WO2018176803A1 - 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用 - Google Patents

一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用 Download PDF

Info

Publication number
WO2018176803A1
WO2018176803A1 PCT/CN2017/106729 CN2017106729W WO2018176803A1 WO 2018176803 A1 WO2018176803 A1 WO 2018176803A1 CN 2017106729 W CN2017106729 W CN 2017106729W WO 2018176803 A1 WO2018176803 A1 WO 2018176803A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
metal organic
organic framework
hydrophobic
framework material
Prior art date
Application number
PCT/CN2017/106729
Other languages
English (en)
French (fr)
Inventor
方真
李虎
Original Assignee
南京农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京农业大学 filed Critical 南京农业大学
Priority to US16/499,364 priority Critical patent/US11584729B2/en
Publication of WO2018176803A1 publication Critical patent/WO2018176803A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/36Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/30Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using agents to prevent the granules sticking together; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a hydrophobic palladium/metal organic framework material and a preparation method and application thereof, in particular to a palladium/metal organic framework material with uniform active site distribution, stable structure and strong hydrophobicity, and a preparation method thereof, and the preparation method of the material
  • a hydrophobic palladium/metal organic framework material and a preparation method and application thereof, in particular to a palladium/metal organic framework material with uniform active site distribution, stable structure and strong hydrophobicity, and a preparation method thereof, and the preparation method of the material
  • Lignocellulose and its derivatives are currently known as the most abundant and renewable organic carbon source, with a sugar component content of up to 75%. It is worth noting that 5-hydroxymethylfurfural is a dehydration product of hexose monosaccharide, which can be prepared more efficiently under acid catalysis [3] . Therefore, the direct use of hexose as a substrate to prepare 2,5-dimethylfuran is more in line with the concept of sustainable production, and can also greatly reduce production costs and reduce the pressure on raw materials such as biodiesel.
  • the Dumesic team reported for the first time a two-step method (fluid bed) to catalyze the preparation of 2,5-dimethylfuran from fructose, namely: (1) HCl catalyzed dehydration of fructose to 5-hydroxymethylfurfural, (2) CuRu/C catalytic separation of the purified intermediate undergoes hydrogenolysis reaction, and the total yield of 2,5-dimethylfuran obtained by the two-step integration is about 60% [4] .
  • Pd and Ru metals supplemented with acidic media or carriers have recently been reported to catalyze the conversion of fructose or glucose to 2,5-dimethylfuran via two or more reaction processes, but the yield is often less than 60. % [5-7] . Therefore, the search for a highly efficient and simple process for the preparation of 2,5-dimethylfuran is a prerequisite for achieving large or industrial production.
  • methyl hydrogen polysiloxane compound to a reduction reaction of air and water stable, low cost, low toxicity, widely used as a liquid donor catalyst such as an amide, an ester, a hydroxyl group, a nitro group and a carbonyl group, etc. [ 8] .
  • a liquid donor catalyst such as an amide, an ester, a hydroxyl group, a nitro group and a carbonyl group, etc.
  • the object of the present invention is to solve the disadvantages of high preparation cost, complicated process and harsh reaction conditions of the existing 2,5-dimethylfuran, and the polymethylhydrogensiloxane is used as a hydrogen donor and the alcohol is a solvent.
  • Methane siloxane coating treatment of Pd / metal organic framework to synthesize a strong hydrophobic, uniform distribution of catalytic material, showing high activity in the reaction of hexose to prepare 2,5-dimethylfuran Stability and reusability.
  • a hydrophobic palladium/metal organic framework material prepared by dispersing a Pd salt into a pore of a metal organic framework by a metal organic framework as a carrier, and a palladium/metal organic framework material is obtained.
  • the reduction treatment is carried out in a hydrogen atmosphere at 200 to 300 ° C for 2 to 5 hours, and finally treated with a polydimethylsiloxane coating to obtain a hydrophobic palladium/metal organic framework material.
  • the metal organic framework is a transition metal salt and an equivalent amount of terephthalic acid dissolved in deionized water or N, N-dimethylformamide, hydrothermal treatment at 120-220 ° C for 12-72 h, and then Prepared by washing and vacuum drying; wherein the transition metal salt is a chlorine salt or a nitrate salt of Cu 2+ , Al 3+ , Cr 3+ , Fe 3+ or Zr 4+ .
  • the ratio of the amount of the transition metal salt to the deionized water or N,N-dimethylformamide is 1:100-300, and the precipitation is easily precipitated by hydrothermal treatment in the concentration range, and the concentration range is It is difficult to precipitate outside. Wash with deionized water or ethanol.
  • the vacuum drying temperature is 90 to 100 °C.
  • the immersion treatment is: dissolving the Pd salt in water or alcohol, adding a metal organic framework, sonicating for 15 to 60 minutes, stirring at room temperature for 12 to 24 hours, and then centrifuging, washing, drying and grinding to obtain a palladium/metal organic framework.
  • a material wherein the Pd salt is used in an amount of 1 to 20% by weight, preferably 1 to 6% by weight based on the mass of the metal organic framework; the Pd salt is palladium chloride, palladium nitrate, palladium acetate, palladium sulfate
  • the alcohol is methanol, ethanol, n-butanol or n-hexanol.
  • the centrifugal speed is 6000 to 8000 r/min.
