WO2018181060A1 - フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品 - Google Patents

フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品 Download PDF

Info

Publication number
WO2018181060A1
WO2018181060A1 PCT/JP2018/011884 JP2018011884W WO2018181060A1 WO 2018181060 A1 WO2018181060 A1 WO 2018181060A1 JP 2018011884 W JP2018011884 W JP 2018011884W WO 2018181060 A1 WO2018181060 A1 WO 2018181060A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
stainless steel
temperature
upper limit
compound
Prior art date
Application number
PCT/JP2018/011884
Other languages
English (en)
French (fr)
Inventor
濱田 純一
敦久 矢川
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to MX2019011670A priority Critical patent/MX2019011670A/es
Priority to CN201880021469.XA priority patent/CN110462088A/zh
Priority to JP2019509738A priority patent/JP6796708B2/ja
Priority to KR1020197031473A priority patent/KR102306578B1/ko
Publication of WO2018181060A1 publication Critical patent/WO2018181060A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a ferritic stainless steel sheet, a method for producing the same, and an exhaust part.
  • Exhaust system members such as automobile exhaust manifolds, front pipes, and center pipes pass high-temperature exhaust gas exhausted from the engine, so the materials that make up the exhaust members have various characteristics such as oxidation resistance, high-temperature strength, and thermal fatigue characteristics. Is required.
  • Patent Document 1 discloses a high Cr, Mo-added steel.
  • Patent Document 2 discloses an exhaust guide part of a nozzle vane type turbocharger using austenitic stainless steel added with 2 to 4% of Si.
  • steel components are defined in consideration of hot workability at the time of steel production, it cannot be said that the high temperature characteristics required for the above parts are sufficiently satisfied, and the punched hole is expanded. However, the steel components specified from the hot workability could not obtain sufficient hole expansibility.
  • the caster stainless steel is used for the turbocharger housing, there is a need to reduce the thickness and weight due to the large thickness.
  • austenitic stainless steel has excellent heat resistance and workability, but because of its large thermal expansion coefficient, when applied to a member that repeatedly receives heating and cooling, such as an exhaust manifold, Fatigue failure is likely to occur.
  • ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, it is excellent in thermal fatigue characteristics and scale peel resistance. Further, compared with austenitic stainless steel, it does not contain Ni, so the material cost is low, and it is used for exhaust parts that substitute an exhaust manifold.
  • ferritic stainless steel has lower high-temperature strength than austenitic stainless steel, a technique for improving high-temperature strength has been developed. For example, SUS430J1 (Nb-added steel), Nb—Si-added steel, and SUS444 (Nb—Mo-added steel) are all assumed to be added with Nb. This increased the high temperature strength by solid solution strengthening or precipitation strengthening with Nb.
  • Patent Documents 3 to 6 disclose techniques for adding Cu or Cu—V composite as an alloy that contributes to improving high-temperature strength in addition to Nb.
  • Cu addition in Patent Document 3 has been studied for addition of 0.5% or less for improving low-temperature toughness, and is not an addition from the viewpoint of heat resistance.
  • Patent Documents 4 to 6 disclose techniques for improving high-temperature strength in a temperature range of 600 ° C. or 700 to 800 ° C. using precipitation hardening by Cu precipitates.
  • Patent Documents 7 to 9 disclose steel containing B as a ferritic stainless steel having excellent high temperature characteristics.
  • Patent Documents 10 to 15 disclose technologies related to ferritic stainless steel to which W is added as a countermeasure for increasing the temperature of exhaust gas.
  • Patent Documents 16 and 17 disclose that high temperature strength of ferritic stainless steel is secured by setting Mo + W within a predetermined range.
  • Patent Document 18 discloses a technique in which P is contained up to 0.1% as being effective for high temperature and high strength by high solid solution strengthening.
  • the amount of P precipitated as FeTiP is 0.01% or less in order to increase the high-temperature strength by the solid solution strengthening action of P.
  • JP 2013-069220 A Japanese Patent No. 4937277 JP 2006-37176 A International Publication No. 2003/004714 Japanese Patent No. 3468156 Japanese Patent No. 3397167 JP-A-9-279312 JP 2000-169943 A Japanese Patent Laid-Open No. 10-204590 JP 2009-215648 A JP 2009-235555 A JP 2005-206944 A JP 2008-189974 A JP 2009-120893 A JP 2009-120894 A JP 2009-197306 A JP 2009-197307 A Japanese Patent No. 30216656 JP 2000-336462 A
  • the ferritic stainless steel containing B has a problem that the yield strength is high, there is a problem of sensitization, and manufacturability is deteriorated.
  • W added in the techniques of Patent Documents 10 to 15 is known as an element that improves high-temperature strength.
  • the addition of W has a problem in that workability (elongation) is deteriorated and parts processing becomes difficult. There was a problem in terms of cost.
  • bonds with Fe and precipitates as the Laves phase mentioned later at high temperature when the Laves phase coarsened, there existed a subject which cannot improve heat resistance effectively.
  • Patent Documents 18 and 19 both increase the high-temperature strength by the solid solution strengthening action of P in ferritic stainless steel. These techniques aim to suppress the formation of P compounds (for example, FeP, FeTiP, FeNbP) from the viewpoint of high-temperature strength. On the other hand, there is a problem that the workability at room temperature deteriorates due to an increase in the solid solution P. .
  • normal temperature workability indicates normal temperature ductility and yield strength, and if the ductility is low or the yield strength is high, it is extremely difficult to process exhaust parts.
  • the above-described exhaust manifold, turbocharger housing, and the like are designed to have a complicated shape in order to increase thermal efficiency and control exhaust loss. With materials with low processability at room temperature, it becomes difficult to process complex shaped parts.
  • the present invention aims to provide a ferritic stainless steel sheet having both heat resistance and workability, a method for producing the same, and an exhaust part in order to solve the above-described problems of the prior art.
  • the present inventors have conducted a detailed investigation mainly on the production conditions and room temperature workability of Nb and Cu-containing ferritic stainless steel sheets. As a result, the steel components are limited to a predetermined range and cold rolled. It has been found that by controlling the precipitation of the P compound to an appropriate amount in the plate annealing step, a low yield strength and high ductility material can be obtained without impairing the high temperature strength.
  • the amount of solid solution P is reduced by precipitating a P compound in the cooling process after obtaining a recrystallized structure, and this acts on strengthening at room temperature.
  • the solid solution P By reducing the solid solution P, the normal temperature workability of the steel sheet is improved.
  • the high temperature strength is improved by the precipitated P compound, heat resistance is also ensured.
  • the present inventors have found a heat-resistant ferritic stainless steel sheet that has both high-temperature characteristics and room-temperature processability that can be applied to the above-described complicated exhaust parts.
  • the gist of the present invention is as follows.
  • [1] Steel has a chemical composition of mass%, C: 0.02% or less, N: 0.02% or less, Si: more than 0.10% and 3.0% or less, Mn: 1.0% or less, P: 0.02 to 0.05%, Cr: 11.0 to 18.0%, B: 0.0001 to 0.0010%, Al: 0.01 to 1.0% Nb and / or Cu: 0.3 to 4.0% in total, Ti: 0 to 0.5%, Mo: 0 to 3.0%, W: 0-2.0%, V: 0 to 1.0%, Sn: 0 to 0.5% Ni: 0 to 1.0%, Mg: 0 to 0.01%, Sb: 0 to 0.5%, Zr: 0 to 0.3%, Ta: 0 to 0.3%, Hf: 0 to 0.3% Co: 0 to 0.3% Ca: 0 to 0.01%, REM: 0 to 0.2%, Ga: 0 to 0.3%, The remainder: Fe and inevitable impurities In the steel, the content of P existing as a P compound is 0.005% or more
  • the chemical composition is mass%, Ti: 0.05 to 0.5%, Mo: 0.01 to 3.0%, W: 0.1-2.0%, V: 0.05 to 1.0%, Sn: 0.01 to 0.5%, Ni: 0.05 to 1.0%, Mg: 0.0002 to 0.01%, Sb: 0.01 to 0.5%, Zr: 0.01 to 0.3%, Ta: 0.01-0.3% Hf: 0.01 to 0.3%, Co: 0.01 to 0.3% Ca: 0.0001 to 0.01%, REM: 0.001 to 0.2%, Ga: containing one or more selected from 0.0002 to 0.3%, The ferritic stainless steel sheet according to the above [1].
  • [4] The method for producing a ferritic stainless steel sheet according to any one of [1] to [3], wherein the following steps (1) to (3) are sequentially performed.
  • (1) a step of heating the cold-rolled steel sheet having the chemical composition according to the above [1] or [2] to 870 to 1100 ° C. (2) cooling the cold-rolled steel sheet from the heating temperature to 800 ° C. at an average cooling rate of 1 ° C./s or less, and (3) A step of cooling the cold-rolled steel sheet from 800 ° C. to 350 ° C. at an average cooling rate of 5 ° C./s or more.
