WO2018164185A1 - 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018164185A1
WO2018164185A1 PCT/JP2018/008780 JP2018008780W WO2018164185A1 WO 2018164185 A1 WO2018164185 A1 WO 2018164185A1 JP 2018008780 W JP2018008780 W JP 2018008780W WO 2018164185 A1 WO2018164185 A1 WO 2018164185A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
crystal structure
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2018/008780
Other languages
English (en)
French (fr)
Inventor
藤村 浩志
毅 市江
義顕 名取
屋鋪 裕義
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201880014611.8A priority Critical patent/CN110366604B/zh
Priority to EP18764795.3A priority patent/EP3594371B1/en
Priority to PL18764795T priority patent/PL3594371T3/pl
Priority to BR112019017229-7A priority patent/BR112019017229B1/pt
Priority to JP2019504637A priority patent/JP6828800B2/ja
Priority to US16/487,020 priority patent/US11124854B2/en
Priority to KR1020197025126A priority patent/KR102265091B1/ko
Publication of WO2018164185A1 publication Critical patent/WO2018164185A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for producing a non-oriented electrical steel sheet.
  • high-speed rotation motors motors that perform high-speed rotation
  • centrifugal force acting on a rotating body such as a rotor is increased. Therefore, high strength is required for the electromagnetic steel sheet that is the material of the rotor of the high-speed rotary motor.
  • the strength of the steel sheet is increased by solid solution strengthening, precipitation strengthening, grain refinement and the like.
  • the magnetic properties may be deteriorated. Therefore, it is not easy to achieve both high strength and excellent magnetic properties in the non-oriented electrical steel sheet.
  • additional heat treatment may be performed on non-oriented electrical steel sheets.
  • a blank for use as a stator core for a motor is cut out from a non-oriented electrical steel sheet and used, a space is formed in the central portion of the blank. If the portion cut out to form this central space is used as a rotor blank, that is, if a rotor blank and a stator core blank are produced from one non-oriented electrical steel sheet, the yield will increase. ,preferable.
  • the rotor blank is particularly required to have strength and low iron loss.
  • high strength is not required for the stator core blank, excellent magnetic properties (high magnetic flux density and low iron loss) are required.
  • the blank cut out for the stator is formed into a stator core, and then processed into a non-oriented electrical steel sheet having increased strength. In order to remove the distortion caused by the magnetic field and improve the magnetic properties, it is necessary to recrystallize sufficiently by performing an additional heat treatment.
  • a non-oriented electrical steel sheet in which a stator core blank and a rotor blank are produced requires high strength and excellent magnetic properties before and after additional heat treatment.
  • Patent Documents 1 to 7 disclose non-oriented electrical steel sheets that achieve both high strength and excellent magnetic properties.
  • Patent Document 1 Si: 3.5 to 7.0%, Ti: 0.05 to 3.0%, W: 0.05 to 8.0%, Mo: 0.05 to 3.0%, Mn : One or two selected from 0.1 to 11.5%, Ni: 0.1 to 20.0%, Co: 0.5 to 20.0%, and Al: 0.5 to 18.0% A non-oriented electrical steel sheet containing at least seeds in a range not exceeding 20.0% is disclosed.
  • the strength of the steel sheet is increased by increasing the Si content and strengthening by solid solution with Ti, W, Mo, Mn, Ni, Co, and Al.
  • Si: 3.5 to 7.0% is contained, W: 0.05 to 9.0%, Mo: 0.05 to 9.0%, Ti: 0.05 to 10 0.0%, Mn: 0.1-11.0%, Ni: 0.1-20.0%, Co: 0.5-20.0%, and Al: 0.5-13.0%
  • a slab containing at least one selected from the group consisting of hot rolled sheets is hot rolled and then cold rolled to a final sheet thickness of 0.01 to 0.35 mm, followed by 800 to 1250.
  • a method for producing a high-tensile soft magnetic steel sheet is disclosed in which annealing is performed in a temperature range of 0 ° C. to make the average crystal grain size 0.01 to 5.0 mm.
  • Patent Document 3 C: 0.01% or less, Si: 2.0% or more and less than 4.0%, Al: 2.0% or less, and P: 0.2% or less, and Mn,
  • a high-strength electrical steel sheet containing at least one of Ni in a range of 0.3% ⁇ Mn + Ni ⁇ 10% and comprising the balance Fe and inevitable impurity elements is disclosed.
  • the strength of the steel sheet is increased by solid solution strengthening with Mn and Ni.
  • Patent Document 4 contains C: 0.04% or less, Si: 2.0% or more and less than 4.0%, Al: 2.0% or less, and P: 0.2% or less, and Mn, One or more of Ni is contained in a range of 0.3% ⁇ Mn + Ni ⁇ 10%, and one or two of Nb and Zr are controlled, so that 0.1 ⁇ (Nb + Zr) / 8 (C + N ) ⁇ 1.0, and a high-strength electrical steel sheet composed of the remaining Fe and inevitable impurity elements is disclosed.
  • the strength of the steel sheet is increased by solid solution strengthening with Mn and Ni, and further, high strength and magnetic properties are achieved by using carbonitride such as Nb and Zr.
  • Patent Document 5 in mass%, C: 0.060% or less, Si: 0.2 to 3.5%, Mn: 0.05 to 3.0%, P: 0.30% or less, S: 0 0.040% or less, Al: 2.50% or less, N: 0.020% or less, which is composed of the remaining Fe and unavoidable impurities, and a high-strength electrical steel sheet having a processed structure remaining inside the steel material is disclosed. ing.
  • C and N are suppressed to C: 0.010% or less, N: 0.010% or less, and C + N ⁇ 0.010% by mass%, and Si: 1.5% or more.
  • 0% or less Mn: 3.0% or less
  • Al 3.0% or less
  • P 0.2% or less
  • S 0.01% or less
  • Ti 0.05% or more and 0.8% or less
  • High strength containing Ti / (C + N) ⁇ 16 having a composition of the balance Fe and inevitable impurities, and having an unrecrystallized recovery structure in the steel sheet in an area ratio of 50% or more Non-oriented electrical steel sheets are disclosed.
  • Patent Document 7 C: 0.010% or less, Si: more than 3.5%, 5.0% or less, Al: 0.5% or less, P: 0.20% or less, S: 0.005% by mass. 002% to 0.005% and N: 0.010% or less, and Mn in relation to the S content (mass%) (5.94 ⁇ 10 ⁇ 5 ) / (S%) ⁇ Mn ⁇ (4.47 ⁇ 10 ⁇ 4 ) / (S%) is satisfied, the balance is composed of Fe and inevitable impurities, and the recrystallized grains in the steel sheet rolling direction section (ND-RD section) A non-oriented electrical steel sheet is disclosed in which the area ratio is 30% or more and 90% or less, and the connected non-recrystallized grain group has a rolling direction length of 1.5 mm or less.
  • Patent Documents 1 to 7 described above many non-oriented electrical steel sheets have been developed for the purpose of achieving both high strength and excellent magnetic properties.
  • the non-oriented electrical steel sheets disclosed in Patent Documents 1 to 7 do not consider the characteristics after the additional heat treatment.
  • Patent Document 8 contains 7.00% or less of Si and 0.010% or less of C by weight in steel, and has a depth of 1/5 of the plate thickness from the surface layer of the steel plate before strain relief annealing.
  • I (100) and I (111) which are values of the ratio of the X-ray reflecting surface intensity in the (100) and (111) orientations to the random texture in the plane parallel to the partial mask, are 0.50 ⁇ I (100 )
  • a non-oriented electrical steel sheet having a texture satisfying / I (111) and having a high magnetic flux density after strain relief annealing is disclosed.
  • Patent Document 8 does not discuss any increase in strength.
  • the iron loss evaluated is W15 / 50 and is not intended for a high-speed rotation motor.
  • Japanese Unexamined Patent Publication No. 60-238421 Japanese Unexamined Patent Publication No. Sho 62-1112723 Japanese Laid-Open Patent Publication No. 2-22442 Japanese Patent Laid-Open No. 2-8346 Japanese Unexamined Patent Publication No. 2005-113185 Japanese Unexamined Patent Publication No. 2007-186790 Japanese Unexamined Patent Publication No. 2010-090474 Japanese Unexamined Patent Publication No. 8-134606
  • An object of the present invention is to provide a non-oriented electrical steel sheet having high strength and excellent magnetic properties even after additional heat treatment, and a method for producing the non-oriented electrical steel sheet.
  • the non-oriented electrical steel sheet according to one embodiment of the present invention has a chemical composition of mass%, C: 0.0100% or less, Si: more than 3.0%, 5.0% or less, Mn: 0 0.1 to 3.0%, P: 0.20% or less, S: 0.0018% or less, and N: 0.0040% or less, Al: 0 to 0.9%, selected from Sn and Sb 1 or more types: 0 to 0.100%, Cr: 0 to 5.0%, Ni: 0 to 5.0%, Cu: 0 to 5.0%, Ca: 0 to 0.010%, and rare earth Element (REM): Containing 0 to 0.010%, the balance is composed of Fe and impurities, and is composed of crystal grains having a grain size of 100 ⁇ m or more in a cross section parallel to the rolling surface of the non-oriented electrical steel sheet.
  • REM rare earth Element
  • the area ratio of the crystal structure A is 1 to 30%, and the average grain size of the crystal structure B, which is a crystal structure other than the crystal structure A, is 25 ⁇ m or less.
  • the Vickers hardness HvA of the crystal structure A and the Vickers hardness HvB of the crystal structure B satisfy the formula (a). HvA / HvB ⁇ 1.000 (a)
  • the chemical composition is Al: 0.0001 to 0.9%, one or more selected from Sn and Sb: 0.005 to 0.100. %, Cr: 0.5-5.0%, Ni: 0.05-5.0%, Cu: 0.5-5.0%, Ca: 0.0010-0.0100%, and rare earth elements (REM): One or more selected from the group consisting of 0.0020 to 0.0100% or less may be contained.
  • REM rare earth elements
  • the manufacturing method of the non-oriented electrical steel sheet according to another aspect of the present invention is the manufacturing method of the non-oriented electrical steel sheet according to (1), and has the chemical composition described in (1).
  • the present inventors investigated the strength and magnetic properties of a high-strength non-oriented electrical steel sheet.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was pickled. Thereafter, cold rolling was performed on the hot-rolled steel sheet to produce a cold-rolled steel sheet having a thickness of 0.35 mm.
  • a non-oriented electrical steel sheet was manufactured by subjecting the cold-rolled steel sheet to final annealing at a maximum temperature of 770 ° C. At this time, the average cooling rate at 700 to 500 ° C. after the finish annealing was set to the following two types. Cooling rate condition 1: 30 ° C / sec Cooling rate condition 2: 60 ° C / sec
  • tensile strength and magnetic properties were measured for the produced non-oriented electrical steel sheet. Further, assuming a blank for the stator core, a sample was taken from a non-oriented electrical steel sheet, and an additional heat treatment was performed in a nitrogen atmosphere at 800 ° C. for 2 hours to sufficiently grow the crystal structure of the sample. The organization. Magnetic properties (magnetic flux density and iron loss) were measured for a sample having a crystal structure in which grains were sufficiently grown.
  • the non-oriented electrical steel sheet has a tensile strength of 600 MPa in any S content and any condition (heating rate condition 1, heating rate condition 2, cooling rate condition 1, cooling rate condition 2). These are the high strength compared to conventional non-oriented electrical steel sheets (for example, steel sheets generally applied to 50A230 of JISC2550). Moreover, the magnetic characteristics were equivalent to those of conventional non-oriented electrical steel sheets. Therefore, the non-oriented electrical steel sheet manufactured under any condition has characteristics suitable for a rotor blank.
  • the heating rate is increased in hot-rolled sheet annealing (heating rate condition 2: 60 ° C./second), and the cooling rate is increased in finish annealing (cooling).
  • (Speed condition 2: 60 ° C./second) Highest in non-oriented electrical steel sheet.
  • the magnetic properties after the additional heat treatment particularly the magnetic flux density, decreased. That is, only when the S content was low and the heating rate in hot-rolled sheet annealing and the cooling rate after finish annealing were high, the material had characteristics suitable for both the rotor blank and the stator core blank.
  • the present inventors have made a 1/4 thickness section parallel to the rolling surface of the non-oriented electrical steel sheet before additional heat treatment manufactured under each condition (in the section perpendicular to the rolling direction of the steel sheet, the thickness of the sheet is 1 / 4 depth position (cross section including the position of t / 4 when the thickness of the non-oriented electrical steel sheet is t (unit is mm)) is embedded, polished, and observed for structure.
  • the microstructure is a crystal structure A that is a crystal grain region having a grain size of 100 ⁇ m or more, and the grain size of each crystal grain is less than 100 ⁇ m and the average grain size is 25 ⁇ m. It was a mixed structure consisting of the following crystal structure B.
  • the non-oriented electrical steel sheets manufactured under any conditions were small in the structure at the optical microscope level. Therefore, it is considered that these non-oriented electrical steel sheets had almost the same strength and magnetic properties before additional heat treatment.
  • the present inventors observed the non-oriented electrical steel sheet manufactured under each condition with an electron microscope and X-rays.
  • the area ratio of A was 1 to 30%, and the Vickers hardness HvA of the crystal structure A was equal to or less than the Vickers hardness HvB of the crystal structure B.
  • the Vickers hardness HvA of the crystal structure A was larger than the Vickers hardness HvB of the crystal structure B.
  • the present inventors considered that the hardness ratio HvA / HvB affects the improvement of magnetic properties by the subsequent additional heat treatment. Therefore, further investigation was performed, and a structure was obtained in which appropriate strength was obtained before the additional heat treatment, and excellent magnetic properties were obtained when the grain growth was advanced by the additional heat treatment.
  • the non-oriented electrical steel sheet of the present invention completed based on the above knowledge has a chemical composition of mass%, C: 0.0100% or less, Si: more than 3.0%, 5.0% or less, Mn: Contains 0.1 to 3.0%, P: 0.20% or less, S: 0.0018% or less, and N: 0.0040% or less, and if necessary, Al: 0.9% or less
  • REM rare earth element
  • the method for producing a non-oriented electrical steel sheet according to the present invention includes a step of heating a slab having the above chemical composition at 1000 to 1200 ° C. and then hot rolling to produce a hot rolled steel sheet, On the other hand, a step of performing hot-rolled sheet annealing with an average heating rate at 750 to 850 ° C. of 50 ° C./second or more and a maximum reached temperature of 900 to 1150 ° C., A process of producing an intermediate steel sheet by performing cold rolling or warm rolling at a rolling reduction of 83% or more, and a temperature range of 700 to 800 ° C. and 700 to 500 ° C. for the intermediate steel sheet And a final annealing step in which the average cooling rate is 50 ° C./second or more.
  • non-oriented electrical steel sheet according to an embodiment of the present invention (a non-oriented electrical steel sheet according to this embodiment) and a method for manufacturing the non-oriented electrical steel sheet according to this embodiment will be described in detail.
  • Non-oriented electrical steel sheet The chemical composition of the non-oriented electrical steel sheet according to the present embodiment contains the following elements.
  • % relating to elements means “mass%”.
  • Carbon (C) has an effect of increasing strength by precipitation of carbides.
  • high strength is achieved mainly by solid solution strengthening of substitutional elements such as Si and control of the ratio of the crystal structure A and the crystal structure B. Therefore, C may not be contained for increasing the strength. That is, the lower limit of the C content includes 0%. However, C is usually unavoidably contained, so the lower limit may be over 0%.
  • the C content is 0.0100% or less.
  • the C content is preferably 0.0050% or less, and more preferably 0.0030% or less.
  • the fall of bending workability can be suppressed by controlling the particle size of a hot-rolled steel plate appropriately so that it may mention later.
  • the Si content exceeds 5.0%, the cold workability decreases. Accordingly, the Si content is 5.0% or less.
  • the Si content is 4.5% or less.
  • Mn 0.1 to 3.0%
  • Manganese (Mn) increases the electrical resistance of steel and reduces iron loss. If the Mn content is less than 0.1%, the above effect cannot be obtained. If the Mn content is less than 0.1%, Mn sulfide is finely generated. The fine Mn sulfide inhibits the domain wall movement or inhibits the grain growth during the manufacturing process. In this case, the magnetic flux density decreases. Therefore, the Mn content is 0.1% or more. Preferably, it is 0.15% or more, more preferably 0.4% or more. On the other hand, if the Mn content exceeds 3.0%, austenite transformation is likely to occur, and the magnetic flux density is lowered. Therefore, the Mn content is 3.0% or less. Preferably it is 2.5% or less, More preferably, it is 2.0% or less.
  • P 0.20% or less Phosphorus (P) increases the strength of steel by solid solution strengthening. However, if the P content is too high, P segregates and the steel becomes brittle. Therefore, the P content is 0.20% or less.
  • the P content is preferably 0.10% or less, and more preferably 0.07% or less.
  • S 0.0018% or less
  • Sulfur (S) is an impurity.
  • S forms sulfides such as MnS. Sulfides hinder the domain wall movement, and further inhibit the crystal grain growth, thereby deteriorating the magnetic properties.
  • the S content is preferably as low as possible.
  • the S content is 0.0018% or less.
  • it is 0.0013% or less, More preferably, it is 0.0008% or less.
  • S is an effective crystal structure A for avoiding a decrease in magnetic properties after the additional heat treatment. It is also an element that contributes to the formation of a dislocation structure therein. When obtaining this effect, the S content is preferably 0.0001% or more.
  • N 0.0040% or less Nitrogen (N) is an impurity. N decreases the magnetic properties after the additional heat treatment. Therefore, the N content is 0.0040% or less. The N content is preferably 0.0020% or less.
  • the chemical composition of the non-oriented electrical steel sheet according to the present embodiment is basically composed of the above-described elements, the remaining Fe and impurities. However, if necessary, in place of a part of Fe, one or more optional elements (Al, Sn, Sb, Cr, Ni, Cu, Ca, and / or REM) are further contained within the range shown below. May be. Since these optional elements do not necessarily have to be contained, the lower limit is 0%. Impurities are mixed from ore as a raw material, scrap, or production environment, etc. when industrially producing non-oriented electrical steel sheets, and in the non-oriented electrical steel sheets according to the present embodiment, It means what is allowed as long as it does not adversely affect.
  • optional elements Al, Sn, Sb, Cr, Ni, Cu, Ca, and / or REM
  • Al 0 to 0.9%
  • Aluminum (Al) is an optional element and may not be contained.
  • Al like Si, has an effect of deoxidizing steel. Al further increases the electrical resistance of the steel and reduces iron loss.
  • the Al content is preferably 0.0001% or more.
  • Si compared with Si, Al does not contribute to increasing the strength of steel.
  • the Al content is 0.9% or less. Preferably it is 0.7% or less.
  • One or more selected from the group consisting of Sn and Sb: 0 to 0.100% Tin (Sn) and antimony (Sb) are both optional elements and may not be contained.
  • Sn and Sb improve the texture by improving the texture of the non-oriented electrical steel sheet (for example, by increasing the number of crystal grains having an orientation that contributes to improving the magnetic characteristics).