  • the mixture was washed three times with N,N-dimethylformamide, and the volume/mass ratio of N,N-dimethylformamide to metal organic framework was 4-6 mL: 1 g per wash.
  • the drying method is vacuum drying at 80 to 100 ° C for 4 to 8 hours.
  • the reduction treatment is: flattening the solid powder of the palladium/metal organic framework material into the porcelain boat, and then sealing into the tube furnace, passing 20% H 2 /Ar, the flow rate is 30 cm 3 /min, according to 10 ° C /
  • the heating rate of min is programmed to 200 to 300 ° C and maintained at this temperature for 2 to 5 hours.
  • the polydimethylsiloxane coating treatment is: flattening the reduced palladium/metal organic framework material into a watch glass, and placing it into a hydrothermal reaction kettle containing polydimethylsiloxane. In the lining, sealed, the hydrothermal reaction kettle is transferred to an oven at 190-220 ° C, heat-treated for 15 to 45 minutes, and the polydimethylsiloxane is coated onto the surface of the palladium/metal organic framework material by evaporation, and the reactor is naturally cooled. To room temperature.
  • the polydimethylsiloxane is in excess, and preferably, the mass ratio of the polydimethylsiloxane to the reduced palladium/metal organic framework material is 1:1.
  • the invention also provides a preparation method of a hydrophobic palladium/metal organic framework material, comprising the following steps:
  • the palladium/metal organic framework material is reduced in hydrogen atmosphere at 200-300 ° C for 2 to 5 h, and the reduced palladium/metal organic framework material is treated with a polydimethylsiloxane coating to obtain strong hydrophobicity. Palladium/metal organic framework material with uniform active site distribution.
  • the mass-to-volume ratio of the metal organic framework to water or alcohol is 1 g: 4.5 to 6 mL.
  • the hydrophobic palladium/metal organic framework material of the present invention is useful for catalyzing the preparation of 2,5-dimethylfuran from hexose.
  • a method for selectively catalyzing hexose to prepare 2,5-dimethylfuran by using the hydrophobic palladium/metal organic framework material of the invention comprising the steps of: dissolving hexose in alcohol to hydrophobic palladium/metal organic framework material
  • the catalyst and polymethylhydrogensiloxane are hydrogen donors, and reacted at 70-130 ° C for 0.25-12 h under the action of acidic additives; after completion, the catalyst is catalyzed by centrifugation.
  • the agent is separated from the product; wherein the concentration of the hexose in the alcohol is 0.2 to 10% by weight, and the amount of the hydrophobic palladium/metal organic framework material used is 0.1 to 5 mol% of the amount of the hexose in terms of Pd, and the amount of the polymethylhydrogensiloxane is used. It is 5 to 10 mol%, preferably 6 to 10 mol%, of the hexose.
  • the concentration of hexose in the alcohol is from 0.5 to 5% by weight, and the amount of the hydrophobic palladium/metal organic framework material used is from 0.5 to 3 mol% based on the amount of hexose in terms of Pd. Further preferably, the concentration of the hexose in the alcohol is from 1 to 5% by weight, and the amount of the hydrophobic palladium/metal organic framework material used is from 0.5 to 3 mol% based on the amount of hexose in terms of Pd.
  • the reaction temperature is 100 to 120 ° C, and the reaction time is 2 to 8 hours.
  • the hexose is fructose, mannose, glucose or a disaccharide formed by dehydration condensation of the above monosaccharide, such as sucrose, cellobiose or a polysaccharide formed by dehydration condensation of the above monosaccharide, such as inulin;
  • the alcohol is methanol, Ethanol, n-propanol, isopropanol, n-butanol, isobutanol, n-hexanol.
  • the acidic additive is hydrochloric acid, sulfuric acid or chlorobenzene; and the acidic additive is used in an amount of 3 to 9 mol%, preferably 6 mol%, based on the amount of the hexose.
  • the role of the acidic additive is to catalyze the dehydration of hexose to produce a 5-hydroxymethylfurfural intermediate.
  • the regeneration of the catalytic material is further included: the catalytic material is centrifuged from the reaction liquid, and washed with water and ethanol for 3 to 5 times, 100 times. After drying at vacuum for 10 h at ° C, the regenerated catalytic material was obtained after grinding.
  • the hydrophobic palladium/metal organic framework material prepared by the method of the invention is used to catalyze the preparation of 2,5-dimethylfuran under the same conditions, compared with the commercially available Pd/C and common palladium/metal organic framework catalytic materials.
  • the yield was increased by 45% and 25%, respectively.
  • the catalytic material of the invention has strong hydrophobicity, uniform distribution of active sites, simple preparation method, easy separation, recycling and reuse, and good reusability;
  • the hydrophobic palladium/metal organic framework material of the invention has wide applicability for catalyzing the preparation of 2,5-dimethylfuran by different hexoses, and has mild reaction conditions and high activity.
  • Figure 1 is a high angle annular dark field-scan transmission electron micrograph (HAADF-STEM) of Pd/MIL-53 (Al).
  • EDS X-ray energy spectrum
  • Fig. 3 is an X-ray energy spectrum (EDS) distribution image of Pd element in Pd/MIL-53 (Al).
  • Figure 4 is a typical Pd/MIL-53 (Al) surface water contact angle (CA: 24°).
  • Figure 5 is a hydrophobic Pd/MIL-53 (Al) surface water contact angle (CA: 135 °).
  • the prepared 0.25 g of MIL-53 (Al) carrier was added to a solution of 13 mg of PdCl 2 in methanol (1.2 mL), sonicated for 30 min and stirred at room temperature for 24 h, then centrifuged at 8000 r/min, N, N-dimethyl
  • the carbamide was washed 3 times, 10 mL each time, dried under vacuum at 90 ° C for 6 h, ground, and finally reduced in a hydrogen atmosphere at 250 ° C for 3 h (20% H 2 /Ar flow rate was 30 cm 3 /min, and the heating rate was 10 ° C / min).
