WO2018173888A1 - オーステナイト系ステンレス鋼スラブの製造方法 - Google Patents

オーステナイト系ステンレス鋼スラブの製造方法 Download PDF

Info

Publication number
WO2018173888A1
WO2018173888A1 PCT/JP2018/009989 JP2018009989W WO2018173888A1 WO 2018173888 A1 WO2018173888 A1 WO 2018173888A1 JP 2018009989 W JP2018009989 W JP 2018009989W WO 2018173888 A1 WO2018173888 A1 WO 2018173888A1
Authority
WO
WIPO (PCT)
Prior art keywords
ems
stainless steel
long side
casting
mold
Prior art date
Application number
PCT/JP2018/009989
Other languages
English (en)
French (fr)
Inventor
靖弘 江原
斎藤 俊
森田 一成
森川 広
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to KR1020197031280A priority Critical patent/KR102239946B1/ko
Priority to EP18772143.6A priority patent/EP3603849B1/en
Priority to CN201880020154.3A priority patent/CN110709188B/zh
Priority to US16/493,851 priority patent/US10807156B2/en
Priority to RU2019133666A priority patent/RU2721256C1/ru
Priority to MYPI2019005484A priority patent/MY190467A/en
Priority to BR112019019503-3A priority patent/BR112019019503B1/pt
Publication of WO2018173888A1 publication Critical patent/WO2018173888A1/ja
Priority to ZA2019/05971A priority patent/ZA201905971B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a method for producing an austenitic stainless steel slab by continuous casting using electromagnetic stirring (EMS).
  • EMS electromagnetic stirring
  • a continuous casting method is widely used as a melting method for austenitic stainless steel including SUS304.
  • the obtained continuous cast slab can be made into a sheet steel strip through the steps of hot rolling and cold rolling.
  • Today its manufacturing technology has been established, and austenitic stainless steel sheet steel strip is used as a product material in many applications.
  • surface flaws that may be caused by surface defects of the cast slab may become apparent.
  • surface grinding with a grinder increases costs.
  • Patent Document 1 discloses a technique for reducing surface defects caused by oscillation marks in a continuous cast slab of austenitic stainless steel.
  • electromagnetic stirring EMS
  • Patent Document 3 shows an example of reducing bubble defects and cracks generated in a continuous casting slab of medium carbon steel and low carbon steel by performing electromagnetic stirring and setting the discharge angle from the immersion nozzle to 5 ° upward.
  • EMS electromagnetic stirring
  • Patent Document 3 shows an example of reducing bubble defects and cracks generated in a continuous casting slab of medium carbon steel and low carbon steel by performing electromagnetic stirring and setting the discharge angle from the immersion nozzle to 5 ° upward.
  • the surface defects that are manifested in the thin steel strip of austenitic stainless steel and are likely to be a problem particularly in applications requiring a beautiful surface appearance are mainly in the longitudinal direction of the continuous casting slab (that is, casting) It has been confirmed that it is caused by surface defects accompanied by cracks in the direction).
  • this type of slab surface defect is referred to as a “casting direction surface defect”.
  • the generation of surface flaws in a thin steel strip caused by surface defects in the casting direction cannot be solved even if the oscillation mark is smoothed as disclosed in Patent Document 1.
  • the surface defect in the casting direction of the continuous cast slab is generated as follows. If the cooling in the mold in the continuous casting process becomes non-uniform, the thickness of the solidified shell will become non-uniform, and then stresses caused by solidification shrinkage and molten steel static pressure will concentrate here, causing fine cracks. . This appears as a surface defect in the casting direction on the slab surface. The crack does not grow deep enough to break the solidified shell that has already been formed, so that it does not lead to a serious situation that hinders the operation of continuous casting.
  • the solidified shell is locally removed from the mold at the initial stage of solidification because the portion of the surface defect in the casting direction is often recessed from the surroundings. It is thought that a phenomenon of separation has occurred. This may be due to a plurality of factors such as non-uniformity in mold powder inflow and non-uniform deformation due to solidification shrinkage of the solidified shell. Further, this type of casting direction surface defect tends to be a problem particularly in the austenitic stainless steel type as compared with the ferritic stainless steel type and the like, but this is considered to be caused by the difference in the solidification mode.
  • Patent Document 4 proposes that the solidified shell is slowly cooled by increasing the thermal resistance of the mold powder layer by using mold powder that is easily crystallized.
  • the effect of slow cooling is sufficient with mold powder alone, and it has not yet eradicated surface defects in the surface casting direction of austenitic stainless steel slabs.
  • changing the mold powder is not easy because it affects other quality factors such as the oscillation mark depth and breakout.
  • the mold is slowly cooled by filling the inner wall surface of the mold with a metal having low thermal conductivity. However, this alone cannot completely prevent surface defects in the casting direction of the slab surface.
  • this type of mold is applied, it cannot be applied only to steel types in which surface defects in the casting direction are problematic, and is applied to all steel types. Can be.
  • the present invention discloses a continuous casting technique that stably and remarkably suppresses the above-mentioned “surface defect in the casting direction” that occurs in the longitudinal direction (that is, the casting direction) of a continuous cast slab in austenitic stainless steel. It is an object of the present invention to provide a continuous cast slab of austenitic stainless steel that hardly causes surface defects when processed into a thin steel strip even if the surface care is omitted.
  • the inventors have intensively studied a method for suppressing surface defects in the casting direction of the austenitic stainless steel slab surface, and as a result of combining ⁇ lowering the casting temperature '' and ⁇ electromagnetic stirring in the mold '', We have found a method to achieve uniform and gentle cooling in the mold. It was confirmed that when this method is applied, surface defects in the casting direction can be stably and remarkably suppressed in existing continuous casting equipment.
  • the present invention is based on such knowledge.
  • the present invention discloses the following invention.
  • the two mold inner wall surfaces constituting the long side of the rectangle are “long side surfaces”, and the two molds are composed of short sides
  • the inner wall surface is called “short side surface”
  • the horizontal direction parallel to the long side surface is called “long side direction”
  • the horizontal direction parallel to the short side surface is called “short side direction”
  • C 0.005 to 0.150%
  • Si 0.10 to 3.00 by mass %
  • Mn 0.10 to 6.50%
  • Cr 15.00 to 26.00
  • Mo 0 to 3.50%
  • N 0.005 to 0.250%
  • Nb 0 to 0.80%
  • V 0 to 1.00%
  • Electric power is applied to the molten steel near the solidified shell in the depth region of m so that the flows in the long side direction opposite to each other are generated on both long sides, and electromagnetic stirring (EMS) is performed.
  • EMS electromagnetic stirring
  • ⁇ T and F EMS are expressed by the following formulas (2) and (3), respectively.
  • T L is the average temperature of molten steel (°C) on average molten metal surface depth 20mm in long side 1/4 position and direction of the short side 1/2 position
  • T S is the molten steel solidification starting temperature (°C)
  • F EMS is a stirring intensity index
  • V EMS is a long side direction average molten steel flow velocity (m / s) in a depth region in which a solidified shell thickness at a central position in the long side is 5 to 10 mm
  • V C is given by electromagnetic stirring. Is a casting speed (m / min) corresponding to the traveling speed in the longitudinal direction of the casting slab.
  • the molten steel surface in the mold is swayed by molten metal flow and vibration during continuous casting operation.
  • “Average depth of molten metal surface” is a depth in a vertically downward direction based on the average position of the molten steel surface of molten steel.
  • the average molten steel temperature T L (° C.) is an average value of the molten steel temperature at an average molten metal surface depth of 20 mm at each of these two locations.
  • the solidification start temperature T S (° C.) is a temperature corresponding to the liquidus temperature.
  • the production of the “surface defect in the casting direction” is remarkably suppressed, and the surface care of the continuous cast slab by a grinder is omitted.
  • the process it is possible to avoid the surface flaw problem caused by the slab appearing in the steel strip of austenitic stainless steel.
  • vertical to the casting direction of the austenitic stainless steel continuous casting slab according to this invention obtained by the method using electromagnetic stirring.
  • a metallographic photograph of a cross section perpendicular to the casting direction of an austenitic stainless steel continuous cast slab obtained by a method that does not use electromagnetic stirring.
  • a flux layer in which mold powder is melted is formed on the surface of molten steel in the mold.
  • This flux enters the gap between the molten steel and the mold from the molten metal surface during casting, forms a flux film between the solidified shell and the mold, and bears lubrication between them.
  • the distance between the solidified shell and the mold separated by the flux film is substantially uniform, and the heat removal from the mold is also substantially uniform.
  • the surface of the solidified shell is recessed from the surroundings, and the cooling rate decreases from the surroundings, so that solidification proceeds with the solidified shell being thinner than the surroundings.
  • the thickness of the solidified shell is larger than the surroundings for a while until the influence of the factor (such as biting of foreign matter) becomes large.
  • the state where the thickness becomes thinner continues. That is, a region in which a thin portion of the solidified shell extends in the casting direction is formed in the solidified shell inside the mold.
  • surface cracks extending in the casting direction occur inside the mold. However, the crack is minute and does not lead to an accident (breakout) in which the molten metal leaks from there. It is thought that “surface defects in the casting direction” generated in a continuously cast slab of austenitic stainless steel is caused by such a mechanism.
  • the main austenitic stainless steels often solidify with the ⁇ ferrite phase as the primary crystal, but depending on the chemical composition, the production rate of the ⁇ ferrite phase may be extremely low or the austenite single phase may solidify. Since impurities such as P and S, which are impurities in steel, are more easily dissolved in the ⁇ ferrite phase than in the austenite phase, P and S are grains of the austenite phase, particularly in steel types with a low ⁇ ferrite phase generation rate. It tends to segregate in the boundary and lowers the strength of those places. Therefore, it is considered that the above-described “casting direction surface defects” accompanied by surface cracks are more likely to be generated in austenitic stainless steel than in ferritic stainless steel.
  • a certain degree of casting direction surface defects existing on the surface of the continuously cast slab appear as surface defects extending continuously or intermittently in the rolling direction in the cold-rolled steel sheet. Therefore, in order to obtain a high-quality austenitic stainless steel cold-rolled steel sheet, it is effective to manufacture a slab that produces as few generation of surface defects as possible in the continuous casting stage.
  • FIG. 1 illustrates a surface appearance photograph of an austenitic stainless steel continuous casting slab in which a large-scale surface defect in the casting direction has occurred.
  • the parallel direction to the long side of the photograph corresponds to the longitudinal direction (casting direction) of the slab, and the perpendicular direction corresponds to the width direction of the slab.
  • a casting direction surface defect having a length exceeding 27 cm is observed at the position indicated by the arrow.
  • FIG. 2 illustrates a surface appearance photograph of an austenitic stainless steel cold-rolled steel sheet in which surface flaws are generated due to surface defects in the casting direction of the slab.
  • the direction parallel to the major corresponds to the rolling direction.
  • a surface flaw extending in the rolling direction is seen at the center of the cut plate sample.
  • the example in this photo is an example of a very large wrinkle. Since element analysis (such as Na) contained in the mold powder was detected in a large amount in the elemental analysis of the flaw occurrence site, this surface flaw was identified as being caused by surface defects in the casting direction of the slab.
  • element analysis such as Na
  • FIG. 3 illustrates a cross-sectional structure photograph near the surface of an austenitic stainless steel continuous cast slab in which a relatively large scale surface defect in the casting direction has occurred.
  • the direction parallel to the long side of the photograph corresponds to the width direction of the slab, and the direction perpendicular to the long and short sides of the photograph corresponds to the casting direction. Since the surface of the slab in the vicinity of the crack is recessed from the surroundings, it is considered that the distance between the solidified shell and the mold is larger than the surroundings for some reason when the initial solidified shell is formed. For this reason, the heat removal from the mold becomes gentler than the surroundings and the solidification rate decreases, and the casting proceeds with the solidified shell thickness thinner than the surroundings, and stress concentrates on the thin solidified shell and cracks. It is thought that it came to.