  • the total content of one or more selected from the group consisting of Sn and Sb is preferably 0.005% or more. However, if the total content of these elements exceeds 0.100%, the steel becomes brittle. In this case, the steel plate is broken during the production or the scab is generated. Therefore, even when contained, the total content of one or more selected from the group consisting of Sn and Sb is 0.100% or less.
  • Chromium (Cr) is an optional element and may not be contained. Cr increases the electrical resistance of steel. In particular, if Cr is contained together with Si, the electrical resistance of the steel can be increased and the iron loss can be reduced as compared with the case where Si and Cr are contained alone. Further, Cr increases the productivity of high-Si steel such as the non-oriented electrical steel sheet according to this embodiment, and also improves the corrosion resistance. In order to obtain the above effect stably and effectively, the Cr content is preferably 0.5% or more. However, if the Cr content exceeds 5.0%, the effect is saturated and the cost increases. Therefore, even when it contains, Cr content is 5.0% or less. The Cr content is preferably 1.0% or less.
  • Ni 0 to 5.0%
  • Nickel (Ni) solidifies and strengthens the steel without lowering the saturation magnetic flux density, and further increases the electric resistance of the steel and reduces the iron loss.
  • the Ni content is preferably 0.05% or more. However, if the Ni content exceeds 5.0%, the cost increases. Therefore, even when contained, the Ni content is 5.0% or less.
  • the Ni content is preferably 2.0% or less.
  • Cu 0 to 5.0% Copper (Cu) increases the strength of the steel by solid solution strengthening. Further, Cu is subjected to an aging treatment at a temperature of about 500 ° C., thereby producing a fine Cu precipitate phase and strengthening the steel. In order to obtain the above effect stably and effectively, the Cu content is preferably 0.5% or more. However, if the Cu content exceeds 5.0%, the steel becomes brittle. Therefore, even when it contains, Cu content is 5.0% or less. The Cu content is preferably 2.0% or less.
  • Ca 0 to 0.010%
  • Rare earth element (REM) 0-0.010% Calcium (Ca) and REM bind to S in steel and fix S. This increases the magnetic properties of the steel.
  • the Ca content is preferably 0.001% or more, or the REM content is preferably 0.002% or more.
  • the effect will be saturated and cost will become high. Therefore, even when it contains, Ca content is 0.010% or less, and REM content is 0.010% or less.
  • REM in this embodiment means Sc, Y, and lanthanoid (La of atomic number 57 to Lu of 71), and the REM content means the total content of these elements.
  • Microstructure in cross section parallel to rolling surface of non-oriented electrical steel sheet In the cross section of the non-oriented electrical steel sheet, which is parallel to the rolling surface at a 1/4 depth position from the rolling surface, the microstructure is composed of crystal structure A and crystal structure B.
  • the crystal structure A is a region composed of crystal grains having a crystal grain size of 100 ⁇ m or more.
  • the crystal structure B is a region composed of crystal grains having a crystal grain size of less than 100 ⁇ m.
  • the crystal structure A is a region that is eroded and disappears by an additional heat treatment that performs gradual heating. If the area ratio of the crystal structure A is outside the range of 1 to 30% in the cross section parallel to the rolling surface, it is difficult to avoid a decrease in magnetic properties when grains are grown by additional heat treatment. A detailed mechanism will be described later. Furthermore, when the area ratio of the crystal structure A is less than 1%, the crystal structure B is easily coarsened, and the strength of the non-oriented electrical steel sheet is lowered. Further, when the area ratio of the crystal structure A exceeds 30%, the magnetic characteristics when the grains are grown by the additional heat treatment are reduced (deteriorated). Therefore, the area ratio of the crystal structure A is 1 to 30%. The preferable lower limit of the area ratio of the crystal structure A is 5%, and the preferable upper limit is 20%.
  • the mechanical properties of the non-oriented electrical steel sheet according to this embodiment are mainly determined by the crystal structure B.
  • the crystal structure B is a region where grains grow by an additional heat treatment in which gradual heating is performed. If the average grain size of the crystal structure B is larger than 25 ⁇ m, the magnetic properties before the additional heat treatment are improved, but it is difficult to satisfy the strength properties. Although the detailed mechanism will be described later, if the average grain size of the crystal structure B is larger than 25 ⁇ m, the magnetic properties when the grains are grown by the additional heat treatment are greatly deteriorated. Therefore, in the cross section parallel to the rolling direction, the average grain size of the crystal structure B needs to be 25 ⁇ m or less. A preferable upper limit of the average grain size of the crystal structure B is 20 ⁇ m, and more preferably 15 ⁇ m.
  • the cross section parallel to the rolling surface at the 1/4 depth position of the plate thickness from the rolling surface has the above-described structure. This is because the structure at the 1/4 depth position of the sheet thickness from the rolled surface is a typical structure of the steel sheet and greatly affects the characteristics of the steel sheet.
  • the area ratio of the crystal structure A and the average particle diameter of the crystal structure B can be measured by the following method.
  • a sample having a cross section parallel to the rolling surface at a 1/4 depth position from the rolling surface of the non-oriented electrical steel sheet is prepared by polishing or the like. After the surface of the sample is adjusted by electrolytic polishing with respect to the polished surface (hereinafter referred to as the observation surface), a crystal structure analysis using electron beam backscatter diffraction (EBSD) is performed.
  • EBSD electron beam backscatter diffraction
  • a boundary where the crystal orientation difference is 15 ° or more in the observation plane is defined as a crystal grain boundary, and each region surrounded by the crystal grain boundary is defined as one crystal grain, and includes 10,000 or more crystal grains.
  • a diameter (equivalent circle diameter) when a crystal grain is an area equivalent to a circle is defined as a grain size. That is, the particle diameter means the equivalent circle diameter.
  • a region composed of crystal grains having a grain size of 100 ⁇ m or more is defined as crystal structure A, and the area ratio is obtained. Further, an area composed of crystal grains having a diameter of less than 100 ⁇ m (that is, a structure other than the crystal structure A) is defined as a crystal structure B, and the average crystal grain size is obtained.
  • the Vickers hardness is measured by the above-described method at at least 20 points in the region of the crystal structure A, and the average value is defined as the Vickers hardness HvA of the crystal structure A.
  • the Vickers hardness is measured by the above-described method at at least 20 points in the region of the crystal structure B, and the average value is defined as the Vickers hardness HvB of the crystal structure B.
  • HvA / HvB since it is difficult to set HvA / HvB to less than 0.900, HvA / HvB may be set to 0.900 or more.
  • the lower limit of HvA / HvB may be 0.950, or 0.970 or more.
  • Crystal structure A in the present embodiment is generally not significantly different from a region that is not phagocytosed by “recrystallized grains”, that is, “unrecrystallized structure”, as observed with an optical microscope.
  • the crystal structure A has been sufficiently recovered by finish annealing and is very soft. For this reason, it is different from a general “unrecrystallized structure”.
  • the amount of accumulated strain for example, IQ value
  • the “crystal structure B” in the present embodiment is a region similar to a “recrystallized structure” in which crystals having a large orientation difference from the matrix are generated by nucleation from the processed structure and grown.
  • the crystal structure B in the present embodiment includes a region that is not phagocytosed by the recrystallized grains. Therefore, the “crystal structure B” in the present embodiment is defined separately from a simple “recrystallized structure”.
  • the non-oriented electrical steel sheet according to the present embodiment is characterized in that the hardness of the “crystal structure A” is equal to or less than the hardness of the “crystal structure B” (that is, the expression (1) is satisfied).
  • the non-oriented electrical steel sheet according to the present embodiment is also characterized by a particle size distribution.
  • the average grain size of the crystal structure B excluding the crystal structure A composed of crystal grains having a grain size of 100 ⁇ m or more present at a maximum of 30%, is very small as 25 ⁇ m or less. This means that there are almost no crystal grains having an intermediate size of about 30 to 90 ⁇ m in the microstructure. That is, in the non-oriented electrical steel sheet according to this embodiment, the crystal grain size distribution is a so-called mixed grain.
  • the particle size distribution is a normal distribution
  • in a crystal structure that has achieved grain growth such that a particle size of 100 ⁇ m exists there are relatively many crystal grains of several tens of ⁇ m, and the average grain size
  • the diameter is about 50 ⁇ m.
  • the magnetic flux density of the non-oriented electrical steel sheet before performing the additional heat treatment is defined as BA (T).
  • the magnetic flux density of the non-oriented electrical steel sheet after the additional heat treatment with a heating rate of 100 ° C./hour, a maximum temperature of 800 ° C., and a holding time at 800 ° C. of 2 hours is BB (T) It is defined as At this time, in the non-oriented electrical steel sheet according to the present embodiment, the magnetic flux densities BA and BB satisfy the following formula (2). BB / BA ⁇ 0.980 (2)
  • BB / BA is preferably 0.985 or more, and more preferably 0.990 or more.
  • the additional heat treatment preferentially grows the preferred orientation for the magnetic properties, and as a result, BB / BA may exceed 1.000.
  • BB / BA rarely exceeds 1.015.
  • the heating rate, maximum temperature reached, and holding time as described above are examples of additional heat treatment conditions.
  • this condition a value considered to be representative as a condition for strain relief annealing that is currently practically used is used.
  • the effect of suppressing the decrease in the magnetic flux density due to the additional heat treatment is not limited to this value in the heating rate, the maximum temperature reached, and the holding time, but to a certain wide range. You can also check within.
  • the effect can be obtained when the heating rate is 30 to 500 ° C./hour, the maximum temperature reached is 750 to 850 ° C., and the holding time at 750 ° C. or higher is 0.5 to 100 hours.
  • heat treatment is performed at a low speed and grain growth is performed at a relatively low temperature for a long time as compared with finish annealing in which heat treatment is performed for a long time at a high temperature.
  • the heating rate of the additional heat treatment is, for example, 500 ° C./hour or less.
  • the lower limit of the heating rate of the additional heat treatment is 30 ° C./hour.
  • the maximum attained temperature and holding time are 750 to 850 ° C., and the holding time at 750 ° C. or higher is 0.5 to 100 hours in consideration of general conditions for strain relief annealing.
  • the nitrogen (N) content and carbon (C) content forming inclusions (precipitates) in the steel are reduced to a very low level.
  • Precipitates formed on such steel are fine with a particle size of 1.0 ⁇ m or less, and many precipitates with a diameter of 0.2 ⁇ m or less are also formed.
  • Such fine precipitates for example, fine precipitates having a particle size of 0.2 ⁇ m or less, affect the magnetic properties and the like.
  • a crystal having a random orientation is easily formed by recrystallization from a high dislocation density region around the precipitate.
  • a mild heat treatment finish annealing process
  • Crystal structure A remains.
  • precipitates are present in such a crystal structure A
  • additional heat treatment is subsequently performed by slow heating and recrystallization proceeds, the crystal orientation is undesirable for the magnetic properties of the non-oriented electrical steel sheet. Development is encouraged.
  • the dislocation structure (recovered structure) in the crystal structure A before the additional heat treatment suppresses formation of a high dislocation density region due to precipitates and the like.
  • the cell structure is homogeneous (or a two-dimensional network structure)
  • the ratio (HvA / HvB) between the Vickers hardness HvA of the crystal structure A and the Vickers hardness HvB of the crystal structure B satisfies the formula (1). That is, the crystal structure A in which the dislocation structure forms a homogeneous cell structure or a simple two-dimensional structure is softer than the unrecrystallized structure in which a complex high dislocation density region is formed around the precipitate. In this case, a decrease in magnetic properties is suppressed after the additional heat treatment. Therefore, in the non-oriented electrical steel sheet according to the present embodiment, formula (1) is defined as an index indicating that the dislocation structure of the crystal structure A is a homogeneous cell structure.
  • the manufacturing method of said non-oriented electrical steel sheet is demonstrated.
  • the manufacturing method described below is an example of a method for manufacturing a non-oriented electrical steel sheet according to the present embodiment. Therefore, the non-oriented electrical steel sheet according to the present embodiment may be manufactured by a manufacturing method other than the manufacturing method described below.
  • the manufacturing method of the non-oriented electrical steel sheet according to the present embodiment includes a step of hot-rolling a slab to manufacture a hot-rolled steel plate (hot-rolling step), and annealing the hot-rolled steel plate (hot-rolled plate annealing). And a process of producing an intermediate steel sheet by performing cold rolling or warm rolling on the hot-rolled steel sheet after the hot-rolled sheet annealing (cold rolling process or warm) Rolling step) and a step of performing final annealing on the intermediate steel plate (finish annealing step).
  • hot-rolling step hot-rolled steel plate annealing
  • Hot rolling process In the hot rolling process, a slab is hot rolled to produce a hot rolled steel sheet.
  • Slabs are manufactured by well-known methods. For example, molten steel is manufactured in a converter or an electric furnace. The produced molten steel is subjected to secondary refining with a degassing facility or the like to obtain a molten steel having the above chemical composition. A slab is cast using molten steel by a continuous casting method or an ingot forming method. The cast slab may be subjected to partial rolling.
  • Hot rolling is performed on the slab prepared by the above steps.
  • the preferred heating temperature of the slab in the hot rolling process is 1000 to 1200 ° C. If the heating temperature of the slab exceeds 1200 ° C., the crystal grains become coarse in the slab before hot rolling.
  • the structure of the steel sheet having a high Si content is a ferrite single phase from the slab stage. Further, the structure does not transform in the heat history in the hot rolling process. Therefore, if the heating temperature of the slab is too high, the crystal grains are likely to be coarsened, and a coarse processed structure (flat structure) tends to remain after hot rolling.
  • the upper limit of the heating temperature of the slab is 1200 ° C.
  • the heating temperature of the slab is too low, the workability of the slab is lowered, and the productivity in a general hot rolling facility is lowered. Therefore, the lower limit of the slab heating temperature is 1000 ° C.
  • the upper limit with preferable slab heating temperature is 1180 degreeC, More preferably, it is 1160 degreeC.
  • the minimum with a preferable slab heating temperature is 1050 degreeC, More preferably, it is 1100 degreeC.
  • annealing hot-rolled sheet annealing
  • the recrystallization rate is 95% or more, and the average grain size of the recrystallized grains is more than 50 ⁇ m. If the recrystallization rate is less than 95% or the average grain size of the recrystallized grains is 50 ⁇ m or less, the crystal structure of the product is accumulated in ⁇ 111 ⁇ , and the magnetic properties are inferior.
  • the average heating rate HR 750-850 between 750 to 850 ° C. and the highest The reached temperature Tmax is as follows.
  • Average heating rate between 750 and 850 ° C. HR 750-850 50 ° C./second or more
  • an average heating rate HR 750-850 in the range of 750 to 850 ° C. is 50 More than °C / sec.
  • the average heating rate HR 750-850 is rapid heating of 50 ° C./second or more, recrystallization and grain growth can be started while maintaining a high dislocation density in the flat structure after hot rolling. In this case, the flat tissue can be easily lost.
  • the structure in which recrystallization is started while the dislocation density is kept high in this way, and the grain growth thereafter is performed according to the present embodiment by the cold rolling or warm rolling process and the finish annealing process that are continuously performed. It becomes a structure required for non-oriented electrical steel sheets.
  • the flat structure may recover before the start of recrystallization, or the recrystallization may be completed in a so-called “in situ recrystallization”.
  • in situ recrystallization in the observation at the optical microscope level, the difference from the one subjected to rapid heating is not clear.
  • crystal grains formed by recovery or in-situ recrystallization are different in crystal orientation from crystal grains formed by recrystallization. Therefore, if the average heating rate HR 750-850 is too slow, the structure after the cold-rolled steel sheet and recrystallization annealing will not be the structure required for the non-oriented electrical steel sheet according to the present embodiment.
  • the flat structure Since the flat structure is formed without undergoing transformation even if it is recrystallized after hot-rolled sheet annealing, the crystal orientation is likely to accumulate in a special orientation. Therefore, even if the flat structure subsequently undergoes a preferred cold rolling or warm rolling step and finish annealing step, it causes deterioration in magnetic properties when grains are grown by additional heat treatment by slow heating.
  • a preferable lower limit of the temperature range to which the average heating rate HR 750-850 is applied is 600 ° C., and more preferably 450 ° C. at which tissue recovery starts.
  • a preferred upper limit of the temperature range to which the above average heating rate HR 750-850 is applied is 900 ° C., more preferably 950 ° C. That is, the average heating rate between 450 and 950 ° C. is most preferably 50 ° C./second or more.
  • Maximum temperature Tmax 900-1150 ° C
  • the maximum temperature Tmax in hot-rolled sheet annealing is set to 900 to 1150 ° C. If the maximum temperature Tmax is too low, a recrystallized structure of 95% or more cannot be obtained, and the magnetic properties of the final product deteriorate. On the other hand, if the maximum temperature Tmax is too high, the recrystallized grain structure becomes coarse and it is easy to crack and break in the subsequent process, and the yield is significantly reduced.
  • the heat treatment time for hot-rolled sheet annealing is not particularly limited.
  • the heat treatment time is, for example, 20 seconds to 4 minutes.
  • Cold rolling or warm rolling is performed on the hot rolled steel sheet after the hot rolled sheet annealing process.
  • the warm rolling means a process of rolling a hot rolled steel sheet heated to 150 to 600 ° C.