  • a conventional Pd/MIL-53 (Al) catalytic material was prepared.
  • the Pd/MIL- obtained by immersion reduction can be seen by the high-angle annular dark-field-scan transmission electron micrograph (HAADF-STEM) in Fig. 1 and the X-ray energy spectrum (EDS) Al and Pd distribution maps in Figs. 2 and 3.
  • the 53 (Al) catalytic material has a uniformly dispersed Al and Pd active sites.
  • the surface water contact angle of Pd/MIL-53 (Al) was only 24° (Fig. 4), indicating that ordinary Pd/MIL-53 (Al) has good hydrophilicity.
  • the surface water contact angle of the hydrophobic Pd/MIL-53 (Al) catalytic material is 135°, indicating that the modified material obtained by treating the Pd/MIL-53 (Al) by the polydimethylsiloxane coating has good properties. Hydrophobicity.
  • the conversion of fructose in the reaction solution is determined by high performance liquid chromatography, and the yield of 2,5-dimethylfuran is determined by gas chromatography.
  • the fructose conversion rate was 100%, and the 2,5-dimethylfuran yield was 93%.
  • the solid catalyst was washed four times with water and ethanol, dried at 100 ° C for 10 h, and ground to obtain a regenerated catalyst.
  • the regenerated catalyst was used to catalyze the preparation of 2,5-dimethylfuran from fructose, and the amount of each raw material and the reaction conditions were the same as those in Example 1 (3).
  • the fructose conversion rate was found to be 99%, and the 2,5-dimethylfuran yield was 91%; in addition, after repeated use for 5 times by the same method, the yield of the obtained 2,5-dimethylfuran was 87%. It shows that the hydrophobic Pd/MIL-53 (Al) catalytic material has good reusability.
  • the solid catalyst was separated by filtration, and the conversion rate of fructose in the reaction liquid was determined by high performance liquid chromatography, and the yield of 2,5-dimethylfuran was determined by gas chromatography, and the conversion of fructose was 100%, 2,5- The yield of dimethylfuran was 78%.
  • the separated solid catalyst was washed four times with water and ethanol, dried at 100 ° C for 10 hours, and ground to obtain a regenerated catalyst.
  • the regenerated catalyst was used to catalyze the preparation of 2,5-dimethylfuran from fructose.
  • the amount of each raw material and the reaction conditions were the same as those in Example 1 (3).
  • the conversion of fructose in the reaction mixture was detected to be 90%, 2,5-dimethyl.
  • the furan yield was 65%.
  • the 5,5-dimethylfuran was prepared by catalyzing the fructose using 5 wt% Pd/C (purchased from Beijing Enoch Technology Co., Ltd.), and the amount of each raw material and the reaction conditions were the same as those in Example 1 (3).
  • the fructose conversion rate in the reaction liquid was measured by high performance liquid chromatography, and the yield of 2,5-dimethylfuran was determined by gas chromatography, and the fructose conversion rate was 85%, and the 2,5-dimethylfuran yield was 48%.
  • Regeneration of Pd/C was carried out in the same manner as in Example 1 (4). Regenerated Pd/C was used to catalyze the preparation of 2,5-dimethylfuran. The amount of each raw material and the reaction conditions were the same as those in Example 1 (3), and the conversion of fructose was detected. The yield was 76%, and the yield of 2,5-dimethylfuran was 25%.
  • the prepared 0.25 g MIL-101 (Cr) carrier was added to a solution of 21 mg of PdCl 2 in methanol (1.2 mL), sonicated for 30 min and stirred at room temperature for 24 h, then centrifuged at 8000 r/min, N, N-dimethyl
  • the carbamide was washed 3 times, 10 mL each time, dried under vacuum at 90 ° C for 6 h, ground, and finally reduced in a hydrogen atmosphere at 250 ° C for 3 h (20% H 2 /Ar flow rate was 30 cm 3 /min, and the heating rate was 10 ° C / min).
  • a conventional Pd/MIL-101 (Cr) catalytic material was prepared.
  • the solid catalyst was separated by filtration, and the sucrose conversion rate in the reaction liquid was determined by high performance liquid chromatography, and the yield of 2,5-dimethylfuran was determined by gas chromatography, and the sucrose conversion rate was 100%, 2,5- The yield of dimethylfuran was 75%.
  • terephthalic acid N, N-dimethylformamide molar ratio of 1:1:300, mixed into 25mL hydrothermal reaction kettle, and then hydrothermally treated in an oven at 130 ° C for 24 h, then After washing with ethanol and vacuum drying at 90 ° C, a UiO-66 (Zr) carrier was obtained.
  • a pressure-resistant glass reaction tube (volume 15mL), add 3mL of n-butanol, dissolve glucose in n-butanol to make a 1wt% mixture, and then add hydrophobic Pd/UiO-66 (Zr) catalytic material (including The total amount of Pd is 0.5 mol% of glucose, and a small amount of sulfuric acid (6 mol% of the amount of glucose) and polymethylhydrogensiloxane (8 mol% of the amount of glucose) are added dropwise; the pressure-resistant glass reaction tube is placed in 100 In a °C oil bath, stir and heat for 6 h.
  • Zr hydrophobic Pd/UiO-66
  • the solid catalyst is separated by filtration, and the glucose conversion rate in the reaction liquid is determined by high performance liquid chromatography, and 2,5-dimethylene is determined by gas chromatography.
  • the yield of the furfuran was 97%, and the yield of 2,5-dimethylfuran was 68%.
  • the solid catalyst was separated by filtration, and the inulin conversion rate in the reaction liquid was measured by high performance liquid chromatography, and the yield of 2,5-dimethylfuran was determined by gas chromatography, and the inulin conversion rate was 98%, 2, 5-dimethylfuran yield was 87%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种疏水钯/金属有机框架材料,它是以多孔金属有机框架为载体,通过浸渍-还原法引入钯单质,再经聚二甲基硅氧烷涂层处理得到的固体催化材料。采用该疏水钯/金属有机框架材料选择性催化己糖制备2,5-二甲基呋喃的方法,包括:将己糖溶于醇中,以疏水钯/金属有机框架材料为催化剂、聚甲基氢硅氧烷为氢供体,在酸性添加剂的作用下于70~130℃反应0.25~12h;其中,醇中己糖的浓度为0.2~10wt%,该疏水钯/金属有机框架材料含有Pd总量相对于己糖为0.1~5mol%。该疏水钯/金属有机框架材料结构稳定,且在同等条件下,催化效率明显高于市售钯炭和普通钯/金属有机框架材料。

