WO2022210870A1 - 無方向性電磁鋼板 - Google Patents

無方向性電磁鋼板 Download PDF

Info

Publication number
WO2022210870A1
WO2022210870A1 PCT/JP2022/015948 JP2022015948W WO2022210870A1 WO 2022210870 A1 WO2022210870 A1 WO 2022210870A1 JP 2022015948 W JP2022015948 W JP 2022015948W WO 2022210870 A1 WO2022210870 A1 WO 2022210870A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
annealing
crystal
oriented electrical
Prior art date
Application number
PCT/JP2022/015948
Other languages
English (en)
French (fr)
Inventor
岳顕 脇坂
義顕 名取
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020237032623A priority Critical patent/KR20230150986A/ko
Priority to EP22781080.1A priority patent/EP4317474A1/en
Priority to JP2023511478A priority patent/JPWO2022210870A1/ja
Priority to US18/284,032 priority patent/US20240153684A1/en
Priority to CN202280025365.2A priority patent/CN117120648A/zh
Priority to BR112023019184A priority patent/BR112023019184A2/pt
Publication of WO2022210870A1 publication Critical patent/WO2022210870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/125Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to a non-oriented electrical steel sheet.
  • This application claims priority based on Japanese Patent Application No. 2021-061752 filed in Japan on March 31, 2021 and Japanese Patent Application No. 2021-099597 filed in Japan on June 15, 2021. , the contents of which are hereby incorporated by reference.
  • Patent Document 1 describes that in a method of punching a non-oriented electrical steel sheet to produce a motor core, the roundness of the cutting edge of a punching die is controlled according to the elongation rate of the non-oriented electrical steel sheet. ing.
  • the non-oriented electrical steel sheet used for the stator core of the motor is subjected to core annealing to reduce iron loss after the stator core is punched out with a die.
  • core annealing To reduce iron loss after the stator core is punched out with a die.
  • the rotor core is first punched out of the non-oriented electrical steel sheet, then the inner diameter of the stator core is punched out, and then the outer diameter of the stator core is punched out.
  • core annealing By applying heat to the stator core by core annealing, residual stress and strain are released, and iron loss is reduced.
  • the stator core is subjected to core annealing
  • the rotor core is generally not subjected to annealing in order to increase the strength.
  • the shape change of the stator core due to the release of the residual stress during core annealing will be uneven.
  • the high roundness of the inner diameter of the stator core obtained before core annealing may be reduced by core annealing.
  • One of the causes of non-uniform residual stress distribution is structural non-uniformity of punched non-oriented electrical steel sheets.
  • Patent Document 1 controls the roundness of the cutting edge of the punching die according to the elongation rate of the non-oriented electrical steel sheet, and the dimensional accuracy after processing the non-oriented electrical steel sheet. is controlled by the dimensions of the punching die. For this reason, the technique described in Patent Document 1 does not assume that a non-oriented electrical steel sheet capable of obtaining desired dimensional accuracy can be obtained without depending on the dimensions of the punching die.
  • an object of the present invention is to provide a non-oriented electrical steel sheet capable of suppressing deterioration in dimensional accuracy after processing and subsequent core annealing (stress relief annealing).
  • the gist of the present disclosure is as follows. (1) In a non-oriented electrical steel sheet according to an embodiment of the present invention, when a boundary having a crystal orientation difference of 2° or more and less than 15° is regarded as a grain boundary in a cross section parallel to the steel sheet surface, the grain The area ratio of crystal grains having a diameter of less than 200 ⁇ m satisfies 10% or less. (2) The non-oriented electrical steel sheet described in (1) above has a maximum grain size of D15 when a boundary having a crystal orientation difference of 15° or more is regarded as a grain boundary in a cross section parallel to the steel sheet surface.
  • the non-oriented electrical steel sheet according to (1) or (2) above has a crystal orientation difference of 200 ⁇ m or more when a boundary having a crystal orientation difference of 15° or more is regarded as a grain boundary in a cross section parallel to the steel sheet surface.