  • the rolling reduction in cold rolling or warm rolling is preferably 83% or more.
  • the rolling reduction is less than 83%, the amount of recrystallized nuclei required for the next final annealing step is insufficient. In this case, it becomes difficult to properly control the dispersion state of the crystal structure A. If the rolling reduction is 83% or more, a sufficient amount of recrystallization nuclei can be secured. This is presumably because recrystallization nuclei are dispersed and increased by introducing sufficient strain in cold rolling or warm rolling. An intermediate steel plate is manufactured by the above process.
  • Finish annealing is performed on the intermediate steel sheet produced by the cold rolling or warm rolling process.
  • the conditions for finish annealing are as follows.
  • annealing temperature 700-800 ° C
  • the maximum temperature reached during finish annealing is less than 700 ° C.
  • recrystallization does not proceed sufficiently.
  • the magnetic properties of the non-oriented electrical steel sheet are deteriorated.
  • finishing annealing is performed by continuous annealing, the effect of correcting the plate shape of the non-oriented electrical steel sheet cannot be sufficiently obtained.
  • the highest temperature achieved during finish annealing exceeds 800 ° C., the area ratio of the crystal structure A becomes less than 1%, and the strength of the non-oriented electrical steel sheet decreases.
  • the soaking time at the highest temperature is preferably 1 to 50 seconds.
  • the average cooling rate CR 700-500 in the temperature range of 700 to 500 ° C. is the crystal structure A in the non-oriented electrical steel sheet. This is thought to be related to the formation of dislocation structures. If the average cooling rate CR 700-500 is less than 50 ° C./second , dislocation dispersion in the crystal structure A becomes non-uniform, and as a result, the hardness ratio HvA / HvB exceeds 1.000. In this case, the crystal orientation development in the additional heat treatment is hindered, and the magnetic properties after the additional heat treatment are deteriorated.
  • the average cooling rate CR 700-500 when the average cooling rate CR 700-500 is 50 ° C./second or more, the dislocation dispersion in the crystal structure A is promoted to be uniform, such as entanglement of dislocations around the precipitates and fixation of the final cell structure.
  • a preferable lower limit of the average cooling rate CR 700-500 is 100 ° C./second , more preferably 200 ° C./second . If the average cooling rate CR 700-500 exceeds 500 ° C./second, the temperature gradient in the longitudinal direction of the steel sheet becomes too large and the steel sheet may be deformed. Therefore, the preferable upper limit of the average cooling rate CR 700-500 is 500 ° C. / Sec.
  • the non-oriented electrical steel sheet according to the present embodiment is manufactured.
  • the thickness of the non-oriented electrical steel sheet is set to the final thickness in one cold rolling or warm rolling process after the hot-rolled sheet annealing process.
  • the said manufacturing method may further implement the process (insulating coating process) which forms an insulating coating in order to reduce a core loss with respect to the surface of the non-oriented electrical steel sheet after a finish annealing process.
  • the insulating coating process may be performed by a known method. In order to ensure good punchability, it is preferable to form an organic coating containing a resin. On the other hand, when emphasizing weldability, it is preferable to form a semi-organic or inorganic coating.
  • the inorganic component is, for example, dichromic acid-boric acid type, phosphoric acid type, silica type and the like.
  • the organic component is, for example, a general acrylic resin, acrylic styrene resin, acrylic silicon resin, silicon resin, polyester resin, epoxy resin, or fluorine resin.
  • a preferred resin is an emulsion type resin.
  • the insulating coating having adhesive ability is, for example, an acrylic resin, a phenol resin, an epoxy resin, or a melamine resin.
  • Table 1 The slab having the components shown in Table 1 was heated at the slab heating temperature shown in Table 2 and hot-rolled to produce a hot-rolled steel plate having a thickness of 2.2 mm.
  • Table 2 shows the finishing temperature FT (° C.) and the winding temperature CT (° C.) during hot rolling.
  • the manufactured hot-rolled steel sheet was subjected to hot-rolled sheet annealing.
  • the average heating rate HR 750-850 in the temperature range of 750 to 850 ° C. was 50 ° C./second in any test number.
  • the maximum temperature reached 900 ° C. and the holding time was 2 minutes.
  • test numbers 1-1 to 1-22, 1-24 to 1-26 are cold-rolled, and the test numbers 1-23 are warm-rolled at 200 ° C.
  • the intermediate steel plate was manufactured by carrying out. The rolling reduction during cold rolling was 88% in all test numbers. Through the above steps, an intermediate steel plate (cold rolled steel plate) having a thickness of 0.27 mm was manufactured.
  • Finish annealing was performed on the intermediate steel plate.
  • the maximum temperature achieved in the final annealing is as shown in Table 2, and the holding time was 30 seconds for all the test numbers.
  • the average cooling rate CR 700-500 in the temperature range of 700 to 500 ° C. was 100 ° C./second in any of the test numbers.
  • the non-oriented electrical steel sheet after finish annealing was coated with a well-known insulating film containing a phosphoric acid inorganic substance and an epoxy organic substance.
  • the non-oriented electrical steel sheet of each test number was manufactured by the above process.
  • the chemical composition was as shown in Table 1.
  • a crystal structure analysis using electron beam backscatter diffraction was performed.
  • the boundary where the crystal orientation difference is 15 ° or more of the observation plane is defined as a crystal grain boundary, and each region surrounded by the crystal grain boundary is determined as one crystal grain, and 10,000 crystal grains are obtained.
  • the region including the above (observation region) was set as the observation target.
  • the diameter of a circle having an area equivalent to the area of each crystal grain was defined as the grain size of each crystal grain.
  • a region composed of crystal grains having a grain size of 100 ⁇ m or more was defined as crystal structure A, and the area ratio (%) was obtained.
  • a region composed of crystal grains having a diameter of less than 100 ⁇ m was defined as a crystal structure B, and an average crystal grain size ( ⁇ m) was obtained.
  • Epstein test pieces cut out in the rolling direction (L direction) and in the direction perpendicular to the rolling direction (C direction) in accordance with JIS C 2550-1 (2011) were prepared from the non-oriented electrical steel sheets of the respective test numbers.
  • the Epstein test piece was subjected to an electromagnetic steel strip test method in accordance with JIS C 2550-1 (2011) and 2550-3 (2011), and magnetic properties (magnetic flux density B 50 and iron loss W 10/400 ) Asked.
  • the magnetic flux density B 50 obtained by this test before the additional heat treatment was defined as the magnetic flux density BA (T).
  • Epstein test pieces cut out in the rolling direction (L direction) and in the direction perpendicular to the rolling direction (C direction) in accordance with JIS C 2550-1 (2011) were prepared from the non-oriented electrical steel sheets of the respective test numbers.
  • the Epstein test piece was subjected to additional heat treatment in a nitrogen atmosphere at a heating rate of 100 ° C./hour, a maximum temperature of 800 ° C. and a holding time at the maximum temperature of 800 ° C. of 2 hours.
  • the magnetic properties were determined in accordance with JIS C 2550-1 (2011) and 2550-3 (2011) for the Epstein test piece after the additional heat treatment.
  • the magnetic flux density B 50 obtained by this test after the additional heat treatment was defined as the magnetic flux density BB (T).
  • Table 2 shows the results obtained by the evaluation test.
  • the chemical compositions of the non-oriented electrical steel sheets Nos. 1-1 to 1-3, 1-13, 1-15, and 1-17 to 23 were appropriate, and the manufacturing conditions were also appropriate.
  • the area ratio of the crystal structure A was 1 to 30%, and the average grain size of the crystal structure B was 25 ⁇ m or less.
  • the ratio (HvA / HvB) of the hardness HvA of the crystal structure A and the hardness HvB of the crystal structure B was 1.000 or less.
  • the tensile strength TS was 600 MPa or more, indicating an excellent strength.
  • the magnetic flux density BB after the additional heat treatment was 1.65 T or more
  • the iron loss W 10/400 was less than 12.5 W / kg, and excellent magnetic properties were obtained.
  • the ratio (BB / BA) of the magnetic flux density BB after the additional heat treatment to the magnetic flux density BA during the additional heat treatment was 0.980 or more, and the decrease in the magnetic flux density was suppressed even after the additional heat treatment.
  • test numbers 1-6 the chemical composition was appropriate and the slab heating temperature was also appropriate. However, the highest temperature reached in finish annealing exceeded 800 ° C. Therefore, the area ratio of the crystal structure A was less than 1%, and the tensile strength TS was as low as less than 600 MPa.
  • the C content was outside the scope of the present invention.
  • the magnetic flux density BB after the additional heat treatment was as low as less than 1.65 T, and the iron loss W 10/400 was greater than 12.5 W / kg.
  • the Si content was outside the scope of the present invention.
  • the Mn content was outside the scope of the present invention.
  • the magnetic flux density BB after the additional heat treatment was as low as less than 1.65 T, the iron loss W 10/400 was greater than 12.5 W / kg, and BB / BA was also less than 0.980.
  • Slabs of steel types A, B, C and D in Table 1 were prepared.
  • the prepared slab was heated at a slab heating temperature of 1120 ° C. and subjected to hot rolling to produce a hot rolled steel sheet.
  • the finishing temperature FT during hot rolling was 890 to 920 ° C.
  • the winding temperature CT was 590 to 630 ° C.
  • the manufactured hot-rolled steel sheet was subjected to hot-rolled sheet annealing under the conditions shown in Table 3.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was pickled.
  • the hot rolled steel sheet after pickling was cold rolled at a reduction rate of 88% to produce an intermediate steel sheet (cold rolled steel sheet) having a thickness of 0.27 mm.
  • a sample was taken from a part of the hot-rolled steel sheet after the hot-rolled sheet annealing, the microstructure was observed in a cross section perpendicular to the rolling direction, and the recrystallization rate and the average grain size of the recrystallized grains were observed.
  • the recrystallization rate was defined as a ratio of a portion excluding a region that looks black by natal etching by observing an optical microscope structure.
  • the average grain size of the recrystallized grains was determined by measuring the average section length by the line segment method using a microstructural photograph in which the total thickness is within the field of view, and defining the grain size as 1.13 times larger. At that time, the number of line segments was determined such that the line segments were parallel to the plate thickness direction, and the number of points where the grain boundaries and the line segments crossed exceeded 200.
  • the recrystallization rate was 95% or more, and the average grain size of the recrystallized grains exceeded 50 ⁇ m.
  • the recrystallization rate was 93%.
  • Finish annealing was performed on the intermediate steel plate.
  • Table 3 shows the maximum temperature reached in the finish annealing. Each holding time was 30 seconds.
  • the average cooling rates CR 700-500 were all 100 ° C./second .
  • the non-oriented electrical steel sheet after finish annealing was coated with a well-known insulating film containing a phosphoric acid inorganic substance and an epoxy organic substance.
  • the non-oriented electrical steel sheet of each test number was manufactured by the above process.
  • the chemical composition was as shown in Table 1.
  • the magnetic properties (magnetic flux density BB and iron loss W 10/400 ) of the non-oriented electrical steel sheet after the additional heat treatment were determined by the same method as in Example 1.
  • the magnetic flux density BB after the additional heat treatment was 1.65 T or more
  • the iron loss W 10/400 was less than 12.5 W / kg, and excellent magnetic properties were obtained.
  • the ratio (BB / BA) of the magnetic flux density BB after the additional heat treatment to the magnetic flux density BA during the additional heat treatment was 0.980 or more, and the decrease in the magnetic flux density was suppressed even after the additional heat treatment.
  • the average heating rate HR 750-850 was less than 50 ° C./second . Therefore, the hardness ratio HvA / HvB exceeded 1.000. As a result, the magnetic flux density BB after the additional heat treatment was as low as less than 1.65 T, and BB / BA was also less than 0.980.
  • the maximum temperature reached in finish annealing exceeded 800 ° C. Therefore, the average grain size of the crystal structure B was larger than 25 ⁇ m, and the tensile strength TS was as low as less than 600 MPa.
  • Slabs of steel types C to F in Table 1 were prepared.
  • the prepared slab was heated at a slab heating temperature of 1180 ° C. and subjected to hot rolling to produce a hot rolled steel sheet.
  • the finishing temperature FT during hot rolling was 890 to 920 ° C.
  • the winding temperature CT was 590 to 630 ° C.
  • the manufactured hot-rolled steel sheet was subjected to hot-rolled sheet annealing.
  • the average heating rate HR 750-850 in the temperature range of 750 to 850 ° C. was 50 ° C./second in any test number.
  • the maximum temperature reached was 900 ° C. and the holding time was 2 minutes.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was pickled.
  • the hot-rolled steel sheet after pickling was cold-rolled at a reduction rate of 87% to produce an intermediate steel sheet (cold-rolled steel sheet) having a thickness of 0.25 mm.
  • Table 4 shows the annealing temperature (maximum reached temperature), holding time, and average cooling rate CR 700-500 in the final annealing .
  • the magnetic properties (magnetic flux density BB and iron loss W 10/400 ) of the non-oriented electrical steel sheet after the additional heat treatment were determined by the same method as in Example 1.
  • the chemical compositions of the non-oriented electrical steel sheets with test numbers 3-3, 3-4 and 3-12 were appropriate, and the production conditions were also appropriate.
  • the area ratio of the crystal structure A was 1 to 30%, and the average grain size of the crystal structure B was 25 ⁇ m or less.
  • the ratio (HvA / HvB) of the hardness HvA of the crystal structure A and the hardness HvB of the crystal structure B was 1.000 or less. Therefore, the tensile strength TS was 600 MPa or more, and an excellent strength was exhibited.
  • the magnetic flux density BB after the additional heat treatment was 1.65 T or more
  • the iron loss W 10/400 was 10.0 W / kg or less
  • excellent magnetic properties were obtained.
  • the ratio (BB / BA) of the magnetic flux density BB after the additional heat treatment to the magnetic flux density BA during the additional heat treatment was 0.980 or more, and the decrease in the magnetic flux density was suppressed even after the additional heat treatment.
  • the average cooling rate CR 700-500 was further less than 50 ° C./second . Therefore, the hardness ratio HvA / HvB exceeded 1.000. As a result, the magnetic flux density BB after the additional heat treatment was as low as less than 1.65 T, and BB / BA was also less than 0.980.
  • a steel type A slab in Table 1 was prepared.
  • the prepared slabs were heated at a slab heating temperature of 1180 ° C. and hot rolled to produce hot rolled steel sheets.
  • the slab heating temperature was 1240 ° C., which exceeded 1200 ° C.
  • the finishing temperature FT during hot rolling was 890 to 920 ° C.
  • the winding temperature CT was 590 to 630 ° C.
  • the manufactured hot-rolled steel sheet was subjected to hot-rolled sheet annealing.
  • the average heating rate HR 750-850 in the temperature range of 750 to 850 ° C. is 60 ° C./second in test numbers 4-1 to 4-5, and test numbers 4-6 to 4-9.
  • the maximum temperature reached 900 ° C. and the holding time was 2 minutes.
  • the hot-rolled steel sheet after hot-rolled sheet annealing was pickled.
  • the hot-rolled steel sheet after pickling was cold-rolled at a reduction rate of 87% to produce an intermediate steel sheet (cold-rolled steel sheet) having a thickness of 0.25 mm.
  • the average cooling rate CR 700-500 in the temperature range of 700 to 500 ° C. is 100 ° C./second in test numbers 4-1 to 4-5, and 40 ° C./second in test numbers 4-6 to 4-9. Second.
  • the non-oriented electrical steel sheet after finish annealing was coated with a well-known insulating film containing a phosphoric acid inorganic substance and an epoxy organic substance.
  • the non-oriented electrical steel sheet of each test number was manufactured by the above process.
  • the chemical composition was as shown in Table 1.
  • Epstein test pieces cut out in the rolling direction (L direction) and in the direction perpendicular to the rolling direction (C direction) in accordance with JIS C 2550-1 (2011) were prepared from the non-oriented electrical steel sheets of the respective test numbers.
  • the Epstein test piece was subjected to additional heat treatment in a nitrogen atmosphere at the heating rate (° C./hour), the maximum temperature reached (° C.), and the holding time (hour) at 800 ° C. shown in Table 5.
  • the Epstein test piece after the additional heat treatment was subjected to an electromagnetic steel strip test method in accordance with JIS C 2550-1 (2011) and 2550-3 (2011) to obtain magnetic properties (magnetic flux density B 50 and iron loss W 10/400 ).
  • the magnetic flux density B 50 obtained by this test after the additional heat treatment was defined as the magnetic flux density BB (T).
  • the non-oriented electrical steel sheets that are the materials of test numbers 4-6 to 4-9 and that have been subjected to finish annealing with inadequate production conditions are subjected to additional heat treatment at a slow heating rate, and the magnetic flux density after the additional heat treatment
  • the drop of the BB / BA was less than 0.980. From the above results, in order to suppress the decrease in magnetic flux density, it is necessary to set the heating rate in the additional heat treatment to rapid heating that is similar to continuous annealing. The decline was found to be an unavoidable material. In addition, iron loss decreased to a level commensurate with grain growth and strain removal by additional heat treatment in all materials.
  • a non-oriented electrical steel sheet having high strength and excellent magnetic properties even after additional heat treatment and a method for producing the same can be obtained.
  • the non-oriented electrical steel sheet of the present invention can be widely applied to uses that require high strength and excellent magnetic properties.
  • the present invention is particularly suitable for parts that are subjected to large stress, such as a rotor of a high-speed rotating machine such as a drive motor of a turbine generator, an electric vehicle, or a hybrid vehicle, or a motor for a machine tool.
  • it is suitable for the use which manufactures the rotor material and stator material of a high-speed rotation motor from the same steel plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この無方向性電磁鋼板は、化学組成が、質量%で、C:0.010%以下、Si:3.0%超、5.0%以下、Mn:0.1~3.0%、P:0.20%以下、S:0.0018%以下、及び、N:0.004%以下、Al:0~0.9%、Sn及びSbから選択される1種以上:0~0.100%、Cr:0~5.0%、Ni:0~5.0%、Cu:0~5.0%、Ca:0~0.01%、及び、希土類元素(REM):0~0.01%を含有し、残部はFe及び不純物からなり、前記無方向性電磁鋼板の圧延面に平行な断面において、粒径が100μm以上である結晶粒で構成される結晶組織Aの面積率が1~30%であり、前記結晶組織A以外の結晶組織である結晶組織Bの平均粒径が25μm以下であり、前記結晶組織Aのビッカース硬さHvAと前記結晶組織Bのビッカース硬さHvBとがHvA/HvB≦1.000を満たす。