Description

一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用 技术领域
本发明涉及一种疏水钯/金属有机框架材料及其制备方法与应用,具体涉及一种活性位分布均匀、结构稳定、强疏水的钯/金属有机框架材料及其制备方法,以及该材料在催化己糖制备2,5-二甲基呋喃的应用。
背景技术
近年来,2,5-二甲基呋喃被报道是一种极具应用前景的液体生物燃料,它的能量密度(31.5MJ/L)、辛烷基值(119)和沸点(92~94℃)均与汽油(能量密度为35MJ/L、辛烷基值为95.8、沸点为96.3℃)相当甚至更优[1]。通常,在金属催化剂(如Pd、Pt、Ru、Ni、Cu等)的作用下,5-羟甲基糠醛经过氢化脱水反应即可转化为2,5-二甲基呋喃[2]。然而,反应温度、时间和氢气压力等条件较为苛刻,且所获得2,5-二甲基呋喃的产率往往不太理想。
木质纤维素及其衍生物是当前已知贮存量最大且可再生的有机碳源,其中糖组分的含量可达到75%。值得注意的是,5-羟甲基糠醛是己单糖的脱水产物,在酸催化下可较高效地制备获得[3]。因此,直接选用己糖为底物制备2,5-二甲基呋喃更符合可持续生产理念,也可极大降低生产成本、减缓诸如制备生物柴油所需原料短缺的压力。基于上述考虑,Dumesic课题组首次报道了一种两步法(流体床)催化果糖制备2,5-二甲基呋喃的方法,即:(1)HCl催化果糖脱水为5-羟甲基糠醛,(2)CuRu/C催化分离提纯的中间体发生氢解反应,两步整合所得2,5-二甲基呋喃的总产率约为60%[4]。类似地,Pd和Ru金属辅以酸性介质或者载体近来也先后被报道经两步或多步反应过程可催化果糖或者葡萄糖转化为2,5-二甲基呋喃,但其产率往往低于60%[5-7]。因此,寻求一种高效且工艺简单的2,5-二甲基呋喃制备方法是实现其大量或工业化生产的先决条件。
与醇、甲酸等类似,聚甲基氢硅氧烷对水和空气稳定、廉价、低毒,作为液态供体广泛应用于催化诸如酰胺、酯、羟基、硝基和羰基等化合物的还原反应[8]。其中,金属离子或单质作用于聚甲基氢硅氧烷对目标产物表现出较高的选择性,但存在底物转化率低、反应时间长等不足。推测这与聚甲基氢硅氧烷作为一种聚合物具有较强的疏水性,在反应过程中与催化位点、底物直接作用较为困难等有密切关系。由此,调控催化材料表面亲、疏水性显得尤为必要。同时,己糖(特别是己多糖)催化转化为2,5-二甲基呋喃往往涉及水解、脱水、加氢等诸多反应步骤。相应地,如何有效构建催化材料的酸、金属等活性位点以及合适氢供体 的选用是高效制备2,5-二甲基呋喃的关键。
[1]、Hu,L.;Lin,L.;Liu,S.“Chemoselective hydrogenation of biomass-derived 5-hydroxymethylfurfural into the liquid biofuel 2,5-dimethylfuran.”Industrial&Engineering Chemistry Research,2014,53,9969-9978.
[2]、Saha,B.;Abu-Omar,M.M.“Current technologies,economics,and perspectives for 2,5-dimethylfuran production from biomass-derived intermediates.”ChemSusChem,2015,8,1133-1142.
[3]、Zhou,P.;Zhang,Z.“One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural.”Catalysis Science&Technology,2016,6,3694-3712.
[4]、Román-Leshkov,Y.;Barrett,C.J.;Liu,Z.Y.;Dumesic,J.A.“Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.”Nature,2007,447,982-985.
[5]、Zu,Y.;Yang,P.;Wang,J.;Liu,X.;Ren,J.;Lu,G.;Wang,Y.“Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4catalyst.”Applied Catalysis B:Environmental,2014,146,244-248.
[6]、Gallo,J.M.R.;Alonso,D.M.;Mellmer,M.A.;Dumesic,J.A.“Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents.”Green Chemistry,2013,15,85-90.
[7]、De,S.;Dutta,S.;Saha,B.“One-pot conversions of lignocellulosic and algal biomass into liquid fuels.”ChemSusChem,2012,5,1826-1833.
[8]、Volkov,A.;Gustafson,K.P.;Tai,C.W.;Verho,O.;
Figure PCTCN2017106729-appb-000001
J.E.;Adolfsson,H.“Mild deoxygenation of aromatic ketones and aldehydes over Pd/C using polymethylhydrosiloxane as the reducing agent.”Angewandte Chemie International Edition,2015,54,5122-5126.
发明内容
本发明的目的在于:针对现有2,5-二甲基呋喃制备成本高、工艺繁杂、反应条件苛刻的弊端,选用聚甲基氢硅氧烷为氢供体,醇为溶剂,通过聚二甲基硅氧烷涂层处理Pd/金属有机框架合成出强疏水性、活性位分布均匀的催化材料,在用于催化己糖制备2,5-二甲基呋喃反应中表现出高的活性和稳定性,且重复使用性好。
本发明的目的是通过以下技术方案实现的:
一种疏水钯/金属有机框架材料,该材料是以金属有机框架为载体,通过浸渍处理将Pd盐分散到金属有机框架的孔道中制得钯/金属有机框架材料,钯/金属有机框架材料在200~300℃下氢气氛围中还原处理2~5h,最后经聚二甲基硅氧烷涂层处理得到疏水性钯/金属有机框架材料。