  • the following formula (2) may be satisfied when the major axis length is DL and the minor axis length is DC.
  • FIG. 4 is a plan view showing a state in which the rotor core is inserted inside the stator core
  • the non-oriented electrical steel sheet used for the stator core is punched into the shape of the stator core with a die, and then subjected to heat treatment (core annealing) to reduce iron loss.
  • heat treatment core annealing
  • FIG. 1 is a plan view showing a state in which the rotor core is inserted inside the stator core.
  • a stator core 21 is constructed by laminating non-oriented electrical steel sheets in the direction perpendicular to the paper surface, and is composed of a core back 22 on the outer peripheral side and a plurality of teeth 23 protruding inward from the core back 22 .
  • a rotor core 30 is inserted inside the tips of the teeth 23 .
  • the rotor core 30 has a rotor core 31 and a plurality of magnets 32 provided on the outer peripheral side of the rotor core 31 and facing the tips of the teeth 23 .
  • the outer circumference of stator core 21 is held by case 50 .
  • a shaft 60 penetrates through the center of the rotor core 31 and is fixed to the rotor core 31 .
  • the shaft 60 is rotatably supported by the case 50 (or another fixed member) with the center O of the shaft 60 aligned with the center of the inner diameter of the stator core 21 .
  • the inner diameter of the stator core is specifically the inner diameter D of the tips of the teeth 23 .
  • the circularity of the inner diameter D decreases due to the change in the shape of the stator core 21 due to the release of the residual stress, the gap between the tips of the teeth 23 and the rotor core 31 becomes uneven. This increases the cogging torque when the rotor core 30 rotates. An increase in cogging torque causes uneven rotation, vibration, noise, and the like. Further, if the roundness of the inner diameter of the stator core 21 is further reduced, problems such as the rotor iron core 31 of the rotor core 30 coming into contact with the tips of the teeth 23 may occur.
  • the ratio obtained by dividing the difference between the maximum and minimum diameters of a circle by the average diameter is used as the roundness evaluation criterion.
  • the maximum circle diameter is the diameter of the larger circle among the above two concentric circles described in JIS B0621 (1984), and the maximum circle diameter is the diameter of the smaller circle among the above two concentric circles.
  • the average diameter is the average value of the maximum and minimum diameters of the circle. Therefore, the roundness evaluation criteria of this embodiment are the roundness, which is the radius difference between two concentric circles when the interval between two concentric circles described in JIS B0621 (1984) is the minimum, and the radius of the two circles corresponds to the ratio obtained by dividing by the average value of
  • the ratio of the difference between the maximum value and the minimum value of the inner diameter D to the average diameter exceeds 0.200%, the gap between the tip of the tooth 23 and the rotor core 31 becomes uneven, causing uneven rotation, vibration, noise, and the like. Also, the rotor core 31 of the rotor core 30 hits the tips of the teeth 23. Therefore, the ratio of the difference between the maximum value and the minimum value of the inner diameter D to the average diameter is set to 0.200% or less. This ratio is preferably 0.15% or less, more preferably 0.100% or less. Since the smaller the ratio, the better, there is no lower limit.
  • One of the causes of non-uniform residual stress distribution in the stator core is the structural non-uniformity of the punched non-oriented electrical steel sheets.
  • the stresses remaining in the respective structures are different, resulting in differences in the degree of stress release during core annealing.
  • the recrystallized structure and the non-recrystallized structure are finely dispersed in the non-oriented electrical steel sheet, it is relatively difficult to detect a decrease in roundness of the inner diameter of the stator core after punching.
  • the uneven distribution of the recrystallized structure and the non-recrystallized structure occurs when the average grain size of the steel sheet before the final cold rolling is relatively large, or when there are many grains larger than the average grain size in the steel sheet before the final cold rolling. easy to get up.
