mitsubishi Materials Corp | 放熱用基板およびその製造方法 |
WO2013100147A1 (ja) * | 2011-12-28 | 2013-07-04 | 太盛工業株式会社 | 多孔質焼結体及び多孔質焼結体の製造方法 |
JP5566368B2 (ja) | 2009-02-18 | 2014-08-06 | 日本製紙株式会社 | セルロースナノファイバーおよび金属ナノ粒子を含む複合体、ならびにその製造方法 |
WO2015170613A1 (ja) | 2014-05-09 | 2015-11-12 | 凸版印刷株式会社 | 複合体、複合体の製造方法、分散液、分散液の製造方法および光学材料 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1118167A (en) * | 1965-10-23 | 1968-06-26 | Res Holland Nv | Improvements in or relating to the production of microporous chromium deposits |
FR2440197A1 (fr) | 1978-11-06 | 1980-05-30 | Medtronic Inc | Amplificateur de detection de stimulateur cardiaque a la demande |
US4269859A (en) * | 1979-04-19 | 1981-05-26 | Brown Company | Cellulose floc granules and process |
JPH01277217A (ja) * | 1988-04-28 | 1989-11-07 | Nec Corp | アクティブマトリックス型液晶表示素子アレイ |
US5008158A (en) * | 1988-11-07 | 1991-04-16 | Aluminum Company Of America | Production of metal matrix composites reinforced with polymer fibers |
JPH08321303A (ja) * | 1995-05-26 | 1996-12-03 | Furukawa Battery Co Ltd:The | アルカリ二次電池用の電極 |
JPH08329956A (ja) * | 1995-05-31 | 1996-12-13 | Furukawa Battery Co Ltd:The | 電池電極用の集電体、それを用いたニッケル極 |
JP2008293883A (ja) * | 2007-05-28 | 2008-12-04 | Hitachi Cable Ltd | 導電性物品、負極材料、それらの製造方法、めっき液ならびにリチウム二次電池 |
CN102493265B (zh) * | 2011-12-14 | 2014-04-02 | 南京林业大学 | 一种金属纳米粒子与纤维素纤维复合材料的制备方法 |
US20170006701A1 (en) * | 2014-03-11 | 2017-01-05 | Empire Technology Development Llc | Biodegradable printed circuit boards and methods for making the printed circuit boards |
WO2016023904A1 (en) * | 2014-08-15 | 2016-02-18 | Basf Se | Composition comprising silver nanowires and fibers of crystalline cellulose for the preparation of electroconductive transparent layers |
CN105369301B (zh) * | 2015-12-17 | 2018-06-26 | 中国科学院海洋研究所 | 一种壳聚糖复合的锌镀层及其制备方法 |
CN106222718B (zh) * | 2016-08-30 | 2018-06-26 | 武汉理工大学 | 一种羧甲基纤维素的电沉积方法 |
JP7129402B2 (ja) | 2017-03-29 | 2022-09-01 | 古河電気工業株式会社 | 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 |
-
2018
- 2018-03-28 JP JP2019509977A patent/JP7129402B2/ja active Active
- 2018-03-28 EP EP18774867.8A patent/EP3604628A4/en not_active Withdrawn
- 2018-03-28 WO PCT/JP2018/012778 patent/WO2018181480A1/ja unknown
- 2018-03-28 KR KR1020197027426A patent/KR20190133165A/ko active IP Right Grant
- 2018-03-28 CN CN201880020155.8A patent/CN110462111B/zh not_active Expired - Fee Related
- 2018-03-29 TW TW107110939A patent/TWI787247B/zh not_active IP Right Cessation
-
2019
- 2019-09-26 US US16/584,825 patent/US11361876B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11277217A (ja) * | 1998-01-19 | 1999-10-12 | Mitsubishi Materials Corp | 放熱用基板およびその製造方法 |
JP5566368B2 (ja) | 2009-02-18 | 2014-08-06 | 日本製紙株式会社 | セルロースナノファイバーおよび金属ナノ粒子を含む複合体、ならびにその製造方法 |