  • the dendrite secondary arm spacing was larger in the vicinity of the crack in any case than the normal part. It was confirmed that the portion where the surface defect in the casting direction occurred had a lower solidification rate than the surrounding area.
  • the present invention is directed to austenitic stainless steel having the following chemical composition.
  • C 0.005 to 0.150%, Si: 0.10 to 3.00%, Mn: 0.10 to 6.50%, Ni: 1.50 to 22.00%, Cr: 15.00 to 26.00, Mo: 0 to 3.50%, Cu: 0 to 3.50%, N: 0.005 to 0.250%, Nb: 0 to 0.80%, Ti: 0 to 0.80%, V: 0 to 1.00%, Zr: 0 to 0.80%, Al: 0 to 1.500%, B: 0 to 0.010%, Total of rare earth elements and Ca: 0 to A chemical composition consisting of 0.060%, the balance Fe and inevitable impurities, and having an A value defined by the following formula (4) of 20.0 or less.
  • the value A in the above formula (4) is originally used as an index representing the ratio (volume%) of the ferrite phase in the solidified structure generated during welding. It was also confirmed that this is a meaningful index for identifying austenitic steel types that have a large reduction effect.
  • a stainless steel type having a value of 20.0 or less the crystallization of the ⁇ ferrite phase is small during continuous casting, or austenite single-phase solidification occurs, so that surface defects in the casting direction are likely to occur.
  • the surface defects in the casting direction are remarkably reduced for such austenitic steel types.
  • a steel type in which the A value is a negative value may be regarded as a steel type that is generally austenite single-phase solidified.
  • the lower limit of the A value does not need to be set in particular, it is usually more effective to apply steel of ⁇ 20.0 or more.
  • FIG. 4 schematically illustrates a cross-sectional structure of the continuous casting apparatus applicable to the present invention, cut along a horizontal plane at the molten steel surface height of the molten steel in the mold.
  • the “hot surface” is the liquid surface of the molten steel.
  • a layer of mold powder is usually formed on the hot water surface.
  • An immersion nozzle 30 is installed in the center of a region surrounded by two sets of molds (11A, 11B) and (21A, 22B) facing each other.
  • the immersion nozzle has two discharge holes below the molten metal surface, and the molten steel 40 is continuously supplied into the mold from these discharge holes, and a molten metal surface is formed at a predetermined height position in the mold.
  • the contour shape of the inner wall surface of the mold cut along the horizontal plane is a rectangle.
  • “long side surfaces” constituting the long sides of the rectangle are denoted by reference numerals 12A and 12B
  • “short side surfaces” constituting the short sides are denoted by reference numerals. Displayed as 22A and 22B.
  • the horizontal direction parallel to the long side surface is referred to as “long side direction”
  • the horizontal direction parallel to the short side surface is referred to as “short side direction”.
  • the long side direction is indicated by reference numeral 10
  • the short side direction is indicated by reference numeral 20 by white arrows.
  • the distance between the long side surfaces 12A and 12B (t in FIG. 5 described later) is, for example, 150 to 300 mm
  • the distance between the short side surfaces 22A and 22B (W in FIG. 5 described later) is, for example, 600 to 2000 mm.
  • Electromagnetic stirrers 70A and 70B are installed on the back surfaces of the molds 11A and 11B, respectively, and at least in the depth region where the thickness of the solidified shell formed along the surfaces of the long side surfaces 12A and 12B is 5 to 10 mm.
  • the flowing force in the long side direction can be applied to the molten steel.
  • depth is a depth based on the height position of the hot water surface.
  • the molten metal surface fluctuates somewhat, but in this specification, the average molten metal surface height is defined as the position of the molten metal surface.
  • the depth region where the thickness of the solidified shell is 5 to 10 mm generally depends on the casting speed and the heat removal speed from the mold, but generally the depth from the molten metal surface is in the range of 300 mm or less. Therefore, the electromagnetic stirrers 70A and 70B are installed at positions where a fluid force can be applied to the molten steel from the molten metal surface to a depth of about 300 mm.
  • the molten steel flow direction in the vicinity of the long side surface generated by the electromagnetic force of the electromagnetic stirring devices 70A and 70B is indicated by black arrows 60A and 60B, respectively. It is shown.
  • the flow trend by electromagnetic stirring is such that long side flows in opposite directions occur on both long sides.
  • the horizontal flow of the molten steel contacting the already formed solidified shell becomes a flow that draws a vortex in the mold.
  • FIG. 5 shows “long side direction 1/4 position and short side direction 1/2 position” in the mold shown in FIG. 4 by symbols P 1 and P 2 .
  • the average molten steel temperature T L (° C.) is an average value of the molten steel temperature (° C.) at an average molten metal depth of 20 mm at the P 1 position and the molten steel temperature (° C.) at an average molten metal depth of 20 mm at the P 2 position. Represented as:
  • casting is performed at as low a temperature as possible so as to satisfy the following expression (1). It is more effective to cast so as to satisfy the following formula (1) ′.
  • 10 ⁇ T ⁇ 50 ⁇ F EMS +8 (1) ′ ⁇ T means a temperature difference between the molten steel temperature at the time of casting and the solidification start temperature of the molten steel. Specifically, it is defined by the following formula (2).
  • ⁇ T T L ⁇ T S (2)
  • the average molten steel temperature T L (° C.) is adopted as the molten steel temperature during casting.
  • TL is an average value of the molten steel temperature (° C.) at an average molten metal surface depth of 20 mm at two positions P 1 and P 2 shown in FIG.
  • the solidification start temperature T S (° C.) of the molten steel can be grasped by measuring the liquidus temperature of a steel having the same composition by a laboratory experiment. In actual operation, ⁇ T can be controlled on the basis of solidification temperature data that is previously known for each target composition.
  • the allowable range of the upper limit of ⁇ T varies depending on the stirring effect of the molten steel in the mold. Basically, as the stirring force by electromagnetic stirring increases, the molten steel temperature near the molten metal surface becomes uniform, and the allowable upper limit of ⁇ T increases. Therefore, the effect of suppressing surface defects in the slab surface casting direction cannot be sufficiently obtained only by reducing ⁇ T without using in-mold electromagnetic stirring.
  • An index representing the stirring effect is a stirring intensity index F EMS of the following formula (3).
  • F EMS V EMS ⁇ (0.18 ⁇ V C +0.71) (3)
  • V EMS is the average flow velocity (m / s) in the long side direction of the molten steel in contact with the surface of the solidified shell in the depth region where the solidified shell thickness at the central position in the long side applied by electromagnetic stirring is 5 to 10 mm
  • Vc is a casting speed (m / min). As the casting speed Vc increases, the molten steel agitation in the mold is activated as the discharge flow rate from the immersion nozzle increases.
  • the stirring intensity index F EMS in the equation (3) can be regarded as a parameter obtained by correcting the contribution of electromagnetic stirring on the stirring effect in consideration of the influence of the molten steel discharge amount.
  • the allowable upper limit of ⁇ T can be accurately estimated. Specifically, the condition that ⁇ T is smaller than 50 ⁇ F EMS +10 as shown in the equation (1), more preferably ⁇ T is smaller than 50 ⁇ F EMS +8 as shown in the equation (1) ′.
  • the allowable upper limit of ⁇ T increases.
  • waving of the molten metal surface is intensified when F EMS is excessive, easily entrained foreign matter such as inclusions floating to the mold powder particles and molten metal surface on during solidification shell in the solidified shell.
  • FIG. 6 illustrates a photograph of a metallographic structure of a cross section perpendicular to the casting direction of a continuous cast slab of austenitic stainless steel according to the present invention obtained by a method using electromagnetic stirring.
  • the direction parallel to the long side of the photograph is the width direction of the slab, and the direction parallel to the short side is the thickness direction of the slab.
  • the lower end of the photograph is a field of view corresponding to a distance of 15 mm from the slab surface (mold contact surface), and the slab surface is on the upper end side of the photograph.
  • V EMS is estimated to be about 0.3 m / s. It is practical for a general continuous casting apparatus to adjust V EMS within a range of 0.1 to 0.6 mm / s, for example. You may manage so that it may become 0.2-0.4 mm / s.
  • the molten steel flow velocity V EMS can be controlled by a current value applied to the electromagnetic stirring device (hereinafter referred to as “electromagnetic stirring current”).
  • electroagnetic stirring current a current value applied to the electromagnetic stirring device
  • the V EMS may be controlled to a predetermined value by an electromagnetic stirring current based on such accumulated data.
  • FIG. 7 illustrates a metallographic photograph of a cross section perpendicular to the casting direction of an austenitic stainless steel continuous cast slab obtained by a method that does not use electromagnetic stirring.
  • the observation position of the sample is the same as in FIG. In this case, the dendrite growth direction is not inclined in a certain direction. That is, it can be seen that the portion of the slab where the solidified shell thickness is 5 to 10 mm is solidified in a state where no flow in the long side direction of the molten steel occurs.
  • An austenitic stainless steel having the chemical composition shown in Table 1 was cast with a continuous casting apparatus to produce a slab.
  • the continuous casting mold is a general water-cooled copper alloy mold in which the contact surface with the molten metal is made of a copper alloy.
  • the length of the molten metal surface was set such that the short side length was 200 mm and the long side length was set in the range of 700 to 1650 mm.
  • the dimension at the lower end of the mold is slightly smaller than the above in consideration of solidification shrinkage.
  • the immersion nozzle having two ejection holes on both sides in the long side direction was installed at the center position in the long side direction and the short side direction.
  • the outer diameter of the immersion nozzle is 105 mm.
  • the two discharge holes are symmetrical with respect to a plane that passes through the nozzle center and is parallel to the short side surface.
  • Electromagnetic stirrers are installed on the mold backs of both opposing long sides, and electromagnetic stirrer is applied so as to apply a flow force in the long side direction to the molten steel from the depth position near the molten metal surface in the mold to a depth position of about 200 mm. Went. As shown in FIG. 1, the flow directions are opposite in the opposite long sides.
  • the average flow velocity V EMS in the long side direction of the molten steel contacting the surface of the solidified shell in a depth region where the thickness of the solidified shell is 5 to 10 mm is determined in advance for this continuous casting equipment. It was controlled by adjusting the electromagnetic stirring current based on the accumulated data of “Relationship of molten steel flow rate”.
  • the molten steel temperature (° C.) at an average molten metal surface depth of 20 mm at two locations P 1 and P 2 shown in FIG. 5 was measured with a thermocouple, and the average value at the two locations was determined as the average molten steel temperature T L (° C. ).
  • Table 2 shows the casting conditions for each example.
  • ⁇ T is the difference between the average molten steel temperature T L (° C.) and the solidification start temperature T S (° C.) expressed by the above-described equation (2).
  • the solidification start temperature T S (° C.) is shown in Table 1.
  • “ ⁇ ” is displayed when the requirement of the above Formula (1) is satisfied, and “X” is displayed when the requirement is not satisfied.
  • the representative slab of each example No. was made into a cold rolled coil having a thickness of 0.6 to 2.0 mm in the normal hot rolling process and cold rolling process.
  • the slab surface is not cleaned with a grinder.
  • the obtained cold-rolled coil was passed through a line equipped with a laser irradiation type surface inspection device, and the one side surface of the coil was inspected over the entire length with a constant detection standard to investigate the presence of surface defects.
  • a surface flaw was detected in a region (hereinafter referred to as “segment”) obtained by dividing the entire length of the coil every 1 m in the longitudinal direction, the segment was recognized as a “segment with wrinkles”.
  • defect occurrence rate the ratio of the number of “segments with defects” to the total number of segments in the total length of the coil (hereinafter referred to as “defect occurrence rate”), and the case where the defect occurrence rate exceeds 3% ⁇ (surface property; defective), 3% or less The case was judged as ⁇ (surface property: good).
  • the results are displayed in the column “Evaluation of cold rolled coil surface defects” in Table 2. This detection criterion is rather strict, and soot other than the soot originating from the surface defects in the casting direction of the continuously cast slab is also detected. Normally, even cold rolled coils having a defect occurrence rate exceeding 3% can be applied in many applications, but may not be used in applications in which surface properties are important. On the other hand, a cold-rolled coil having a defect occurrence rate of 3% or less can be evaluated as exhibiting very good surface properties, and there are very few restrictions on use due to wrinkles.
  • Figure 8 shows a graph plotting the relationship of Table 2 [Delta] T and F EMS.
  • the ⁇ and X marks in the plot are consistent with the cold rolled coil surface defect evaluation described in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