  • "Before final cold rolling” means after the final annealing performed before final cold rolling.
  • after hot-rolling and coiling corresponds to "before the final cold-rolling”
  • the hot-rolled sheet After annealing corresponds to "before final cold rolling”
  • after intermediate annealing corresponds to "before final cold rolling”.
  • the ⁇ 100 ⁇ 0vw> oriented grains become coarsely processed grains elongated in the rolling direction during cold rolling, and are then annealed. It remains as a coarse non-recrystallized structure.
  • the non-oriented electrical steel sheet of the present embodiment has a crystal grain size of less than 200 ⁇ m when a boundary having a crystal orientation difference of 2° or more and less than 15° is regarded as a grain boundary in a cross section parallel to the steel sheet surface.
  • the grain area ratio satisfies 10% or less.
  • the crystal misorientation of the boundary for judging the crystal boundary is limited to a small misorientation of less than 15°.
  • a region observed as a relatively fine structure with a crystal grain size of less than 200 ⁇ m due to such a grain boundary with a small crystal orientation difference is, in other words, a region in which crystals having the same crystal orientation are adjacent to each other.
  • Such regions are considered to be generated by cold rolling and annealing due to the presence of non-uniform regions in which recrystallized structures and non-recrystallized structures are unevenly distributed.
  • this area ratio is limited to 10% or less. It is preferably less than 5%.
  • the reason why the lower limit of the crystal orientation difference for judging the grain boundary is set to 2° or more is that if the crystal orientation difference for judging the grain boundary is too small (for example, about 1°), slight distortion of the crystal or This is because, depending on the accuracy of the measuring instrument, what is not a crystal boundary may be determined to be a crystal grain boundary.
  • the crystal orientation difference and the area ratio of crystal grains are measured as follows. First, a sample (crystalline sample) is taken from a non-oriented electrical steel sheet with a cross section parallel to the steel sheet surface (a cross section parallel to the rolling direction and thickness direction of the steel sheet) as an observation surface, and the observation surface is polished to a mirror surface. Finish. Next, the crystalline sample is placed in a scanning electron microscope (SEM) with a large inclination, and is irradiated with an electron beam to obtain an EBSD (Electron Back Scatter Diffraction) pattern. The EBSD pattern is continuously collected by a dedicated EBSD detector, and the EBSD pattern is indexed and the crystal orientation is calculated.
  • SEM scanning electron microscope
  • the crystal structure analysis by the EBSD method is performed at a magnification of 100, the number of fields of view: 5, and the size of one field of view is 800 ⁇ m ⁇ 1,000 ⁇ m or more.
  • the obtained data is analyzed with "OIM Analysis Version 7.3.1” (manufactured by TSL).
  • TSL "OIM Analysis Version 7.3.1”
  • the maximum grain size is D15 MAX when the boundary having a crystal orientation difference of 15° or more is regarded as the grain boundary, and the boundary having a crystal orientation difference of 2° or more
  • D2 AVE is the average crystal grain size when is regarded as a crystal grain boundary, it is preferable to satisfy the following formula (1).
  • This ratio is an index showing how continuously the crystals having the same crystal orientation are adjacent to each other and how wide they spread.
  • the grain boundary for determining D2 AVE includes the grain boundary for determining D15 MAX . That is, the crystal grain structure for determining D2 AVE is a crystal structure obtained by further dividing part of the crystal grains for determining D15 MAX at grain boundaries with a small misorientation. The smaller this ratio, the coarser the crystal grains when a boundary with a crystal misorientation of 15° or more is regarded as a grain boundary, the more coarse the crystal grains are at the crystal grain boundary with a small misorientation of 2° or more and less than 15°. Indicates a state of fragmentation.
  • D15 MAX /D2 AVE is preferably 3.0 or less.
  • the shape of the crystal grain having a crystal grain size of 200 ⁇ m or more is approximated by an ellipse.