Description

無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法に関する。
 本願は、2017年03月07日に、日本に出願された特願2017-042547号に基づき優先権を主張し、その内容をここに援用する。
 近年、高速回転を行うモータ(以下、高速回転モータという)が増加している。高速回転モータでは、ロータのような回転体に作用する遠心力が大きくなる。したがって、高速回転モータのロータの素材となる電磁鋼板には、高い強度が求められる。
 また、高速回転モータでは、高周波磁束により渦電流が発生し、モータ効率が低下し、発熱する。発熱量が多くなれば、ロータ内の磁石が減磁する。そのため、高速回転モータのロータには、低鉄損が求められる。したがって、ロータの素材となる電磁鋼板には、高い強度だけではなく、優れた磁気特性も求められる。
 固溶強化、析出強化、結晶粒微細化等により、鋼板の強度は高まる。しかしながら、これらの強化機構により鋼板を高強度にした場合、磁気特性が低下する場合がある。したがって、無方向性電磁鋼板において高強度と優れた磁気特性とを両立させることは容易ではない。
 また、無方向性電磁鋼板に対して、追加熱処理が実施される場合がある。たとえば、モータ用ステータコアとして用いるためのブランクを無方向性電磁鋼板から切り出して使用する場合、ブランクの中央部には空間が形成される。この中央部の空間を形成するために切り出された部分をロータ用ブランクとして使用すれば、すなわち、1つの無方向性電磁鋼板から、ロータ用ブランク及びステータコア用ブランクを作製すれば、歩留りが高まるので、好ましい。
 ロータ用ブランクには、上述したように、特に強度と低鉄損とが要求される。一方、ステータコア用ブランクには高強度は要求されないものの、優れた磁気特性(高磁束密度及び低鉄損)が要求される。このため、1つの無方向性電磁鋼板からロータ用ブランク及びステータコア用ブランクを作製する場合、ステータ用に切り出されたブランクはステータコアに成形された後、高強度化された無方向性電磁鋼板の加工による歪みを除去して磁気特性を高めるために、追加熱処理を実施して十分に再結晶させる必要がある。
 したがって、ステータコア用ブランクとロータ用ブランクとが作製される無方向性電磁鋼板では、高い強度と、追加熱処理前後における優れた磁気特性とが求められる。
 特許文献1~7には、高強度と優れた磁気特性との両立を図る無方向性電磁鋼板が開示されている。
 特許文献1では、Si:3.5~7.0%、Ti:0.05~3.0%、W:0.05~8.0%、Mo:0.05~3.0%、Mn:0.1~11.5%、Ni:0.1~20.0%、Co:0.5~20.0%及びAl:0.5~18.0%のうちから選んだ一種又は二種以上を、20.0%を超えない範囲において含有する無方向性電磁鋼板が開示されている。特許文献1では、Si含有量を高め、Ti、W、Mo、Mn、Ni、Co、Alにより固溶強化することにより、鋼板の強度を高めている。
 特許文献2では、Si:3.5~7.0%を含有し、かつ、W:0.05~9.0%、Mo:0.05~9.0%、Ti:0.05~10.0%、Mn:0.1~11.0%、Ni:0.1~20.0%、Co:0.5~20.0%、及び、Al:0.5~13.0%からなる群から選択される1種以上を含有するスラブを熱間圧延によって熱延板としたのち、冷間圧延を実施して、0.01~0.35mmの最終板厚とし、ついで800~1250℃の温度範囲で焼鈍を実施して平均結晶粒径を0.01~5.0mmとする、高張力軟磁性鋼板の製造方法が開示されている。
 特許文献3では、C:0.01%以下、Si:2.0%以上4.0%未満、Al:2.0%以下、及びP:0.2%以下を含有し、かつ、Mn、Niのうち1種以上を0.3%≦Mn+Ni<10%の範囲で含有し、残部Fe及び不可避不純物元素からなる高張力電磁鋼板が開示されている。特許文献3では、Mn及びNiによる固溶強化によって鋼板の強度を高めている。
 特許文献4では、C:0.04%以下、Si:2.0%以上4.0%未満、Al:2.0%以下、及びP:0.2%以下を含有し、かつ、Mn、Niのうち1種以上を0.3%≦Mn+Ni<10%の範囲で含有し、かつ、Nb、Zrのうち1種又は2種を制御して、0.1<(Nb+Zr)/8(C+N)<1.0とし、残部Fe及び不可避不純物元素からなる高張力電磁鋼板が開示されている。特許文献4では、Mn及びNiによる固溶強化によって鋼板の強度を高め、さらに、Nb、Zr等の炭窒化物を利用することによって、高強度と磁気特性との両立を図っている。
 特許文献5では、質量%で、C:0.060%以下、Si:0.2~3.5%、Mn:0.05~3.0%、P:0.30%以下、S:0.040%以下、Al:2.50%以下、N:0.020%以下を含有し、残部Feおよび不可避的不純物からなり、かつ、鋼材内部に加工組織が残存する高強度電磁鋼板が開示されている。
 特許文献6では、質量%で、C及びNを、C:0.010%以下及びN:0.010%以下、かつC+N≦0.010%に抑制し、Si:1.5%以上5.0%以下、Mn:3.0%以下、Al:3.0%以下、P:0.2%以下、S:0.01%以下及びTi:0.05%以上0.8%以下を、Ti/(C+N)≧16となるように含有し、残部Fe及び不可避的不純物の成分組成を有し、かつ鋼板中の未再結晶回復組織の存在比率が面積率で50%以上である高強度無方向性電磁鋼板が開示されている。
 特許文献7では、質量%で、C:0.010%以下、Si:3.5%超5.0%以下、Al:0.5%以下、P:0.20%以下、S:0.002%以上0.005%以下、及びN:0.010%以下を含み、かつMnをS含有量(質量%)との関係で(5.94×10-5)/(S%)≦ Mn ≦(4.47×10-4)/(S%)を満足する範囲で含有し、残部はFeおよび不可避的不純物の成分組成からなり、鋼板圧延方向断面(ND-RD断面)における再結晶粒の面積率が30%以上90%以下で、かつ連結した未再結晶粒群の圧延方向長さが1.5mm以下である無方向性電磁鋼板が開示されている。
 上述した特許文献1~7に代表されるように、高強度及び優れた磁気特性の両立を目的とした無方向性電磁鋼板が多く開発されている。
 しかしながら、特許文献1~7に開示された無方向性電磁鋼板では、追加熱処理後の特性については考慮されていない。本発明者らが検討した結果、これらの文献に開示された無方向性電磁鋼板に対して追加熱処理を実施した場合、磁気特性が低下する場合があり得ることが分かった。
 特許文献8には、鋼中に重量%で7.00%以下のSiと0.010%以下のCを含有し、歪取り焼鈍前の鋼板の表層から板厚の1/5の深さの部分の仮面平行な面における(100)、(111)方位のX線反射面強度のランダム集合組織に対する比の値であるI(100)とI(111)とが、0.50≦I(100) /I(111)を満たす集合組織を有する、歪取り焼鈍後の磁束密度が高い無方向性電磁鋼板が開示されている。
 しかしながら、特許文献8では高強度化については何ら検討されていない。また、特許文献8では、評価されている鉄損がW15/50であり、高速回転モータを対象とするものではない。また、歪取り焼鈍後にW10/400のような高周波鉄損が優れるかどうかについても不明である。高強度化を図った鋼板と高強度化を図っていない鋼板とでは、熱処理による磁気特性への影響が異なる。そのため、特許文献8は、高強度無方向性電磁鋼板における熱処理後の磁気特性の向上を示唆するものではない。
 上述の通り、従来、高強度と追加熱処理前後における優れた磁気特性とを有する無方向性電磁鋼板は開示されていない。
日本国特開昭60-238421号公報 日本国特開昭62-112723号公報 日本国特開平2-22442号公報 日本国特開平2-8346号公報 日本国特開2005-113185号公報 日本国特開2007-186790号公報 日本国特開2010-090474号公報 日本国特開平8-134606号公報
 本発明は、上記の課題に鑑みてなされた。本発明の目的は、高強度を有し、かつ、追加熱処理後においても優れた磁気特性を有する無方向性電磁鋼板、及び、その無方向性電磁鋼板の製造方法を提供することである。
 (1)本発明の一態様に係る無方向性電磁鋼板は、化学組成が、質量%で、C:0.0100%以下、Si:3.0%超、5.0%以下、Mn:0.1~3.0%、P:0.20%以下、S:0.0018%以下、及び、N:0.0040%以下、Al:0~0.9%、Sn及びSbから選択される1種以上:0~0.100%、Cr:0~5.0%、Ni:0~5.0%、Cu:0~5.0%、Ca:0~0.010%、及び、希土類元素(REM):0~0.010%を含有し、残部はFe及び不純物からなり、前記無方向性電磁鋼板の圧延面に平行な断面において、粒径が100μm以上である結晶粒で構成される結晶組織Aの面積率が1~30%であり、前記結晶組織A以外の結晶組織である結晶組織Bの平均粒径が25μm以下であり、前記結晶組織Aのビッカース硬さHvAと前記結晶組織Bのビッカース硬さHvBとが式(a)を満たす。
HvA/HvB≦1.000 (a)
(2)上記(1)に係る無方向性電磁鋼板は、前記化学組成が、Al:0.0001~0.9%、Sn及びSbから選択される1種以上:0.005~0.100%、Cr:0.5~5.0%、Ni:0.05~5.0%、Cu:0.5~5.0%、Ca:0.0010~0.0100%、及び、希土類元素(REM):0.0020~0.0100%以下からなる群から選択される1種以上を含有してもよい。
(3)本発明の別の態様に係る無方向性電磁鋼板の製造方法は、(1)に記載の無方向性電磁鋼板の製造方法であって、(1)に記載の前記化学組成を有するスラブを1000~1200℃で加熱した後、熱間圧延を実施して熱延鋼板を製造する工程と、前記熱延鋼板に対して、750~850℃での平均加熱速度を50℃/秒以上とし、最高到達温度を900~1150℃とする熱延板焼鈍を実施する工程と、前記熱延板焼鈍後の前記熱延鋼板に対して圧下率83%以上で冷間圧延又は温間圧延を実施して中間鋼板を製造する工程と、前記中間鋼板に対して、最高到達温度を700~800℃、700~500℃の温度範囲における平均冷却速度を50℃/秒以上とする仕上げ焼鈍を実施する工程と、を備える。
 本発明の上記態様によれば、高強度を有し、かつ、追加熱処理後においても磁気特性に優れる無方向性電磁鋼板及びその製造方法が得られる。
 本発明者らは、上記の課題を解決するために、高強度無方向性電磁鋼板の強度及び磁気特性を調査した。
 初めに、質量%で、C:0.0012%、Si:3.3%、Mn:0.4%、Al:0.3%、P:0.02%、N:0.0016%を含有し、さらに、S:0.0021%を含有するスラブと、C、Si、Mn、Al、P、N含有量は上記と同じであり、かつ、S:0.0011%を含有するスラブとの2つのスラブを準備した。2つのスラブを1150℃で加熱した後、熱間圧延を実施して、2.0mmの板厚の熱延鋼板を製造した。これらの熱延鋼板に対して、熱延板焼鈍を実施した。熱延板焼鈍の最高到達温度は1050℃であり、750~850℃の温度範囲における平均加熱速度を、次の2種類とした。
 加熱速度条件1:30℃/秒、
 加熱速度条件2:60℃/秒
 熱延板焼鈍後の熱延鋼板に対して酸洗を実施した。その後、熱延鋼板に対して冷間圧延を実施して、0.35mmの板厚の冷延鋼板を製造した。冷延鋼板に対して770℃の最高到達温度で仕上げ焼鈍を実施して、無方向性電磁鋼板を製造した。このとき、仕上げ焼鈍後の700~500℃での平均冷却速度を、次の2種類とした。
 冷却速度条件1:30℃/秒
 冷却速度条件2:60℃/秒
 ロータ用ブランクを想定して、製造された無方向性電磁鋼板に対して引張強度及び磁気特性(磁束密度及び鉄損)を測定した。
 さらに、ステータコア用ブランクを想定して、無方向性電磁鋼板からサンプルを採取して、窒素雰囲気中において800℃で2時間保持する追加熱処理を実施して、サンプルの組織を十分に粒成長した結晶組織とした。十分に粒成長した結晶組織を有するサンプルに対して、磁気特性(磁束密度及び鉄損)を測定した。
 測定の結果、いずれのS含有量、及び、いずれの条件(加熱速度条件1、加熱速度条件2、冷却速度条件1、冷却速度条件2)においても、無方向性電磁鋼板は、引張強度が600MPa以上であり、従来の無方向性電磁鋼板(例えばJISC2550の50A230に一般に適用される鋼板)と比較して高強度であった。また、磁気特性は従来の無方向性電磁鋼板と同等であった。
 したがって、いずれの条件で製造された無方向性電磁鋼板も、ロータ用ブランクに適する特性を有していた。
 一方、追加熱処理後の磁気特性においては、S含有量が低く、熱延板焼鈍において加熱速度を速め(加熱速度条件2:60℃/秒)、かつ、仕上げ焼鈍において冷却速度を速めた(冷却速度条件2:60℃/秒)無方向性電磁鋼板で最も高くなった。これに対し、S含有量が高い、加熱速度が遅い(加熱速度条件1:30℃/秒)、または、仕上げ焼鈍において冷却速度が遅い(冷却速度条件1:30℃/秒)無方向性電磁鋼板では、追加熱処理後の磁気特性、特に磁束密度が低下した。
 つまり、S含有量が低く、熱延板焼鈍での加熱速度、及び、仕上げ焼鈍後の冷却速度が速い場合にのみ、ロータ用ブランク及びステータコア用ブランクのいずれにも適する特性を有していた。
 本発明者らは、各条件で製造された追加熱処理前の無方向性電磁鋼板の圧延面に平行な1/4厚断面(鋼板の圧延方向に垂直な断面において、圧延面から板厚の1/4深さ位置(無方向性電磁鋼板の厚さをt(単位はmm)としたときのt/4の位置を含む断面))を埋め込み、研磨して、組織観察を行った。その結果、いずれの無方向性電磁鋼板においても、ミクロ組織は、粒径が100μm以上の結晶粒の領域である結晶組織Aと、各結晶粒の粒径が100μm未満であり平均粒径が25μm以下である結晶組織Bとからなる混合組織であった。
 上述の通り、いずれの条件で製造された無方向性電磁鋼板も、光学顕微鏡レベルの組織での差異は小さかった。そのため、これらの無方向性電磁鋼板については、追加熱処理前の強度及び磁気特性がほぼ同等であったと考えられる。
 一方で、上述したように、それぞれの条件で製造された無方向性電磁鋼板を追加熱処理した場合、追加熱処理後の磁束密度には明瞭な差が生じた。これは、追加熱処理前の結晶組織Aに含まれる組織が熱処理によって粒成長した結果、それぞれの無方向性電磁鋼板において結晶方位が異なる状態となったことによる材質変化であると考えられる。すなわち、S含有量や製造条件により、追加熱処理時に発達する結晶方位に差が生じたと考えられる。本発明者らは、追加熱処理時に発達する結晶方位に差が生じた理由は、光学顕微鏡レベルでは判別できない結晶組織A内の微細構造(転位構造)の違いにあると考えた。
 そこで、本発明者らは、各条件で製造された無方向性電磁鋼板を、電子顕微鏡及びX線にて観察した。その結果、S含有量が低く、かつ、熱延板焼鈍において加熱速度を速め(60℃/秒)、仕上げ焼鈍において冷却速度を速めた(60℃/秒)無方向性電磁鋼板では、結晶組織Aの面積率が1~30%であり、かつ、結晶組織Aのビッカース硬さHvAが、結晶組織Bのビッカース硬さHvBと同等以下であった。これに対し、その他の条件で製造された無方向性電磁鋼板では、いずれも、結晶組織Aのビッカース硬さHvAが、結晶組織Bのビッカース硬さHvBよりも大きい値であった。
 上記結果に基づいて、本発明者らは、硬さ比HvA/HvBが、その後の追加熱処理による磁気特性向上に影響を与えると考えた。そこで、さらに検討を行い、追加熱処理前において適切な強度が得られ、さらに追加熱処理により粒成長を進行させた際に優れた磁気特性が得られる組織を特定した。
 以上の知見に基づいて完成した本発明の無方向性電磁鋼板は、化学組成が、質量%で、C:0.0100%以下、Si:3.0%超、5.0%以下、Mn:0.1~3.0%、P:0.20%以下、S:0.0018%以下、及び、N:0.0040%以下を含有し、必要に応じて、Al:0.9%以下、Sn及びSbから選択される1種以上:0.100%以下、Cr:5.0%以下、Ni:5.0%以下、及び、Cu:5.0%以下、Ca:0.010%以下、及び、希土類元素(REM):0.010%以下からなる群から選択される1種以上を含有し、残部はFe及び不純物からなり、無方向性電磁鋼板の圧延面に平行な断面において、粒径が100μm以上である結晶粒で構成される結晶組織Aの面積率が1~30%であり、結晶組織A以外の結晶組織である結晶組織Bの平均粒径が25μm以下であり、結晶組織Aのビッカース硬さHvAと結晶組織Bのビッカース硬さHvBとが式(1)を満たす。
HvA/HvB≦1.000 (1)
 また、本発明の無方向性電磁鋼板の製造方法は、上記化学組成を有するスラブを1000~1200℃で加熱した後、熱間圧延を実施して熱延鋼板を製造する工程と、熱延鋼板に対して、750~850℃での平均加熱速度を50℃/秒以上とし、最高到達温度を900~1150℃とする熱延板焼鈍を実施する工程と、熱延板焼鈍後の熱延鋼板に対して圧下率83%以上で冷間圧延又は温間圧延を実施して中間鋼板を製造する工程と、中間鋼板に対して、最高到達温度を700~800℃、700~500℃の温度範囲における平均冷却速度を50℃/秒以上とする仕上げ焼鈍工程と、を備える。
 以下、本発明の一実施形態に係る無方向性電磁鋼板(本実施形態に係る無方向性電磁鋼板)及び本実施形態に係る無方向性電磁鋼板の製造方法について詳述する。
 [無方向性電磁鋼板]
 本実施形態に係る無方向性電磁鋼板の化学組成は、次の元素を含有する。以下、元素に関する%は「質量%」を意味する。
 C:0.0100%以下
 炭素(C)は炭化物の析出により強度を高める効果を有する。しかしながら、本実施形態に係る無方向性電磁鋼板において、高強度化は主として、Si等の置換型元素の固溶強化と、結晶組織Aと結晶組織Bとの割合の制御とによって達成される。したがって、高強度化のためにCは含有されなくてもよい。すなわち、C含有量の下限は0%を含む。ただし、Cは通常不可避に含有されるので下限を0%超としてもよい。
 一方、C含有量が高すぎれば、無方向性電磁鋼板の磁気特性が低下する。また、高Si鋼である本実施形態に係る無方向性電磁鋼板の加工性が低下する。したがって、C含有量は0.0100%以下である。C含有量は好ましくは0.0050%以下であり、さらに好ましくは0.0030%以下である。
 Si:3.0%超、5.0%以下
 シリコン(Si)は、鋼を脱酸する効果を有する。また、Siは、鋼の電気抵抗を高めて、無方向性電磁鋼板の鉄損を低減(改善)する。Siは、さらに、無方向性電磁鋼板に含有されるMn、Al、Ni等の他の固溶強化元素と比較して、高い固溶強化能を有する。そのため、Siは、高強度化及び低鉄損化をバランスよく両立させるために最も有効である。Si含有量が3.0%以下であれば、上記効果が得られない。そのため、Si含有量を3.0%超とする。
 一方、Si含有量が高すぎれば、製造性、特に、熱延鋼板の曲げ加工性が低下する。また、後述するように、熱延鋼板の粒径を適正に制御することで、曲げ加工性の低下を抑制できる。しかしながら、Si含有量が5.0%を超えれば、冷間加工性が低下する。したがって、Si含有量は5.0%以下である。好ましくは、Si含有量は4.5%以下である。
 Mn:0.1~3.0%
 マンガン(Mn)は鋼の電気抵抗を高め、鉄損を低減する。Mn含有量が0.1%未満であれば、上記効果が得られない。また、Mn含有量が0.1%未満であれば、Mn硫化物が微細に生成する。微細なMn硫化物は、磁壁の移動を阻害したり、製造工程中における粒成長を阻害したりする。この場合、磁束密度が低下する。そのため、Mn含有量を0.1%以上とする。好ましくは、0.15%以上、より好ましくは0.4%以上である。
 一方、Mn含有量が3.0%を超えれば、オーステナイト変態が生じやすくなり、磁束密度が低下する。したがって、Mn含有量は3.0%以下である。好ましくは2.5%以下であり、より好ましくは2.0%以下である。
 P:0.20%以下
 りん(P)は、固溶強化によって鋼の強度を高める。しかしながら、P含有量が高すぎればPが偏析して鋼が脆化する。したがって、P含有量は0.20%以下である。P含有量は、好ましくは0.10%以下であり、より好ましくは0.07%以下である。
 S:0.0018%以下
 硫黄(S)は不純物である。Sは、MnS等の硫化物を形成する。硫化物は、磁壁移動を妨げ、さらに、結晶粒成長を阻害して、磁気特性を低下させる。したがって、S含有量はなるべく低い方が好ましい。特に、S含有量が0.0018%を超えると、磁気特性が著しく低下する。したがって、S含有量は0.0018%以下である。好ましくは0.0013%以下であり、より好ましくは0.0008%以下である。
 一方で、Mn含有量及びS含有量と、後述する製造条件とにより、MnSの生成を適切に制御すれば、Sは、追加熱処理後における磁気特性の低下を回避するために有効な結晶組織A中の転位構造の形成に寄与する元素でもある。この効果を得る場合、S含有量は0.0001%以上であることが好ましい。
 N:0.0040%以下
 窒素(N)は不純物である。Nは、追加熱処理後の磁気特性を低下させる。したがって、N含有量は0.0040%以下である。N含有量は、好ましくは0.0020%以下である。
 本実施形態に係る無方向性電磁鋼板の化学組成は、上述の元素と、残部であるFe及び不純物とからなることを基本とする。しかしながら、必要に応じて、Feの一部に代えて、以下に示す範囲で、任意元素(Al、Sn、Sb、Cr、Ni、Cu、Ca、及び/又はREM)の1種以上をさらに含有してもよい。これらの任意元素は、必ずしも含有させる必要がないので、下限は0%である。
 不純物とは、無方向性電磁鋼板を工業的に製造する際に、原料としての鉱石、スクラップから、または製造環境などから混入されるものであって、本実施形態に係る無方向性電磁鋼板に悪影響を与えない範囲で許容されるものを意味する。
 [任意元素について]
 Al:0~0.9%
 アルミニウム(Al)は任意元素であり、含有されなくてもよい。AlはSiと同様、鋼を脱酸する効果を有する。Alはさらに、鋼の電気抵抗を高め、鉄損を低減する。これらの効果を得る場合、Al含有量を0.0001%以上とすることが好ましい。
 しかしながら、Siと比較して、Alは鋼の高強度化に寄与しない。さらに、Al含有量が高すぎれば、加工性が低下する。したがって、含有させる場合でも、Al含有量は0.9%以下である。好ましくは0.7%以下である。
 Sn及びSbからなる群から選択される1種以上:0~0.100%
