WO2022166206A1 - 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法 - Google Patents

一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法 Download PDF

Info

Publication number
WO2022166206A1
WO2022166206A1 PCT/CN2021/118054 CN2021118054W WO2022166206A1 WO 2022166206 A1 WO2022166206 A1 WO 2022166206A1 CN 2021118054 W CN2021118054 W CN 2021118054W WO 2022166206 A1 WO2022166206 A1 WO 2022166206A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
molecular sieve
propanol
type zsm
acetyl
Prior art date
Application number
PCT/CN2021/118054
Other languages
English (en)
French (fr)
Inventor
刘仲毅
付鑫鑫
刘巧云
Original Assignee
郑州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州大学 filed Critical 郑州大学
Publication of WO2022166206A1 publication Critical patent/WO2022166206A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds

Definitions

  • the invention belongs to the technical field of preparation of acetyl-n-propanol, and in particular relates to an efficient and pollution-free catalyst for preparing acetyl-n-propanol, a preparation method and a use method thereof.
  • Acetyl-n-propanol is an important chemical intermediate, which can be used in the pharmaceutical industry, as well as in the synthesis of chloroquine phosphate and vitamin B1.
  • catalysts such as metal complex platinum, gold, and ruthenium are mainly used in the synthesis of acetyl-n-propanol (CN102140058A).
  • Additional liquid acids such as hydrochloric acid and sulfuric acid, are required to be added in the reaction, which is easy to corrode equipment and pollute the environment.
  • the purpose of the present invention is to provide a kind of high-efficiency and pollution-free catalyst for preparing acetyl-n-propanol and its preparation method and use method.
  • An efficient and pollution-free catalyst for preparing acetyl-n-propanol the carrier of the catalyst is H-type ZSM-5 molecular sieve, the active component is metal Pd, and the loading amount of metal Pd (the mass percentage of metal in the carrier) is 10- 20wt%.
  • step S2 performing H exchange on the Na-type ZSM-5 molecular sieve obtained in step S1 to obtain H-type ZSM-5 molecular sieve;
  • step S3.2 Weigh the H-type ZSM-5 molecular sieve obtained in step S2 and the precursor solution obtained in step S3.1 to ensure that the mass ratio of the metal Pd element actually provided by the precursor solution to the H-type ZSM-5 molecular sieve is 10-20% , add water and stir, shake to form a paste, grind, vacuum dry, reduce at 400-800 ° C, in a mixed gas atmosphere composed of nitrogen and hydrogen with a volume ratio of (9-15): 1 for 2-4 hours, collect the reduced samples, The catalyst is obtained.
  • the use method of the catalyst for preparing acetyl-n-propanol with high efficiency and no pollution the use conditions are: using 2 -methylfuran and H gas as raw materials, using water as a solvent, without adding liquid acid, 2-methylfuran
  • the mass fraction in water is 1-50wt%
  • the mass ratio of catalyst to 2-methylfuran is (0.01-1):1
  • the reaction temperature is 20-100°C
  • the hydrogen pressure is 1-8MPa
  • the reaction time is 1- 20h.
  • the reaction temperature is 20-50° C.
  • the hydrogen pressure is 2-6 MPa
  • the reaction time is 8-15 h.
  • steps S1 and S2 can be performed according to the prior art.
  • the catalyst of the present invention has a simple preparation method, does not need to add liquid acid in the preparation process of acetyl-n-propanol, the solvent is water, has the advantages of high efficiency, green environmental protection, and the substrate concentration can reach 50wt%, which can be used for practical industrial applications.
  • Figure 1 XRD pattern of the catalyst Pd/HZSM-5 prepared by the present invention.
  • a catalyst 5wt% Pd/HZSM-5 the carrier of the catalyst is H-type ZSM-5 molecular sieve (abbreviation: HZSM-5 molecular sieve), the active component is metal Pd, and the metal Pd loading is 5wt%.
  • step S3.3 Grind the paste product obtained in step S3.2 for 1 hour, transfer it to a porcelain boat, vacuum dry it at 40 °C for 2 hours, and at 400 °C, under a mixed gas atmosphere composed of nitrogen and hydrogen in a volume ratio of 9:1 After reduction for 3h, the catalyst 5wt% Pd/HZSM-5 was obtained.
  • a catalyst 10wt% Pd/HZSM-5 the carrier of the catalyst is H-type ZSM-5 molecular sieve (abbreviation: HZSM-5 molecular sieve), the active component is metal Pd, and the loading amount of metal Pd is 10wt%.