  • DL is the length of the long axis
  • DC is the length of the short axis.
  • the approximation to an ellipse is, for example, ⁇ “Investigation of material control and material maintenance methods by evaluating strength characteristics focusing on crystal grain shape” (Harada et al., Abstracts of the Japan Society of Maintenology, 2nd, P150) can be processed according to the procedure described in .
  • a test piece having a width of 15 mm and a length of 10 mm with the rolling direction as the longitudinal direction is taken from the center of the non-oriented electrical steel sheet in the sheet width direction, and from the surface of the test piece to about 1/2 of the plate thickness. Polished to a mirror finish.
  • the mirror-finished sample is observed at an observation magnification of 100 using an EBSD-equipped SEM, and the crystal structure is analyzed by EBSD measurement.
  • Data obtained by EBSD measurement is subjected to crystal orientation analysis using "OIM Analysis Version 7.3.1" (manufactured by TSL).
  • DL/DC is calculated individually and averaged.
  • the present embodiment defines a situation in which coarse crystal grains are finely divided at crystal grain boundaries with a small misorientation of 2° or more and less than 15°.
  • coarse crystal grains refers to crystal grains when a boundary having a crystal orientation difference of 15° or more is regarded as a crystal grain boundary.
  • Coarse crystal grains to be split are stretched by cold rolling in the manufacturing process, and fine crystal grains dividing them tend to occur in such stretched regions. In other words, even if coarse crystal grains exist, if they are not stretched, the coarse crystal grains will have a recrystallized structure and a non-recrystallized structure that cause uneven distribution of residual stress as described above. It should be considered that it occurred independently of the ubiquitous organization. In other words, it is an index that indicates that there was no structure that would cause uneven distribution of residual stress that would reduce the roundness.
  • DL/DC is 3.0 or less.
  • the average grain size of the steel sheet before the final cold rolling is 200 ⁇ m or less, and the existence ratio of crystal grains exceeding 200 ⁇ m is 10% or less of the whole.
  • the existence ratio of ⁇ 100 ⁇ ⁇ 0vw> oriented grains in the steel sheet before the final cold rolling is 10% or less of the whole.
  • Such a base sheet is a steel sheet in which uneven distribution of the recrystallized structure and the non-recrystallized structure is suppressed as described above, and it is possible to avoid a decrease in roundness during punching and subsequent annealing.
  • the "original sheet of non-oriented electrical steel sheet” in this embodiment can be used as a motor core as it is.
  • the structure of the present embodiment is referred to as an "original plate”
  • the steel sheet is also expected to be used as it is as a non-oriented electrical steel sheet, which is a material for motor cores.
  • Crystal grain boundaries, crystal grain sizes, and crystal orientations are determined using "OIM Analysis Version 7.3.1" (manufactured by TSL) to obtain measured values.
  • Typical measurement conditions are a beam diameter of 1 ⁇ m and a crystal orientation likelihood of 10°.
  • the chemical composition of the non-oriented electrical steel sheet according to the present embodiment contains Si, optionally contains selective elements, and the balance consists of Fe and impurities. Each element will be described below.
  • C 0% or more and 0.0050% or less C (carbon) is an element that is contained as an impurity and deteriorates magnetic properties. Therefore, the C content should be 0.0050% or less. Preferably, it is 0.0030% or less. Since the C content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to make the content 0% industrially, the lower limit may be more than 0%, or 0.0010% or more.
  • Si 2.00% or more and 3.25% or less
  • Si is an element effective in increasing the specific resistance of the steel sheet and reducing iron loss. Therefore, the Si content should be 2.00% or more.
  • Si is an effective element for achieving both magnetic properties and mechanical anisotropy as a non-oriented electrical steel sheet.
  • the Si content is preferably more than 2.50%, more preferably 2.70% or more, further preferably 2.90% or more, and 3.00% or more. is more preferred.