 すず(Sn)及びアンチモン(Sb)はいずれも、任意元素であり、含有されなくてもよい。Sn及びSbは、無方向性電磁鋼板の集合組織を改善して(例えば、磁気特性向上に寄与する方位の結晶粒を増加させて)磁気特性を高める。上記効果を安定して有効に得る場合、Sn及びSbからなる群から選択される1種以上の合計含有量を0.005%以上とすることが好ましい。
 しかしながら、これらの元素の合計含有量が0.100%を超えれば、鋼が脆化する。この場合、製造中に鋼板が破断したり、ヘゲが発生したりする。したがって、含有させる場合でも、Sn及びSbからなる群から選択される1種以上の合計含有量は0.100%以下である。
 Cr:0~5.0%
 クロム(Cr)は、任意元素であり、含有されなくてもよい。Crは、鋼の電気抵抗を高める。特に、SiとともにCrが含有されれば、Si、Crをそれぞれ単独で含有した場合よりも鋼の電気抵抗を高め、鉄損を低減できる。Crはさらに、本実施形態に係る無方向性電磁鋼板のような高Si鋼の製造性を高め、耐食性も高める。上記効果を安定して有効に得る場合、Cr含有量を0.5%以上とすることが好ましい。
 しかしながら、Cr含有量が5.0%を超えれば、その効果が飽和してコストが高くなる。したがって、含有させる場合でも、Cr含有量は5.0%以下である。Cr含有量は、好ましくは1.0%以下である。
 Ni:0~5.0%
 ニッケル(Ni)は、飽和磁束密度を低下させることなく、鋼を固溶強化し、さらに、鋼の電気抵抗を高めて鉄損を低減する。上記効果を安定して有効に得る場合、Ni含有量を0.05%以上とすることが好ましい。
 しかしながら、Ni含有量が5.0%を超えれば、コストが高くなる。したがって、含有させる場合でも、Ni含有量は5.0%以下である。Ni含有量は、好ましくは2.0%以下である。
 Cu:0~5.0%
 銅(Cu)は固溶強化によって鋼の強度を高める。Cuはさらに、500℃程度の温度で時効処理を実施することにより、微細なCu析出相を生成して、鋼を強化する。上記効果を安定して有効に得る場合、Cu含有量を0.5%以上とすることが好ましい。
 しかしながら、Cu含有量が5.0%を超えれば、鋼が脆化する。したがって、含有させる場合でも、Cu含有量は5.0%以下である。Cu含有量は、好ましくは2.0%以下である。
 Ca:0~0.010%
 希土類元素(REM):0~0.010%
 カルシウム(Ca)及びREMは、鋼中でSと結合してSを固定する。これにより、鋼の磁気特性が高まる。上記効果を安定して有効に得る場合、Ca含有量を0.001%以上、または、REM含有量を0.002%以上とすることが好ましい。
 一方、Ca含有量及びREM含有量がそれぞれ0.010%を超えれば、その効果が飽和して、コストが高くなる。したがって、含有させる場合でも、Ca含有量は0.010%以下であり、REM含有量は0.010%以下である。
 本実施形態におけるREMは、Sc、Y、及び、ランタノイド(原子番号57番のLa~71番のLu)を意味し、REM含有量は、これらの元素の合計含有量を意味する。
 [無方向性電磁鋼板の圧延面に平行な断面におけるミクロ組織]
 上述の無方向性電磁鋼板の、圧延面から板厚の1/4深さ位置の圧延面に平行な断面において、ミクロ組織は、結晶組織Aと結晶組織Bとからなる。
 本実施形態において、結晶組織Aは、結晶粒径が100μm以上の結晶粒で構成される領域である。一方、結晶組織Bは、結晶粒径が100μm未満の結晶粒で構成される領域である。
 結晶組織Aは、徐加熱を行う追加熱処理により蚕食されて消失する領域である。圧延面に平行な断面において、結晶組織Aの面積率が1~30%の範囲外であれば、追加熱処理で粒成長させた際の磁気特性の低下を回避することが困難となる。詳細なメカニズムについては後述する。さらに、結晶組織Aの面積率が1%未満の場合、結晶組織Bが粗粒化しやすくなり無方向性電磁鋼板の強度が低くなる。また、結晶組織Aの面積率が30%を超えた場合には、追加熱処理で粒成長させた際の磁気特性が低下(劣化)する。したがって、結晶組織Aの面積率は1~30%である。結晶組織Aの面積率の好ましい下限は5%であり、好ましい上限は20%である。
 圧延面に平行な断面において、結晶組織Aの面積率を1~30%とした場合、結晶組織Bの面積率は70~99%となる。したがって、本実施形態に係る無方向性電磁鋼板の機械特性は主に結晶組織Bにより決定される。
 また、結晶組織Bは、徐加熱を行う追加熱処理によって粒成長する領域である。
 結晶組織Bの平均粒径が25μmよりも大きければ、追加熱処理前の磁気特性は向上するが、強度特性を満足することが困難となる。また、詳細なメカニズムについては後述するが、結晶組織Bの平均粒径が25μmよりも大きければ、追加熱処理で粒成長させた際の磁気特性が大きく低下する。
 したがって、圧延方向に平行な断面において、結晶組織Bの平均粒径は25μm以下とする必要がある。結晶組織Bの平均粒径の好ましい上限は20μmであり、さらに好ましくは15μmである。
 本実施形態においては、圧延面から板厚の1/4深さ位置の、圧延面に平行な断面において、上述のような組織となっていればよい。これは、圧延面から板厚の1/4深さ位置の組織が、鋼板の代表的な組織であり、鋼板の特性に大きく影響するからである。
 [結晶組織Aの面積率及び結晶組織Bの平均粒径の測定方法]
 結晶組織Aの面積率及び結晶組織Bの平均粒径は次の方法で測定可能である。
 無方向性電磁鋼板の圧延面から板厚の1/4深さ位置の、圧延面に平行な断面を有するサンプルを研磨等により作成する。そのサンプルの研磨面(以下、観察面という)に対して、電解研磨にて表面を調整した後、電子線後方散乱回折法(EBSD)を利用した結晶組織解析を実施する。
 EBSD解析により、観察面のうち、結晶方位差が15°以上となる境界を結晶粒界とし、この結晶粒界で囲まれた個々の領域を一つの結晶粒とし、結晶粒を10000個以上含む領域(観察領域)を観察する。観察領域において、結晶粒を円相当の面積とした時の直径(円相当径)を粒径と定義する。つまり、粒径とは円相当径を意味する。
 粒径が100μm以上である結晶粒で構成される領域を結晶組織Aと定義して、その面積率を求める。また、直径が100μm未満である結晶粒で構成される領域(すなわち結晶組織A以外の組織)を結晶組織Bと定義して、その平均結晶粒径を求める。これらの測定は画像解析により比較的簡単に実施することが可能である。
 [結晶組織A及び結晶組織Bの硬さ]
 本実施形態に係る無方向性電磁鋼板ではさらに、結晶組織Aと結晶組織Bの硬さが式(1)を満たす。
 HvA/HvB≦1.000 (1)
 HvA/HvB>1.000となると、追加熱処理後の磁気特性が低下する。
 ここで、「HvA」は結晶組織Aの、試験力(荷重)50gでのビッカース硬さであり、「HvB」は結晶組織Bの、試験力(荷重)50gでのビッカース硬さである。ビッカース硬さは、JIS Z 2244(2009)に準拠して測定される。
 より具体的には、結晶組織Aの領域内の少なくとも20点でビッカース硬さを上述の方法で測定し、その平均値を、結晶組織Aのビッカース硬さHvAと定義する。同様に、結晶組織Bの領域内の少なくとも20点でビッカース硬さを上述の方法で測定し、その平均値を、結晶組織Bのビッカース硬さHvBと定義する。
 一方、HvA/HvBを0.900未満とすることは困難であるので、HvA/HvBを0.900以上としてもよい。HvA/HvBの下限は、0.950、または0.970以上としてもよい。
 [ミクロ組織の規定について]
 本実施形態に係る無方向性電磁鋼板においては、上述の通り、圧延面から板厚の1/4深さ位置の、圧延面に平行な断面におけるミクロ組織において、「結晶組織A」、「結晶組織B」、さらに「それら結晶組織の硬さの比」が所定の範囲となるように制御される。これらの特徴について以下に説明する。以下の説明において、詳細については未解明の部分もあり、そのメカニズムにおいて、一部は推定であることを断っておく。
 本実施形態における「結晶組織A」は、光学顕微鏡の観察では、一般的には「再結晶粒」で蚕食されていない領域、すなわち、「未再結晶組織」と大きな差はない。しかしながら、この結晶組織Aは仕上げ焼鈍により十分に回復しており、非常に軟質となっている。このため、一般的な「未再結晶組織」とは異なる。また、EBSDによる蓄積歪量(例えばIQ値)によって評価すると、むしろ、未再結晶組織よりも、再結晶組織に近い。
 したがって、本実施形態において、「結晶組織A」は、一般的な未再結晶組織とは区別して定義される。
 本実施形態における「結晶組織B」は、加工組織から核発生によりマトリックスとは方位差が大きな結晶が生成して成長した「再結晶組織」と類似する領域である。しかしながら、本実施形態における結晶組織Bには、再結晶粒に蚕食されていない領域も含まれる。したがって、本実施形態における「結晶組織B」は、単純な「再結晶組織」とは区別して定義される。
 本実施形態に係る無方向性電磁鋼板は、「結晶組織A」の硬さが「結晶組織B」の硬さ以下である(つまり、式(1)を満たす)ことを特徴としている。
 また、本実施形態に係る無方向性電磁鋼板は、粒径分布にも特徴を有する。上述の規定から考えると明らかなように、最大30%存在する100μm以上の粒径の結晶粒で構成される結晶組織Aを除く、結晶組織Bの平均粒径は25μm以下と非常に小さい。このことは、ミクロ組織において、30~90μm程度の中間的なサイズの結晶粒がほとんど存在しないことを意味している。つまり、本実施形態に係る無方向性電磁鋼板では、結晶粒径分布がいわゆる混粒である。
 一般的な、例えば、粒径分布が正規分布的であれば、100μmの粒径が存在するような粒成長を達成した結晶組織においては、数10μmの結晶粒も比較的多く存在し、平均粒径は50μm程度になる。
 結晶組織Aと結晶組織Bとが所定の割合で混在し、かつ、硬さ比HvA/HvBが式(1)を満たす、本実施形態に係る無方向性電磁鋼板では、追加熱処理を実施せずに利用する場合(ロータ用ブランクとしての利用を想定する場合)、優れた強度及び磁気特性を有する。一方、追加熱処理を実施して利用する場合(ステータコア用ブランクとしての利用を想定する場合)、追加熱処理により結晶粒成長した際に、鉄損が改善するとともに、磁束密度の低下が抑制される。
 [式(2)について]
 上述の無方向性電磁鋼板において、追加熱処理を実施する前の無方向性電磁鋼板の磁束密度をBA(T)と定義する。さらに、加熱速度を100℃/時、最高到達温度を800℃、及び800℃での保持時間を2時間とする追加熱処理を実施した後の、無方向性電磁鋼板の磁束密度をBB(T)と定義する。このとき、本実施形態に係る無方向性電磁鋼板において、磁束密度BAとBBとが次の式(2)を満たす。
 BB/BA≧0.980 (2)
 BB/BAは、好ましくは0.985以上であり、より好ましくは0.990以上である。BB/BAの上限は特に限定されないが、追加熱処理により特性劣化がない(つまり、BB/BA=1.000)ことは、目標とする基準でもある。ただし、追加熱処理により、磁気特性にとって好ましい方位が優先的に成長し、その結果、BB/BAが1.000を超える場合もある。ただし、この場合でも、BB/BAが1.015を超えることはほとんどない。
 上記のような加熱速度、最高到達温度及び、保持時間は、追加熱処理の条件の一例である。この条件は、現在実用的に実施されている歪取り焼鈍の条件として代表的と考えられる値を用いている。ただし、本実施形態に係る無方向性電磁鋼板における、追加熱処理による磁束密度の低下を抑制する効果は、加熱速度、最高到達温度及び、保持時間において、この値に限定されず、ある程度の広い範囲内でも確認することができる。たとえば、加熱速度を30~500℃/時、最高到達温度を750~850℃、750℃以上での保持時間を0.5~100時間とする範囲において、効果が得られる。
 追加熱処理では、一般に、高温長時間の熱処理をして粒成長させる仕上げ焼鈍と比較すると、低速度で加熱し、比較的低温かつ長時間の熱処理で粒成長させる。
 一般的な仕上げ焼鈍は、10℃/s(36000℃/時)程度の加熱速度で実施されるので、追加熱処理の加熱速度の上限としては、この程度の温度を提示できる。ただし、一般的なコアの歪取り焼鈍を考慮すると、このような高速での加熱は困難である。また、加熱速度が速すぎる場合、加熱が不均一になることも懸念される。したがって、追加熱処理の加熱速度はたとえば、500℃/時以下である。
 一方、あまりに低速の加熱速度では、後述するような本実施形態に係る無方向性電磁鋼板に特有の粒成長挙動が発現しにくくなる。そのため、追加熱処理の加熱速度の下限は30℃/時である。
 最高到達温度及び保持時間は、一般的な歪取り焼鈍の条件を考慮し、最高到達温度は750~850℃、及び750℃以上での保持時間は0.5~100時間である。
 本実施形態において、結晶組織A及び結晶組織Bの割合、結晶組織Bの平均粒径、結晶組織Aと結晶組織Bとの硬さの比を制御することで、追加熱処理で粒成長させた際の磁気特性の低下を抑制できる理由については、必ずしも明らかではないが、以下のように推定される。
 本実施形態で対象とする無方向性電磁鋼板は、鋼中で介在物(析出物)を形成する窒素(N)含有量及び炭素(C)含有量が、非常に低いレベルに低減されている。このような鋼に形成される析出物は、粒子径が1.0μm以下の微細なものとなり、0.2μm以下の析出物も多く形成される。このような微細な析出物、例えば、粒子径が0.2μm以下の微細な析出物は、磁気特性等に影響する。
 鋼中に微細な析出物が存在する場合、析出物によりピン止めされた転位が消失しにくくなり、析出物の周囲に転位が集積した領域(高転位密度領域)が形成されやすくなる(残存しやすくなる)。
 一般的に析出物周囲の高転位密度領域からは、再結晶によって、ランダムな方位を有する結晶が形成されやすいと言われている。しかしながら、本実施形態に係る無方向性電磁鋼板では、後述するとおり、冷間圧延又は温間圧延後の中間鋼板に対して軽度の熱処理(仕上げ焼鈍処理)が実施され、仕上げ焼鈍後の鋼板中には結晶組織Aが残存する。このような結晶組織A中に析出物が存在する場合には、その後に徐加熱で追加熱処理を実施して再結晶を進行させたとき、無方向性電磁鋼板の磁気特性にとって好ましくない結晶方位の発達が助長される。
 これに対し、徐加熱での追加熱処理により再結晶が進行する場合、追加熱処理前の結晶組織A内の転位構造(回復組織)が、析出物などに起因する高転位密度領域の形成が抑制された、均質なセル構造(又は網目状の二次元構造)であれば、その後の追加熱処理において磁束密度にとって好ましい方位が発達し、相対的に高い磁束密度が得られるようになると考えられる。
 結晶組織Aの転位構造が均質なセル構造となれば、結晶組織Aのビッカース硬さHvAと、結晶組織Bのビッカース硬さHvBとの比(HvA/HvB)が式(1)を満たす。つまり、転位構造が均質なセル構造又は単純な二次元構造を形成している結晶組織Aは、析出物の周囲で複雑な高転位密度領域を形成した未再結晶組織より軟質なものとなる。この場合、追加熱処理後においては、磁気特性の低下が抑制される。
 したがって、本実施形態に係る無方向性電磁鋼板では、結晶組織Aの転位構造が均質なセル構造であることを示す指標として、式(1)を規定している。
 [製造方法]
 上記の無方向性電磁鋼板の製造方法について説明する。以下に説明する製造方法は、本実施形態に係る無方向性電磁鋼板の製造方法の一例である。したがって、本実施形態に係る無方向性電磁鋼板は、以下に説明する製造方法以外の製造方法により製造されてもよい。
 本実施形態に係る無方向性電磁鋼板の製造方法は、スラブを熱間圧延して熱延鋼板を製造する工程(熱間圧延工程)と、熱延鋼板に対して焼鈍(熱延板焼鈍)を実施する工程(熱延板焼鈍工程)と、熱延板焼鈍後の熱延鋼板に対して冷間圧延又は温間圧延を実施して中間鋼板を製造する工程(冷間圧延工程又は温間圧延工程)と、中間鋼板に対して仕上げ焼鈍を実施する工程(仕上げ焼鈍工程)とを備える。以下、各工程について説明する。
 [熱間圧延工程]
 熱延工程では、スラブを熱間圧延して熱延鋼板を製造する。
 スラブは周知の方法で製造される。たとえば、転炉又は電気炉等で溶鋼を製造する。製造された溶鋼に対して脱ガス設備等で二次精錬して、上記化学組成を有する溶鋼とする。溶鋼を用いて連続鋳造法又は造塊法によりスラブを鋳造する。鋳造されたスラブを分塊圧延してもよい。
 以上の工程により準備されたスラブに対して、熱間圧延を実施する。熱間圧延工程におけるスラブの好ましい加熱温度は1000~1200℃である。スラブの加熱温度が1200℃を超えれば、熱間圧延前のスラブ中において、結晶粒が粗大化する。本実施形態に係る無方向性電磁鋼板の化学組成のように、Si含有量が高い鋼板の組織はスラブの段階からフェライト単相である。また、熱間圧延工程での熱履歴において、組織が変態しない。そのため、スラブの加熱温度が高すぎれば、結晶粒が粗大化しやすく、熱間圧延後に粗大な加工組織(扁平組織)が残留しやすくなる。粗大な扁平組織は熱間圧延工程の次工程である熱延板焼鈍工程において再結晶によって消失しにくい。熱延板焼鈍組織において、粗大な扁平組織が残存すると、その後の工程が好ましいものであっても、本実施形態に係る無方向性電磁鋼板に要求される組織が得られなくなる。したがって、スラブの加熱温度の上限は1200℃である。
 一方、スラブの加熱温度が低すぎれば、スラブの加工性が低くなり、一般的な熱延設備での生産性が低下する。したがって、スラブの加熱温度の下限は1000℃である。
 スラブ加熱温度の好ましい上限は1180℃であり、より好ましくは1160℃である。スラブ加熱温度の好ましい下限は1050℃であり、より好ましくは1100℃である。
 熱間圧延条件については、公知の条件で行えばよい。
 [熱延板焼鈍工程]
 熱延板焼鈍工程では、熱間圧延工程により製造された熱延鋼板に対して、焼鈍(熱延板焼鈍)を実施する。これにより、熱延板焼鈍後の熱延鋼板の組織において、再結晶率を95%以上とし、再結晶粒の平均粒径を50μm超にする。再結晶率が95%未満であったり、再結晶粒の平均粒径が50μm以下であると、製品の結晶組織が{111}に集積したものとなり、磁気特性が劣位となる。
 熱延板焼鈍後の熱延鋼板の組織を上記のとおりとするために、熱延板焼鈍工程では、加熱条件のうち、750~850℃の間の平均加熱速度HR750-850、及び、最高到達温度Tmaxを次のとおりとする。
 750~850℃の間の平均加熱速度HR750-850:50℃/秒以上
 熱延板焼鈍での熱延鋼板の加熱において、750~850℃の範囲での平均加熱速度HR750-850を50℃/秒以上とする。平均加熱速度HR750-850を50℃/秒以上の急速加熱とすれば、熱間圧延後の扁平組織中の転位密度を高く保ったまま、再結晶及び粒成長を開始させることができる。この場合、扁平組織を容易に消失させることができる。また、このように転位密度を高く保ったまま、再結晶が開始され、その後粒成長した組織は、引き続き行われる、冷間圧延又は温間圧延工程、及び仕上げ焼鈍工程によって、本実施形態に係る無方向性電磁鋼板に要求される組織となる。
 平均加熱速度HR750-850が遅すぎれば、扁平組織は、再結晶開始前に回復が進んだり、いわゆる「その場再結晶」的に再結晶が完了したりしてしまう。この場合、光学顕微鏡レベルでの観察においては、急速加熱を実施したものとの差異は明瞭ではない。しかしながら、回復やその場再結晶によって形成された結晶粒は、再結晶によって形成された結晶粒とは結晶方位において違いがある。そのため、平均加熱速度HR750-850が遅すぎれば、冷延鋼板及び再結晶焼鈍後の組織が本実施形態に係る無方向性電磁鋼板に要求される組織とはならない。加熱速度の上限を限定する必要はなく、設備能力の上限が、加熱速度の実質的な上限となる。
 扁平組織は、熱延板焼鈍後の時点で再結晶していたとしても、変態を経ずに形成されているので、結晶方位としては特殊な方位への集積が強くなりやすい。そのため、扁平組織はその後、好ましい冷間圧延または温間圧延工程、仕上げ焼鈍工程を経たとしても、徐加熱での追加熱処理で粒成長させた際の磁気特性が劣化する要因となる。
 上記平均加熱速度HR750-850を適用する温度範囲の好ましい下限は600℃であり、より好ましくは、組織の回復が開始する450℃である。上記平均加熱速度HR750-850を適用する温度範囲の好ましい上限は900℃であり、より好ましくは950℃である。すなわち、450~950℃の間の平均加熱速度を50℃/秒以上とすることが最も好ましい。
 最高到達温度Tmax:900~1150℃
 熱延板焼鈍における最高到達温度Tmaxを900~1150℃とする。最高到達温度Tmaxが低すぎれば95%以上の再結晶組織が得られず、最終製品の磁気特性が劣化する。一方、最高到達温度Tmaxが高すぎれば、再結晶粒組織が粗大となり後工程にて割れ破断しやすくなり、歩留まりが著しく低下する。
 熱延板焼鈍の熱処理時間は特に限定されない。熱処理時間は例えば20秒~4分である。
 [冷間圧延又は温間圧延工程]
 熱延板焼鈍工程後の熱延鋼板に対して、冷間圧延又は温間圧延を実施する。ここで、温間圧延とは、150~600℃に加熱した熱延鋼板に対して圧延を実施する工程を意味する。
 冷間圧延又は温間圧延における圧下率は83%以上であることが好ましい。ここで、圧下率(%)は次の式で定義される。
 圧下率(%)=(1-最後の冷間又は温間圧延後の中間鋼板の板厚/最初の冷間又は温間圧延開始前の熱延鋼板の板厚)×100
 圧下率が83%未満であれば、次工程の仕上げ焼鈍工程に必要となる再結晶核の量が不足する。この場合、結晶組織Aの分散状態を適正に制御しにくくなる。圧下率が83%以上であれば、十分な量の再結晶核を確保できる。これは、冷間圧延又は温間圧延で十分な歪みを導入することにより、再結晶核が分散及び増加するためと考えられる。以上の工程により、中間鋼板を製造する。
 [仕上げ焼鈍工程]
 冷間圧延又は温間圧延工程により製造された中間鋼板に対して、仕上げ焼鈍を実施する。仕上げ焼鈍の条件は次のとおりである。
 最高到達温度(焼鈍温度):700~800℃
 仕上げ焼鈍時の最高到達温度が700℃未満の場合、再結晶が十分に進行しない。この場合、無方向性電磁鋼板の磁気特性が低下する。さらに、仕上げ焼鈍を連続焼鈍により実施する場合、無方向性電磁鋼板の板形状の矯正効果が十分に得られない。一方、仕上げ焼鈍時の最高到達温度が800℃を超えれば、結晶組織Aの面積率が1%未満となって、無方向性電磁鋼板の強度が低下する。
 生産性を低下させずに、十分に加熱して所望の組織を得るという観点から、最高到達温度での均熱時間は、1~50秒であることが好ましい。
 700~500℃の温度範囲での平均冷却速度CR700-500:50℃/秒以上