  • FIG. 1 shows the relationship between the precipitation amount of a P compound and cold ductility in a cold-rolled steel sheet (1.5 mm thickness).
  • the ferritic stainless steel sheet according to the present invention has the following chemical composition. “%” For the content of each element means “mass%”.
  • the upper limit is preferably 0.009%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%.
  • N 0.02% or less N, like C, deteriorates moldability and corrosion resistance and lowers the high-temperature strength. Therefore, the lower the content, the better.
  • the upper limit is preferably 0.015%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.003%.
  • Si more than 0.10% and not more than 3.0% Si is an element useful as a deoxidizer and an element that improves high-temperature strength and oxidation resistance.
  • High temperature strength and oxidation resistance improve with increasing Si content, and the effect is manifested at over 0.10%.
  • the upper limit is made 3.0%.
  • the upper limit is preferably 1.0%.
  • the lower limit is preferably 0.2%.
  • Mn 1.0% or less Mn is an element useful as a deoxidizing agent and contributes to an increase in high-temperature strength in the intermediate temperature range.
  • the upper limit is made 1.0%.
  • the upper limit is desirably set to 1.0% in consideration of pickling properties and ductility at room temperature.
  • the lower limit is preferably 0.05%.
  • P 0.02 to 0.05%
  • P is an important element for controlling the precipitation of P compounds (FeP, FeTiP and FeNbP).
  • P P compounds
  • FeP, FeTiP and FeNbP P compounds
  • the cost increases due to the use of a low P raw material. To do.
  • addition of more than 0.05% remarkably hardens, and corrosion resistance, toughness and pickling properties deteriorate, so 0.05% is made the upper limit.
  • Cr 11.0 to 18.0% Cr is an essential element for ensuring oxidation resistance and corrosion resistance. If it is less than 11.0%, oxidation resistance cannot be particularly secured. If it exceeds 18.0%, workability and toughness are deteriorated, so 11.0 to 18.0%. Furthermore, in consideration of manufacturability and scale peelability, it is desirable that the lower limit is 13.0% and the upper limit is 17.5%.
  • B 0.0001 to 0.0010% B is an element that improves the secondary workability during product press working. Further, in the present invention, the P compound is utilized to improve the room temperature workability and the high temperature strength. However, the addition of B suppresses the coarsening of the P compound under a high temperature use environment, and the strength when used in a high temperature environment. The effect of increasing stability appears. This is because B is segregated at the grain boundaries during the recrystallization process in the cold-rolled sheet annealing step, and the precipitates that precipitate when exposed to a subsequent high temperature environment are less likely to precipitate at the grain boundaries. This is thought to promote fine precipitation inside.
  • the long-term stability of precipitation strengthening is expressed, and it contributes to suppression of strength reduction and improvement of thermal fatigue life.
  • This effect is manifested at 0.0001% or more.
  • excessive content deteriorates the hardness, intergranular corrosion resistance and oxidation resistance, and also causes weld cracks, so the content was made 0.0001 to 0.0010%.
  • the lower limit is 0.0001% and the upper limit is 0.0005%.
  • Al 0.01 to 1.0%
  • Al is an element that improves oxidation resistance. Further, it is useful as a solid solution strengthening element for improving the strength at 600 to 700 ° C. The effect is stably expressed at a content of 0.01% or more, but excessive content hardens to significantly reduce uniform elongation and toughness to remarkably decrease, so the upper limit was made 1.0%. Furthermore, considering the occurrence of surface defects, weldability, and manufacturability, it is desirable that the lower limit be 0.01% and the upper limit be 0.2%.
  • Nb and / or Cu 0.3 to 4.0% in total Nb is an element effective for improving the high-temperature strength by strengthening solid solution and strengthening precipitates.
  • C and N are fixed as carbonitrides, contributing to the development of the recrystallization texture that affects the corrosion resistance and r value of the product plate.
  • it also has the effect of promoting the production
  • the upper limit of the total content is set to 4.0% in order to remarkably harden and deteriorate manufacturability.
  • the lower limit is 0.4% and the upper limit is 2.0%.
  • a more preferable upper limit is 1.5%, and a further preferable upper limit is 0.6%.
  • the Cu contributes to precipitation strengthening by ⁇ -Cu precipitation
  • Cu may be contained. At this time, the Cu content is 0.3% or more.
  • the high temperature strengthening works effectively because the Cu precipitation rate is increased by using the P compound as a nucleation site.
  • the exhaust gas temperature is 800 ° C. or higher, it is desirable to increase the Cu content, and 1.0% or higher is desirable.
  • the lower limit is 1.1% and the upper limit is 1.6%.
  • Ti 0 to 0.5%
  • Ti is an element that combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, room temperature ductility and deep drawability, and may be contained.
  • the content exceeds 0.5%, the amount of dissolved Ti increases and the room temperature ductility decreases, and a coarse Ti-based precipitate is formed, which becomes the starting point of cracking during hole expansion processing, and press workability Deteriorate.
  • the Ti content is set to 0.5% or less.
  • the lower limit is 0.05% and the upper limit is 0.2%.
  • Mo 0 to 3.0% Mo is an element effective for solid solution strengthening at 950 ° C., and may be included to improve corrosion resistance. This effect becomes remarkable at 0.01% or more. Excessive content significantly deteriorates the room temperature ductility and oxidation resistance, so the content was made 3.0% or less. Considering thermal fatigue characteristics and manufacturability, it is desirable that the lower limit is 0.2% and the upper limit is 2.7%.
  • W 0-2.0% W, like Mo, is an element effective for solid solution strengthening at 950 ° C., and also generates a Laves phase (Fe 2 W) to bring about precipitation strengthening.
  • the Laves phase of Fe 2 (Nb, Mo, W) is precipitated.
  • these Laves phases tend to become fine due to the coexistence with Fe-P-based precipitates. For this reason, you may contain W.
  • V 0 to 1.0%
  • V is an element that improves the corrosion resistance, and may be contained. This effect becomes remarkable when the content is 0.05% or more. If the content is excessive, the precipitate becomes coarse and the high temperature strength decreases, and the oxidation resistance deteriorates, so the upper limit was made 1.0%. Furthermore, considering the manufacturing cost and manufacturability, it is desirable that the lower limit is 0.08% and the upper limit is 0.5%.
  • Sn 0 to 0.5%
  • Sn is an element that improves the corrosion resistance, and may be contained in order to improve the high temperature strength in the middle temperature range. These effects become significant at 0.01% or more. An excessive content significantly reduces manufacturability, so the upper limit was made 0.5%. Furthermore, considering the oxidation resistance and manufacturing cost, it is desirable that the lower limit is 0.1% and the upper limit is 0.5%.
  • Ni 0 to 1.0%
  • Ni is an element that improves acid resistance and toughness, and may be contained. These effects become significant at 0.05% or more. An excessive content increases the cost, so the upper limit was made 1.0%. Further, in consideration of manufacturability, it is desirable that the lower limit is 0.1% and the upper limit is 0.5%.
  • Mg 0 to 0.01% Mg may be added as a deoxidizing element, and is an element that contributes to improving the formability by refining the slab structure. Further, the Mg oxide becomes a precipitation site for carbonitrides such as Ti (C, N) and Nb (C, N), and has an effect of finely dispersing and depositing them. Furthermore, there is an effect of improving toughness. For this reason, you may contain Mg. These effects become significant at 0.0002% or more. Excessive inclusion leads to deterioration of weldability and corrosion resistance, so the upper limit was made 0.01%. Considering refining costs, it is desirable that the lower limit is 0.0003% and the upper limit is 0.0010%.
  • Sb 0 to 0.5% Sb may be contained because it contributes to the improvement of corrosion resistance and high-temperature strength. The above effect becomes significant at 0.01% or more. An excessive content may cause excessive slab cracking or ductility reduction during the production of the steel sheet, so the upper limit was made 0.5%. Furthermore, considering refining costs and manufacturability, it is desirable that the lower limit is 0.01% and the upper limit is 0.15%.
  • Zr 0 to 0.3%