  • an excessive Si content significantly lowers the magnetic flux density. Therefore, the Si content should be 3.25% or less.
  • the Si content is preferably 3.20% or less, more preferably 3.15% or less.
  • sol. Al 0% or more and 1.10% or less
  • Al aluminum
  • sol. Al content is less than 1.10%. sol.
  • sol. Al There is no need to limit the lower limit of Al, and the lower limit may be 0%. However, in order to more reliably obtain the effect of the above action, sol. It is preferable to set the Al content to 0.10% or more.
  • sol. Al means acid-soluble aluminum.
  • Mn 0% or more and 1.10% or less
  • Mn manganese
  • P 0% or more and 0.30% or less
  • P phosphorus
  • P is an element generally contained as an impurity.
  • P since it has the effect of improving the texture of the non-oriented electrical steel sheet and improving the magnetic properties, it may be contained as necessary.
  • P since P is also a solid-solution strengthening element, an excessive P content hardens the steel sheet and makes cold rolling difficult. Therefore, the P content should be 0.30% or less.
  • the P content is preferably 0.20% or less. There is no need to limit the lower limit of P, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the P content is preferably 0.001% or more, more preferably 0.015% or more.
  • S 0% or more and 0.0100% or less S (sulfur) is contained as an impurity, combines with Mn in the steel to form fine MnS, inhibits the growth of grains during annealing, It degrades the magnetic properties of the electrical steel sheet. Therefore, the S content is set to 0.0100% or less.
  • the S content is preferably 0.0050% or less, more preferably 0.0030% or less. Since the S content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be set to 0.0001%.
  • N 0% or more and 0.0100% or less N (nitrogen) is contained as an impurity, combines with Al to form fine AlN, inhibits the growth of crystal grains during annealing, and degrades magnetic properties. Therefore, the N content is set to 0.0100% or less.
  • the N content is preferably 0.0050% or less, more preferably 0.0030% or less. Since the N content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be 0.0001% or more, may be more than 0.0015%, or may be 0.0020% or more.
  • Ti 0% or more and 0.1000% or less
  • Ti is an element that is unavoidably mixed in steel, and can combine with carbon or nitrogen to form precipitates (carbides, nitrides). When carbides or nitrides are formed, these precipitates themselves deteriorate the magnetic properties of the non-oriented electrical steel sheet. Furthermore, carbides or nitrides inhibit the growth of grains during final annealing, degrading the magnetic properties of the non-oriented electrical steel sheet. Therefore, the Ti content should be 0.1000% or less.
  • the Ti content is preferably 0.0100% or less, more preferably 0.0050% or less, even more preferably 0.0020% or less.
  • the Ti content may be 0%. Note that an extreme reduction in the Ti content may cause an increase in manufacturing costs, so the Ti content is preferably 0.0005% or more.
  • Ca 0% or more and 0.010% or less
  • Ca (calcium) suppresses the precipitation of fine sulfides (MnS, Cu 2 S, etc.) by forming coarse sulfides, so it is an effective choice for inclusion control. It is an element, and when added in an appropriate amount, it has the effect of improving crystal grain growth and improving magnetic properties (for example, iron loss). However, if it is contained excessively, the effects due to the above action become saturated, leading to an increase in cost. Therefore, the Ca content should be 0.010% or less.
  • the Ca content is preferably 0.008% or less, more preferably 0.005% or less. There is no need to limit the lower limit of Ca, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the Ca content is preferably 0.0003% or more.
  • the Ca content is preferably 0.001% or more, more preferably 0.003% or more.
  • Cr 0% or more and 5.000% or less
  • Cr chromium
  • the Cr content is preferably 0.500% or less, more preferably 0.100% or less.
  • the lower limit may be 0%.
  • the Cr content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Ni 0% or more and 5.000% or less
  • Ni (nickel) is a selective element that improves magnetic properties (for example, saturation magnetic flux density).