 700~500℃の温度範囲での平均冷却速度CR700-500は、無方向性電磁鋼板内の結晶組織Aの転位構造の形成と関係すると考えられる。平均冷却速度CR700-500が50℃/秒未満であれば、結晶組織A中の転位分散が不均一となり、その結果、硬さ比HvA/HvBが1.000を超える。この場合、追加熱処理での結晶方位発達が阻害され、追加熱処理後の磁気特性が低下する。一方、平均冷却速度CR700-500が50℃/秒以上であれば、析出物周囲への転位の交絡や最終的なセル構造の固定等、結晶組織A中の転位分散の均一化が促進され、追加熱処理での、磁気特性向上に寄与する{100}およびその近傍の結晶方位の発達に好ましく作用する。平均冷却速度CR700-500の好ましい下限は100℃/秒であり、さらに好ましくは200℃/秒である。平均冷却速度CR700-500が500℃/秒を超えると、鋼板の長手方向の温度勾配が大きくなりすぎて鋼板が変形するおそれがあるので、平均冷却速度CR700-500の好ましい上限は500℃/秒である。
 以上の工程により、本実施形態に係る無方向性電磁鋼板が製造される。
 上述の製造方法では、熱延板焼鈍工程後、1回の冷間圧延又は温間圧延工程で、無方向性電磁鋼板の板厚を最終の板厚とする。
 [絶縁コーティング工程]
 上記製造方法はさらに、仕上げ焼鈍工程後の無方向性電磁鋼板の表面に対して、鉄損を低減するために絶縁コーティングを形成する工程(絶縁コーティング工程)を実施してもよい。絶縁コーティング工程は周知の方法で実施すれば足りる。良好な打抜き性を確保するためには、樹脂を含有する有機コーティングを形成することが好ましい。また、一方溶接性を重視する場合には、半有機や無機コーティングを形成することが好ましい。
 無機成分はたとえば、重クロム酸-ホウ酸系、リン酸系、シリカ系等である。有機成分はたとえば、一般的なアクリル系、アクリルスチレン系、アクリルシリコン系、シリコン系、ポリエステル系、エポキシ系、フッ素系の樹脂である。塗装性を考慮した場合、好ましい樹脂は、エマルジョンタイプの樹脂である。加熱及び/又は加圧することにより接着能を発揮する絶縁コーティングを施してもよい。接着能を有する絶縁コーティングはたとえば、アクリル系、フェノール系、エポキシ系、メラミン系の樹脂である。
 以下に、本発明の態様を実施例により具体的に説明する。これらの実施例は、本発明の効果を確認するための一例であり、本発明を限定するものではない。
 [製造工程]
 表1に示す化学組成を有するスラブを準備した。
Figure JPOXMLDOC01-appb-T000001
 表1に記載の成分を有するスラブに対して、表2に示すスラブ加熱温度で加熱し、熱間圧延を実施して、2.2mmの板厚の熱延鋼板を製造した。熱間圧延時の仕上げ温度FT(℃)及び巻取り温度CT(℃)は表2のとおりであった。
Figure JPOXMLDOC01-appb-T000002
 製造された熱延鋼板に対して、熱延板焼鈍を実施した。熱延板焼鈍では、いずれの試験番号においても、750~850℃の温度範囲での平均加熱速度HR750-850が50℃/秒であった。さらに、最高到達温度は900℃で保持時間は2分であった。
 熱延板焼鈍後の熱延鋼板に対して、試験番号1-1~1-22、1-24~1-26については冷間圧延、試験番号1-23については200℃での温間圧延を実施して中間鋼板を製造した。冷間圧延時の圧下率はいずれの試験番号においても、88%であった。以上の工程により、板厚0.27mmの中間鋼板(冷延鋼板)を製造した。
 中間鋼板に対して、仕上げ焼鈍を実施した。仕上げ焼鈍における最高到達温度は表2に示すとおりであり、保持時間はいずれの試験番号も30秒であった。また、700~500℃の温度範囲での平均冷却速度CR700-500は、いずれの試験番号においても100℃/秒であった。
 仕上げ焼鈍後の無方向性電磁鋼板に対して、リン酸系無機物とエポキシ系有機物を含有する周知の絶縁被膜をコーティングした。以上の工程により、各試験番号の無方向性電磁鋼板を製造した。仕上げ焼鈍後の無方向性電磁鋼板をチェック分析した結果、化学組成は表1のとおりであった。
 [評価試験]
 製造された各試験番号の無方向性電磁鋼板に対して、次の評価試験を実施した。
 [仕上げ焼鈍後の無方向性電磁鋼板に対する評価試験]
 [結晶組織測定試験]
 各試験番号の仕上げ焼鈍後の無方向性電磁鋼板の圧延面に平行な断面を含むサンプルを採取した。上記断面は、表面から板厚方向に板厚の1/4深さ位置での断面とした。この断面に相当するサンプル表面を観察面とした。
 サンプルの観察面に対して、電解研磨で表面を調整した後、電子線後方散乱回折法(EBSD)を利用した結晶組織解析を実施した。EBSD解析により、観察面のうち、結晶方位差が15°以上となる境界を結晶粒界とし、上記結晶粒界で囲まれた個々の領域を一つの結晶粒と判断し、結晶粒を10000個以上含む領域(観察領域)を観察対象とした。観察領域において、各結晶粒の面積と同等の面積を有する円の直径(円相当径)を各結晶粒の粒径と定義した。
 粒径が100μm以上の結晶粒で構成される領域を結晶組織Aと定義して、その面積率(%)を求めた。また、直径が100μm未満の結晶粒で構成される領域を結晶組織Bと定義して、その平均結晶粒径(μm)を求めた。これらの測定は観察領域の画像解析により求めた。
 [結晶組織の硬さ]
 結晶組織Aの領域内の任意の20点でJIS Z 2244(2009)に準拠したビッカース硬さ試験を実施した。試験力(荷重)は50gとした。得られたビッカース硬さの平均値を、結晶組織Aの硬さHvAとした。
 同様に、結晶組織Bの領域内の任意の20点でJIS Z 2244(2009)に準拠したビッカース硬さ試験を実施した。試験力は50gとした。得られたビッカース硬さの平均値を、結晶組織Bの硬さHvBとした。
 [引張試験]
 各試験番号の無方向性電磁鋼板から、JIS Z 2241(2011)に規定されたJIS5号引張試験片を作製した。各引張試験片の平行部は無方向性電磁鋼板の圧延方向に平行であった。作製された引張試験片を用いて、JIS Z 2241(2011)に準拠して、常温、大気中において引張試験を実施して、引張強度TS(MPa)を求めた。
 [磁気特性評価試験]
 各試験番号の無方向性電磁鋼板から、JIS C 2550-1(2011)に準拠して、圧延方向(L方向)及び圧延直角方向(C方向)にそれぞれ切り出したエプスタイン試験片を準備した。エプスタイン試験片に対して、JIS C 2550-1(2011)及び2550-3(2011)に準拠した電磁鋼帯試験方法を実施して、磁気特性(磁束密度B50及び鉄損W10/400)を求めた。追加熱処理前の本試験により得られた磁束密度B50を、磁束密度BA(T)と定義した。
 [追加熱処理後の無方向性電磁鋼板での磁気特性評価試験]
 各試験番号の無方向性電磁鋼板から、JIS C 2550-1(2011)に準拠して、圧延方向(L方向)及び圧延直角方向(C方向)にそれぞれ切り出したエプスタイン試験片を準備した。エプスタイン試験片に対して、窒素雰囲気中にて、加熱速度を100℃/時、最高到達温度を800℃、最高到達温度800℃での保持時間を2時間として、追加熱処理を実施した。
 追加熱処理後のエプスタイン試験片に対して、JIS C 2550-1(2011)及び2550-3(2011)に準拠して、磁気特性(磁束密度B50及び鉄損W10/400)を求めた。追加熱処理後の本試験により得られた磁束密度B50を、磁束密度BB(T)と定義した。
 [試験結果]
 上記評価試験により得られた結果を表2に示す。
 試験番号1-1~1-3、1-13、1-15及び1-17~23の無方向性電磁鋼板の化学組成は適切であり、製造条件も適切であった。その結果、結晶組織Aの面積率は1~30%であり、結晶組織Bの平均粒径は25μm以下であった。さらに、結晶組織Aの硬さHvAと結晶組織Bの硬さHvBの比(HvA/HvB)は1.000以下であった。引張強度TSは600MPa以上であり、優れた強度を示した。
 さらに、追加熱処理後の磁束密度BBは1.65T以上であり、鉄損W10/400は12.5W/kg未満であり、優れた磁気特性が得られた。さらに、追加熱処理間の磁束密度BAに対する追加熱処理後の磁束密度BBの比(BB/BA)は0.980以上であり、追加熱処理後においても、磁束密度の低下が抑制された。
 一方、試験番号1-4及び1-5では、スラブ加熱温度が高すぎた。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 試験番号1-6では、化学組成が適正であり、スラブ加熱温度も適正であった。しかしながら、仕上げ焼鈍における最高到達温度が800℃を超えた。そのため、結晶組織Aの面積率が1%未満となり、引張強度TSが600MPa未満と低かった。
 試験番号1-7~1-12、1-14及び1-16ではいずれも、S含有量が高すぎた。そのため、鉄損W10/400が12.5W/kgより大きかった。試験番号1-10及び1-11では、スラブ加熱温度も高すぎた。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 試験番号1-24では、C含有量が本発明範囲を外れた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、鉄損W10/400が12.5W/kgより大きかった。
 試験番号1-25では、Si含有量が本発明範囲を外れた。その結果、十分な高強度化が達成できなかった。
 試験番号1-26では、Mn含有量が本発明範囲を外れた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、鉄損W10/400が12.5W/kgより大きく、BB/BAも0.980未満となった。
 表1中の鋼種A、B、C及びDのスラブを準備した。準備されたスラブに対して、1120℃のスラブ加熱温度で加熱し、熱間圧延を実施して熱延鋼板を製造した。熱間圧延時の仕上げ温度FTは890~920℃であり、巻取り温度CTは590~630℃であった。
 製造された熱延鋼板に対して、表3に示す条件で熱延板焼鈍を実施した。熱延板焼鈍を実施した後の熱延鋼板を酸洗した。酸洗後の熱延鋼板に対して、88%の圧下率で冷間圧延を実施して、板厚0.27mmの中間鋼板(冷延鋼板)を製造した。
 また、熱延板焼鈍後の熱延鋼板の一部からサンプルを採取し、圧延方向と垂直な断面にてミクロ組織を観察し、再結晶率及び再結晶粒の平均粒径を観察した。
 具体的には、再結晶率は、光学顕微鏡組織を観察し、ナイタールエッチングで黒く見える領域を除く部分の割合で定義した。また、再結晶粒の平均粒径は全厚が視野に入るミクロ組織写真を使って線分法にて平均切片長さを計測し、1.13倍したものを粒径と定義した。その際、線分は板厚方向に平行とし、粒界と線分が交差する点数は200を超えるように、線分の数を決めた。
 その結果、試験番号2-3、2-4、2-12では、再結晶率を95%以上、再結晶粒の平均粒径が50μm超であった。これに対し、試験番号2-1では、再結晶率93%であった。
Figure JPOXMLDOC01-appb-T000003
 中間鋼板に対して、仕上げ焼鈍を実施した。仕上げ焼鈍での最高到達温度は表3に示すとおりであった。保持時間はいずれも30秒であった。平均冷却速度CR700-500はいずれも、100℃/秒であった。
 仕上げ焼鈍後の無方向性電磁鋼板に対して、リン酸系無機物とエポキシ系有機物を含有する周知の絶縁被膜をコーティングした。以上の工程により、各試験番号の無方向性電磁鋼板を製造した。仕上げ焼鈍後の無方向性電磁鋼板をチェック分析した結果、化学組成は表1のとおりであった。
 [評価試験]
 実施例1と同じ方法により、仕上げ焼鈍後の無方向性電磁鋼板に対して、結晶組織Aの面積率(%)、結晶組織Bの平均結晶粒径(μm)、結晶組織Aのビッカース硬さHvA、結晶組織Bのビッカース硬さHvB、引張強度TS(MPa)、追加熱処理前の磁束密度BA及び鉄損W10/400を求めた。
 さらに、実施例1と同じ方法により、追加熱処理後の無方向性電磁鋼板の磁気特性(磁束密度BB及び鉄損W10/400)を求めた。
 [試験結果]
 得られた結果を表3に示す。
 試験番号2-3、2-4及び2-12の無方向性電磁鋼板の化学組成は適切であり、製造条件も適切であった。その結果、結晶組織Aの面積率は1~30%であり、結晶組織Bの平均粒径は25μm以下であった。さらに、結晶組織Aの硬さHvAと結晶組織Bの硬さHvBの比(HvA/HvB)は1.000以下であった。そのため、引張強度TSは600MPa以上であり、優れた強度を示した。
 さらに、追加熱処理後の磁束密度BBは1.65T以上であり、鉄損W10/400は12.5W/kg未満であり、優れた磁気特性が得られた。さらに、追加熱処理間の磁束密度BAに対する追加熱処理後の磁束密度BBの比(BB/BA)は0.980以上であり、追加熱処理後においても、磁束密度の低下が抑制された。
 一方、試験番号2-1、2-2及び2-11では、平均加熱速度HR750-850が50℃/秒未満であった。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 試験番号2-5では、仕上げ焼鈍での最高到達温度が800℃を超えた。そのため、結晶組織Aの面積率が1%未満となり、引張強度TSが600MPa未満と低かった。
 試験番号2-6~2-10、2-13及び2-14では、S含有量が高かった。そのため、鉄損W10/400は12.5W/kg以上となった。試験番号2-6、2-7ではさらに、平均加熱速度HR750-850が50℃/秒未満であった。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 試験番号2-11では、平均加熱速度HR750-850が50℃/秒未満であった。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 試験番号2-15では、仕上げ焼鈍での最高到達温度が800℃を超えた。そのため、結晶組織Bの平均粒径が25μmよりも大きくなり、引張強度TSが600MPa未満と低かった。
 表1中の鋼種C~Fのスラブを準備した。準備されたスラブに対して、1180℃のスラブ加熱温度で加熱し、熱間圧延を実施して熱延鋼板を製造した。熱間圧延時の仕上げ温度FTは890~920℃であり、巻取り温度CTは590~630℃であった。
 製造された熱延鋼板に対して、熱延板焼鈍を実施した。熱延板焼鈍では、いずれの試験番号においても、750~850℃の温度範囲での平均加熱速度HR750-850が50℃/秒であった。さらに、最高到達温度は900℃であり、保持時間は2分であった。
 熱延板焼鈍を実施した後の熱延鋼板を酸洗した。酸洗後の熱延鋼板に対して、87%の圧下率で冷間圧延を実施して、板厚0.25mmの中間鋼板(冷延鋼板)を製造した。
 中間鋼板に対して、仕上げ焼鈍を実施した。仕上げ焼鈍での焼鈍温度(最高到達温度)、保持時間、及び、平均冷却速度CR700-500は表4に示すとおりであった。
 仕上げ焼鈍後の無方向性電磁鋼板に対して、リン酸系無機物とエポキシ系有機物を含有する周知の絶縁被膜をコーティングした。以上の工程により、各試験番号の無方向性電磁鋼板を製造した。仕上げ焼鈍後の無方向性電磁鋼板をチェック分析した結果、化学組成は表1のとおりであった。
Figure JPOXMLDOC01-appb-T000004
 [評価試験]
 実施例1と同じ方法により、仕上げ焼鈍後の無方向性電磁鋼板に対して、結晶組織Aの面積率(%)、結晶組織Bの平均結晶粒径(μm)、結晶組織Aのビッカース硬さHvA、結晶組織Bのビッカース硬さHvB、引張強度TS(MPa)、追加熱処理前の磁束密度BA及び鉄損W10/400を求めた。
 さらに、実施例1と同じ方法により、追加熱処理後の無方向性電磁鋼板の磁気特性(磁束密度BB及び鉄損W10/400)を求めた。
 [試験結果]
 得られた結果を表4に示す。
 試験番号3-3、3-4及び3-12の無方向性電磁鋼板の化学組成は適切であり、製造条件も適切であった。その結果、結晶組織Aの面積率は1~30%であり、結晶組織Bの平均粒径は25μm以下であった。さらに、結晶組織Aの硬さHvAと結晶組織Bの硬さHvBの比(HvA/HvB)は1.000以下であった。そのため、引張強度TSは600MPa以上であり、優れた強度を示した。
 さらに、追加熱処理後の磁束密度BBは1.65T以上であり、鉄損W10/400は10.0W/kg以下であり、優れた磁気特性が得られた。さらに、追加熱処理間の磁束密度BAに対する追加熱処理後の磁束密度BBの比(BB/BA)は0.980以上であり、追加熱処理後においても、磁束密度の低下が抑制された。
 一方、試験番号3-1、3-2及び3-11では、化学組成が適切であるものの、平均冷却速度CR700-500が50℃/秒未満であった。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。また鉄損W10/400は10.0W/kg超の値までしか低下せず、追加熱処理の効果が十分に発揮されなかった。
 試験番号3-5では、仕上げ焼鈍での最高到達温度が800℃を超えた。そのため、結晶組織Aの面積率が1%未満となり、引張強度TSが600MPa未満と低かった。
 試験番号3-6~3-10、3-13及び3-14では、S含有量が高かった。そのため、鉄損W10/400が10.0W/kgを超えた。
 試験番号3-6、3-7及び3-13ではさらに、平均冷却速度CR700-500が50℃/秒未満であった。そのため、硬さ比HvA/HvBが1.000を超えた。その結果、追加熱処理後の磁束密度BBが1.65T未満と低く、BB/BAも0.980未満となった。
 表1中の鋼種Aのスラブを準備した。試験番号4-1~4-5では、準備されたスラブに対して、1180℃のスラブ加熱温度で加熱し、熱間圧延を実施して熱延鋼板を製造した。一方、試験番号4-6~4-9では、スラブ加熱温度が1240℃であり、1200℃を超えた。
 いずれの試験番号においても、熱間圧延時の仕上げ温度FTは890~920℃であり、巻取り温度CTは590~630℃であった。
 製造された熱延鋼板に対して、熱延板焼鈍を実施した。熱延板焼鈍では、750~850℃の温度範囲での平均加熱速度HR750-850が、試験番号4-1~4-5では60℃/秒であり、試験番号4-6~4-9は、30℃/秒であった。さらに、いずれの試験番号においても、最高到達温度は900℃であり、保持時間は2分であった。
 熱延板焼鈍を実施した後の熱延鋼板を酸洗した。酸洗後の熱延鋼板に対して、87%の圧下率で冷間圧延を実施して、板厚0.25mmの中間鋼板(冷延鋼板)を製造した。
 中間鋼板に対して、仕上げ焼鈍を実施した。仕上げ焼鈍において、試験番号4-1を除く他の試験番号の最高到達温度は750℃であり、試験番号4-1のみ、最高到達温度が840℃であった。また、保持時間はいずれの試験番号も30秒であった。また、700~500℃の温度範囲での平均冷却速度CR700-500は、試験番号4-1~4-5では100℃/秒であり、試験番号4-6~4-9では40℃/秒であった。
 仕上げ焼鈍後の無方向性電磁鋼板に対して、リン酸系無機物とエポキシ系有機物を含有する周知の絶縁被膜をコーティングした。以上の工程により、各試験番号の無方向性電磁鋼板を製造した。仕上げ焼鈍後の無方向性電磁鋼板をチェック分析した結果、化学組成は表1のとおりであった。
 [評価試験]
 実施例1と同じ方法により、仕上げ焼鈍後の無方向性電磁鋼板に対して、結晶組織Aの面積率(%)、結晶組織Bの平均結晶粒径(μm)、結晶組織Aのビッカース硬さHvA、結晶組織Bのビッカース硬さHvB、引張強度TS(MPa)、追加熱処理前の磁束密度BA及び鉄損W10/400を求めた。
 [追加熱処理後の無方向性電磁鋼板での磁気特性評価試験]
 各試験番号の無方向性電磁鋼板から、JIS C 2550-1(2011)に準拠して、圧延方向(L方向)及び圧延直角方向(C方向)にそれぞれ切り出したエプスタイン試験片を準備した。エプスタイン試験片に対して、窒素雰囲気中にて、表5に示す加熱速度(℃/時)、最高到達温度(℃)、800℃での保持時間(時間)で追加熱処理を実施した。
Figure JPOXMLDOC01-appb-T000005
 追加熱処理後のエプスタイン試験片に対して、JIS C 2550-1(2011)及び2550-3(2011)に準拠した電磁鋼帯試験方法を実施して、磁気特性(磁束密度B50及び鉄損W10/400)を求めた。追加熱処理後の本試験により得られた磁束密度B50を、磁束密度BB(T)と定義した。
 [試験結果]
 得られた結果を表5に示す。
 試験番号4-2~4-5の素材である仕上げ焼鈍ままの無方向性電磁鋼板の化学組成は適切であり、製造条件も適切であった。その結果、結晶組織Aの面積率は1~30%であり、結晶組織Bの平均粒径は25μm以下であった。さらに、結晶組織Aの硬さHvAと結晶組織Bの硬さHvBの比(HvA/HvB)は1.000以下であった。引張強度TSは600MPa以上であり、優れた強度を示した。
 さらに、上記素材を適切な条件で追加熱処理を施した試験番号4-3~4-5は、追加熱処理後の磁束密度が追加熱処理前の磁束密度と遜色のない、又は、向上した特性となった。試験番号4-2は追加熱処理の加熱速度が他の試験番号4-3~4-5と比較して遅く、追加熱処理後の磁束密度が低下したものの、BB/BAは0.980以上であり、磁束密度の低下を十分に抑えることができた。
 一方、試験番号4-6~4-9の素材である、製造条件が適切でない仕上げ焼鈍ままの無方向性電磁鋼板は、加熱速度の遅い追加熱処理を行った場合において、追加熱処理後の磁束密度の低下が顕著であり、BB/BAが0.980未満であった。以上の結果から、磁束密度の低下を抑制するには、追加熱処理での加熱速度を連続焼鈍並みの急速加熱とする必要があり、実用的に実施されている歪取り焼鈍においては、磁束密度の低下は避けられない素材であることが分かった。また、鉄損については、すべての材料で、追加熱処理による粒成長及び歪除去に見合ったレベルまで低下した。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 本発明によれば、高強度を有し、かつ、追加熱処理後においても磁気特性に優れる無方向性電磁鋼板とその製造方法が得られる。本発明の無方向性電磁鋼板は、高強度かつ優れた磁気特性が求められる用途に広く適用可能である。特に、特にタービン発電機、電気自動車、ハイブリッド自動車の駆動モータ、工作機械用モータ等の高速回転機のロータを典型例とする、大きな応力がかかる部品用途に好適である。また、高速回転モータのロータ材料とステータ材料とを同一の鋼板から製造する用途に好適である。