  • step S3.3 Grind the paste product obtained in step S3.2 for 1 hour and transfer it to a porcelain boat, vacuum dry it at 50°C for 3 hours, and at 450°C under a mixed gas atmosphere composed of nitrogen and hydrogen in a volume ratio of 9:1 After reduction for 3h, a catalyst of 10wt% Pd/HZSM-5 was obtained.
  • a catalyst 15wt% Pd/HZSM-5 the carrier of the catalyst is H-type ZSM-5 molecular sieve (abbreviation: HZSM-5 molecular sieve), the active component is metal Pd, and the loading amount of metal Pd is 15wt%.
  • step S3.3 Grind the paste product obtained in step S3.2 for 1 hour, transfer it to a porcelain boat, vacuum dry it at 70 °C for 2 hours, and at 550 °C under a mixed gas atmosphere composed of nitrogen and hydrogen in a volume ratio of 9:1 After reduction for 2 h, a catalyst of 15wt% Pd/HZSM-5 was obtained.
  • a catalyst of 20wt% Pd/HZSM-5 the carrier of the catalyst is H-type ZSM-5 molecular sieve (abbreviation: HZSM-5 molecular sieve), the active component is metal Pd, and the loading amount of metal Pd is 20wt%.
  • step S3.3 Grind the paste product obtained in step S3.2 for 1 hour and transfer it to a porcelain boat, vacuum dry it at 70 °C for 5 hours, and at 600 °C, under a mixed gas atmosphere composed of nitrogen and hydrogen in a volume ratio of 9:1 After reduction for 4 h, a catalyst of 20wt% Pd/HZSM-5 was obtained.
  • step S1 Na-ZSM-5 molecular sieve is replaced with Na-MOR molecular sieve, and then the catalyst is prepared using the same preparation conditions as in Example 2.
  • the catalyst obtained in this example is 10wt% Pd/HMOR.
  • step S1 Na-ZSM-5 molecular sieve is replaced with Na-Y molecular sieve, and then the same preparation conditions as in Example 2 are used to prepare the catalyst.
  • the catalyst obtained in this example is 10wt% Pd/HY.
  • step S1 Na-ZSM-5 molecular sieve is replaced with Na-MCM-41 molecular sieve, and then the same preparation conditions as in Example 2 are used to prepare a catalyst.
  • the catalyst obtained in this example is 10wt% Pd/HMCM-41.
  • step S3 PdCl 2 is replaced with RhCl 3 , and then the same preparation conditions as in Example 2 are used to prepare the catalyst.
  • the catalyst obtained in this example is 10wt% Rh/HZSM-5.
  • step S3 PdCl 2 is replaced with RuCl 3 , and then the catalyst is prepared under the same preparation conditions as in Example 2.
  • the catalyst obtained in this example is 10wt% Ru/HZSM-5.
  • step S3 PdCl 2 is replaced with NiCl 2 , and then the catalyst is prepared under the same preparation conditions as in Example 2.
  • the catalyst obtained in this example is 10wt% Ni/HZSM-5.
  • the actual loaded metal content of the catalysts prepared in Examples 1-4 5wt%Pd/HZSM-5, 10wt%Pd/HZSM-5, 15wt%Pd/HZSM-5, 20wt%Pd/HZSM-5 was determined by ICP-AES, The results are shown in Table 1. The results show that the metal loading in the catalyst determined by ICP is close to its theoretical value.
  • serial number catalyst ICP metal content wt% 1 5wt%Pd/HZSM-5 4.9 2 10wt%Pd/HZSM-5 10.2 3 15wt%Pd/HZSM-5 14.6 4 20wt%pd/HZSM-5 20.1
  • Figure 1 is the XRD patterns of catalysts 5wt%Pd/HZSM-5, 10wt%Pd/HZSM-5, 15wt%Pd/HZSM-5 and 20wt%Pd/HZSM-5 prepared in Examples 1-4. It can be seen from the XRD pattern that the catalyst still maintains the MFI molecular sieve structure after treatment, and its XRD peak is sharper than others when the loading amount is 10 wt%.
  • the catalysts prepared in the above-mentioned embodiments 1-10 were respectively used for the hydrolysis of 2-methylfuran to prepare acetyl-n-propanol.
  • the specific method was: weighing 60g of 2- Methylfuran, 60 mL of secondary distilled water, and 3 g of catalyst were placed in a high-pressure reaction kettle, and hydrogen was introduced into it.
  • the reaction temperature was set to 30 °C
  • the hydrogen pressure was 3 MPa
  • the reaction time was 13 h.
  • gas chromatography was used to detect the reaction results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明属于乙酰正丙醇的制备技术领域,公开一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法。该催化剂的载体为H型ZSM-5分子筛、活性组分为金属Pd,金属Pd的负载量为10-20wt%。制备方法:通过焙烧法去除Na型ZSM-5分子筛中的有机模板剂:对分子筛进行H交换,获得H型ZSM-5分子筛;负载活性组分,即得催化剂。本发明催化剂,制备方法简单,乙酰正丙醇制备过程中不需要添加液体酸,溶剂为水,具有高效绿色环保的优势,底物浓度可以达到50wt%,可以用于实际的工业应用。