  • the Ni content should be 5.000% or less.
  • the Ni content is preferably 0.500% or less, more preferably 0.100% or less.
  • the lower limit may be 0%.
  • the Ni content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Cu 0% or more and 5.000% or less
  • Cu (copper) is a selective element that improves the steel sheet strength.
  • the saturation magnetic flux density may be lowered, and the effect due to the above action is saturated, leading to an increase in cost. Therefore, the Cu content is set to 5.000% or less.
  • the Cu content is preferably 0.100% or less.
  • the lower limit may be 0%.
  • the Cu content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Sn 0% or more and 0.100% or less
  • Sb 0% or more and 0.100% or less
  • Sn (tin) and Sb (antimony) improve the texture of the non-oriented electrical steel sheet and improve the magnetic properties (e.g., magnetic flux density ), it may be contained as necessary. However, if it is contained excessively, it may embrittle the steel and cause cold-rolling fracture, and may deteriorate the magnetic properties. Therefore, the contents of Sn and Sb are each set to 0.100% or less. Sn and Sb do not need to have a lower limit, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the Sn content is preferably 0.001% or more, more preferably 0.010% or more. The Sb content is preferably 0.001% or more, preferably 0.002% or more, more preferably 0.010% or more, and more than 0.025%. More preferred.
  • Ce 0% or more and 0.100% or less
  • Ce suppresses the precipitation of fine sulfides (MnS, Cu 2 S, etc.) by producing coarse sulfides and oxysulfides, and improves grain growth.
  • MnS, Cu 2 S, etc. fine sulfides
  • the Ce content should be 0.100% or less.
  • the Ce content is preferably 0.010% or less, more preferably 0.009% or less, and even more preferably 0.008% or less.
  • the Ce content is preferably 0.001% or more in order to more reliably obtain the effects of the above action.
  • the Ce content is more preferably 0.002% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • the chemical composition of the non-oriented electrical steel sheet according to the present embodiment includes, in addition to the above elements, selected elements such as B, O, Mg, Ti, V, Zr, Nd, Bi, W, Mo, Nb and Y may be contained.
  • selected elements such as B, O, Mg, Ti, V, Zr, Nd, Bi, W, Mo, Nb and Y may be contained.
  • the content of these selective elements may be controlled based on known knowledge. For example, the content of these selective elements may be as follows.
  • V 0% or more and 0.100% or less
  • Zr 0% or more and 0.100% or less
  • Nb 0% or more and 0.100% or less
  • B 0% or more and 0.100% or less
  • O 0% or more and 0.100% or less
  • Mg 0% or more and 0.100% or less
  • Nd 0% or more and 0.100% or less
  • Bi 0% or more and 0.100% or less
  • W 0% or more and 0.100% or less
  • Mo 0% or more and 0.100% or less
  • Y 0% or more and 0.100% or less.
  • the non-oriented electrical steel sheet according to the present embodiment has a chemical composition of, in mass%, C: 0.0010% or more and 0.0050% or less, sol. Al: 0.10% or more and less than 1.10%, Mn: 0.0010% or more and 1.10% or less, P: 0.0010% or more and 0.30% or less, S: 0.0001% or more and 0.0100% or less, N: more than 0.0015% and 0.0100% or less, Ti: 0.0001% or more and 0.1000% or less, V: 0.0001% or more and 0.100% or less, Zr: 0.0002% or more and 0.100% or less, Nb: 0.0001% or more and 0.100% or less, B: 0.0001% or more and 0.100% or less, O: 0.0001% or more and 0.100% or less, Mg: 0.0001% or more and 0.100% or less, Ca: 0.0003% or more and 0.010% or less, Cr: 0.0010% or more and 5.000% or less, Ni: 0.0010, sol
  • the B content is preferably 0.01% or less
  • the O content is preferably 0.01% or less
  • the Mg content is preferably 0.005% or less
  • the Ti content is preferably 0.002% or less
  • the V content is preferably 0.002% or less
  • the Zr content is preferably 0.002% or less
  • the Nd content is 0.01%
  • Bi content is preferably 0.01% or less
  • W content is preferably 0.01% or less
  • Nb content is preferably 0.002% or less
  • the Y content is 0.01% or less
  • the Ti content is preferably 0.001% or more
  • the V content is preferably 0.002% or more
  • the Nb content is preferably 0.002% or more.