所述的金属有机框架为过渡金属盐与等物质的量的对苯二甲酸溶于去离子水或N,N-二甲基甲酰胺中,120~220℃热液处理12~72h,再经洗涤、真空干燥制备得到;其中,所述的过渡金属盐为Cu2+、Al3+、Cr3+、Fe3+或Zr4+的氯盐或硝酸盐。所述的过渡金属盐和去离子水或N,N-二甲基甲酰胺的物质的量之比为1:100~300,在该浓度范围内经过热液处 理易于析出沉淀,在该浓度范围外很难出沉淀。采用去离子水或乙醇进行洗涤。真空干燥的温度为90~100℃。
所述的浸渍处理为:将Pd盐溶于水或醇中,加入金属有机框架,超声处理15~60min、室温搅拌12~24h,再经离心、洗涤、干燥、研磨处理得到钯/金属有机框架材料;其中,所述的Pd盐的用量以Pd计为金属有机框架质量的1~20wt%,优选为1~6wt%;所述的Pd盐为氯化钯、硝酸钯、醋酸钯、硫酸钯;所述的醇为甲醇、乙醇、正丁醇、正己醇。离心的转速6000~8000r/min。采用N,N-二甲基甲酰胺洗涤3次,每次洗涤时N,N-二甲基甲酰胺和金属有机框架的体积/质量之比为4~6mL:1g。干燥方式为80~100℃真空干燥4~8h。
所述的还原处理为:将钯/金属有机框架材料的固体粉末平铺入瓷舟,随即封入管式炉中,通入20%H2/Ar,流速为30cm3/min,按照10℃/min的升温速度,程序升温至200~300℃,并在该温度下保持2~5h。
所述的聚二甲基硅氧烷涂层处理为:将还原后的钯/金属有机框架材料平铺到表面皿中,并置入到盛有聚二甲基硅氧烷的水热反应釜内衬中,密封,将水热反应釜转移到190~220℃烘箱中,热处理15~45min,经蒸发将聚二甲基硅氧烷涂到钯/金属有机框架材料表面,取出反应釜自然冷却至室温。聚二甲基硅氧烷过量,优选的,所述的聚二甲基硅氧烷与还原后的钯/金属有机框架材料的质量比为1:1。
本发明还提供了一种疏水钯/金属有机框架材料的制备方法,包括以下步骤:
(1)、将Pd盐溶于水或醇中,加入金属有机框架用作载体,超声处理15~60min,并室温搅拌12~24h,再经离心、洗涤、干燥、研磨处理得到钯/金属有机框架材料;其中,所述的Pd盐的用量以Pd计为金属有机框架质量的1~20wt%,优选为1~6wt%;所述的Pd盐为氯化钯、硝酸钯、醋酸钯、硫酸钯;所述的醇为甲醇、乙醇、正丁醇、正己醇;
(2)、钯/金属有机框架材料在200~300℃下氢气氛围中还原处理2~5h,还原后的钯/金属有机框架材料经聚二甲基硅氧烷涂层处理得到强疏水性、活性位分布均匀的钯/金属有机框架材料。
步骤(1)中,所述的金属有机框架与水或醇的质量体积比为1g:4.5~6mL。
本发明所述的疏水钯/金属有机框架材料在用于催化己糖制备2,5-二甲基呋喃的应用。
一种采用本发明的疏水钯/金属有机框架材料选择性催化己糖制备2,5-二甲基呋喃的方法,包括以下步骤:将己糖溶于醇中,以疏水钯/金属有机框架材料为催化剂、聚甲基氢硅氧烷为氢供体,在酸性添加剂的作用下于70~130℃反应0.25~12h;结束后经离心将催化 剂与产物分离;其中,醇中己糖的浓度为0.2~10wt%,所用疏水钯/金属有机框架材料的用量以Pd计为己糖用量的0.1~5mol%,聚甲基氢硅氧烷用量为己糖的5~10mol%,优选为6~10mol%。
优选的,醇中己糖的浓度为0.5~5wt%,所用疏水钯/金属有机框架材料的用量以Pd计为己糖用量的0.5~3mol%。进一步优选的,醇中己糖的浓度为1~5wt%,所用疏水钯/金属有机框架材料的用量以Pd计为己糖用量的0.5~3mol%。
优选的,所述的反应温度为100~120℃,反应时间为2~8h。
所述的己糖为果糖、甘露糖、葡萄糖或由上述单糖脱水缩合形成的二糖如蔗糖、纤维二糖或由上述单糖脱水缩合形成的多糖如菊糖;所述的醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正己醇。
所述的酸性添加剂为盐酸、硫酸、氯苯;所述的酸性添加剂的用量为己糖用量的3~9mol%,优选为6mol%。酸性添加剂的作用是催化己糖脱水制得5-羟甲基糠醛中间体。
作为选择性催化己糖制备2,5-二甲基呋喃的方法的优选方案,还包括催化材料的再生:从反应液中将催化材料离心出,经水和乙醇各洗涤3~5次、100℃真空干燥10h、研磨后得到再生的催化材料。
通过本发明方法制备得到的疏水钯/金属有机框架材料,与市售Pd/C和普通钯/金属有机框架催化材料相比,在相同条件下,催化己糖制备2,5-二甲基呋喃的产率分别提高45%和25%左右。
和现有技术相比,本发明的有益效果在于:
(1)、本发明催化材料疏水性强、活性位点分布均匀、制备方法简单、易分离回收再利用,重复使用性好;
(2)、本发明疏水钯/金属有机框架材料对催化不同己糖制备2,5-二甲基呋喃具有广泛的适用性,同时具有反应条件温和、活性高。
附图说明
图1为Pd/MIL-53(Al)的高角度环形暗场-扫描透射电子显微镜图(HAADF-STEM)。
图2为Al元素在Pd/MIL-53(Al)中的X射线能谱(EDS)分布像图。
图3为Pd元素在Pd/MIL-53(Al)中的X射线能谱(EDS)分布像图。
图4为普通Pd/MIL-53(Al)表面水接触角(CA:24°)。
图5为疏水Pd/MIL-53(Al)表面水接触角(CA:135°)。
具体实施方式
下面结合实施例对本发明的技术方案作进一步的详细说明,但它们不是对本发明的限定。
实施例1
(1)普通Pd/MIL-53(Al)催化材料的制备
按Al(NO3)3·9H2O:对苯二甲酸:水摩尔比为1:1:100投料,混合加入到25mL水热反应釜中,于220℃烘箱中静置水热处理72h,然后去离子水洗涤、100℃真空干燥后得到MIL-53(Al)载体。
将制得的0.25g MIL-53(Al)载体加入到溶有13mg PdCl2的甲醇(1.2mL)溶液中,超声处理30min并室温搅拌24h,再经8000r/min离心,N,N-二甲基甲酰胺洗涤3次、每次10mL,90℃真空干燥6h,研磨处理,最后于250℃氢气氛围中还原3h(20%H2/Ar流速为30cm3/min,升温速度为10℃/min),制备得到普通Pd/MIL-53(Al)催化材料。
通过图1中高角度环形暗场-扫描透射电子显微镜图(HAADF-STEM)以及图2和3中X射线能谱(EDS)Al、Pd元素分布像图可见,经浸渍还原得到的Pd/MIL-53(Al)催化材料具有分散均匀的Al和Pd活性位点。此外,Pd/MIL-53(Al)表面水接触角仅为24°(图4),表明普通Pd/MIL-53(Al)具有较好的亲水性。
(2)疏水Pd/MIL-53(Al)催化材料的制备
称取20mg普通Pd/MIL-53(Al)固体粉末,均匀平铺到微型表面皿中,并置入到盛有等量聚二甲基硅氧烷的水热反应釜内衬中,密封后,将反应釜转移到205℃烘箱中,热处理30min后,取出反应釜自然冷却至室温,即得到疏水Pd/MIL-53(Al)催化材料(Pd含量为2.8wt%)。