Description

一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法 技术领域
本发明属于乙酰正丙醇的制备技术领域,具体涉及一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法。
背景技术
乙酰正丙醇是一种重要的化工中间体,可用于医药工业,也用作磷酸氯喹、维生素B1的合成。目前,合成乙酰正丙醇主要使用的是金属配合物铂、金、钌等催化剂(CN102140058A),反应中需要额外添加液体酸,如盐酸、硫酸,容易腐蚀设备,且污染环境。糠醛酸催化加氢制备乙酰正丙醇(Molecular Catalysis.,2019,476,110506;CN 109836313 A),由于糠醛不稳定,仅在底物浓度较低(低于20wt%)时具有较好催化效果,且催化剂易失活,需要再生,因此需要开发一种高效、绿色、无污染的乙酰正丙醇制备方法。
发明内容
本发明的目的旨在提供一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法。
为实现上述目的,本发明采取的技术方案如下:
一种高效无污染用于制备乙酰正丙醇的催化剂,该催化剂的载体为H型ZSM-5分子筛、活性组分为金属Pd,金属Pd的负载量(金属占载体的质量百分比)为10-20wt%。
所述高效无污染用于制备乙酰正丙醇的催化剂的制备方法,步骤如下:
S1、通过焙烧法去除Na型ZSM-5分子筛中的有机模板剂:
S2、对步骤S1所得Na型ZSM-5分子筛进行H交换,获得H型ZSM-5分子筛;
S3、负载活性组分:
S3.1、按质量比PdCl 2∶NaCl=(1-20)∶(1-30),称取前驱体PdCl 2和助剂NaCl,加水溶解,制得前驱体溶液,前驱体溶液中PdCl 2的浓度以Pd计为0.06-0.18g/mL;
S3.2、称取步骤S2所得H型ZSM-5分子筛和步骤S3.1所得前驱体溶液,保证前驱体溶液实际提供的金属Pd单质与H型ZSM-5分子筛的质量比为10~20%,加水搅拌,震荡形成糊状,研磨、真空干燥,在400-800℃、氮气和氢气以体积比(9-15)∶1组成的混合气气氛下还原2-4h,收集还原后的样品,即得催化剂。
所述高效无污染用于制备乙酰正丙醇的催化剂的使用方法,使用条件为:以2-甲基 呋喃、H 2气为原料、以水为溶剂,无需添加液体酸,2-甲基呋喃在水中的质量分数为1-50wt%,催化剂与2-甲基呋喃的质量比为(0.01-1)∶1,反应温度为20-100℃,氢压为1-8MPa,反应时间为1-20h。
较好地,反应温度为20-50℃,氢压为2-6MPa,反应时间为8-15h。
本发明中,步骤S1和S2都可以按现有技术操作。
与现有技术相比,本发明催化剂,制备方法简单,乙酰正丙醇制备过程中不需要添加液体酸,溶剂为水,具有高效绿色环保的优势,底物浓度可以达到50wt%,可以用于实际的工业应用。
附图说明
图1:本发明制备的催化剂Pd/HZSM-5的XRD图。
具体实施方式
下面结合具体实施案例,对本发明进行详细说明。以下实施例仅用于说明本发明而非限制本发明范围。
实施例1
一种催化剂5wt%Pd/HZSM-5,该催化剂的载体为H型ZSM-5分子筛(简称:HZSM-5分子筛)、活性组分为金属Pd,金属Pd的负载量为5wt%。