  • Zr is a carbonitride-forming element, is an element that improves corrosion resistance and deep drawability, and may be contained. These effects become significant at 0.01% or more. If the content is excessive, the manufacturability is remarkably deteriorated, so the upper limit was made 0.3%. Furthermore, considering the cost and surface quality, it is desirable that the lower limit is 0.1% and the upper limit is 0.3%.
  • Ta 0 to 0.3%
  • Hf 0 to 0.3%
  • Ta and Hf may be contained because they combine with C and N to contribute to improvement of toughness. This effect becomes remarkable at 0.01% or more. Excessive content increases costs and significantly degrades manufacturability, so the upper limit of each element is set to 0.3%. Furthermore, considering refining costs and manufacturability, the lower limit of each element is preferably 0.01% and the upper limit is preferably 0.08%.
  • Co 0 to 0.3% Co contributes to the improvement of the high-temperature strength and may be contained. This effect becomes remarkable at 0.01% or more. Since excessive inclusion leads to toughness deterioration, the upper limit was made 0.3%. Furthermore, considering refining costs and manufacturability, the lower limit is preferably 0.01% and the upper limit is preferably 0.1%.
  • Ca 0 to 0.01% Since Ca has a desulfurization effect, Ca may be contained. This effect becomes significant at 0.0001% or more. An excessive content generates coarse CaS and degrades toughness and corrosion resistance, so the upper limit was made 0.01%. Furthermore, considering refining costs and manufacturability, the lower limit is preferably 0.0003% and the upper limit is preferably 0.0020%.
  • REM 0 to 0.2% REM may be contained from the viewpoint of improving toughness and oxidation resistance by refining various precipitates. This effect becomes significant at 0.001% or more. Excessive content significantly deteriorates castability and lowers ductility, so the upper limit was made 0.2%. Furthermore, considering refining costs and manufacturability, it is desirable that the lower limit is 0.001% and the upper limit is 0.05%.
  • REM rare earth element refers to a generic name of two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu). It may be added alone or as a mixture. The REM content means the total content of these elements.
  • Ga 0 to 0.3% Ga may be contained in a range of 0.3% or less in order to improve corrosion resistance and suppress hydrogen embrittlement. These effects become significant at 0.0002%. From the viewpoints of manufacturability and cost, and from the viewpoints of ductility and toughness, 0.0020% or less is preferable.
  • the ferritic stainless steel sheet according to the present invention contains each of the above elements, with the balance being Fe and inevitable impurities.
  • the inevitable impurities mean components mixed due to raw materials such as ore and scrap and other factors when industrially producing steel materials.
  • Other elements are not particularly specified, but in the present invention, Bi or the like may be contained in an amount of 0.001 to 0.1% as necessary. Note that it is preferable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.
  • P content present as P compound 0.005% or more (mass%)
  • P compound include FeP, FeTiP, FeNbP, and the like.
  • FIG. 1 shows the relationship between the content of P existing as a P compound in a cold-rolled steel sheet (1.5 mm thick) (hereinafter referred to as “P amount in P compound”) and room temperature ductility.
  • P amount in P compound a cold-rolled steel sheet
  • FIG. 1 is the result of having heat-processed with the various temperature pattern about the steel containing 0.03% of P, and having investigated the relationship between the amount of P in a P compound, and normal temperature ductility according to the test method shown in an Example. .
  • the normal temperature ductility is 30% or more. If the room temperature ductility is 30% or more, it is at a level that can be sufficiently molded for various exhaust parts currently manufactured.
  • the improvement in ductility due to the formation of the P compound is due to a decrease in the amount of dissolved P.
  • the reduction in the amount of solid solution Nb due to FeNbP precipitation and in the case of Ti-containing steel, the reduction in the amount of solid solution Ti due to FeTiP precipitation has an influence.
  • the above-mentioned P compound contributes to the improvement of high-temperature strength.
  • the precipitates hinder dislocation at high temperature, and the Laves phase and Cu precipitates (bcc-Cu, fcc-Cu) precipitate finely in the high-temperature tensile process with the P compound as the nucleus, and the high-temperature precipitation strengthening ability This is because it increases further.
  • This effect is effective not only for high temperature strength but also for high cycle fatigue and low cycle fatigue (thermal fatigue) required for exhaust parts.
  • the P compound necessary for strengthening at high temperature is effective if it is 0.005% or more, but excessive precipitation may promote the origin of fatigue fracture and crack propagation, so the upper limit is 0.100%. It is good to do.
  • the lower limit of the amount of P in the P compound is 0.006% and the upper limit is 0.05% in consideration of manufacturability. Is desirable.
  • the amount of P in the P compound means the content (mass%) of P contained in the steel as undissolved P precipitates.
  • extraction residue analysis is performed and the amount of P in a P compound is measured. Specifically, first, the steel is electrolyzed in a tetramethylammonium chloride solution and filtered using a 0.2 ⁇ m diameter filter to obtain a residue. Subsequently, the extracted residue is dissolved and then analyzed by ICP to measure the amount of P in the P compound.
  • the method for producing a steel sheet according to the present invention comprises the steps of steelmaking, hot rolling, annealing, pickling, cold rolling, annealing and pickling.
  • steelmaking a method in which the steel containing the above essential components and components added as necessary is subjected to furnace melting followed by secondary refining.
  • the molten steel is made into a slab according to a known casting method (continuous casting).
  • the slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.
  • Hot rolling is rolled up after being rolled by a hot rolling mill comprising a plurality of stands.
  • the coiling temperature is not specified, it is preferably 400 to 750 ° C. from the viewpoint of microstructure refinement.
  • Annealing after the hot rolling process may be omitted, and the steel sheet is cold-rolled to a predetermined thickness after pickling.
  • both a tandem rolling mill and a Sendzimir rolling mill may be used.
  • the rolling reduction may be selected as appropriate.
  • the recrystallization temperature of the steel having the above chemical composition is 870 to 1100 ° C., it is heated to this temperature.
  • the heating temperature it is preferable that the crystal grain size number is about 5 to 8 considering the normal temperature material, so the lower limit is preferably 880 ° C. and the upper limit is preferably 1050 ° C.
  • the cooling method after heating it is important to control the cooling method after heating to appropriately precipitate the P compound and improve the normal temperature workability.
  • the average cooling rate from the heating temperature to 800 ° C. is set to 1 ° C./s or less, and during this period, a P compound is generated to reduce the amount of dissolved P. If the average cooling rate is too slow, a coarse Laves phase is generated in the Nb-added steel, and coarse ⁇ -Cu is precipitated in the Cu-added steel, thereby deteriorating the toughness.
  • the lower limit is desirably set to 0.1 ° C./s. Furthermore, considering the productivity, the lower limit is preferably 0.2 ° C./s.
  • the cooling method may be water cooling or forced air cooling. Moreover, what is necessary is just to select the cold-rolled sheet annealing atmosphere suitably, and you may provide temper rolling and a tension leveler after cold rolling and annealing. Furthermore, as for the pickling method, an existing pickling method may be applied.
  • Extract residue analysis A precipitate in steel was extracted using a tetramethylammonium chloride solution and a 0.2 ⁇ m diameter filter and analyzed by ICP to measure the amount of P in the P compound. In the extraction residue analysis, 2 g of a test piece having a surface area of 30 mm ⁇ 20 mm was dissolved.
  • Examples A1 to A17 satisfying the chemical composition and the amount of P compound defined in the present invention were excellent in normal temperature ductility and high temperature fatigue properties.
  • Examples B1 to B9 which do not satisfy these conditions the normal temperature ductility and the high temperature fatigue properties were deteriorated.
  • Examples A21 to A25 produced under the conditions satisfying the provisions of the present invention, the amount of P in the P compound is within the range defined by the present invention, and normal temperature ductility and high temperature fatigue properties are exhibited. It was excellent. In Examples B21 to B25 that do not satisfy these conditions, the normal temperature ductility and the high temperature fatigue properties were deteriorated.
  • the ferritic stainless steel plate according to the present invention is suitable for use in, for example, automobile exhaust parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