【課題】オーステナイト系ステンレス鋼連続鋳造スラブの長手方向(鋳造方向)に生じる表面欠陥を安定して顕著に抑制する連続鋳造技術を提供する。 【解決手段】オーステナイト系ステンレス鋼の連続鋳造において、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電力を印加して電磁撹拌(EMS)を行い、10<ΔT<50×FEMS+10、を満たすように鋳造条件をコントロールする、オーステナイト系ステンレス鋼スラブの製造方法。ただし、ΔTは平均溶鋼温度(℃)と当該溶鋼の凝固開始温度(℃)の差、FEMSは電磁撹拌による長辺方向の溶鋼流速と、鋳造速度の関数によって表される撹拌強度指標である。

Description

オーステナイト系ステンレス鋼スラブの製造方法
 本発明は、電磁撹拌(EMS)を利用した連続鋳造によってオーステナイト系ステンレス鋼スラブを製造する方法に関する。
 SUS304をはじめとするオーステナイト系ステンレス鋼の溶製手法として、連続鋳造法が広く利用されている。得られた連続鋳造スラブは、熱間圧延、冷間圧延の工程を経て、薄板鋼帯とすることができる。今日ではその製造技術は確立されており、オーステナイト系ステンレス鋼の薄板鋼帯は多くの用途で製品素材として使用されている。しかしながら、そのようなオーステナイト系ステンレス鋼の薄板鋼帯であっても、鋳造スラブの表面欠陥に由来すると考えられる表面疵が顕在化することがある。スラブ表面をグラインダーによって研削する工程を導入することによって、薄板鋼帯での表面疵の問題は多くの場合回避される。しかし、グラインダーによる表面研削はコスト増となる。表面研削を省略しても薄板鋼帯での表面疵が問題とならないような、連続鋳造スラブの製造技術が望まれている。
 特許文献1には、オーステナイト系ステンレス鋼の連続鋳造スラブにおいて、オッシレーションマークに起因する表面欠陥を軽減する技術が開示されている。また、鋼の連続鋳造では、凝固シェルへの異物混入を抑制する措置として電磁撹拌(EMS;Electro-Magnetic Stirrer)が有効であり、広く利用されている(例えば特許文献2など)。特許文献3には、電磁撹拌を行い、かつ浸漬ノズルからの吐出角度を上向き5°にすることによって、中炭素鋼や低炭素鋼の連続鋳造スラブに生じる気泡欠陥や割れを軽減した例が示されている。しかし、これら従来の技術をオーステナイト系ステンレス鋼に適用しても、その薄板鋼帯において、鋳造スラブに起因する表面疵の発生を安定して顕著に軽減することは困難である。
特開平6-190507号公報 特開2004-98082号公報 特開平10-166120号公報 特開2005-297001号公報 特開2017-24078号公報
 発明者らの検討によれば、オーステナイト系ステンレス鋼の薄板鋼帯に顕在化して、特に美麗な表面外観が要求される用途で問題となりやすい表面疵は、主として連続鋳造スラブの長手方向(すなわち鋳造方向)に生じた割れを伴う表面欠陥に起因するものであることが確認されている。以下、この種のスラブ表面の欠陥を「鋳造方向表面欠陥」と呼ぶ。鋳造方向表面欠陥に起因する薄板鋼帯での表面疵の発生は、特許文献1に開示されているようなオッシレーションマークの平滑化を施しても解決には至らない。
 発明者らの調査によると、上記の連続鋳造スラブの鋳造方向表面欠陥は以下のようにして生じるものであると考えられる。
 連続鋳造工程の鋳型内における冷却が不均一になると、凝固シェルの厚さの不均一が生じ、その後に凝固収縮や溶鋼静圧に起因する応力がここに集中することにより微細な割れが発生する。これがスラブ表面において鋳造方向表面欠陥として現れる。その割れは既に形成されている凝固シェルを破るほどの深さには成長しないため連続鋳造の操業に支障を来すような深刻な事態には至らない。
 上記の局所的な冷却速度の低下が生じる原因は必ずしも特定できないが、鋳造方向表面欠陥の箇所を観察すると周囲よりも窪んでいることが多いことから、凝固初期にモールドから局所的に凝固シェルが離れる現象が生じているものと考えられる。これには、モールドパウダーの流入の不均一や、凝固シェルの凝固収縮に伴う変形の不均一などの複数の要因が考えられる。また、この種の鋳造方向表面欠陥は、フェライト系ステンレス鋼種などと比べ、オーステナイト系ステンレス鋼種において特に問題となりやすいが、これは凝固モードの違いに起因するものと考えられている。
 鋳型内冷却の不均一は、強冷却条件で助長されることが知られており、従来から鋳型における緩冷却によって、スラブ表面の鋳造方向表面欠陥発生を抑制する手段が提案されている。例えば、特許文献4では、結晶化しやすいモールドパウダーを使用することにより、モールドパウダー層の熱抵抗を増大させて凝固シェルを緩冷却することが提案されている。しかし、モールドパウダーだけでは緩冷却の効果は十分とは言えず、オーステナイト系ステンレス鋼スラブの表面鋳造方向表面欠陥を根絶するに至っていない。また、モールドパウダーの変更は、オシレーションマーク深さなど、他の品質因子への影響や、ブレークアウト発生への影響があるため、簡単ではない。特許文献5では、鋳型内壁面に熱伝導率の低い金属を充填することにより、鋳型の緩冷却化を実現している。しかし、これだけではスラブ表面の鋳造方向表面欠陥を完全に抑止することはできない。また、この種の鋳型を適用する場合、鋳造方向表面欠陥が問題となる鋼種のみに適用することはできず、全鋼種に適用することになるため、それらの鋼種においては別の表面品質悪化要因となり得る。
 本発明は、オーステナイト系ステンレス鋼において、連続鋳造スラブの長手方向(すなわち鋳造方向)に生じる上記「鋳造方向表面欠陥」を安定して顕著に抑制する連続鋳造技術を開示し、グラインダーによる連続鋳造スラブ表面の手入れを省略しても薄板鋼帯にまで加工した際に表面疵が極めて生じにくいオーステナイト系ステンレス鋼の連続鋳造スラブを提供することを目的とする。
 上記事情に鑑みて、発明者らは、オーステナイト系ステンレス鋼スラブ表面の鋳造方向表面欠陥の抑制方法を鋭意研究した結果、「鋳造温度の低温化」と「モールド内電磁撹拌」を組み合わせることで、モールドにおける均一緩冷却を実現する手法を見いだした。その手法を適用すると、既存の連続鋳造設備において鋳造方向表面欠陥を安定して顕著に抑制することが可能であることが確認された。本発明はこのような知見に基づくものである。
 すなわち本発明では、以下の発明を開示する。
 水平面で切断したモールド内面の輪郭形状が長方形であるモールドを用いる鋼の連続鋳造において、前記長方形の長辺を構成する2つのモールド内壁面を「長辺面」、短辺を構成する2つのモールド内壁面を「短辺面」、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶとき、
 モールド内の長辺方向および短辺方向の中心に設置された2つの吐出孔を有する浸漬ノズルから、質量%で、C:0.005~0.150%、Si:0.10~3.00%、Mn:0.10~6.50%、Ni:1.50~22.00%、Cr:15.00~26.00、Mo:0~3.50%、Cu:0~3.50%、N:0.005~0.250%、Nb:0~0.80%、Ti:0~0.80%、V:0~1.00%、Zr:0~0.80%、Al:0~1.500%、B:0~0.010%、希土類元素とCaの合計:0~0.060%、残部Feおよび不可避的不純物からなり、下記(4)式で定義されるA値が20.0以下である化学組成のオーステナイト系ステンレス鋼の溶鋼を吐出するとともに、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域における凝固シェル近傍の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電力を印加して電磁撹拌(EMS)を行い、下記(1)式を満たすように連続鋳造条件をコントロールする、オーステナイト系ステンレス鋼スラブの製造方法。
 10<ΔT<50×FEMS+10 …(1)
 ただし、ΔTおよびFEMSはそれぞれ下記(2)式および(3)式により表される。
 ΔT=T-T …(2)