由图5可见,疏水Pd/MIL-53(Al)催化材料表面水接触角为135°,表明通过聚二甲基硅氧烷涂层处理Pd/MIL-53(Al)所得改性材料具有良好的疏水性。
(3)催化果糖制备2,5-二甲基呋喃
取耐压玻璃反应管(容积为15mL),加入2mL正丁醇,将果糖溶解在正丁醇中配制成5wt%的混合液,然后加入疏水Pd/MIL-53(Al)催化材料(所含Pd总量为果糖的1mol%),并滴加少量氯苯(为果糖用量的6mol%)和聚甲基氢硅氧烷(为果糖用量的10mol%);将耐压玻璃反应管置入110℃油浴锅中、加热搅拌2.5h,反应结束后,离心、过滤分离出固体催化剂,通过高效液相色谱测定反应液中果糖转化率,通过气相色谱测定2,5-二甲基呋喃产率,果糖转化率为100%,2,5-二甲基呋喃产率为93%。
(4)疏水Pd/MIL-53(Al)催化材料的再生
固体催化剂经水和乙醇各洗涤4次、100℃干燥10h、研磨后得到再生的催化剂。
使用再生的催化剂催化果糖制备2,5-二甲基呋喃,各原料用量、反应条件同实施例1(3)。检测到果糖转化率为99%,2,5-二甲基呋喃产率为91%;此外,通过同样的方法重复使用5次后,所得2,5-二甲基呋喃产率为87%,说明疏水Pd/MIL-53(Al)催化材料重复使用性好。
对比例1
取耐压玻璃反应管(容积为15mL),加入2mL正丁醇,将果糖溶解到正丁醇中配制成5wt%的混合液,然后加入实施例1(1)制得的普通Pd/MIL-53(Al)催化材料(所含Pd总量为果糖的1mol%),并滴加少量氯苯(为果糖用量的6mol%);将耐压玻璃反应管置入110℃油浴锅中、加热搅拌2.5h。反应结束后,经过滤分离出固体催化剂,通过高效液相色谱测定反应液中果糖转化率,通过气相色谱测定2,5-二甲基呋喃产率,果糖转化率为100%,2,5-二甲基呋喃产率为78%。
分离出的固体催化剂经水和乙醇各洗涤4次、100℃干燥10h、研磨后得到再生的催化剂。使用再生的催化剂催化果糖制备2,5-二甲基呋喃,各原料用量、反应条件同实施例1(3),检测到反应混合液中果糖转化率为90%,2,5-二甲基呋喃产率为65%。
对比例2
采用5wt%Pd/C(购自北京伊诺凯科技有限公司)催化果糖制备2,5-二甲基呋喃,各原料用量、反应条件同实施例1(3)。通过高效液相色谱测定反应液中果糖转化率,通过气相色谱测定2,5-二甲基呋喃产率,果糖转化率为85%,2,5-二甲基呋喃产率为48%。
Pd/C的再生同实施例1(4),使用再生的Pd/C催化果糖制备2,5-二甲基呋喃,各原料用量、反应条件同实施例1(3),检测到果糖转化率为76%,2,5-二甲基呋喃产率为25%。
实施例2
(1)疏水Pd/MIL-101(Cr)催化材料的制备
按Cr(NO3)3·9H2O:对苯二甲酸:水摩尔比为1:1:200投料,混合加入到25mL水热反应釜中,于220℃烘箱中静置水热处理12h,然后乙醇洗涤、90℃真空干燥后得到MIL-101(Cr)载体。
将制得的0.25g MIL-101(Cr)载体加入到溶有21mg PdCl2的甲醇(1.2mL)溶液中,超声处理30min并室温搅拌24h,再经8000r/min离心,N,N-二甲基甲酰胺洗涤3次、每次10mL,90℃真空干燥6h,研磨处理,最后于250℃氢气氛围中还原3h(20%H2/Ar流速为30cm3/min,升温速度为10℃/min)后,即制备得到普通Pd/MIL-101(Cr)催化材料。
称取20mg普通Pd/MIL-101(Cr)固体粉末,均匀平铺到微型表面皿中,并置入到盛有等量聚二甲基硅氧烷的水热反应釜内衬中,密封后,将反应釜转移到205℃烘箱中,热处理30min后,取出反应釜自然冷却至室温即得到疏水Pd/MIL-101(Cr)催化材料(Pd含量为4.8wt%)。
(2)催化蔗糖制备2,5-二甲基呋喃
取耐压玻璃反应管(容积为15mL),加入5mL乙醇,将蔗糖溶解在乙醇中配制成5wt%的混合液,然后加入疏水Pd/MIL-101(Cr)催化材料(所含Pd总量为蔗糖的2.5mol%),并滴加少量盐酸(为蔗糖用量的6mol%)和聚甲基氢硅氧烷(为蔗糖糖用量的10mol%);将耐压玻璃反应管置入120℃油浴锅中、加热搅拌4h。反应结束后,经过滤分离出固体催化剂,通过高效液相色谱测定反应液中蔗糖转化率,通过气相色谱测定2,5-二甲基呋喃产率,蔗糖转化率为100%、2,5-二甲基呋喃产率为75%。
实施例3
(1)疏水Pd/UiO-66(Zr)催化材料的制备
按ZrCl4:对苯二甲酸:N,N-二甲基甲酰胺摩尔比为1:1:300投料,混合加入到25mL水热反应釜中,于130℃烘箱中静置水热处理24h,然后乙醇洗涤、90℃真空干燥后得到UiO-66(Zr)载体。
将制得的0.25g UiO-66(Zr)载体加入到溶有6mg PdCl2的甲醇(1.2mL)溶液中,超声处理30min并室温搅拌24h,再经8000r/min离心,N,N-二甲基甲酰胺洗涤3次、每次10mL,90℃真空干燥6h,研磨处理,于250℃氢气氛围中还原3h(20%H2/Ar流速为30cm3/min,升温速度为10℃/min)后,即制备得到普通Pd/UiO-66(Zr)催化材料。
称取20mg普通Pd/UiO-66(Zr)固体粉末,均匀平铺到微型表面皿中,并置入到盛有等量聚二甲基硅氧烷的水热反应釜内衬中,密封后,将反应釜转移到205℃烘箱中,热处理30min后,取出反应釜自然冷却至室温,即得到疏水Pd/UiO-66(Zr)催化材料(Pd含量为1.1wt%)。
(2)催化葡萄糖制备2,5-二甲基呋喃
取耐压玻璃反应管(容积为15mL),加入3mL正丁醇,将葡萄糖溶解在正丁醇中配制成1wt%的混合液,然后加入疏水Pd/UiO-66(Zr)催化材料(所含Pd总量为葡萄糖的0.5mol%),并滴加少量硫酸(为葡萄糖用量的6mol%)和聚甲基氢硅氧烷(为葡萄糖用量的8mol%);将耐压玻璃反应管置入100℃油浴锅中、加热搅拌6h。反应结束后,经过滤分离出固体催化剂,通过高效液相色谱测定反应液中葡萄糖转化率,通过气相色谱测定2,5-二甲 基呋喃产率,葡萄糖转化率为97%、2,5-二甲基呋喃产率为68%。
实施例4
采用实施例1疏水Pd/MIL-53(Al)催化材料催化菊糖制备2,5-二甲基呋喃。
取耐压玻璃反应管(容积为15mL),加入2mL甲醇,将菊糖溶解在甲醇中配制成1.5wt%的混合液,然后加入疏水Pd/MIL-53(Al)催化材料(所含Pd总量为菊糖的1mol%),并滴加少量氯苯(为菊糖用量的6mol%)和聚甲基氢硅氧烷(为菊糖用量的6mol%);将耐压玻璃反应管置入120℃油浴锅中、加热搅拌8h。反应结束后,经过滤分离出固体催化剂,通过高效液相色谱测定反应液中菊糖转化率,通过气相色谱测定2,5-二甲基呋喃产率,菊糖转化率为98%、2,5-二甲基呋喃产率为87%