鋼の化学組成が、質量%で、C:0.02%以下、N:0.02%以下、Si:0.10%を超え3.0%以下、Mn:1.0%以下、P:0.02~0.05%、Cr:11.0~18.0%、B:0.0001~0.0010%、Al:0.01~1.0%、Nbおよび/またはCu:合計で0.3~4.0%、Ti:0~0.5%、Mo:0~3.0%、W:0~2.0%、V:0~1.0%、Sn:0~0.5%、Ni:0~1.0%、Mg:0~0.01%、Sb:0~0.5%、Zr:0~0.3%、Ta:0~0.3%、Hf:0~0.3%、Co:0~0.3%、Ca:0~0.01%、REM:0~0.2%、Ga:0~0.3%、残部:Feおよび不可避的不純物であり、前記鋼中において、P化合物として存在するPの含有量が、質量%で、0.005%以上である、フェライト系ステンレス鋼板。

Description

フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
 本発明は、フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品に関する。
 自動車の排気マニホールド、フロントパイプ、センターパイプなどの排気系部材は、エンジンから排出される高温の排気ガスを通すため、排気部材を構成する材料には耐酸化性、高温強度、熱疲労特性など多様な特性が要求される。
 従来、自動車排気部材には鋳鉄が使用されるのが一般的であったが、排ガス規制の強化、エンジン性能の向上、車体軽量化などの観点から、ステンレス鋼製の排気マニホールドが使用されるようになった。車種やエンジン構造によって異なるが、一般のガソリン車の排気部品は700~900℃において長時間曝されるため、排気部品用材料には、高温強度および耐酸化性に優れることが要望されている。
 近年、ターボチャージャを搭載してダウンサイジング化を図る動きが加速しているが、鋳物が使用されているターボチャージャ部品の板金化も積極的に検討されている。排気ガス温度が1000℃程度まで上昇することも見込まれており、排気マニホールドやターボチャージャに使用されるステンレス鋼は、耐熱性の一層の向上が求められる。一方、ターボチャージャの内部構造は複雑で、過給効率を高めるとともに、耐熱信頼性の確保が重要であり、従来、主として、SUS310S(25%Cr-20%Ni)に代表される耐熱オーステナイト系ステンレス鋼やNi基合金等の使用が提案されている。
 例えば、特許文献1には、高Cr、Mo添加鋼が開示されている。特許文献2には、Siを2~4%添加したオーステナイト系ステンレス鋼を用いたノズルベーン式ターボチャージャの排気ガイド部品が開示されている。特許文献2では、鋼製造時の熱間加工性を考慮して鋼成分が規定されているが、上記部品に要求される高温特性を十分満足するとは言えず、また、打ち抜き穴の穴拡げ加工性を維持することが重要とされているが、熱間加工性から規定された鋼成分では十分な穴拡げ性を得ることはできなかった。更に、ターボチャージャのハウジングにはステンレス鋳鋼が使用されているが、肉厚が厚いため薄肉軽量化ニーズがある。また、ステンレス鋼の中でオーステナイト系ステンレス鋼は、耐熱性や加工性に優れているが、熱膨張係数が大きいために、排気マニホールドの様に加熱・冷却を繰り返し受ける部材に適用した場合、熱疲労破壊が生じやすい。
 一方、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて熱膨張係数が小さいため、熱疲労特性や耐スケール剥離性に優れている。また、オーステナイト系ステンレス鋼に比べて、Niを含有しないため材料コストも安く、エキゾーストマニホールドを代用とした排気部品に対して汎用的に使用されている。但し、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて、高温強度が低いために、高温強度を向上させる技術が開発されてきた。例えば、SUS430J1(Nb添加鋼)、Nb-Si添加鋼、SUS444(Nb-Mo添加鋼)があり、いずれもNb添加が前提となっている。これは、Nbによる固溶強化または析出強化によって高温強度を高くするものであった。
 特許文献3~6には、Nb以外に高温強度向上に寄与する合金として、CuまたはCu-V複合添加を行う技術が開示されている。特許文献3におけるCu添加は低温靭性向上のために0.5%以下の添加が検討されており、耐熱性の観点からの添加ではない。特許文献4~6では、Cu析出物による析出硬化を利用して600℃または700~800℃の温度域における高温強度を向上させる技術が開示されている。
 特許文献7~9には、高温特性に優れたフェライト系ステンレス鋼として、Bを含有した鋼が開示されている。
 特許文献10~15には、排気ガスの高温化対策として、Wを添加したフェライト系ステンレス鋼に関する技術が開示されている。
 特許文献16および17には、Mo+Wを所定の範囲にすることでフェライト系ステンレス鋼の高温強度を確保することが開示されている。
 特許文献18には、高固溶強化により高温高強度化に有効であるとして、Pを0.1%まで含有させた技術が開示されている。
 特許文献19の技術は、フェライト系ステンレス鋼において、Pの固溶強化作用により、高温強度を高めるため、FeTiPとして析出したP量を0.01%以下とするものである。
特開2013-069220号公報 特許第4937277号公報 特開2006-37176号公報 国際公開第2003/004714号 特許第3468156号公報 特許第3397167号公報 特開平9-279312号公報 特開2000-169943号公報 特開平10-204590号公報 特開2009-215648号公報 特開2009-235555号公報 特開2005-206944号公報 特開2008-189974号公報 特開2009-120893号公報 特開2009-120894号公報 特開2009-197306号公報 特開2009-197307号公報 特許第3021656号公報 特開2000-336462号公報
 特許文献3~6の技術のように、Cu析出物による析出硬化を活用する場合、通常の製造条件による熱処理では、固溶または析出したCuによって常温の耐力が高くなり、加工性が劣化する課題があった。
 特許文献7~9の技術のように、Bを含有させたフェライト系ステンレス鋼では、耐力が高くなるほか、鋭敏化の問題があり、また製造性が劣化するという課題があった。
 特許文献10~15の技術において添加されるWは、高温強度を向上させる元素として知られているが、Wの添加は加工性(伸び)が悪くなり、部品加工が困難になる問題点や、コストの面で課題があった。また、高温ではFeと結合して後述するLaves相として析出するため、Laves相が粗大化した場合、効果的に耐熱性を向上させることができない課題があった。
 特許文献16および17の技術においても、やはり、Laves相の粗大化の懸念は避けられない。即ち、排気マニホールドやターボチャージャのハウジングまたはその内部部品の様に、エンジンの起動・停止に伴う熱サイクルを受ける場合、長時間使用段階で著しく高温強度が低下して熱疲労破壊や高サイクル疲労破壊を起こす危険性が生じることになる。即ち、既存の材料においては高温強度に優れていても、長時間使用によるLaves相やε-Cu等の析出物の粗大化による熱疲労特性の劣化の懸念があった。
 特許文献18および19の技術は、いずれも、フェライト系ステンレス鋼において、Pの固溶強化作用により、高温強度を高めるものである。これらの技術は、高温強度の観点からP化合物(例えばFeP、FeTiP、FeNbP)の生成を抑えることを目的としているが、一方で固溶Pの増加によって常温の加工性が劣化する課題があった。
 ここで、常温の加工性とは常温延性や耐力を示し、延性が低いか、耐力が高いと排気部品への加工が極めて難しくなる。先述した排気マニホールドやターボチャージャのハウジング等は熱効率を高め、排気損失を制御するために複雑形状に設計される。常温の加工性が低い素材では複雑形状部品への加工が困難となる。
 本発明は、上記の従来技術の問題を解決するべく、耐熱性と加工性を両立したフェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品を提供することを目的とする。
 本発明者らは、上記課題を解決するために、主としてNbおよびCu含有フェライト系ステンレス鋼板の製造条件と常温加工性について詳細に調査した結果、鋼成分を所定の範囲に制限するとともに、冷延板焼鈍工程においてP化合物の析出を適正量に制御することによって、高温強度を損なわずに低耐力、高延性材料を得ることを知見した。
 具体的には、耐熱元素が添加された鋼板を焼鈍する際に、再結晶組織を得た後の冷却過程でP化合物を析出させることによって、固溶P量を減少させ、常温で強化に作用する固溶Pを低減させることにより、鋼板の常温加工性が向上する。また、析出させたP化合物によって高温強度が向上するので、耐熱性も確保される。これにより、先述した複雑形状の排気部品に適用可能な高温特性と常温加工性を両立した耐熱フェライト系ステンレス鋼板を見出した。
 本発明の要旨は下記のとおりである。
 〔1〕鋼の化学組成が、質量%で、
 C:0.02%以下、
 N:0.02%以下、
 Si:0.10%を超え3.0%以下、
 Mn:1.0%以下、
 P:0.02~0.05%、
 Cr:11.0~18.0%、
 B:0.0001~0.0010%、
 Al:0.01~1.0%、
 Nbおよび/またはCu:合計で0.3~4.0%、
 Ti:0~0.5%、
 Mo:0~3.0%、
 W:0~2.0%、
 V:0~1.0%、
 Sn:0~0.5%、
 Ni:0~1.0%、
 Mg:0~0.01%、
 Sb:0~0.5%、
 Zr:0~0.3%、
 Ta:0~0.3%、
 Hf:0~0.3%、
 Co:0~0.3%、
 Ca:0~0.01%、
 REM:0~0.2%、
 Ga:0~0.3%、
 残部:Feおよび不可避的不純物であり、
 前記鋼中において、P化合物として存在するPの含有量が、質量%で、0.005%以上である、
フェライト系ステンレス鋼板。
 〔2〕前記化学組成が、質量%で、
 Ti:0.05~0.5%、
 Mo:0.01~3.0%、
 W:0.1~2.0%、
 V:0.05~1.0%、
 Sn:0.01~0.5%、
 Ni:0.05~1.0%、
 Mg:0.0002~0.01%、
 Sb:0.01~0.5%、
 Zr:0.01~0.3%、
 Ta:0.01~0.3%、