所述催化剂的制备方法,步骤如下:
S1、脱除有机模板剂:称取30g Na型ZSM-5分子筛(简称:Na-ZSM-5分子筛)至马弗炉中,400℃烧结5h去除有机模板剂;
S2、分子筛离子交换:待Na-ZSM-5分子筛冷却后,倒入1000mL的烧杯中,加二次蒸馏水400mL、氯化铵30g,加NaOH 10g调溶液PH至为9,保持溶液温度为55℃,搅拌速度600rpm,时间2h,重复上述离子交换步骤2次;交换后溶液以4000rpm离心洗涤5min,倒去上清液并用二次蒸馏水洗涤3次,得到NH 4-ZSM-5固体;将NH 4-ZSM-5放置于60℃真空干燥箱中烘干3h,转移至马弗炉中,以400℃焙烧5h,得到H型ZSM-5分子筛(简称:HZSM-5分子筛);
S3、负载活性组分Pd:
S3.1、取5g PdCl 2于烧杯中,加3g NaCl助剂,加二次蒸馏水定容到50mL容量瓶,超声1h,得到PdCl 2浓度以Pd计为0.06g/mL的前驱体溶液;
S3.2、称取25g HZSM-5分子筛于坩埚中,加入步骤S3.1所得前驱体溶液21mL,加二次蒸馏水10mL,玻璃棒搅拌,振荡器震荡2h,形成糊状;
S3.3、将步骤S3.2所得糊状产物研磨1h并转移至瓷舟中,在40℃下真空干燥2h,在400℃下、氮气和氢气以体积比9∶1组成的混合气气氛下还原3h,得到催化剂5wt%Pd/HZSM-5。
实施例2
一种催化剂10wt%Pd/HZSM-5,该催化剂的载体为H型ZSM-5分子筛(简称:HZSM-5分子筛)、活性组分为金属Pd,金属Pd的负载量为10wt%。
所述催化剂的制备方法,步骤如下:
S1、脱除有机模板剂:称取40g Na型ZSM-5分子筛(简称:Na-ZSM-5分子筛)至马弗炉中,450℃烧结5h去除有机模板剂;
S2、分子筛离子交换:待Na-ZSM-5分子筛冷却后,倒入1000mL的烧杯中,加二次蒸馏水450mL、氯化铵45g,加NaOH 15g调溶液PH至为10,保持溶液温度为60℃,搅拌速度600rpm,时间3h,重复上述离子交换步骤2次;交换后溶液以4000rpm离心洗涤4min,倒去上清液并用二次蒸馏水洗涤3次,得到NH 4-ZSM-5固体;将NH 4-ZSM-5放置于65℃真空干燥箱中烘干5h,转移至马弗炉中,以450℃焙烧5h,得到H型ZSM-5分子筛(简称:HZSM-5分子筛);
S3、负载活性组分Pd:
S3.1、取10g PdCl 2于烧杯中,加6g NaCl助剂,加二次蒸馏水定容到50mL容量瓶,超声2h,得到PdCl 2浓度以Pd计为0.12g/mL的前驱体溶液;
S3.2、称取10g HZSM-5分子筛于坩埚中,加入步骤S3.1所得前驱体溶液9mL,加二次蒸馏水15mL,玻璃棒搅拌,振荡器震荡3h,形成糊状;
S3.3、将步骤S3.2所得糊状产物研磨1h并转移至瓷舟中,在50℃下真空干燥3h,在450℃下、氮气和氢气以体积比9∶1组成的混合气气氛下还原3h,得到催化剂10wt%Pd/HZSM-5。
实施例3
一种催化剂15wt%Pd/HZSM-5,该催化剂的载体为H型ZSM-5分子筛(简称:HZSM-5分子筛)、活性组分为金属Pd,金属Pd的负载量为15wt%。
所述催化剂的制备方法,步骤如下:
S1、脱除有机模板剂:称取60g Na型ZSM-5分子筛(简称:Na-ZSM-5分子筛)至马弗炉中,500℃烧结5h去除有机模板剂;
S2、分子筛离子交换:待Na-ZSM-5分子筛冷却后,倒入1000mL的烧杯中,加二次蒸馏 水600mL、氯化铵60g,加NaOH 20g调溶液PH至为9,保持溶液温度为70℃,搅拌速度600rpm,时间3h,重复上述离子交换步骤2次;交换后溶液以5000rpm离心洗涤3min,倒去上清液并用二次蒸馏水洗涤3次,得到NH 4-ZSM-5固体;将NH 4-ZSM-5放置于75℃真空干燥箱中烘干7h,转移至马弗炉中,以500℃焙烧5h,得到H型ZSM-5分子筛(简称:HZSM-5分子筛);
S3、负载活性组分Pd:
S3.1、取15g PdCl 2于烧杯中,加20g NaCl助剂,加二次蒸馏水定容到50mL容量瓶,超声3h,得到PdCl 2浓度以Pd计为0.18g/mL的前驱体溶液;
S3.2、称取15g HZSM-5分子筛于坩埚中,加入步骤S3.1所得前驱体溶液13mL,加二次蒸馏水25mL,玻璃棒搅拌,振荡器震荡3h,形成糊状;
S3.3、将步骤S3.2所得糊状产物研磨1h并转移至瓷舟中,在70℃下真空干燥2h,在550℃下、氮气和氢气以体积比9∶1组成的混合气气氛下还原2h,得到催化剂15wt%Pd/HZSM-5。
实施例4
一种催化剂20wt%Pd/HZSM-5,该催化剂的载体为H型ZSM-5分子筛(简称:HZSM-5分子筛)、活性组分为金属Pd,金属Pd的负载量为20wt%。
所述催化剂的制备方法,步骤如下:
S1、脱除有机模板剂:称取80g Na型ZSM-5分子筛(简称:Na-ZSM-5分子筛)至马弗炉中,600℃烧结5h去除有机模板剂;
S2、分子筛离子交换:待Na-ZSM-5分子筛冷却后,倒入1000mL的烧杯中,加二次蒸馏水900mL、氯化铵80g,加NaOH 30g调溶液PH至为10,保持溶液温度为80℃,搅拌速度600rpm,时间5h,重复上述离子交换步骤2次;交换后溶液以8000rpm离心洗涤3min,倒去上清液并用二次蒸馏水洗涤3次,得到NH 4-ZSM-5固体;将NH 4-ZSM-5放置于80℃真空干燥箱中烘干8h,转移至马弗炉中,以600℃焙烧5h,得到H型ZSM-5分子筛(简称:HZSM-5分子筛);
S3、负载活性组分Pd:
S3.1、取20g PdCl 2于烧杯中,加30g NaCl助剂,加二次蒸馏水定容到100mL容量瓶,超声5h,得到PdCl 2浓度以Pd计为0.12g/mL的前驱体溶液;
S3.2、称取20g HZSM-5分子筛于坩埚中,加入步骤S3.1所得前驱体溶液33mL,加二次蒸馏水35mL,玻璃棒搅拌,振荡器震荡6h,形成糊状;
S3.3、将步骤S3.2所得糊状产物研磨1h并转移至瓷舟中,在70℃下真空干燥5h,在600℃下、氮气和氢气以体积比9∶1组成的混合气气氛下还原4h,得到催化剂20wt%Pd/HZSM-5。
实施例5
与实施例2的不同之处在于:步骤S1中,将Na-ZSM-5分子筛替换为Na-MOR分子筛,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Pd/HMOR。
实施例6