Claims (3)

  1.  無方向性電磁鋼板であって、
     化学組成が、質量%で、
     C:0.0100%以下、
     Si:3.0%超、5.0%以下、
     Mn:0.1~3.0%、
     P:0.20%以下、
     S:0.0018%以下、
     N:0.0040%以下、
     Al:0~0.9%、
     Sn及びSbから選択される1種以上:0~0.100%、
     Cr:0~5.0%、
     Ni:0~5.0%、
     Cu:0~5.0%、
     Ca:0~0.010%、及び、
     希土類元素(REM):0~0.010%
     を含有し、残部はFe及び不純物からなり、
     前記無方向性電磁鋼板の圧延面に平行な断面において、
      粒径が100μm以上である結晶粒で構成される結晶組織Aの面積率が1~30%であり、
      前記結晶組織A以外の結晶組織である結晶組織Bの平均粒径が25μm以下であり、
      前記結晶組織Aのビッカース硬さHvAと前記結晶組織Bのビッカース硬さHvBとが式(1)を満たす、
    ことを特徴とする無方向性電磁鋼板。
    HvA/HvB≦1.000 (1)
  2.  前記化学組成が、
     Al:0.0001~0.9%、
     Sn及びSbから選択される1種以上:0.005~0.100%、
     Cr:0.5~5.0%、
     Ni:0.05~5.0%、
     Cu:0.5~5.0%、
     Ca:0.0010~0.0100%、及び、
     希土類元素(REM):0.0020~0.0100%以下
     からなる群から選択される1種以上を含有する
    ことを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  請求項1に記載の無方向性電磁鋼板の製造方法であって、
     請求項1に記載の前記化学組成を有するスラブを1000~1200℃で加熱した後、熱間圧延を実施して熱延鋼板を製造する工程と、
     前記熱延鋼板に対して、750~850℃での平均加熱速度を50℃/秒以上とし、最高到達温度を900~1150℃とする熱延板焼鈍を実施する工程と、
     前記熱延板焼鈍後の前記熱延鋼板に対して圧下率83%以上で冷間圧延又は温間圧延を実施して中間鋼板を製造する工程と、
     前記中間鋼板に対して、最高到達温度を700~800℃、700~500℃の温度範囲における平均冷却速度を50℃/秒以上とする仕上げ焼鈍を実施する工程と、を備える
    ことを特徴とする無方向性電磁鋼板の製造方法。
PCT/JP2018/008780 2017-03-07 2018-03-07 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法 WO2018164185A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880014611.8A CN110366604B (zh) 2017-03-07 2018-03-07 无取向电磁钢板及无取向电磁钢板的制造方法
EP18764795.3A EP3594371B1 (en) 2017-03-07 2018-03-07 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
PL18764795T PL3594371T3 (pl) 2017-03-07 2018-03-07 Blacha cienka z niezorientowanej stali elektrotechnicznej i sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej
BR112019017229-7A BR112019017229B1 (pt) 2017-03-07 2018-03-07 Chapa de aço elétrica não orientada e método de fabricação de chapa de aço elétrica não orientada
JP2019504637A JP6828800B2 (ja) 2017-03-07 2018-03-07 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
US16/487,020 US11124854B2 (en) 2017-03-07 2018-03-07 Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR1020197025126A KR102265091B1 (ko) 2017-03-07 2018-03-07 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042547 2017-03-07
JP2017042547 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164185A1 true WO2018164185A1 (ja) 2018-09-13