 FEMS=VEMS×(0.18×V+0.71) …(3)
 ここで、Tは長辺方向1/4位置かつ短辺方向1/2位置における平均湯面深さ20mmでの平均溶鋼温度(℃)、Tは当該溶鋼の凝固開始温度(℃)、FEMSは撹拌強度指標、VEMSは電磁撹拌によって付与される長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の長辺方向平均溶鋼流速(m/s)、Vは鋳造スラブ長手方向の進行速度に相当する鋳造速度(m/min)である。
 A=3.647(Cr+Mo+1.5Si+0.5Nb)-2.603(Ni+30C+30N+0.5Mn)-32.377 …(4)
 ここで(4)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。
 上記の連続鋳造において、さらに下記(5)式をも満たすように連続鋳造条件をコントロールすることがより好ましい。(5)式に代えて下記(6)式を採用してもよい。
 ΔT≦25 …(5)
 ΔT≦20 …(6)
 また、さらに下記(7)式をも満たすように連続鋳造条件をコントロールすることがより好ましい。(7)式に代えて下記(8)式を採用してもよい。
 FEMS≦0.50 …(7)
 FEMS≦0.40 …(8)
 モールド内で溶鋼の湯面は、連続鋳造操業中に、溶湯流動や振動によって揺れ動く。「平均湯面深さ」は、溶鋼の湯面の平均的位置を基準とした鉛直下向き方向の深さである。「長辺方向1/4位置かつ短辺方向1/2位置」はモールド内に中央の浸漬ノズルを挟んで2箇所ある。平均溶鋼温度T(℃)は、それら2箇所それぞれにおける平均湯面深さ20mmでの溶鋼温度の平均値である。凝固開始温度T(℃)は、液相線温度に相当する温度である。
 本発明の連続鋳造スラブの製造方法によれば、オーステナイト系ステンレス鋼の連続鋳造スラブにおいて、上記「鋳造方向表面欠陥」の生成が顕著に抑制され、グラインダーによる連続鋳造スラブの表面手入れを省略した製造プロセスにて、オーステナイト系ステンレス鋼の薄板鋼帯に現れるスラブ起因の表面疵問題を回避することが可能となる。
鋳造方向表面欠陥が生じたオーステナイト系ステンレス鋼連続鋳造スラブの表面外観写真。 スラブの鋳造方向表面欠陥に起因する表面疵が発生したオーステナイト系ステンレス鋼冷延鋼板の表面外観写真。 鋳造方向表面欠陥が生じたオーステナイト系ステンレス鋼連続鋳造スラブの表面付近の断面組織写真。 本発明に適用できる連続鋳造装置について、モールド内溶鋼の湯面高さにおける水平面で切断した断面構造を模式的に例示した図。 図4に示したモールド内に「長辺方向1/4位置かつ短辺方向1/2位置」を記号P、Pで示した図。 電磁撹拌を使用した方法で得られた本発明に従うオーステナイト系ステンレス鋼連続鋳造スラブの鋳造方向に垂直な断面の金属組織写真。 電磁撹拌を使用しない方法で得られたオーステナイト系ステンレス鋼連続鋳造スラブの鋳造方向に垂直な断面の金属組織写真。 ΔTとFEMSの関係をプロットしたグラフ。
 連続鋳造においては一般的に、モールド内溶鋼の湯面上に、モールドパウダーが溶融したフラックス層が形成されている。このフラックスは、鋳造中に湯面から溶鋼とモールドの隙間に入り込み、凝固シェルとモールドの間にフラックス膜を形成して、両者の潤滑を担う。通常、同じ鋳造方向位置(湯面からの深さが同じ位置)では、フラックス膜によって隔てられている凝固シェルとモールドの距離はほぼ均等であり、モールドからの抜熱もほぼ均等になる。しかし、凝固シェルとモールドの間に異物が入り込むなど、何らかの原因によって、凝固初期のシェルとモールドの間隔が周囲よりも大きくなる箇所が生じることがある。その箇所では、凝固シェルの表面が周囲よりも窪むとともに、冷却速度が周囲より低下するので凝固シェルの厚さが周囲より薄い状態で凝固が進む。上方から鋳造方向に見て、上記の間隔が大きくなった位置では、その間隔が大きくなる要因(異物の噛み込み等)の影響が解消されるまで、しばらくの間、周囲よりも凝固シェルの厚さが薄くなる状態が継続する。すなわち、モールド内部の凝固シェルには鋳造方向に凝固シェルの薄い部分が伸びた領域が形成される。凝固シェルが薄い部分には応力が集中し、その表層部が応力に耐えられなくなると、モールド内部で鋳造方向へ伸びる表面割れが生じる。ただし、その割れは微小であり、そこから溶湯が漏れる事故(ブレークアウト)には至らない。オーステナイト系ステンレス鋼の連続鋳造スラブに生成する「鋳造方向表面欠陥」は、このようなメカニズムによって生じるものと考えられる。
 主なオーステナイト系ステンレス鋼は、δフェライト相を初晶として凝固する場合が多いが、化学組成によっては、δフェライト相の生成割合が極めて低い場合や、オーステナイト単相凝固する場合もありうる。鋼中の不純物であるPやSなどは、オーステナイト相中よりもδフェライト相中に固溶しやすいので、特にδフェライト相の生成割合が低い鋼種においては、PやSなどがオーステナイト相の粒界に偏析しやすく、それらの箇所の強度を低下させる。そのため、オーステナイト系ステンレス鋼では、フェライト系ステンレス鋼に比べて、表面割れを伴う上述の「鋳造方向表面欠陥」が生成しやすいのではないかと考えられる。
 上記の表面割れを伴う鋳造方向表面欠陥は、スラブの長手方向に数センチメートルから数十センチメートルの長さで観察されることが多い。スラブの目視検査にて表面割れの発生程度が非常に大きい場合には、その部分をグラインダーにて重点的に手入れする作業が行われることもある。しかし、この種の表面割れはスラブ表面の浅いところに存在するので、通常、熱間圧延や冷間圧延で更なる割れに進展することはない。そのため、特にSUS304等の汎用鋼種では、連続鋳造スラブに特段の表面手入れを施すことなく、熱間圧延、冷間圧延の工程に進めることが一般的である。連続鋳造スラブの表面に存在する、ある程度の規模の鋳造方向表面欠陥は、冷延鋼板において圧延方向に連続的または間欠的に伸びた表面疵となって現れる。したがって、高品質のオーステナイト系ステンレス鋼冷延鋼板を得るためには、連続鋳造の段階で、鋳造方向表面欠陥の生成ができるだけ少ないスラブを製造しておくことが有効である。
 図1に、規模の大きい鋳造方向表面欠陥が生じたオーステナイト系ステンレス鋼連続鋳造スラブの表面外観写真を例示する。写真の長辺に対して平行方向がスラブの長手方向(鋳造方向)、直角方向がスラブの幅方向に相当する。矢印の箇所に長さが27cmを超える鋳造方向表面欠陥が見られる。
 図2に、スラブの鋳造方向表面欠陥に起因する表面疵が発生したオーステナイト系ステンレス鋼冷延鋼板の表面外観写真を例示する。メジャーに平行な方向が圧延方向に相当する。切り板サンプルの中央部に、圧延方向に伸びる表面疵が見られる。この写真の例は、非常に大きい疵が発生した事例である。疵発生箇所の元素分析でモールドパウダーに含まれる元素(Na等)が多量に検出されたので、この表面疵はスラブの鋳造方向表面欠陥に起因するものであると特定された。
 図3に、比較的規模の大きい鋳造方向表面欠陥が生じたオーステナイト系ステンレス鋼連続鋳造スラブの表面付近の断面組織写真を例示する。写真の長辺に対して平行方向がスラブの幅方向に相当し、写真の長辺および短辺に垂直な方向が鋳造方向に相当する。割れが生じている付近のスラブ表面は周囲よりも窪んでいることから、初期の凝固シェルが形成されるときに何らかの原因で凝固シェルとモールドの距離が周囲よりも大きくなったと考えられる。そのためにモールドからの抜熱が周囲よりも緩やかになって凝固速度が低下し、凝固シェルの厚さが周囲よりも薄い状態で鋳造が進行し、薄い凝固シェルの部分に応力が集中して割れに至ったものと考えられる。
 この種の割れが発生した事例について、スラブ表面近くの金属組織を割れ近傍と正常部とで比較すると、どの事例でも割れ近傍ではデンドライト2次アーム間隔が正常部よりも大きくなっていることから、鋳造方向表面欠陥の生じた部分は周囲よりも凝固速度が小さいことが確認された。