与实施例2的不同之处在于:步骤S1中,将Na-ZSM-5分子筛替换为Na-Y分子筛,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Pd/HY。
实施例7
与实施例2的不同之处在于:步骤S1中,将Na-ZSM-5分子筛替换为Na-MCM-41分子筛,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Pd/HMCM-41。
实施例8
与实施例2的不同之处在于:步骤S3中,将PdCl 2替换为RhCl 3,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Rh/HZSM-5。
实施例9
与实施例2的不同之处在于:步骤S3中,将PdCl 2替换为RuCl 3,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Ru/HZSM-5。
实施例10
与实施例2的不同之处在于:步骤S3中,将PdCl 2替换为NiCl 2,然后采用与实施例2相同的制备条件制备催化剂。
本实施例得到的催化剂为10wt%Ni/HZSM-5。
实施例1-4制备的催化剂5wt%Pd/HZSM-5、10wt%Pd/HZSM-5、15wt%Pd/HZSM-5、20wt%Pd/HZSM-5实际负载的金属含量通过ICP-AES测定,结果见表1。结果表明:通过ICP测定的催化剂中金属的负载量接近于其理论值。
表1催化剂ICP-AES实测金属负载量
序号 催化剂 ICP金属含量wt%
1 5wt%Pd/HZSM-5 4.9
2 10wt%Pd/HZSM-5 10.2
3 15wt%Pd/HZSM-5 14.6
4 20wt%pd/HZSM-5 20.1
图1是实施例1-4制备的催化剂5wt%Pd/HZSM-5、10wt%Pd/HZSM-5、15wt%Pd/HZSM-5、20wt%Pd/HZSM-5的XRD图。从XRD图看出:经过处理之后,催化剂仍然保持MFI分子筛结构,当负载量为10wt%时,其XRD峰相比其它更加尖锐。
制备乙酰正丙醇:
以2-甲基呋喃为原料、以水为溶剂,将上述实施例1-10制备的催化剂分别用于2-甲基呋喃加氢水解制备乙酰正丙醇,具体方法为:称取60g 2-甲基呋喃、60mL二次蒸馏水、3g催化剂于高压反应釜中,通入氢气,设置反应温度30℃、氢气压力3MPa、反应时间13h,降温后用气相色谱检测,反应结果见表2。
表2不同催化剂反应评估结果
Figure PCTCN2021118054-appb-000001
由表2可知:当负载量为10wt%时,在相同分子筛HZSM-5上负载不同的活性组分,乙酰正丙醇选择性Pd/HZSM-5>Rh/HZSM-5>Ru/HZSM-5>Ni/HZSM-5;当负载量为10wt%时,金属Pd上负载不同分子筛,乙酰正丙醇选择性Pd/HZSM-5>Pd/HY>Pd/HMOR> Pd/HMCM-41;在催化剂Pd/HZSM-5上通过对比不同金属负载量,当Pd负载量为10wt%时,其产率最佳;所以,对于2-甲基呋喃加氢水解制备乙酰正丙醇来说,催化剂10-20wt%Pd/HZSM-5的催化效果都比较理想,尤其以催化剂10wt%Pd/HZSM-5的催化效果最好,转化率为97.1%,选择性为78.1%。