 Hf:0.01~0.3%、
 Co:0.01~0.3%、
 Ca:0.0001~0.01%、
 REM:0.001~0.2%、
 Ga:0.0002~0.3%から選択される1種以上を含有する、
上記〔1〕に記載のフェライト系ステンレス鋼板。
 〔3〕排気部品に用いられる、
上記〔1〕または〔2〕に記載のフェライト系ステンレス鋼板。
 〔4〕下記の(1)~(3)の工程を順に行う、上記〔1〕~〔3〕のいずれかに記載のフェライト系ステンレス鋼板の製造方法。
(1)上記〔1〕または〔2〕に記載の化学組成を有する冷延鋼板を、870~1100℃に加熱する工程、
(2)上記冷延鋼板を、上記加熱温度から800℃まで、1℃/s以下の平均冷却速度で冷却する工程、および、
(3)上記冷延鋼板を、800℃から350℃まで、5℃/s以上の平均冷却速度で冷却する工程。
 〔5〕上記〔1〕または〔2〕に記載のフェライト系ステンレス鋼板を用いた、
排気部品。
 本発明によれば、耐熱性と加工性を両立したフェライト系ステンレス鋼板を提供することができる。
図1は、冷延鋼板(1.5mm厚)におけるP化合物の析出量と常温延性の関係を示す。
 〔化学組成〕
 本発明に係るフェライト系ステンレス鋼板は、下記の化学組成を有する。なお、各元素の含有量についての「%」は「質量%」を意味する。
 C:0.02%以下
 Cは、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有量は少ないほど良く、0.02%以下とした。上限は0.009%とするのが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、その下限は0.001%とするのが好ましい。
 N:0.02%以下
 Nは、Cと同様、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有量は少ないほど良く、0.02%以下とした。上限は0.015%とするのが好ましい。但し、過度の低減は精錬コストの増加に繋がるため、その下限は0.003%とするのが好ましい。
 Si:0.10%を超え3.0%以下
 Siは、脱酸剤として有用な元素であるとともに、高温強度と耐酸化性を改善する元素である。高温強度および耐酸化性は、Si量の増加とともに向上し、その効果は0.10%超で発現する。特に、Cu添加した場合は、その効果が顕著である。しかしながら、過度な含有は常温延性を低下させるためその上限を3.0%とする。酸洗性や靭性を考慮すると、上限は1.0%とするのが望ましい。上記の効果を得るためには、下限は0.2%とするのが好ましい。
 Mn:1.0%以下
 Mnは、脱酸剤として有用な元素であるとともに、中温域での高温強度上昇に寄与する。しかし、その含有量が過剰な場合には、高温でMn系酸化物表層に形成し、スケール密着性や異常酸化が生じ易くなる。特に、MoやWと複合添加した場合は、Mn量に対して異常酸化が生じやすくなる傾向にある。そのため、上限を1.0%とする。更に、鋼板製造における酸洗性や常温延性を考慮すると、上限は1.0%とするのが望ましい。上記の効果を得るためには、下限は0.05%とするのが好ましい。
 P:0.02~0.05%
 Pは、P化合物(FeP、FeTiPおよびFeNbP)の析出制御を行なうために、重要な元素である。通常、Pは加工性の観点から極力低減することが望ましいとされているが、0.02%未満にするためには、低P原料の使用によるコストアップが生じるため、0.02%以上とする。一方、0.05%超の含有により著しく硬質化する他、耐食性、靭性および酸洗性が劣化するため、0.05%を上限とする。
 Cr:11.0~18.0%
 Crは、耐酸化性や耐食性確保のために必須な元素である。11.0%未満では、特に耐酸化性が確保できず、18.0%超では加工性の低下や靭性の劣化をもたらすため、11.0~18.0%とした。更に、製造性やスケール剥離性を考慮すると、下限は13.0%、上限は17.5%とするのが望ましい。
 B:0.0001~0.0010%
 Bは、製品のプレス加工時の2次加工性を向上させる元素である。また、本発明では、P化合物を活用して常温加工性と高温強度を向上させるが、B添加により高温での使用環境下におけるP化合物の粗大化が抑制され、高温環境での使用時の強度安定性が高くなる効果が発現する。これは、冷延板焼鈍工程において再結晶処理時にBが結晶粒界に偏析することで、その後の高温環境に曝された際に析出する上記析出物が結晶粒界に析出し難くなり、粒内に微細析出を促すためと考えられる。これにより析出強化の長期安定性を発現させ、強度低下の抑制や熱疲労寿命の向上に寄与する。この効果は0.0001%以上で発現するが、過度な含有は硬質化や粒界腐食性と耐酸化性を劣化させる他、溶接割れが生じるため、0.0001~0.0010%とした。更に、耐食性や製造コストを考慮すると、下限は0.0001%、上限は0.0005%とするのが望ましい。
 Al:0.01~1.0%
 Alは、脱酸元素として添加される他、耐酸化性を向上させる元素である。また、固溶強化元素として600~700℃の強度向上に有用である。その作用は0.01%以上の含有で、安定して発現するが、過度の含有は硬質化して均一伸びを著しく低下させる他、靭性が著しく低下するため、上限を1.0%とした。更に、表面疵の発生や溶接性、製造性を考慮すると、下限は0.01%、上限は0.2%とするのが望ましい。
 Nbおよび/またはCu:合計で0.3~4.0%
 Nbは、固溶強化および析出物微細化強化による高温強度向上に有効な元素である。また、CやNを炭窒化物として固定し、製品板の耐食性やr値に影響する再結晶集合組織の発達に寄与する役割もある。本発明ではFeとPの化合物の生成を促進する効果も有し、FeNbPが粒内析出して高加工性を発現する。このため、Nbを含有させてもよい。これらの効果は0.3%から発現するため、合計含有量の下限を0.3%とした。一方、合計含有量が4.0%を超える場合には、著しく硬質化する他、製造性も劣化させるため、合計含有量の上限を4.0%とした。また、原料コストや靭性を考慮すると、下限は0.4%、上限は2.0%とするのが望ましい。より好ましい上限は、1.5%であり、更に好ましい上限は0.6%である。
 Cuは、ε-Cu析出による析出強化に寄与するため、Cuを含有させてもよい。このとき、Cuの含有量は0.3%以上とする。特に本発明のP化合物を制御した鋼板では、P化合物を核生成サイトとしてCu析出速度が速まるため、高温強化が有効に作用する。排ガス温度が800℃以上になる場合は、Cu含有量を増加させるのが望ましく、1.0%以上が望ましい。更に、熱疲労特性、製造性および溶接性を考慮すると、下限は1.1%、上限は1.6%とするのが望ましい。
 Ti:0~0.5%
 Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、常温延性や深絞り性を向上させる元素であり、含有させてもよい。また、本発明ではFeTiPの析出により常温加工性を向上させる場合、その効果は0.05%以上から顕著となるため、下限を0.05%とするのが好ましい。一方、0.5%超の含有により、固溶Ti量が増加して常温延性が低下する他、粗大なTi系析出物を形成し、穴拡げ加工時の割れの起点になり、プレス加工性を劣化させる。また、耐酸化性も劣化するため、Ti含有量は0.5%以下とした。更に、表面疵の発生や靭性を考慮すると、下限は0.05%、上限は0.2%とするのが望ましい。
 Mo:0~3.0%
 Moは、950℃における固溶強化に有効な元素であるとともに、耐食性を向上させるため含有させてもよい。この効果は0.01%以上で顕著となる。過剰な含有は、常温延性と耐酸化性を著しく劣化させるため、その含有量は3.0%以下とした。熱疲労特性や製造性を考慮すると、下限は0.2%、上限は2.7%とするのが望ましい。
 W:0~2.0%
 WもMo同様、950℃における固溶強化に有効な元素であるとともに、Laves相(FeW)を生成して析出強化の作用をもたらす。特に、NbやMoと複合添加した場合、Fe(Nb,Mo,W)のLaves相が析出するが、Wを添加するとこのLaves相の粗大化が抑制されて析出強化能が向上する。更に、前記のように、Fe-P系の析出物との共存によってこれらのLaves相は微細になる傾向がある。このため、Wを含有させてもよい。これらの効果は0.1%以上の含有で顕著となる。過剰な含有は、コスト高になるとともに、常温延性が低下するため、上限を2.0%とした。更に、製造性、低温靭性および耐酸化性を考慮すると、下限は0.2%、上限は1.5%とするのが望ましい。
 V:0~1.0%
 Vは、耐食性を向上させる元素であり、含有させてもよい。この効果は0.05%以上の含有で顕著となる。過剰な含有は、析出物が粗大化して高温強度が低下する他、耐酸化性が劣化させるため、上限を1.0%とした。更に、製造コストや製造性を考慮すると、下限は0.08%、上限は0.5%とするのが望ましい。
 Sn:0~0.5%
 Snは、耐食性を向上させる元素であり、中温域の高温強度を向上させるため、含有させてもよい。これらの効果は0.01%以上で顕著となる。過剰な含有は、製造性を著しく低下させるため、上限を0.5%とした。更に、耐酸化性や製造コストを考慮すると、下限は0.1%、上限は0.5%とするのが望ましい。
 Ni:0~1.0%
 Niは耐酸性や靭性を向上させる元素であり、含有させてもよい。これらの効果は0.05%以上で顕著となる。過剰な含有はコスト高になるため、上限を1.0%とした。更に、製造性を考慮すると、下限は0.1%、上限は0.5%とするのが望ましい。
 Mg:0~0.01%
 Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成形性向上に寄与する元素である。また、Mg酸化物はTi(C,N)やNb(C,N)等の炭窒化物の析出サイトになり、これらを微細分散析出させる効果がある。さらに、靭性を向上させる効果もある。このため、Mgを含有させてもよい。これらの効果は0.0002%以上で顕著となる。過度な含有は、溶接性や耐食性の劣化につながるため、上限を0.01%とした。精錬コストを考慮すると、下限は0.0003%、上限は0.0010%とするのが望ましい。
 Sb:0~0.5%
 Sbは、耐食性と高温強度の向上に寄与するため、含有させてもよい。上記の効果は0.01%以上で顕著となる。過剰な含有は、鋼板製造時のスラブ割れや延性低下が過度に生じる場合があるため、上限を0.5%とした。更に、精錬コストや製造性を考慮すると、下限は0.01%、上限は0.15%とするのが望ましい。