Family

ID=63447809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008780 WO2018164185A1 (ja) 2017-03-07 2018-03-07 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法

Country Status (9)

Country Link
US (1) US11124854B2 (ja)
EP (1) EP3594371B1 (ja)
JP (1) JP6828800B2 (ja)
KR (1) KR102265091B1 (ja)
CN (1) CN110366604B (ja)
BR (1) BR112019017229B1 (ja)
PL (1) PL3594371T3 (ja)
TW (1) TWI658152B (ja)
WO (1) WO2018164185A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090160A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法
WO2021006280A1 (ja) * 2019-07-11 2021-01-14 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコア
WO2021019859A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
CN113195769A (zh) * 2018-09-27 2021-07-30 Posco公司 无取向电工钢板及其制造方法
KR20210099111A (ko) * 2019-01-24 2021-08-11 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판과 그의 제조 방법
KR20210112365A (ko) * 2019-02-14 2021-09-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
EP3904540A4 (en) * 2018-12-27 2022-04-20 JFE Steel Corporation NON-ORIENTED GRAIN MAGNETIC STEEL SHEET
EP3992312A4 (en) * 2019-06-28 2022-07-20 JFE Steel Corporation METHOD OF PRODUCTION OF NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD OF PRODUCTION OF MOTOR CORE AND MOTOR CORE
EP4001448A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2022210870A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板
RU2791753C1 (ru) * 2019-07-31 2023-03-13 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017426A1 (ja) * 2017-07-19 2019-01-24 新日鐵住金株式会社 無方向性電磁鋼板
JP7294074B2 (ja) * 2019-11-11 2023-06-20 セイコーエプソン株式会社 オーステナイト化フェライト系ステンレス鋼、時計用部品、および、時計
WO2021095851A1 (ja) * 2019-11-15 2021-05-20 日本製鉄株式会社 無方向性電磁鋼板
JP7288215B2 (ja) * 2019-11-15 2023-06-07 日本製鉄株式会社 無方向性電磁鋼板
US20220393520A1 (en) * 2019-12-16 2022-12-08 Jfe Steel Corporation Motor core and method of manufacturing the same
EP4108790A1 (en) * 2020-02-20 2022-12-28 Nippon Steel Corporation Steel sheet for non-oriented electromagnetic steel sheet
CN115398012A (zh) * 2020-04-02 2022-11-25 日本制铁株式会社 无取向电磁钢板及其制造方法
BR112022018384A2 (pt) * 2020-04-10 2022-11-08 Nippon Steel Corp Chapas de aço elétrico não orientado e laminada a frio, núcleo, e, métodos para fabricação de uma chapa de aço elétrico não orientado e de uma chapa de aço laminada a frio
BR112022020680A2 (pt) * 2020-04-16 2022-11-29 Nippon Steel Corp Chapa de aço elétrico não orientado, e, método para fabricar a chapa de aço elétrico não orientado
BR112022020652A2 (pt) * 2020-04-16 2022-11-29 Nippon Steel Corp Chapa de aço elétrico não orientado, e, método para fabricar a chapa de aço elétrico não orientado
CN116888295B (zh) * 2021-03-31 2024-03-19 日本制铁株式会社 无取向性电磁钢板、电机铁芯、无取向性电磁钢板的制造方法及电机铁芯的制造方法
WO2022210955A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット
JP7164071B1 (ja) * 2021-04-02 2022-11-01 日本製鉄株式会社 無方向性電磁鋼板
JP7231116B2 (ja) * 2021-04-02 2023-03-01 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
KR20240011530A (ko) * 2022-07-19 2024-01-26 현대제철 주식회사 무방향성 전기강판 및 그 제조 방법

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238421A (ja) 1984-05-10 1985-11-27 Kawasaki Steel Corp 高抗張力無方向性電磁鋼板の製造方法
JPS62112723A (ja) 1985-11-09 1987-05-23 Kawasaki Steel Corp 高張力軟磁性鋼板の製造方法
JPH028346A (ja) 1988-06-27 1990-01-11 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH0222442A (ja) 1988-07-12 1990-01-25 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH08134606A (ja) 1994-11-10 1996-05-28 Nippon Steel Corp 歪取り焼鈍後の磁束密度が高い無方向性電磁鋼板
JP2005113185A (ja) 2003-10-06 2005-04-28 Nippon Steel Corp 磁気特性の優れた高強度電磁鋼板とその製造方法
JP2005120403A (ja) * 2003-10-15 2005-05-12 Jfe Steel Kk 高周波域の鉄損が低い無方向性電磁鋼板
JP2007186790A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2008050686A (ja) * 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2010090474A (ja) 2008-09-11 2010-04-22 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
JP2010259158A (ja) * 2009-04-22 2010-11-11 Jfe Steel Corp 高速モータ用コア材料
US20110273054A1 (en) * 2010-05-04 2011-11-10 Gwynne Johnston Electrical steel, a motor, and a method for manufacture of electrical steel with high strength and low electrical losses
WO2013125223A1 (ja) * 2012-02-23 2013-08-29 Jfeスチール株式会社 電磁鋼板の製造方法
US20140366988A1 (en) * 2011-09-16 2014-12-18 Voestalpine Stahl Gmbh Method for producing a non-grain-oriented higher-strength electrical strip and use thereof
WO2016017263A1 (ja) * 2014-07-31 2016-02-04 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法
JP2017042547A (ja) 2015-08-28 2017-03-02 株式会社高尾 弾球遊技機

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191741A (ja) * 1988-01-27 1989-08-01 Sumitomo Metal Ind Ltd セミプロセス無方向性電磁鋼板の製造方法
JP3333794B2 (ja) * 1994-09-29 2002-10-15 川崎製鉄株式会社 無方向性電磁鋼板の製造方法
JPH0897023A (ja) * 1994-09-29 1996-04-12 Kawasaki Steel Corp 鉄損特性の優れた無方向性けい素鋼板の製造方法
JP3399726B2 (ja) * 1995-11-07 2003-04-21 新日本製鐵株式会社 高磁束密度低鉄損無方向性電磁鋼板の製造方法
JP3855554B2 (ja) * 1999-09-03 2006-12-13 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
CN1888112A (zh) * 2005-06-30 2007-01-03 宝山钢铁股份有限公司 具有高磁感的高牌号无取向电工钢及其制造方法
WO2007069776A1 (ja) 2005-12-15 2007-06-21 Jfe Steel Corporation 高強度無方向性電磁鋼板およびその製造方法
JP4658840B2 (ja) * 2006-03-20 2011-03-23 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
JPWO2007144964A1 (ja) * 2006-06-16 2009-10-29 新日本製鐵株式会社 高強度電磁鋼板およびその製造方法
JP5423175B2 (ja) * 2009-06-23 2014-02-19 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法
JP5772410B2 (ja) * 2010-11-26 2015-09-02 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5884153B2 (ja) * 2010-12-28 2016-03-15 Jfeスチール株式会社 高強度電磁鋼板およびその製造方法
JP5825082B2 (ja) * 2011-12-12 2015-12-02 Jfeスチール株式会社 伸び及び伸びフランジ性に優れた高降伏比高強度冷延鋼板とその製造方法
CN104937118A (zh) * 2013-02-21 2015-09-23 杰富意钢铁株式会社 磁特性优异的半工艺无取向性电磁钢板的制造方法
JP6048699B2 (ja) * 2015-02-18 2016-12-21 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコア
EP3263719B1 (en) 2015-02-24 2019-05-22 JFE Steel Corporation Method for producing non-oriented electrical steel sheets
BR112017021976B1 (pt) 2015-04-27 2021-12-28 Nippon Steel Corporation Chapa de aço magnético não orientado
CN105950964B (zh) * 2016-05-24 2020-06-12 刘和来 一种电机用无取向硅钢

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60238421A (ja) 1984-05-10 1985-11-27 Kawasaki Steel Corp 高抗張力無方向性電磁鋼板の製造方法
JPS62112723A (ja) 1985-11-09 1987-05-23 Kawasaki Steel Corp 高張力軟磁性鋼板の製造方法
JPH028346A (ja) 1988-06-27 1990-01-11 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH0222442A (ja) 1988-07-12 1990-01-25 Nippon Steel Corp 高張力電磁鋼板及びその製造方法
JPH08134606A (ja) 1994-11-10 1996-05-28 Nippon Steel Corp 歪取り焼鈍後の磁束密度が高い無方向性電磁鋼板
JP2005113185A (ja) 2003-10-06 2005-04-28 Nippon Steel Corp 磁気特性の優れた高強度電磁鋼板とその製造方法
JP2005120403A (ja) * 2003-10-15 2005-05-12 Jfe Steel Kk 高周波域の鉄損が低い無方向性電磁鋼板
JP2007186790A (ja) 2005-12-15 2007-07-26 Jfe Steel Kk 高強度無方向性電磁鋼板およびその製造方法
JP2008050686A (ja) * 2006-07-27 2008-03-06 Nippon Steel Corp 強度と磁気特性に優れた無方向性電磁鋼板とその製造方法
JP2010090474A (ja) 2008-09-11 2010-04-22 Jfe Steel Corp 無方向性電磁鋼板およびその製造方法
JP2010121150A (ja) * 2008-11-17 2010-06-03 Sumitomo Metal Ind Ltd 回転機用無方向性電磁鋼板および回転機ならびにそれらの製造方法
JP2010259158A (ja) * 2009-04-22 2010-11-11 Jfe Steel Corp 高速モータ用コア材料
US20110273054A1 (en) * 2010-05-04 2011-11-10 Gwynne Johnston Electrical steel, a motor, and a method for manufacture of electrical steel with high strength and low electrical losses
US20140366988A1 (en) * 2011-09-16 2014-12-18 Voestalpine Stahl Gmbh Method for producing a non-grain-oriented higher-strength electrical strip and use thereof
WO2013125223A1 (ja) * 2012-02-23 2013-08-29 Jfeスチール株式会社 電磁鋼板の製造方法
WO2016017263A1 (ja) * 2014-07-31 2016-02-04 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法ならびにモータコアとその製造方法
JP2017042547A (ja) 2015-08-28 2017-03-02 株式会社高尾 弾球遊技機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594371A4

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113195769A (zh) * 2018-09-27 2021-07-30 Posco公司 无取向电工钢板及其制造方法
JP7350063B2 (ja) 2018-09-27 2023-09-25 ポスコ カンパニー リミテッド 無方向性電磁鋼板およびその製造方法
JP2022501513A (ja) * 2018-09-27 2022-01-06 ポスコPosco 無方向性電磁鋼板およびその製造方法
EP3859039A4 (en) * 2018-09-27 2021-08-04 Posco NON GRAIN ORIENTED ELECTRIC STEEL AND THE METHOD OF MANUFACTURING IT
JPWO2020090160A1 (ja) * 2018-10-31 2021-02-15 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US11525169B2 (en) 2018-10-31 2022-12-13 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
US11718891B2 (en) 2018-10-31 2023-08-08 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP2021036075A (ja) * 2018-10-31 2021-03-04 Jfeスチール株式会社 無方向性電磁鋼板およびモータコアとその製造方法
WO2020090160A1 (ja) * 2018-10-31 2020-05-07 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコアとその製造方法
US11732319B2 (en) 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet
EP3904540A4 (en) * 2018-12-27 2022-04-20 JFE Steel Corporation NON-ORIENTED GRAIN MAGNETIC STEEL SHEET
KR20210099111A (ko) * 2019-01-24 2021-08-11 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판과 그의 제조 방법
CN113366124B (zh) * 2019-01-24 2023-01-17 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
EP3916113A4 (en) * 2019-01-24 2022-07-06 JFE Steel Corporation NON-ORIENTED GRAIN ELECTROMAGNETIC STEEL SHEET AND METHOD FOR PRODUCTION THEREOF
CN113366124A (zh) * 2019-01-24 2021-09-07 杰富意钢铁株式会社 无取向性电磁钢板及其制造方法
KR102477535B1 (ko) * 2019-01-24 2022-12-14 제이에프이 스틸 가부시키가이샤 무방향성 전자 강판과 그의 제조 방법
KR20210112365A (ko) * 2019-02-14 2021-09-14 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
KR102554094B1 (ko) * 2019-02-14 2023-07-12 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판
EP3992312A4 (en) * 2019-06-28 2022-07-20 JFE Steel Corporation METHOD OF PRODUCTION OF NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, METHOD OF PRODUCTION OF MOTOR CORE AND MOTOR CORE
US11962184B2 (en) 2019-06-28 2024-04-16 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet, method for producing motor core, and motor core
WO2021006280A1 (ja) * 2019-07-11 2021-01-14 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコア
JP6825758B1 (ja) * 2019-07-11 2021-02-03 Jfeスチール株式会社 無方向性電磁鋼板とその製造方法およびモータコア
JPWO2021019859A1 (ja) * 2019-07-31 2021-09-13 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP7044165B2 (ja) 2019-07-31 2022-03-30 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
RU2791753C1 (ru) * 2019-07-31 2023-03-13 ДжФЕ СТИЛ КОРПОРЕЙШН Лист из нетекстурированной электротехнической стали и способ его изготовления
WO2021019859A1 (ja) * 2019-07-31 2021-02-04 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
EP4001448A4 (en) * 2019-08-26 2022-07-27 Baoshan Iron & Steel Co., Ltd. NON-ORIENTED ELECTRICAL STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
JP7303476B2 (ja) 2021-03-31 2023-07-05 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
WO2022210870A1 (ja) * 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板
KR20230134148A (ko) 2021-03-31 2023-09-20 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
WO2022210530A1 (ja) 2021-03-31 2022-10-06 日本製鉄株式会社 無方向性電磁鋼板、モータコア、無方向性電磁鋼板の製造方法及びモータコアの製造方法
JPWO2022210530A1 (ja) * 2021-03-31 2022-10-06
KR102670258B1 (ko) 2021-03-31 2024-06-04 닛폰세이테츠 가부시키가이샤 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
EP4273279A4 (en) * 2021-03-31 2024-07-03 Nippon Steel Corp NON-ORIENTED ELECTROMAGNETIC STEEL SHEET, MOTOR CORE, MANUFACTURING METHOD FOR NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND MANUFACTURING METHOD FOR MOTOR CORE

Also Published As

Publication number Publication date
TW201835355A (zh) 2018-10-01
EP3594371A1 (en) 2020-01-15
PL3594371T3 (pl) 2021-11-08
EP3594371B1 (en) 2021-07-07
BR112019017229B1 (pt) 2023-03-28
JP6828800B2 (ja) 2021-02-10
KR20190112757A (ko) 2019-10-07
US11124854B2 (en) 2021-09-21
KR102265091B1 (ko) 2021-06-15
CN110366604A (zh) 2019-10-22
BR112019017229A2 (pt) 2020-04-28
EP3594371A4 (en) 2020-08-05
US20200232059A1 (en) 2020-07-23
JPWO2018164185A1 (ja) 2019-12-26
CN110366604B (zh) 2021-08-10
TWI658152B (zh) 2019-05-01

Similar Documents

Publication Publication Date Title
JP6828800B2 (ja) 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
JP6767687B1 (ja) 無方向性電磁鋼板とその製造方法
JP6891682B2 (ja) 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
JPWO2020090160A1 (ja) 無方向性電磁鋼板の製造方法
JP7350063B2 (ja) 無方向性電磁鋼板およびその製造方法
TWI718973B (zh) 無方向性電磁鋼板及其製造方法及電動機芯
JP2020509184A (ja) 無方向性電磁鋼板およびその製造方法
JP2019504193A (ja) 無方向性電磁鋼板及びその製造方法
JP2022545027A (ja) 600MPa級無方向性電磁鋼板及びその製造方法
JP7253054B2 (ja) 磁性に優れる無方向性電磁鋼板およびその製造方法
CN112840041A (zh) 用于制造具有中间厚度的no-电工带的方法
WO2019132375A1 (ko) 무방향성 전기장판 및 그 제조방법
KR102706290B1 (ko) 무방향성 전자 강판 및 그 제조 방법
TWI829403B (zh) 無方向性電磁鋼板及其製造方法
CN116888295B (zh) 无取向性电磁钢板、电机铁芯、无取向性电磁钢板的制造方法及电机铁芯的制造方法
JP7428873B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7428872B2 (ja) 無方向性電磁鋼板及びその製造方法
CN114616353B (zh) 无方向性电磁钢板
CN114651079A (zh) 无取向性电磁钢板
KR20130010232A (ko) 저철손 고강도 무방향성 전기강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504637

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025126

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017229

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764795

Country of ref document: EP

Effective date: 20191007

ENP Entry into the national phase

Ref document number: 112019017229

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190819