Claims (10)

  1. 一种疏水钯/金属有机框架材料,其特征在于该材料是以金属有机框架为载体,通过浸渍处理制得钯/金属有机框架材料,钯/金属有机框架材料在200~300℃下氢气氛围中还原处理2~5h,最后经聚二甲基硅氧烷涂层处理得到疏水性钯/金属有机框架材料。
  2. 根据权利要求1所述的疏水钯/金属有机框架材料,其特征在于所述的金属有机框架为过渡金属盐与等物质的量的对苯二甲酸溶于去离子水或N,N-二甲基甲酰胺中,120~220℃热液处理12~72h,再经过滤、洗涤、真空干燥制备得到;其中,所述的过渡金属盐为Cu2+、Al3+、Cr3+、Fe3+或Zr4+的氯盐或硝酸盐。
  3. 根据权利要求1所述的疏水钯/金属有机框架材料,其特征在于所述的浸渍处理为:将Pd盐溶于水或醇中,加入金属有机框架,超声处理15~60min、于室温搅拌12~24h,再经离心、洗涤、干燥、研磨处理得到钯/金属有机框架材料;其中,所述的Pd盐的用量以Pd计为金属有机框架质量的1~20wt%,优选为1~6wt%;所述的Pd盐为氯化钯、硝酸钯、醋酸钯、硫酸钯;所述的醇为甲醇、乙醇、正丁醇、正己醇。
  4. 根据权利要求1所述的疏水钯/金属有机框架材料,其特征在于将还原后的钯/金属有机框架材料平铺到表面皿中,并置入到盛有聚二甲基硅氧烷的水热反应釜内衬中,密封,将水热反应釜转移到190~220℃烘箱中,热处理15~45min,取出反应釜自然冷却至室温。
  5. 权利要求1所述的疏水钯/金属有机框架材料的制备方法,其特征在于包括以下步骤:
    (1)、将Pd盐溶于水或醇中,加入金属有机框架用作载体,超声处理15~60min,并室温搅拌12~24h,再经离心、洗涤、干燥、研磨处理得到钯/金属有机框架材料;其中,所述的Pd盐的用量以Pd计为金属有机框架质量的1~20wt%;所述的Pd盐为氯化钯、硝酸钯、醋酸钯、硫酸钯;所述的醇为甲醇、乙醇、正丁醇、正己醇;
    (2)、钯/金属有机框架材料在200~300℃下氢气氛围中还原处理2~5h,还原后的钯/金属有机框架材料经聚二甲基硅氧烷涂层处理得到强疏水性、活性位分布均匀的钯/金属有机框架材料。
  6. 权利要求1-4任意一项所述的疏水钯/金属有机框架材料在用于催化己糖制备2,5-二甲基呋喃的应用。
  7. 一种采用权利要求1所述的疏水钯/金属有机框架材料催化己糖制备2,5-二甲基呋喃的方法,其特征在于包括:将己糖溶于醇中,以疏水钯/金属有机框架材料为催化剂、聚甲基氢硅氧烷为氢供体,在酸性添加剂的作用下于70~130℃反应0.25~12h得到2,5-二甲基呋喃;结束后经离心分离回收催化剂;其中,醇中己糖的浓度为0.2~10wt%,优选为0.5~ 5wt%;所用疏水钯/金属有机框架材料的用量以Pd计为己糖用量的0.1~5mol%,优选为0.5~3mol%;所述的聚甲基氢硅氧烷用量为己糖的5~10mol%,优选为6~10mol%。
  8. 根据权利要求7所述的方法,其特征在于所述的己糖为果糖、甘露糖、葡萄糖、蔗糖、纤维二糖、菊糖;所述的醇为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、正己醇。
  9. 根据权利要求7所述的方法,其特征在于所述的酸性添加剂为盐酸、硫酸、氯苯;所述的酸性添加剂的用量为己糖用量的3~9mol%。
  10. 根据权利要求7所述的方法,其特征在于还包括疏水钯/金属有机框架材料的再生,从反应液中将催化材料离心出,经水和乙醇各洗涤3~5次、100℃真空干燥10h、研磨后得到再生的催化材料。
PCT/CN2017/106729 2017-04-01 2017-10-18 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用 WO2018176803A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/499,364 US11584729B2 (en) 2017-04-01 2017-10-18 Hydrophobic palladium/metal organic framework material, preparation method thereof, and application therefor for use in synthesizing 2,5-dimethylfuran

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710211612.9A CN108654693B (zh) 2017-04-01 2017-04-01 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用
CN201710211612.9 2017-04-01

Publications (1)

Publication Number Publication Date
WO2018176803A1 true WO2018176803A1 (zh) 2018-10-04

Family

ID=63674106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106729 WO2018176803A1 (zh) 2017-04-01 2017-10-18 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用

Country Status (3)