 Zr:0~0.3%
 Zrは、TiやNb同様に炭窒化物形成元素であり、耐食性、深絞り性の向上させる元素であり、含有させてもよい。これらの効果は0.01%以上で顕著となる。過剰な含有は、製造性の劣化が著しいため、上限は0.3%とした。更に、コストや表面品位を考慮すると、下限は0.1%、上限は0.3%とするのが望ましい。
 Ta:0~0.3%
 Hf:0~0.3%
 TaおよびHfは、CやNと結合して靭性の向上に寄与するため、含有させてもよい。この効果は、0.01%以上で顕著となる。過剰な含有は、コスト増になる他、製造性を著しく劣化させるため、いずれの元素も上限を0.3%とした。更に、精錬コストや製造性を考慮すると、いずれの元素も下限は0.01%、上限は0.08%とするのが望ましい。
 Co:0~0.3%
 Coは、高温強度の向上に寄与するため、含有させてもよい。この効果は、0.01%以上で顕著となる。過剰な含有は靭性劣化につながるため、上限を0.3%とした。更に、精錬コストや製造性を考慮すると、下限は0.01%、上限は0.1%とするのが望ましい。
 Ca:0~0.01%
 Caは、脱硫効果を有するので、含有させてもよい。この効果は0.0001%以上で顕著となる。過剰な含有は、粗大なCaSを生成させ、靭性や耐食性を劣化させるため、上限を0.01%とした。更に、精錬コストや製造性を考慮すると、下限は0.0003%、上限は0.0020%とするのが望ましい。
 REM:0~0.2%
 REMは、種々の析出物の微細化による靭性向上や耐酸化性の向上の観点から、含有させてもよい。この効果は0.001%以上で顕著となる。過剰な含有は、鋳造性を著しく劣化させ、延性の低下をもたらすので、上限を0.2%とした。更に、精錬コストや製造性を考慮すると、下限は0.001%、上限は0.05%とするのが望ましい。REM(希土類元素)は、スカンジウム (Sc)、イットリウム (Y)の2元素と、ランタン(La)からルテチウム(Lu) までの15元素(ランタノイド)の総称を指す。単独で添加してもよいし、混合物であってもよい。REM含有量は、これらの元素の合計含有量を意味する。
 Ga:0~0.3%
 Gaは、耐食性向上や水素脆化抑制のため、0.3%以下の範囲で含有させてもよい。これらの効果は、0.0002%で顕著となる。製造性やコストの観点、ならびに、延性や靭性の観点から0.0020%以下が好ましい。
 本発明に係るフェライト系ステンレス鋼板は、上記の各元素を含有し、残部はFeおよび不可避的不純物からなるものである。なお、不可避的不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。その他の元素については、特に規定するものではないが、本発明においては、Bi等を必要に応じて、0.001~0.1%含有させてもよい。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが好ましい。
 〔P化合物として存在するPの含有量:0.005%以上(質量%)〕
 本発明に係るフェライト系ステンレス鋼板は、Pの化合物を形成させることで、固溶P量を低減し、低耐力化および高延性化を図る。P化合物としては、例えば、FeP、FeTiPおよびFeNbP等が例示される。
 図1は、冷延鋼板(1.5mm厚)におけるP化合物として存在するPの含有量(以下、「P化合物中のP量」と記載する。)と常温延性の関係を示す。なお、図1は、Pを0.03%含有する鋼について種々の温度パターンで熱処理し、実施例に示す試験方法にしたがって、P化合物中のP量および常温延性の関係を調べた結果である。
 図1に示すように、P化合物中のP量が0.005%以上であれば、常温延性が30%以上となることが分かる。常温延性が30%以上であれば、現状製造されている各種排気部品に対して十分成型可能なレベルである。P化合物が生成することによる延性の向上は、固溶P量の低減に起因するものである。特に、Nb含有鋼であればFeNbP析出による固溶Nb量の低減、Ti含有鋼であればFeTiP析出による固溶Ti量の低減が影響している。その他、本発明では上記のP化合物が高温強度向上にも寄与することを知見した。
 これは、析出物が高温での転位を阻害するとともに、P化合物を核として高温引張過程でLaves相やCu析出物(bcc-Cu、fcc-Cu)が微細に析出し、高温析出強化能が一段と増加するためである。この効果は、高温強度のみならず、排気部品に必要とされる高サイクル疲労や低サイクル疲労(熱疲労)に対しても有効である。高温での強化に必要なP化合物は0.005%以上であれば有効であるが、過度に析出させると疲労破壊の起点や亀裂伝播を促進させる場合もあるため、上限は0.100%とするのがよい。また、P化合物の形成は、焼鈍後の酸洗性を劣化させるため、製造性を考慮して、P化合物中のP量は、下限は0.006%、上限は0.05%とするのが望ましい。
 なお、P化合物中のP量は、鋼中に未固溶のP析出物として含まれるPの含有量(質量%)を意味する。本願においては、抽出残渣分析を行い、P化合物中のP量を測定する。具体的には、まず、上記鋼をテトラメチルアンモニウムクロライド溶液中において電解し、0.2μm径のフィルターを用いてろ過することにより残渣を得る。続いて、抽出された残渣を溶解した後、ICPで分析して、P化合物中のP量を測定する。
 〔製造方法〕
 本発明の鋼板の製造方法は、製鋼-熱間圧延-焼鈍-酸洗-冷間圧延-焼鈍・酸洗の各工程よりなる。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。熱間圧延は複数スタンドから成る熱間圧延機で圧延された後に巻き取られる。巻取温度の規定はしないが、組織微細化の観点からは400~750℃が望ましい。
 熱延工程の後の焼鈍は省略しても良く、酸洗後に所定の板厚に冷延される。ここでは、タンデム式圧延機およびゼンジミア式圧延機のいずれも用いても構わない。また、圧下率は適宜選定すれば良い。
 冷間圧延後の焼鈍は、再結晶組織を得るために施される。上記の化学組成を有する鋼の再結晶温度は870~1100℃であるため、この温度に加熱される。なお、加熱温度については、常温材質を考慮すると結晶粒度番号が5~8程度になるようにすることが良いことから、下限は880℃、上限は1050℃とすることが望ましい。本発明においては、上記の加熱後の冷却方法を制御してP化合物を適正に析出させ、常温加工性を向上させることが重要である。
 具体的には、加熱温度から800℃までの平均冷却速度を1℃/s以下とし、この間にP化合物を生成させて固溶P量を低減する。この平均冷却速度が遅すぎると、Nb添加鋼では粗大なLaves相が生成し、Cu添加鋼では粗大なε-Cuが析出して、靭性を劣化させる。このため、下限は0.1℃/sとするのが望ましい。更に、生産性を考慮すると、下限は0.2℃/sとするのが望ましい。
 その後、800℃から350℃まで、5℃/s以上の平均冷却速度で冷却する。これは、この温度域における平均冷却速度が遅すぎる場合には、P化合物やその他の炭窒化物、Laves相またはε-Cuが粗大化して、高温強度を低下させ、靭性を劣化させるため、この温度域における平均冷却速度は5℃/s以上とする。鋼板形状を考慮すると、上限は50℃/sとするのが望ましい。更に、生産性を考慮すると、下限は6℃/sとするのが望ましい。冷却方法は水冷や強制風冷等を用いればよい。また、冷延板焼鈍雰囲気などは適宜選択すれば良く、冷延・焼鈍後に調質圧延やテンションレベラを付与しても構わない。更に、酸洗方法については、既存の酸洗方法を適用すれば良い。
 表1に示す化学組成を有する鋼を溶製してスラブに鋳造し、スラブを熱間圧延して5mm厚の熱延コイルとした。その後、コイルを1.5mm厚まで冷間圧延し、焼鈍・酸洗を施して製品板とした。ここで、冷間圧延後の焼鈍については、加熱温度を920℃、920℃から800℃までの平均冷却速度を1.0℃/s、800℃から350℃までの平均冷却速度を5.9℃/sとした。得られた製品板から試験片を採取し、下記の試験方法に従って、P化合物中のP量の測定ならびに常温の破断伸び(全伸び)の測定を行なった。その結果を表2に示す。
 (抽出残渣分析)
 テトラメチルアンモニウムクロライド溶液および0.2μm径のフィルターを用いて鋼中の析出物を抽出しICPで分析して、P化合物中のP量を測定した。なお、抽出残渣分析においては、30mm×20mmの表面積の試験片を2g溶解させた。
 (常温引張試験)
 JIS13B号試験片を作製して圧延方向と平行方向の引張試験を行い、破断伸び(全伸び)を測定した。常温の全伸びは、30%以上のものを良好と判断する。
 (高温高サイクル疲労特性)
 JIS Z 2275に記載されている金属平板の平面曲げ疲れ試験方法に準拠した方法で、かつ加熱炉が装着されている平面曲げ疲労試験機を用いて、800℃で応力振幅、50MPaを付与し、10回での破断有無を確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、本発明で規定される化学組成およびP化合物量を満たす例A1~A17では、常温延性および高温の疲労特性に優れていた。これらを満たさない例B1~B9では、常温延性および高温の疲労特性が劣化していた。
 表1のA1の化学組成を有する冷延コイル(1.5mm厚)について、表3に示す条件で焼鈍を行い、上記特性を評価した。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の規定を満足する条件で製造された例A21~A25では、P化合物中のP量が本発明で規定される範囲内にあり、常温延性および高温の疲労特性に優れていた。これらを満たさない例B21~B25では、常温延性および高温の疲労特性が劣化していた。
 本発明によれば、耐熱性と加工性を両立したフェライト系ステンレス鋼板を提供することができる。よって、本発明に係るフェライト系ステンレス鋼板は、例えば、自動車の排気部品に用いるのに適しており、具体的には、エキゾーストマニホールド、触媒コンバーターケース、EGRクーラーケース、排熱回収機、センターパイプ、ターボチャージャの外枠を構成するハウジング、ノズルベーン式ターボチャージャ内部の精密部品(例えば、バックプレート、オイルディフレクタ、コンプレッサーホイール、ノズルマウント、ノズルプレート、ノズルベーン、ドライブリング、ドライブレバーと呼ばれるもの)などが挙げられる。