 初期凝固の均一化および緩冷却化を実現するため、まずモールド内の溶湯温度と鋼の凝固開始温度との差を小さくする操業(低温鋳造)を検討した。これにより、モールド抜熱量を全体的に低下させることを期待した。実験の結果、低温鋳造により緩冷却化を図ることはできたが、溶湯温度を鋳造の全期間において一定に低く保つことは極めて困難であり、溶湯温度が高すぎる場合には緩冷却の効果がなくなり、一方、溶湯温度が低くなりすぎるとタンディッシュのノズル閉塞などのトラブルが発生し、操業に支障が生じた。そこで次に、低温鋳造に加えて、モールド内電磁撹拌(EMS)の適用を検討した。電磁撹拌を行うと、モールド長辺方向において湯面温度を均一化する作用が発揮されるからである。実験の結果、両手法の組み合わせにより、極端に低温鋳造することなく、初期凝固を緩冷却化、均一化することができ、鋳造方向表面欠陥の形成が顕著に軽減された。
 なお、鋳造温度を低温鋳造とせず、通常の温度で鋳造した場合、モールド内電磁撹拌を適用しても、十分に緩冷却することはできず、鋳造方向表面欠陥を減少させること関し、予想したほどの効果は得られなかった。
 本発明では以下の化学組成を有するオーステナイト系ステンレス鋼を対象とする。
 質量%で、C:0.005~0.150%、Si:0.10~3.00%、Mn:0.10~6.50%、Ni:1.50~22.00%、Cr:15.00~26.00、Mo:0~3.50%、Cu:0~3.50%、N:0.005~0.250%、Nb:0~0.80%、Ti:0~0.80%、V:0~1.00%、Zr:0~0.80%、Al:0~1.500%、B:0~0.010%、希土類元素とCaの合計:0~0.060%、残部Feおよび不可避的不純物からなり、下記(4)式で定義されるA値が20.0以下である化学組成。
 A=3.647(Cr+Mo+1.5Si+0.5Nb)-2.603(Ni+30C+30N+0.5Mn)-32.377 …(4)
 ここで(4)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。含有しない元素については0が代入される。
 上記の(4)式のA値は、本来、溶接時に生じる凝固組織中のフェライト相の割合(体積%)を表す指標として利用されているものであるが、連続鋳造スラブの鋳造方向表面欠陥の軽減効果が大きいオーステナイト系鋼種を識別するためにも有意義な指標であることが確認された。この値が20.0以下のステンレス鋼種では、連続鋳造時にδフェライト相の晶出量が少ないか、あるいはオーステナイト単相凝固となるために鋳造方向表面欠陥が生じやすい。本発明ではそのようなオーステナイト系鋼種を対象として鋳造方向表面欠陥の顕著な軽減を図る。A値が負の値となる鋼種は、概ねオーステナイト単相凝固となる鋼種であるとみなしてよい。A値の下限は特に設定しなくてよいが、通常、-20.0以上の鋼を適用することがより効果的である。
 図4に、本発明に適用できる連続鋳造装置について、モールド内溶鋼の湯面高さにおける水平面で切断した断面構造を模式的に例示する。「湯面」は溶鋼の液面である。湯面上には通常、モールドパウダーの層が形成されている。対向する2組のモールド(11A、11B)、(21A、22B)に囲まれた領域の中央に浸漬ノズル30が設置されている。浸漬ノズルは湯面より下方に2つの吐出孔を有しており、それらの吐出孔から溶鋼40がモールド内部に連続供給され、モールド内の所定高さ位置に湯面が形成される。水平面で切断したモールド内壁面の輪郭形状は長方形であり、図4中には長方形の長辺を構成する「長辺面」を符号12A、12B、短辺を構成する「短辺面」を符号22A、22Bで表示している。また、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶ。図4中には白抜き矢印により長辺方向を符号10、短辺方向を符号20で表示している。湯面高さにおいて、長辺面12Aと12Bの距離(後述図5のt)は例えば150~300mm、短辺面22Aと22Bの距離(後述図5のW)は例えば600~2000mmである。
 モールド11Aおよび11Bの背面にはそれぞれ電磁撹拌装置70Aおよび70Bが設置され、少なくとも長辺面12Aおよび12Bの表面に沿って形成される凝固シェルの厚さが5~10mmとなる深さ領域において、溶鋼に長辺方向の流動力を付与することができるようになっている。ここで、「深さ」は湯面の高さ位置を基準とした深さである。連続鋳造中、湯面は多少揺れ動くが、本明細書では平均湯面高さを湯面の位置とする。凝固シェルの厚さが5~10mmとなる深さ領域は、鋳造速度やモールドからの抜熱速度にも依るが、一般的には湯面からの深さが300mm以下の範囲内に存在する。従って、電磁撹拌装置70A、70Bは湯面から300mm深さ程度までの溶鋼に流動力を付与できる位置に設置してある。
 図4中には、凝固シェルの厚さが5~10mmとなる深さ領域において電磁撹拌装置70Aおよび70Bの電磁力によって生じる長辺面近傍の溶鋼流方向を、それぞれ黒の矢印60Aおよび60Bによって示してある。電磁撹拌による流動動向は、双方の長辺側で互いに逆方向の長辺方向流れが生じるようにする。この場合、凝固シェル厚さが10mm程度になるまでの深さ領域で、既に形成された凝固シェルに接触する溶鋼の水平方向流れが、モールド内で渦を描くような流れとなる。この渦流によってモールド内の湯面近くの溶鋼は、停滞を生じることなく円滑に流動し、初期の凝固シェルが形成される湯面直下の溶鋼がモールド壁に接触する際の溶鋼温度をモール内で均一化する効果が高まる。
 図5は、図4に示したモールド内に「長辺方向1/4位置かつ短辺方向1/2位置」を記号P、Pで示したものである。前記の平均溶鋼温度T(℃)は、P位置における平均湯面深さ20mmでの溶鋼温度(℃)とP位置における平均湯面深さ20mmでの溶鋼温度(℃)の平均値として表される。
 本発明では、下記(1)式を満たすように、できるだけ低温で鋳造する。下記(1)’式を満たすように鋳造することがより効果的である。
 10<ΔT<50×FEMS+10 …(1)
 10<ΔT<50×FEMS+8 …(1)’
 ΔTは、鋳造時の溶鋼温度と、その溶鋼の凝固開始温度との温度差を意味する。具体的には下記(2)式に定義される。
 ΔT=T-T …(2)
 鋳造時の溶鋼温度として、平均溶鋼温度T(℃)を採用する。Tは、図5に示したP、P位置の2箇所における平均湯面深さ20mmでの溶鋼温度(℃)の平均値である。溶鋼の凝固開始温度T(℃)は、同じ組成の鋼についてラボ実験により液相線温度を測定することにより把握することができる。実操業においては、予め目標組成ごとに把握してある凝固温度のデータに基づいて、上記ΔTを制御することができる。
 ΔTが10℃以下になるような低温での操業では、不測の温度変動が生じたような場合にタンディッシュのノズル閉塞などのトラブルにつながる危険性が高く、工業的な実施が難しい。一方、ΔTの上限はモールド内溶鋼の撹拌効果によって許容範囲が変動する。基本的には電磁撹拌による撹拌力が大きいほど湯面近傍の溶鋼温度が均一化され、ΔTの許容上限は拡大する。よって、モールド内電磁撹拌を使用せずにΔTを低下させるだけでは、スラブ表面鋳造方向表面欠陥の抑制効果を十分に得ることはできない。ただし、撹拌効果を精度良く評価するためには、モールド内に供給される溶鋼の吐出量の影響も無視できないことがわかった。その撹拌効果を表す指標が下記(3)式の撹拌強度指標FEMSである。
 FEMS=VEMS×(0.18×V+0.71) …(3)
 ここで、VEMSは電磁撹拌によって付与される長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域で凝固シェル表面が接する溶鋼の長辺方向平均流速(m/s)、Vcは鋳造速度(m/min)である。鋳造速度Vcが大きくなるほど、浸漬ノズルからの吐出流量が増大することに伴い、モールド内の溶鋼撹拌も活発化する。(3)式の撹拌強度指標FEMSは、撹拌効果に及ぼす電磁撹拌の寄与を、溶鋼吐出量の影響を加味して補正したパラメータであると捉えることができる。