Claims (4)

  1. 一种高效无污染用于制备乙酰正丙醇的催化剂,其特征在于:该催化剂的载体为H型ZSM-5分子筛、活性组分为金属Pd,金属Pd的负载量为10-20wt%。
  2. 一种如权利要求1所述的高效无污染用于制备乙酰正丙醇的催化剂的制备方法,其特征在于,步骤如下:
    S1、通过焙烧法去除Na型ZSM-5分子筛中的有机模板剂:
    S2、对步骤S1所得Na型ZSM-5分子筛进行H交换,获得H型ZSM-5分子筛;
    S3、负载活性组分:
    S3.1、按质量比PdCl 2∶NaCl=(1-20)∶(1-30),称取前驱体PdCl 2和助剂NaCl,加水溶解,制得前驱体溶液,前驱体溶液中PdCl 2的浓度以Pd计为0.06-0.18g/mL;
    S3.2、称取步骤S2所得H型ZSM-5分子筛和步骤S3.1所得前驱体溶液,保证前驱体溶液实际提供的金属Pd单质与H型ZSM-5分子筛的质量比为10~20%,加水搅拌,震荡形成糊状,研磨、真空干燥,在400-800℃、氮气和氢气以体积比(9-15)∶1组成的混合气气氛下还原2-4h,收集还原后的样品,即得催化剂。
  3. 一种如权利要求1所述的高效无污染用于制备乙酰正丙醇的催化剂的使用方法,其特征在于,使用条件为:以2-甲基呋喃、H 2气为原料、以水为溶剂,无需添加液体酸,2-甲基呋喃在水中的质量分数为1-50wt%,催化剂与2-甲基呋喃的质量比为(0.01-1)∶1,反应温度为20-100℃,氢压为1-8MPa,反应时间为1-20h。
  4. 如权利要求3所述的高效无污染用于制备乙酰正丙醇的催化剂的使用方法,其特征在于:反应温度为20-50℃,氢压为2-6MPa,反应时间为8-15h。
PCT/CN2021/118054 2021-02-07 2021-09-13 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法 WO2022166206A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110176087.8A CN112717988B (zh) 2021-02-07 2021-02-07 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法
CN202110176087.8 2021-02-07

Publications (1)

Publication Number Publication Date
WO2022166206A1 true WO2022166206A1 (zh) 2022-08-11

Family

ID=75596592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118054 WO2022166206A1 (zh) 2021-02-07 2021-09-13 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法

Country Status (2)

Country Link
CN (1) CN112717988B (zh)
WO (1) WO2022166206A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112717988B (zh) * 2021-02-07 2022-06-24 郑州大学 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法
CN113773285B (zh) * 2021-08-17 2023-08-18 江苏清泉化学股份有限公司 一种采用固体酸催化合成乙酰正丙醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684207A (en) * 1994-05-06 1997-11-04 Industrial Technology Research Institute Preparation of methyl isobutyl ketone
CN110862310A (zh) * 2019-12-05 2020-03-06 上海生农生化制品股份有限公司 一种环丙基甲基酮的合成方法
CN112717988A (zh) * 2021-02-07 2021-04-30 郑州大学 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU461921A1 (ru) * 1973-07-19 1975-02-28 Предприятие П/Я В-8469 Способ получени -ацетопрорилового спирта
BRPI0914248A2 (pt) * 2008-06-24 2015-08-04 Shell Int Research Processos para a hidrogenólise de um derivado de furfurila e para a preparação de um derivado de 2-metilfurano.
CA2763777C (en) * 2009-06-13 2017-10-17 Rennovia Inc. Production of adipic acid and derivatives from carbohydrate-containing materials
US9650354B2 (en) * 2013-06-25 2017-05-16 Council Of Scientific & Industrial Research Process for producing furan and its derivatives
CN109317140B (zh) * 2018-10-19 2021-10-15 江苏清泉化学股份有限公司 一种用于制备γ-乙酰丙醇的催化剂及其应用
CN111135857B (zh) * 2019-12-30 2023-05-09 广西中医药大学 还原型催化剂的制备方法及其用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684207A (en) * 1994-05-06 1997-11-04 Industrial Technology Research Institute Preparation of methyl isobutyl ketone
CN110862310A (zh) * 2019-12-05 2020-03-06 上海生农生化制品股份有限公司 一种环丙基甲基酮的合成方法
CN112717988A (zh) * 2021-02-07 2021-04-30 郑州大学 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI XIANMING, HONG JUN-JIE;DONG; LIU-HONG; LIU QIAN-HE; BI WEN-JUN; NIE ZHEN-ZHONG: "Deactivation and Regeneration of Pd/C Catalyst Applied to the Synthesis of 3-Acetyl-1-propanol)", ZHEJIANG CHEMICAL INDUSTRY, ZHEJIANG SHENG HUAGONG YANJIUYUAN, CN, vol. 47, no. 04, 15 April 2016 (2016-04-15), CN , pages 25 - 27, XP055957361, ISSN: 1006-4184 *
YANG KEWU, JIANG XUANZHEN: "A Reusable HZSM-5-Supported Palladium Catalyst for Amidocarbonylation", CUIHUA XUEBAO - JOURNAL OF CATALYSIS, BEIJING, CN, vol. 26, no. 10, 30 October 2005 (2005-10-30), CN , pages 837 - 838, XP055957356, ISSN: 0253-9837 *