Claims (5)

  1.  鋼の化学組成が、質量%で、
     C:0.02%以下、
     N:0.02%以下、
     Si:0.10%を超え3.0%以下、
     Mn:1.0%以下、
     P:0.02~0.05%、
     Cr:11.0~18.0%、
     B:0.0001~0.0010%、
     Al:0.01~1.0%、
     Nbおよび/またはCu:合計で0.3~4.0%、
     Ti:0~0.5%、
     Mo:0~3.0%、
     W:0~2.0%、
     V:0~1.0%、
     Sn:0~0.5%、
     Ni:0~1.0%、
     Mg:0~0.01%、
     Sb:0~0.5%、
     Zr:0~0.3%、
     Ta:0~0.3%、
     Hf:0~0.3%、
     Co:0~0.3%、
     Ca:0~0.01%、
     REM:0~0.2%、
     Ga:0~0.3%、
     残部:Feおよび不可避的不純物であり、
     前記鋼中において、P化合物として存在するPの含有量が、質量%で、0.005%以上である、
    フェライト系ステンレス鋼板。
  2.  前記化学組成が、質量%で、
     Ti:0.05~0.5%、
     Mo:0.01~3.0%、
     W:0.1~2.0%、
     V:0.05~1.0%、
     Sn:0.01~0.5%、
     Ni:0.05~1.0%、
     Mg:0.0002~0.01%、
     Sb:0.01~0.5%、
     Zr:0.01~0.3%、
     Ta:0.01~0.3%、
     Hf:0.01~0.3%、
     Co:0.01~0.3%、
     Ca:0.0001~0.01%、
     REM:0.001~0.2%、
     Ga:0.0002~0.3%から選択される1種以上を含有する、
    請求項1に記載のフェライト系ステンレス鋼板。
  3.  排気部品に用いられる、
    請求項1または2に記載のフェライト系ステンレス鋼板。
  4.  下記の(1)~(3)の工程を順に行う、請求項1~3のいずれかに記載のフェライト系ステンレス鋼板の製造方法。
    (1)請求項1または2に記載の化学組成を有する冷延鋼板を、870~1100℃に加熱する工程、
    (2)上記冷延鋼板を、上記加熱温度から800℃まで、1℃/s以下の平均冷却速度で冷却する工程、および、
    (3)上記冷延鋼板を、800℃から350℃まで、5℃/s以上の平均冷却速度で冷却する工程。
  5.  請求項1または2に記載のフェライト系ステンレス鋼板を用いた、
    排気部品。
PCT/JP2018/011884 2017-03-27 2018-03-23 フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品 WO2018181060A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2019011670A MX2019011670A (es) 2017-03-27 2018-03-23 Lamina de acero inoxidable ferritico, metodo para producir la misma y miembro de escape.
CN201880021469.XA CN110462088A (zh) 2017-03-27 2018-03-23 铁素体系不锈钢钢板及其制造方法、以及排气部件
JP2019509738A JP6796708B2 (ja) 2017-03-27 2018-03-23 フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
KR1020197031473A KR102306578B1 (ko) 2017-03-27 2018-03-23 페라이트계 스테인리스 강판 및 그 제조 방법, 및, 배기 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060346 2017-03-27
JP2017-060346 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018181060A1 true WO2018181060A1 (ja) 2018-10-04

Family

ID=63677507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011884 WO2018181060A1 (ja) 2017-03-27 2018-03-23 フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品

Country Status (5)