 この撹拌強度指標FEMSを上記(1)式、より好ましくは(1)’式に適用することによって、ΔTの許容上限を精度良く見積もることができる。具体的には、(1)式に示されるようにΔTが50×FEMS+10よりも小さくなる条件、より好ましくは(1)’式に示されるようにΔTが50×FEMS+8よりも小さくなる条件で連続鋳造を行うことにより、鋳造方向表面欠陥に起因する冷延鋼板の表面疵を顕著に軽減することができる。溶鋼撹拌の強度(撹拌強度指標FEMS)が大きくなるほど、ΔTの許容上限は広がる。ただし、FEMSが過大になると湯面の波立ちが激しくなって、凝固シェル中にモールドパウダー粒子や湯面上に浮上した介在物などの異物を凝固シェル中に巻き込みやすくなる。
 鋳造方向表面欠陥に起因する冷延鋼板での表面疵の発生防止効果をより一層高いレベルで発揮させるためには、上記(1)式あるいは(1)’式に加えてさらに、下記(5)式を満たすように連続鋳造条件をコントロールすることがより好ましく、下記(6)式を満たすことが更に好ましい。
 ΔT≦25 …(5)
 ΔT≦20 …(6)
 また、湯面の波立ちに起因する異物の混入を効果的に防止するためにはは、下記(7)式を満たすように連続鋳造条件をコントロールすることがより好ましく、下記(8)式を満たすことが更に好ましい。
 FEMS≦0.50 …(7)
 FEMS≦0.40 …(8)
 図6に、電磁撹拌を使用した方法で得られた本発明に従うオーステナイト系ステンレス鋼の連続鋳造スラブについて、鋳造方向に垂直な断面の金属組織写真を例示する。写真の長辺に平行な方向がスラブの幅方向、短辺に平行な方向がスラブの厚さ方向である。この写真は、写真の下端がスラブ表面(モールド接触面)から15mmの距離に相当する視野であり、スラブ表面は写真の上端側にある。
 溶融金属が鋳型に対して流動している場合、流れの上流側に傾斜して結晶の凝固が進行し、流速が大きいほど結晶成長の傾斜角度は大きくなることが知られている。図6の例ではデンドライト1次アームの成長方向が右側に傾斜している。従って、凝固シェルに接触する溶鋼は写真の右から左へと流れていたことがわかる。凝固シェルに接触する溶鋼の流動速度と結晶成長の傾斜角度の関係は、例えば回転する棒状の抜熱体を用いた凝固実験により知ることができる。予めラボ実験により求めたデータに基づいて、連続鋳造時の凝固シェルが接触する溶鋼の流速を推定することができる。凝固シェルの厚さが5~10mmとなる深さ領域において凝固シェル表面が接する溶鋼の長辺方向平均流速VEMSは、このような断面写真により、表面から5~10mmの距離におけるデンドライト1次アームの平均傾斜角度を測定することによって把握できる。図6の例では、VEMSは約0.3m/sであると推定される。VEMSは例えば0.1~0.6mm/sの範囲で調整することが一般的な連続鋳造装置においては実用的である。0.2~0.4mm/sとなるように管理してもよい。
 実操業において、上記の溶鋼流速VEMSは、電磁撹拌装置に印加する電流値(以下「電磁撹拌電流」という。)によってコントロールすることができる。電磁撹拌装置を備える連続鋳造設備では、予め、コンピュータシミュレーション、溶鋼流動速度の実測実験、および多くの操業実績において採取されたスラブについての上述のような組織観察によって、「電磁撹拌電流とモールド内各位置における溶鋼流速の関係」がデータとして蓄積されている。実操業では、そのような蓄積データに基づいて、上記VEMSを電磁撹拌電流によって所定値にコントロールすればよい。
 図7に、電磁撹拌を使用しない方法で得られたオーステナイト系ステンレス鋼の連続鋳造スラブについて、鋳造方向に垂直な断面の金属組織写真を例示する。試料の観察位置は図6と同様である。この場合、デンドライトの成長方向に一定方向への傾斜は見られない。すなわち、この鋳片の凝固シェル厚さが5~10mmである部分は、溶鋼の長辺方向流れが生じていない状態で凝固したものであることがわかる。
 表1に示す化学組成のオーステナイト系ステンレス鋼を連続鋳造装置で鋳造して鋳片(スラブ)を製造した。
Figure JPOXMLDOC01-appb-T000001
 連続鋳造モールドは溶湯との接触面が銅合金で構成される一般的な水冷銅合金モールドである。連続鋳造のモールドサイズについては、湯面高さにおいて、短辺長さは200mmとし、長辺長さは700~1650mmの範囲内に設定した。モールド下端における寸法は凝固収縮を考慮して上記よりも僅かに小さくなっている。浸漬ノズルは、長辺方向の両側に2つの吐出孔を有するものを、長辺方向および短辺方向の中心位置に設置した。浸漬ノズルの外径は105mmである。2つの吐出孔は、ノズル中心を通り短辺面に平行な平面に対して対称形である。対向する両長辺のモールド背面にそれぞれ電磁撹拌装置を設置し、モールド内の湯面近傍の深さ位置から約200mm深さ位置までの溶鋼に長辺方向の流動力を付与するように電磁撹拌を行った。図1に示したように、対向する両長辺側で流動方向が逆方向となるようにした。凝固シェルの厚さが5~10mmとなる深さ領域で凝固シェル表面が接する溶鋼の長辺方向平均流速VEMSは、この連続鋳造設備について予め求めてある「電磁撹拌電流とモールド内各位置における溶鋼流速の関係」の蓄積データに基づき、電磁撹拌電流を調整することによってコントロールした。図5に示したP、P位置の2箇所における平均湯面深さ20mmでの溶鋼温度(℃)を熱電対によりそれぞれ測定し、その2箇所の平均値を平均溶鋼温度T(℃)として採用した。
 表2中に各例の鋳造条件を示してある。ΔTは前述の(2)式によって表される平均溶鋼温度T(℃)と凝固開始温度T(℃)の差である。凝固開始温度T(℃)は表1に記載してある。「(1)式判定」の蘭には、前記(1)式の要件を満たす場合に○、満たさない場合に×を表示した。
 表2中の例No.毎に、その連続鋳造条件に従って長さ約8mの連続鋳造スラブを複数本製造した。そのうちの1本をその例No.の代表スラブとして選択した。代表スラブの片側表面を目視観察し、表面割れを伴う鋳造方向表面欠陥の有無を調査した。目視にて明らかに表面割れの存在が確認できた場合を「スラブ表面割れ;あり」として表2中に示してある。
 各例No.の代表スラブを、通常の熱間圧延工程、および冷間圧延工程にて、板厚0.6~2.0mmの冷延コイルとした。スラブ表面のグラインダーによる手入れは行っていない。得られた冷延コイルを、レーザー照射式の表面検査装置を備えるラインに通板し、コイルの片側表面を全長にわたって一定の検出基準にて検査し、表面疵の存在を調査した。コイル全長を長手方向1mごとに区切った領域(以下「セグメント」と呼ぶ。)の中に表面疵が検出された場合、そのセグメントを「疵ありセグメント」と認定した。コイル全長のセグメント総数に占める「疵ありセグメント」の数の割合(以下「欠陥発生率」という。)を求め、欠陥発生率が3%を超える場合を×(表面性状;不良)、3%以下である場合を○(表面性状;良好)と判定した。その結果を表2中の「冷延コイル表面疵評価」の欄に表示してある。この検出基準はかなり厳しいものであり、連続鋳造スラブの鋳造方向表面欠陥に由来する疵以外の疵も検出される。通常、上記の欠陥発生率が3%を超える冷延コイルでも多くの用途で適用可能であるが、表面性状を重視する用途では使えない場合がある。一方、上記の欠陥発生率が3%以下の冷延コイルは非常に良好な表面性状を呈すると評価でき、疵に起因する用途上の制限は極めて少なくなる。
Figure JPOXMLDOC01-appb-T000002
 図8に、表2のΔTとFEMSの関係をプロットしたグラフを示す。プロットの○印および×印は表2に記載の冷延コイル表面疵評価と整合する。図8中には上記(1)式のΔT上限許容境界線(ΔT=50×FEMS+10)を破線で示してある。ΔTがこのラインより大きい場合でも冷延コイルの表面疵が非常に少なく○評価となった例がある。しかし、安定して○評価の良好な表面性状を実現するためには、ΔTがこのラインより下側になる条件を採用することが極めて有効である。
 10  長辺方向
 11A、11B  モールド
 12A、12B  長辺面
 20  短辺方向
 21A、21B  モールド
 22A、22B  短辺面
 30  浸漬ノズル
 40  溶鋼
 42  凝固シェル
 60A、60B  電磁撹拌による溶鋼流方向
 70A、70B  電磁撹拌装置