WO2013100147A1 (ja) * | 2011-12-28 | 2013-07-04 | 太盛工業株式会社 | 多孔質焼結体及び多孔質焼結体の製造方法 |
WO2015170613A1 (ja) | 2014-05-09 | 2015-11-12 | 凸版印刷株式会社 | 複合体、複合体の製造方法、分散液、分散液の製造方法および光学材料 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604628A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017389A1 (ja) * | 2018-07-19 | 2020-01-23 | 古河電気工業株式会社 | 皮膜材及びその製造方法、複合材、並びに電気接点用端子 |
JP2021102793A (ja) * | 2019-12-24 | 2021-07-15 | 古河電気工業株式会社 | 複合めっき、めっき付き金属基材及び電気接点用端子 |
JP7393939B2 (ja) | 2019-12-24 | 2023-12-07 | 古河電気工業株式会社 | 複合めっき、めっき付き金属基材及び電気接点用端子 |
JPWO2022191190A1 (ja) * | 2021-03-09 | 2022-09-15 | ||
WO2022191190A1 (ja) * | 2021-03-09 | 2022-09-15 | 日本製紙株式会社 | セルロースナノファイバー及び/又はキチンナノファイバーのコーティングの製造方法 |
JP7367264B2 (ja) | 2021-03-09 | 2023-10-23 | 日本製紙株式会社 | セルロースナノファイバー及び/又はキチンナノファイバーのコーティングの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110462111B (zh) | 2022-01-07 |
CN110462111A (zh) | 2019-11-15 |
KR20190133165A (ko) | 2019-12-02 |
US11361876B2 (en) | 2022-06-14 |
TW201840908A (zh) | 2018-11-16 |
JPWO2018181480A1 (ja) | 2020-02-06 |
US20200043627A1 (en) | 2020-02-06 |
EP3604628A4 (en) | 2021-01-20 |
EP3604628A1 (en) | 2020-02-05 |
TWI787247B (zh) | 2022-12-21 |
JP7129402B2 (ja) | 2022-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018181480A1 (ja) | 一体形成体、並びに該一体形成体を有する複合材、電気接点用端子及びプリント配線板 | |
US9570207B2 (en) | Electrical contact materials and method for preparing the same | |
TWI525923B (zh) | 電性接點零件 | |
EP3096328B1 (en) | Method for preparing electrical contact materials including ag plated cnts | |
JP2018199839A (ja) | 銀めっき液、銀めっき材料及び電気・電子部品、並びに銀めっき材料の製造方法。 | |
US20110318504A1 (en) | Method for fabricating composite material comprising nano carbon and metal or ceramic | |
KR20130072400A (ko) | 전기전도성, 열안정성 및 기계적 특성이 향상된 고분자 복합체 및 이를 포함하는 무연 솔더 | |
KR20230028211A (ko) | 복합재, 복합재의 제조 방법 및 단자 | |
JP7393939B2 (ja) | 複合めっき、めっき付き金属基材及び電気接点用端子 | |
JP2012049107A (ja) | 電気接点部品 | |
CN102218533B (zh) | 银包镍合金粉 | |
CN113199024B (zh) | 三元层状化合物、金属基复合材料及其制作方法和原料 | |
JP2020187971A (ja) | コネクタ端子、端子付き電線、及び端子対 | |
JP7470321B2 (ja) | Sn-グラフェン複合めっき膜金属製端子とその製造方法 | |
JP7252234B2 (ja) | 皮膜材及びその製造方法、複合材、並びに電気接点用端子 | |
KR20180039968A (ko) | 은-은 코팅 탄소나노튜브 복합소재를 이용한 고방열성 및 내아크성을 갖는 전기접점재료 및 이의 제조방법 | |
WO2024154375A1 (ja) | 複合材、端子及び端子の製造方法 | |
JP2024102795A (ja) | 複合材、端子及び端子の製造方法 | |
JP6967993B2 (ja) | 電気接点材料およびそれを用いたスイッチ | |
JP2022068422A (ja) | 複合材、複合材の製造方法、端子および端子の製造方法 | |
WO2023276324A1 (ja) | 複合材、複合材の製造方法、端子及び端子の製造方法 | |
JP2022076573A (ja) | 複合めっき材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18774867 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019509977 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197027426 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018774867 Country of ref document: EP Effective date: 20191029 |