Country Link
JP (1) JP6796708B2 (ja)
KR (1) KR102306578B1 (ja)
CN (1) CN110462088A (ja)
MX (1) MX2019011670A (ja)
WO (1) WO2018181060A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881082A (zh) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 一种汽车排气系统冷端用铁素体不锈钢及其制备方法
JP2020164956A (ja) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法
EP3795711A4 (en) * 2018-06-26 2021-03-24 Posco STAINLESS FERRITIC STAINLESS STEEL WITH EXCELLENT DAMPING CAPACITY AND PROCESS FOR ITS MANUFACTURING
JP7323092B1 (ja) * 2022-06-16 2023-08-08 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
WO2023243133A1 (ja) * 2022-06-16 2023-12-21 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336462A (ja) * 1999-05-27 2000-12-05 Nippon Steel Corp 高温強度に優れた高純度フェライト系ステンレス鋼
JP2003343265A (ja) * 2002-05-23 2003-12-03 Calsonic Kansei Corp 多枝管の製造方法
JP2004084067A (ja) * 2002-06-17 2004-03-18 Jfe Steel Kk Ti添加フェライト系ステンレス鋼板およびその製造方法
JP2006192445A (ja) * 2005-01-11 2006-07-27 Calsonic Kansei Corp 他部材への溶接による二重管管端接続部位置決め構造
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
JP2017048417A (ja) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4937277B1 (ja) 1970-04-27 1974-10-07
JP3021656U (ja) 1995-08-14 1996-02-27 志昌 胡 コンピュータ本体用自動昇降式面板
JPH09279312A (ja) 1996-04-18 1997-10-28 Nippon Steel Corp 高温特性、耐食性及び加工性に優れたフェライト系ステンレス鋼
JP3536567B2 (ja) 1997-01-24 2004-06-14 Jfeスチール株式会社 耐熱性、加工性およびマフラー耐食性に優れるエンジン排気部材用フェライト系ステンレス鋼
JP2000169943A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp 高温強度に優れたフェライト系ステンレス鋼及びその製造方法
JP3468156B2 (ja) 1999-04-13 2003-11-17 住友金属工業株式会社 自動車排気系部品用フェライト系ステンレス鋼
JP3397167B2 (ja) 1999-04-16 2003-04-14 住友金属工業株式会社 自動車排気系部品用フェライト系ステンレス鋼
CN1225566C (zh) 2001-07-05 2005-11-02 日新制钢株式会社 用作排放汽车废气的管道构件的铁素体不锈钢
EP1514949B1 (en) * 2002-06-17 2015-05-27 JFE Steel Corporation FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
JP4604714B2 (ja) 2003-12-26 2011-01-05 Jfeスチール株式会社 フェライト系Cr含有鋼材及びその製造方法
JP4508709B2 (ja) * 2004-04-13 2010-07-21 新日鐵住金ステンレス株式会社 フェライト系耐熱鋼鋼板の高効率脱スケール酸洗方法
JP2006037176A (ja) 2004-07-28 2006-02-09 Nisshin Steel Co Ltd エキゾーストマニホールド用フェライト系ステンレス鋼
JP5010301B2 (ja) 2007-02-02 2012-08-29 日新製鋼株式会社 排ガス経路部材用フェライト系ステンレス鋼および排ガス経路部材
JP5076661B2 (ja) * 2007-06-12 2012-11-21 Jfeスチール株式会社 打ち抜き加工性に優れるフェライト系ステンレス鋼板およびその製造方法
JP5178157B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5178156B2 (ja) 2007-11-13 2013-04-10 日新製鋼株式会社 自動車排ガス経路部材用フェライト系ステンレス鋼材
JP5025671B2 (ja) 2008-02-13 2012-09-12 新日鐵住金ステンレス株式会社 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
JP5125600B2 (ja) 2008-02-25 2013-01-23 Jfeスチール株式会社 高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼
JP5141296B2 (ja) 2008-02-25 2013-02-13 Jfeスチール株式会社 高温強度と靭性に優れるフェライト系ステンレス鋼
JP5274074B2 (ja) 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 耐酸化性に優れた耐熱性フェライト系ステンレス鋼板
JP2010144191A (ja) * 2008-12-16 2010-07-01 Jfe Steel Corp 加工性に優れるフェライト系ステンレス鋼板の製造方法
JP5659061B2 (ja) * 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
JP5804507B2 (ja) 2011-09-26 2015-11-04 Necプラットフォームズ株式会社 演算処理装置及び演算器同時実行制御方法
TWI495736B (zh) * 2012-09-03 2015-08-11 Jfe Steel Corp 肥粒鐵系不鏽鋼
WO2014157066A1 (ja) * 2013-03-25 2014-10-02 新日鐵住金ステンレス株式会社 打ち抜き加工性に優れるフェライト系ステンレス鋼板およびその製造方法
JP6295155B2 (ja) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 フェライト系ステンレス鋼およびその製造方法、並びにフェライト系ステンレス鋼を部材とする熱交換器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000336462A (ja) * 1999-05-27 2000-12-05 Nippon Steel Corp 高温強度に優れた高純度フェライト系ステンレス鋼
JP2003343265A (ja) * 2002-05-23 2003-12-03 Calsonic Kansei Corp 多枝管の製造方法
JP2004084067A (ja) * 2002-06-17 2004-03-18 Jfe Steel Kk Ti添加フェライト系ステンレス鋼板およびその製造方法
JP2006192445A (ja) * 2005-01-11 2006-07-27 Calsonic Kansei Corp 他部材への溶接による二重管管端接続部位置決め構造
JP2010070799A (ja) * 2008-09-18 2010-04-02 Jfe Steel Corp スピニング加工性に優れるTi添加フェライト系ステンレス鋼板及びその製造方法
JP2017048417A (ja) * 2015-08-31 2017-03-09 新日鐵住金ステンレス株式会社 耐二次加工脆性に優れた深絞り成形用高純度フェライト系ステンレス鋼板およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3795711A4 (en) * 2018-06-26 2021-03-24 Posco STAINLESS FERRITIC STAINLESS STEEL WITH EXCELLENT DAMPING CAPACITY AND PROCESS FOR ITS MANUFACTURING
CN109881082A (zh) * 2019-03-22 2019-06-14 宁波宝新不锈钢有限公司 一种汽车排气系统冷端用铁素体不锈钢及其制备方法
JP2020164956A (ja) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 フェライト系ステンレス鋼板およびその製造方法
JP7323092B1 (ja) * 2022-06-16 2023-08-08 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法
WO2023243133A1 (ja) * 2022-06-16 2023-12-21 Jfeスチール株式会社 フェライト系ステンレス鋼およびその製造方法

Also Published As

Publication number Publication date
MX2019011670A (es) 2019-12-19
KR20190132455A (ko) 2019-11-27
CN110462088A (zh) 2019-11-15
KR102306578B1 (ko) 2021-09-29
JP6796708B2 (ja) 2020-12-09
JPWO2018181060A1 (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP6541869B2 (ja) 耐熱性と加工性に優れた排気部品用オーステナイト系ステンレス鋼板およびターボチャージャー部品と、排気部品用オーステナイト系ステンレス鋼板の製造方法
JP5546911B2 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板
JP5659061B2 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板及びその製造方法
TWI465587B (zh) 耐氧化性優異之肥粒鐵系不鏽鋼
JP6796708B2 (ja) フェライト系ステンレス鋼板およびその製造方法、ならびに、排気部品
JP5546922B2 (ja) 耐熱性と加工性に優れたフェライト系ステンレス鋼板およびその製造方法
JP5025671B2 (ja) 高温強度に優れたフェライト系ステンレス鋼板およびその製造方法
EP2058413A1 (en) Ferritic stainless steel sheet having excellent heat resistance
WO2013146815A1 (ja) 耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
JP5540637B2 (ja) 耐熱性に優れるフェライト系ステンレス鋼
JP2017088928A (ja) 耐熱性と加工性に優れたオーステナイト系ステンレス鋼板とその製造方法、および当該ステンレス鋼製排気部品
WO2018181257A1 (ja) 低比重フェライト系ステンレス鋼板およびその製造方法
JP7009278B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板および排気部品とその製造方法
JP6746035B1 (ja) オーステナイト系ステンレス鋼板
JP4185425B2 (ja) 成形性と高温強度・耐高温酸化性・低温靱性とを同時改善したフェライト系鋼板
JP2019059995A (ja) 耐熱性に優れたオーステナイト系ステンレス鋼板及びその製造方法
JP7166082B2 (ja) オーステナイト系ステンレス鋼板およびその製造方法
JP6624345B1 (ja) フェライト系ステンレス鋼
JP2012172160A (ja) 耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板およびその製造方法
WO2023170996A1 (ja) フェライト系ステンレス鋼板および排気部品
JP6624347B1 (ja) フェライト系ステンレス鋼
JP2022153689A (ja) フェライト系ステンレス鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778131

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019509738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197031473

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18778131

Country of ref document: EP

Kind code of ref document: A1