Claims (5)

  1.  水平面で切断したモールド内面の輪郭形状が長方形であるモールドを用いる鋼の連続鋳造において、前記長方形の長辺を構成する2つのモールド内壁面を「長辺面」、短辺を構成する2つのモールド内壁面を「短辺面」、長辺面に平行な水平方向を「長辺方向」、短辺面に平行な水平方向を「短辺方向」と呼ぶとき、
     モールド内の長辺方向および短辺方向の中心に設置された2つの吐出孔を有する浸漬ノズルから、質量%で、C:0.005~0.150%、Si:0.10~3.00%、Mn:0.10~6.50%、Ni:1.50~22.00%、Cr:15.00~26.00、Mo:0~3.50%、Cu:0~3.50%、N:0.005~0.250%、Nb:0~0.80%、Ti:0~0.80%、V:0~1.00%、Zr:0~0.80%、Al:0~1.500%、B:0~0.010%、希土類元素とCaの合計:0~0.060%、残部Feおよび不可避的不純物からなり、下記(4)式で定義されるA値が20.0以下である化学組成のオーステナイト系ステンレス鋼の溶鋼を吐出するとともに、少なくとも長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域における凝固シェル近傍の溶鋼に、双方の長辺側で互いに逆方向の長辺方向流れが生じるように電力を印加して電磁撹拌(EMS)を行い、下記(1)式を満たすように連続鋳造条件をコントロールする、オーステナイト系ステンレス鋼スラブの製造方法。
     10<ΔT<50×FEMS+10 …(1)
     ただし、ΔTおよびFEMSはそれぞれ下記(2)式および(3)式により表される。
     ΔT=T-T …(2)
     FEMS=VEMS×(0.18×V+0.71) …(3)
     ここで、Tは長辺方向1/4位置かつ短辺方向1/2位置における平均湯面深さ20mmでの平均溶鋼温度(℃)、Tは当該溶鋼の凝固開始温度(℃)、FEMSは撹拌強度指標、VEMSは電磁撹拌によって付与される長辺方向中央位置の凝固シェル厚さが5~10mmとなる深さ領域の長辺方向平均溶鋼流速(m/s)、Vは鋳造スラブ長手方向の進行速度に相当する鋳造速度(m/min)である。
     A=3.647(Cr+Mo+1.5Si+0.5Nb)-2.603(Ni+30C+30N+0.5Mn)-32.377 …(4)
     ここで(4)式の元素記号の箇所には質量%で表される当該元素の含有量の値が代入される。
  2.  さらに下記(5)式をも満たすように連続鋳造条件をコントロールする請求項1に記載のオーステナイト系ステンレス鋼スラブの製造方法。
     ΔT≦25 …(5)
  3.  さらに下記(6)式をも満たすように連続鋳造条件をコントロールする請求項1に記載のオーステナイト系ステンレス鋼スラブの製造方法。
     ΔT≦20 …(6)
  4.  さらに下記(7)式をも満たすように連続鋳造条件をコントロールする請求項1~3のいずれか1項に記載のオーステナイト系ステンレス鋼スラブの製造方法。
     FEMS≦0.50 …(7)
  5.  さらに下記(8)式をも満たすように連続鋳造条件をコントロールする請求項1~3のいずれか1項に記載のオーステナイト系ステンレス鋼スラブの製造方法。
     FEMS≦0.40 …(8)
PCT/JP2018/009989 2017-03-24 2018-03-14 オーステナイト系ステンレス鋼スラブの製造方法 WO2018173888A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197031280A KR102239946B1 (ko) 2017-03-24 2018-03-14 오스테나이트계 스테인리스강 슬라브의 제조 방법
EP18772143.6A EP3603849B1 (en) 2017-03-24 2018-03-14 Method for producing austenite stainless steel slab
CN201880020154.3A CN110709188B (zh) 2017-03-24 2018-03-14 奥氏体系不锈钢板坯的制造方法
US16/493,851 US10807156B2 (en) 2017-03-24 2018-03-14 Method for producing austenite stainless steel slab
RU2019133666A RU2721256C1 (ru) 2017-03-24 2018-03-14 Способ изготовления сляба аустенитной нержавеющей стали
MYPI2019005484A MY190467A (en) 2017-03-24 2018-03-14 Method for producing austenite stainless steel slab
BR112019019503-3A BR112019019503B1 (pt) 2017-03-24 2018-03-14 Método para produção de placa de aço inoxidável austenítico
ZA2019/05971A ZA201905971B (en) 2017-03-24 2019-09-10 Method for producing austenite stainless steel slab

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060176A JP6347864B1 (ja) 2017-03-24 2017-03-24 オーステナイト系ステンレス鋼スラブの製造方法
JP2017-060176 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173888A1 true WO2018173888A1 (ja) 2018-09-27

Family

ID=62706343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009989 WO2018173888A1 (ja) 2017-03-24 2018-03-14 オーステナイト系ステンレス鋼スラブの製造方法

Country Status (11)