Also Published As

Publication number Publication date
CN112717988B (zh) 2022-06-24
CN112717988A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022166206A1 (zh) 一种高效无污染用于制备乙酰正丙醇的催化剂及其制备方法、使用方法
CN106064087B (zh) 一种制备VOCs催化燃烧催化剂的方法
WO2018176803A1 (zh) 一种疏水钯/金属有机框架材料及其制备方法与用于合成2,5-二甲基呋喃的应用
CN103008012A (zh) 金属有机骨架结构材料负载铂催化剂、制备方法及其应用
CN108745333B (zh) 一种多孔碳气凝胶催化剂及其制备方法与应用
CN110743544B (zh) 一种苯乙酮选择加氢制备α-苯乙醇用钯炭催化剂及其制备方法与应用
CN109943863A (zh) 一种钒基催化剂电催化生物质类化合物还原制取2,5-二羟甲基四氢呋喃的方法
CN113559861A (zh) 一种糠醛直接转化为四氢糠醇Cu-Ni双金属催化剂、制备方法及应用
Wang et al. The construction of novel and efficient hafnium catalysts using naturally existing tannic acid for Meerwein–Ponndorf–Verley reduction
CN113248346A (zh) 一种1,4-环己烷二甲醇的制备方法
CN104437474A (zh) 有序介孔碳材料负载铂催化剂及其在芳香硝基化合物催化氢化中的应用
CN111715264B (zh) 一种加氢催化剂及其制备方法和在催化四氢糠醇加氢制1,5-戊二醇中的应用
CN111054339B (zh) 制乙二醇的催化剂组合物
CN115591562B (zh) 黑磷改性铜基催化剂及在有机物加氢还原反应上的新用途
CN113304756B (zh) 一种Ni-Mo双金属合金催化剂及其制备方法与应用
CN114605246A (zh) 一种以糠醛为原料高选择性加氢制备环戊酮的方法
CN114377718A (zh) 一种镍铜双金属催化剂及制备方法和应用
CN112717937A (zh) 糠醛气相加氢一步制2-mthf反应的催化剂制备方法
CN112295571A (zh) 一种PtNi笼型催化剂及其在催化糠醛选择性加氢制备糠醇中的应用
CN111774086A (zh) 一种共价有机框架材料衍生杂原子共掺杂碳纳米片非金属加氢催化剂的制备方法及应用
CN105272811B (zh) 一种转化酸性生物质基糖醇溶液制取c5,c6烷烃的方法
CN113600201B (zh) 一种硝基苯液相加氢制备苯胺催化剂的制备方法及其应用
CN117964585A (zh) 1,4-丁二醇脱氢耦合琥珀酸加氢制备γ-丁内酯的方法
CN107486210A (zh) 一种用于醋酸一步法制乙醇的催化剂及其制备方法
CN114192165A (zh) 一种钌基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924203

Country of ref document: EP

Kind code of ref document: A1