Country Link
US (1) US11584729B2 (zh)
CN (1) CN108654693B (zh)
WO (1) WO2018176803A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110339719A (zh) * 2019-06-14 2019-10-18 湖北中和普汇环保股份有限公司 一种多尺度超疏水蒸馏膜材料的制备方法及其应用
CN111330639A (zh) * 2020-04-09 2020-06-26 安徽师范大学 一种多孔钴锌核壳金属有机框架化合物限域贵金属纳米粒子的杂化材料及其制备方法和应用
CN112675913A (zh) * 2019-10-18 2021-04-20 南京理工大学 钯负载钛基金属有机骨架催化剂、制备方法和应用
CN113101896A (zh) * 2021-04-19 2021-07-13 山东建筑大学 一种正负微压变换改性MOFs疏水特性的装置及疏水性MOFs制备方法和应用
CN114534791A (zh) * 2022-03-24 2022-05-27 东南大学 一种多功能非均相催化剂及其制备方法和应用
CN116217371A (zh) * 2023-03-21 2023-06-06 厦门大学 一种葡萄糖经mof材料催化转化制乳酸酯的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109985664B (zh) * 2019-05-14 2021-03-26 北京化工大学 一步法催化果糖转化为2,5-二甲基呋喃的酸性固体催化剂
CN111318053B (zh) * 2020-02-28 2022-02-11 广州大学 一种超疏水性铝合金滤网及其制备方法与应用
CN113399003B (zh) * 2021-06-04 2022-07-12 中国科学院上海硅酸盐研究所 一种贵金属纳米颗粒-MOFs凝胶块体复合材料及其制备方法和应用
CN113663734B (zh) * 2021-09-16 2023-09-26 沈阳师范大学 一种表面疏水化的不饱和铁基金属有机框架催化剂及其制备方法和应用
CN114214644B (zh) * 2022-01-07 2023-11-10 辽宁大学 MOFs衍生Pd@Cu复合材料及其制备方法和在电催化二氧化碳中的应用
CN114985009B (zh) * 2022-04-27 2023-07-28 南昌大学 一种糖类转化2,5-二甲基呋喃的催化剂的制备方法及应用
CN114797784B (zh) * 2022-05-10 2023-05-05 太原理工大学 利用燃煤电厂生产环境制取并循环利用功能化MOFs基烟气污染物吸附剂的系统及方法
CN117003293B (zh) * 2023-07-31 2024-04-05 武汉理工大学 一种改性Co3O4/MOFs复合气敏材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110263880A1 (en) * 2010-04-23 2011-10-27 The Board Of Trustees Of The University Of Illinois Efficient method for preparing 2,5-dimethylfuran
CN103347885A (zh) * 2010-07-20 2013-10-09 加利福尼亚大学董事会 使用金属有机骨架(mof)作为催化剂对有机分子的官能化
JP2015027966A (ja) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 ヒドロキシメチルフルフラール及び/又はフルフラールの還元方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437640A (zh) * 2013-09-13 2015-03-25 中国石油天然气股份有限公司 一种Pd/MIL-53(Al)催化剂及其制备和应用
CN105772092B (zh) * 2016-03-21 2019-08-27 中国科学技术大学 一种改性催化剂及其制备方法
KR101846783B1 (ko) * 2017-06-21 2018-04-06 성균관대학교산학협력단 촉매, 이의 제조 방법, 및 이를 이용한 2,5-디메틸퓨란의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110263880A1 (en) * 2010-04-23 2011-10-27 The Board Of Trustees Of The University Of Illinois Efficient method for preparing 2,5-dimethylfuran
CN103347885A (zh) * 2010-07-20 2013-10-09 加利福尼亚大学董事会 使用金属有机骨架(mof)作为催化剂对有机分子的官能化
JP2015027966A (ja) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 ヒドロキシメチルフルフラール及び/又はフルフラールの還元方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, H. ET AL.: "Hydrophobic Pd Nanocatalysts for One-pot and High-yield Production of Liquid Furanic Biofuels at Low Temperatures", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 215, 18 June 2017 (2017-06-18), pages 19 - 23, XP055538957, ISSN: 0926-3373 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110339719A (zh) * 2019-06-14 2019-10-18 湖北中和普汇环保股份有限公司 一种多尺度超疏水蒸馏膜材料的制备方法及其应用
CN112675913A (zh) * 2019-10-18 2021-04-20 南京理工大学 钯负载钛基金属有机骨架催化剂、制备方法和应用
CN111330639A (zh) * 2020-04-09 2020-06-26 安徽师范大学 一种多孔钴锌核壳金属有机框架化合物限域贵金属纳米粒子的杂化材料及其制备方法和应用
CN111330639B (zh) * 2020-04-09 2022-09-30 安徽师范大学 一种多孔钴锌核壳金属有机框架化合物限域贵金属纳米粒子的杂化材料及其制备方法和应用
CN113101896A (zh) * 2021-04-19 2021-07-13 山东建筑大学 一种正负微压变换改性MOFs疏水特性的装置及疏水性MOFs制备方法和应用
CN113101896B (zh) * 2021-04-19 2023-09-12 山东建筑大学 一种正负微压变换改性MOFs疏水特性的装置及疏水性MOFs制备方法和应用
CN114534791A (zh) * 2022-03-24 2022-05-27 东南大学 一种多功能非均相催化剂及其制备方法和应用
CN114534791B (zh) * 2022-03-24 2023-11-03 东南大学 一种多功能非均相催化剂及其制备方法和应用
CN116217371A (zh) * 2023-03-21 2023-06-06 厦门大学 一种葡萄糖经mof材料催化转化制乳酸酯的方法

Also Published As

Publication number Publication date
US11584729B2 (en) 2023-02-21
CN108654693A (zh) 2018-10-16
US20210101876A1 (en) 2021-04-08
CN108654693B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2018176803A1 (zh) 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用
CN109967072B (zh) 一种木质素基纳米花多孔碳载体负载Ru基催化剂及其制备方法和在木质素解聚中的应用
JP6772287B2 (ja) 2,5−フランジカルボン酸製造用触媒、およびその触媒を用いた2,5−フランジカルボン酸の製造方法
CN107365286B (zh) 一种合成2,5-呋喃二甲酸的方法
CN111377890B (zh) 由5-羟甲基糠醛生产2,5-呋喃二甲酸的方法
CN110433853B (zh) 一种改性介孔分子筛负载铂基催化剂及其制备方法
He et al. The synthesis of 5-hydroxymethylfurfural from glucose in biphasic system by phosphotungstic acidified titanium–zirconium dioxide
CN109796430B (zh) 一种生物质基呋喃二甲酸-金属杂化材料及其制备方法与应用
Wang et al. Sustainable conversion of cellulosic biomass to chemicals under visible-light irradiation
CN115155600B (zh) 一种合成甲醇用的催化剂及其制备方法与应用
CN108048125A (zh) 一种高选择催化转移氢化木质素衍生物制芳烃的方法
WO2018157604A1 (zh) 一种改性Pd/C直接催化碳水化合物制备2,5-二甲基呋喃的方法
Zuo et al. Biochar catalysts for efficiently 5-Hydroxymethylfurfural (HMF) synthesis in aqueous natural deep eutectic solvent (A-NADES)
WO2022166206A1 (zh) 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法
Feng et al. Construction of a stable biochar-supported amorphous aluminum solid acid catalyst with Brønsted–Lewis dual acid sites for efficient conversion of cellulose
Yao et al. Magnetically-recoverable carbonaceous material: An efficient catalyst for the synthesis of 5-hydroxymethylfurfural and 5-ethoxymethylfurfural from carbohydrates
CN116673068A (zh) 一种室温催化呋喃醇转化甲基呋喃催化剂的制备及其应用
CN110420661B (zh) 一种3D-rGO上原位生成MIL-101(Fe)复合催化材料及其制备方法与应用
CN116864716A (zh) 铂碳催化剂浆料及其制备方法
CN107497490B (zh) 一种金属有机凝胶负载CdS的催化剂制备及其在光解水制氢方面的应用
CN111389395B (zh) 钌铱催化剂、其制备方法及在5-羟甲基糠醛氢解反应中的应用
CN114653406A (zh) 一种负载受限铂纳米团簇催化剂的制备方法及应用
CN111732977A (zh) 一种呋喃基丙烯醛原位加氢制备呋喃醇生物柴油的方法
CN112138644A (zh) 一种生物质基水热炭负载纳米铝催化剂的制备方法及其应用
CN115772143B (zh) 一种制备2,5-呋喃二甲酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904170

Country of ref document: EP

Kind code of ref document: A1