Country Link
US (1) US10807156B2 (ja)
EP (1) EP3603849B1 (ja)
JP (1) JP6347864B1 (ja)
KR (1) KR102239946B1 (ja)
CN (1) CN110709188B (ja)
BR (1) BR112019019503B1 (ja)
MY (1) MY190467A (ja)
RU (1) RU2721256C1 (ja)
TW (1) TWI765006B (ja)
WO (1) WO2018173888A1 (ja)
ZA (1) ZA201905971B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295393A (zh) * 2018-12-13 2019-02-01 天津钢研海德科技有限公司 新型高韧性高抛光高耐腐蚀性的塑料模具钢及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6783343B2 (ja) * 2019-04-12 2020-11-11 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼およびその製造方法
CN112122567B (zh) * 2020-09-07 2021-07-09 东北大学 一种结晶器喂不锈钢包芯线提升铸坯凝固质量的方法
CN113755741A (zh) * 2021-08-18 2021-12-07 盐城市联鑫钢铁有限公司 一种复合耐蚀钢的制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190507A (ja) 1992-12-24 1994-07-12 Nippon Steel Corp 表面性状の優れたステンレス鋼鋳片およびその連続鋳造方法
JPH10166120A (ja) 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd 溶融金属の連続鋳造方法
JP2004098082A (ja) 2002-09-05 2004-04-02 Nippon Steel Corp 電磁攪拌を行うステンレス溶鋼の鋳造方法
JP2005297001A (ja) 2004-04-12 2005-10-27 Kobe Steel Ltd 鋼の連続鋳造方法
JP2010024522A (ja) * 2008-07-23 2010-02-04 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2010052026A (ja) * 2008-08-29 2010-03-11 Sumitomo Metal Ind Ltd 高n含有二相ステンレス鋼の連続鋳造方法
WO2015147216A1 (ja) * 2014-03-26 2015-10-01 新日鐵住金株式会社 高強度熱間成形鋼板部材
JP2017024078A (ja) 2015-07-22 2017-02-02 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247522A (en) * 1975-10-15 1977-04-15 Nippon Steel Corp Process for continuous casting of ferriteesystem stainless steel
JPS58148055A (ja) * 1982-02-27 1983-09-03 Kobe Steel Ltd 水平連鋳における鋳型内電磁撹「は」方法
JPH0694057B2 (ja) * 1987-12-12 1994-11-24 新日本製鐵株式會社 耐海水性に優れたオーステナイト系ステンレス鋼の製造方法
SU1675033A1 (ru) * 1988-04-04 1991-09-07 Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения им.А.И.Целикова Способ электромагнитного перемешивани жидкой фазы непрерывнолитого слитка
KR930002836B1 (ko) * 1989-04-27 1993-04-10 가와사끼 세이데쓰 가부시까가이샤 정자장을 이용한 강철의 연속 주조방법
JPH07106366B2 (ja) * 1991-03-27 1995-11-15 新日本製鐵株式会社 耐加工フロー腐食性に優れたオーステナイト系ステンレス鋼板の製造方法
JPH06246406A (ja) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd 連続鋳造鋳型内の溶鋼過熱度調整方法
JPH06328196A (ja) * 1993-05-25 1994-11-29 Leotec:Kk 含ボロンオーステナイト系ステンレス鋼の製造方法
US5697425A (en) * 1993-09-16 1997-12-16 Rheo-Technology, Ltd. Method of producing thin cast sheet through continuous casting
JPH0857584A (ja) * 1994-08-18 1996-03-05 Nippon Steel Corp 表面品位並びに加工性の良好なステンレス鋼鋳片の製造方法
JPH0857585A (ja) * 1994-08-18 1996-03-05 Nippon Steel Corp エッジシーム疵の少ないステンレス鋳片の製造方法
AU680154B2 (en) * 1994-08-23 1997-07-17 Nippon Steel & Sumitomo Metal Corporation Method of continuously casting molten metal and apparatus therefor
EP0832704A1 (en) * 1996-09-19 1998-04-01 Hoogovens Staal B.V. Continuous casting machine
JP2000107844A (ja) * 1998-09-30 2000-04-18 Nippon Steel Corp クロムを含有した溶鋼の鋳造方法
JP2000271711A (ja) * 1999-03-26 2000-10-03 Nippon Steel Corp 導電性溶融物の流動制御装置
FR2792560B1 (fr) * 1999-04-22 2001-06-01 Usinor Procede de coulee continue entre cylindres de bandes d'acier inoxydable austenitique d'excellente qualite de surface, et bandes ainsi obtenues
JP4728724B2 (ja) * 2005-07-21 2011-07-20 新日本製鐵株式会社 連続鋳造鋳片およびその製造方法
FR2893868B1 (fr) * 2005-11-28 2008-01-04 Rotelec Sa Reglage du mode de brassage electromagnetique sur la hauteur d'une lingotiere de coulee continue
JP4613922B2 (ja) * 2007-03-29 2011-01-19 Jfeスチール株式会社 鋼の連続鋳造方法
EP2172574B1 (en) * 2007-08-02 2019-01-23 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic-austenitic stainless steel excellent in corrosion resistance and workability and process for manufacturing the same
KR101207154B1 (ko) * 2009-12-29 2012-11-30 주식회사 포스코 페라이트계 스테인리스강 비등속 주조 슬라브의 냉각방법
CN102162063B (zh) * 2010-02-23 2012-11-14 宝山钢铁股份有限公司 一种铁素体不锈钢中厚板及其制造方法
FI125734B (en) * 2013-06-13 2016-01-29 Outokumpu Oy Duplex ferritic austenitic stainless steel
JP6197676B2 (ja) 2014-02-04 2017-09-20 東芝三菱電機産業システム株式会社 温度分布予測装置
CN103924163B (zh) * 2014-04-11 2016-01-13 广东广青金属科技有限公司 一种奥氏体不锈钢的生产方法
KR101646538B1 (ko) * 2014-12-24 2016-08-08 주식회사 포스코 오스테나이트계 스테인리스강 및 그 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190507A (ja) 1992-12-24 1994-07-12 Nippon Steel Corp 表面性状の優れたステンレス鋼鋳片およびその連続鋳造方法
JPH10166120A (ja) 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd 溶融金属の連続鋳造方法
JP2004098082A (ja) 2002-09-05 2004-04-02 Nippon Steel Corp 電磁攪拌を行うステンレス溶鋼の鋳造方法
JP2005297001A (ja) 2004-04-12 2005-10-27 Kobe Steel Ltd 鋼の連続鋳造方法
JP2010024522A (ja) * 2008-07-23 2010-02-04 Sumitomo Metal Ind Ltd 熱延鋼板およびその製造方法
JP2010052026A (ja) * 2008-08-29 2010-03-11 Sumitomo Metal Ind Ltd 高n含有二相ステンレス鋼の連続鋳造方法
WO2015147216A1 (ja) * 2014-03-26 2015-10-01 新日鐵住金株式会社 高強度熱間成形鋼板部材
JP2017024078A (ja) 2015-07-22 2017-02-02 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109295393A (zh) * 2018-12-13 2019-02-01 天津钢研海德科技有限公司 新型高韧性高抛光高耐腐蚀性的塑料模具钢及其制备方法

Also Published As

Publication number Publication date
RU2721256C1 (ru) 2020-05-18
US10807156B2 (en) 2020-10-20
BR112019019503A2 (pt) 2020-04-28
CN110709188B (zh) 2021-08-17
TW201840376A (zh) 2018-11-16
KR102239946B1 (ko) 2021-04-14
KR20200002842A (ko) 2020-01-08
BR112019019503B1 (pt) 2023-12-12
TWI765006B (zh) 2022-05-21
EP3603849A1 (en) 2020-02-05
US20200030873A1 (en) 2020-01-30
JP2018161667A (ja) 2018-10-18
ZA201905971B (en) 2021-01-27
EP3603849B1 (en) 2022-03-02
CN110709188A (zh) 2020-01-17
JP6347864B1 (ja) 2018-06-27
EP3603849A4 (en) 2020-09-16
MY190467A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2018173888A1 (ja) オーステナイト系ステンレス鋼スラブの製造方法
JP6129435B1 (ja) 連続鋳造法
JP6358178B2 (ja) 連続鋳造方法および鋳型の冷却水制御装置
JP2005298909A (ja) 表面割れの少ない鋳片
JP5245800B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP2015027687A (ja) 連鋳鋳片の製造方法
JP6402750B2 (ja) 鋼の連続鋳造方法
JP4289205B2 (ja) 連続鋳造方法および連続鋳造鋳片
JP5354179B2 (ja) 鋼鋳片の連続鋳造方法
JP5443203B2 (ja) 空冷帯に配置されるロールの冷却方法を用いた連続鋳造方法
JP2020171932A (ja) 連続鋳造方法
JP2010099704A (ja) 鋼鋳片の連続鋳造方法
JP2008290136A (ja) 低炭素高硫黄鋼の連続鋳造方法
JP5458779B2 (ja) 鋼鋳片の連続鋳造方法
JP5304297B2 (ja) 鋼鋳片の連続鋳造方法
JP2001138015A (ja) 連続鋳造方法
JP2004149836A (ja) 極低炭素鋼および連続鋳造方法
JP2002086253A (ja) 連続鋳造の2次冷却方法
JP2008229702A (ja) Sプリントにおける凝固シェル厚の現出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019019503

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197031280

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018772143

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018772143

Country of ref document: EP

Effective date: 20191024

ENP Entry into the national phase

Ref document number: 112019019503

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190919