  • the above chemical composition can be measured by a general analysis method for steel.
  • the chemical composition may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid.
  • Si uses the silicon dioxide gravimetric method
  • C and S use the combustion-infrared absorption method
  • N uses the inert gas melting-thermal conductivity method
  • O uses the inert gas melting-nondispersive infrared absorption method. It can be measured using the method.
  • the above chemical composition is the composition of a non-oriented electrical steel sheet that does not contain an insulating coating or the like. If the non-oriented electrical steel sheet used as the measurement sample has an insulating coating or the like on the surface, the measurement is performed after removing this.
  • the insulating coating or the like may be removed by the following method. First, a non-oriented electrical steel sheet having an insulating coating or the like is immersed in an aqueous sodium hydroxide solution, an aqueous sulfuric acid solution, and an aqueous nitric acid solution in that order, and then washed. Finally, it is dried with warm air. Thereby, a non-oriented electrical steel sheet from which the insulating coating is removed can be obtained. Alternatively, the insulating coating or the like may be removed by grinding.
  • non-oriented electrical steel sheet of the present embodiment may contain Sr, Ba, La, Pr, Zn and Cd in addition to the above elements.
  • Sr, Ba, La, Pr, Zn and Cd coarsen sulfides that inhibit grain growth and facilitate grain growth, so they are appropriately contained as necessary.
  • a non-oriented electrical steel sheet can be obtained by performing, for example, steelmaking, hot rolling, hot-rolled sheet annealing, pickling, cold rolling, and annealing on steel containing the above chemical components.
  • molten steel may be directly hot-rolled by a rapid solidification method, or a hot-rolled sheet may be obtained by thin slab casting and continuous hot rolling.
  • Hot-rolled sheet annealing is a process in which a hot-rolled sheet in which a worked structure remains is heated to 800-1050°C to recrystallize and grow grains. This makes it possible to create a texture favorable for magnetic properties after subsequent cold rolling and annealing.
  • hot-rolled sheet annealing may be performed in order not to cause surface unevenness called ridging in cold rolling, but hot-rolled sheet annealing is not performed in this embodiment. may
  • the hot-rolled sheet (or hot-rolled and annealed sheet) is cold-rolled to obtain a predetermined thickness.
  • the cold rolling may be a single cold rolling method without intermediate annealing, a double cold rolling method with intermediate annealing, or a multiple cold rolling method with multiple intermediate annealings.
  • annealing finish annealing
  • the insulating coating may be formed by applying an insulating material to the surface of the non-oriented electrical steel sheet and baking it.
  • the average grain size of the steel sheet before the final cold rolling is 200 ⁇ m or less, and the existence ratio of crystal grains exceeding 200 ⁇ m is 10% or less of the total grains.
  • the following conditions are particularly satisfied.
  • the average temperature increase rate in the temperature range of 700°C or higher is 50°C/second or more
  • the maximum temperature (annealing temperature) is 1050°C or less
  • the soaking time is 3 minutes or less.
  • the average heating rate in the temperature range of 700° C. or higher is 60° C./second or higher.
  • the maximum plate temperature is preferably 1000° C. or less.
  • the soaking time is preferably 2 minutes or less, more preferably 1 minute or less.
  • the annealing atmosphere in hot-rolled sheet annealing or intermediate annealing before final cold rolling is a dry nitrogen atmosphere.
  • the annealing atmosphere in hot-rolled sheet annealing or intermediate annealing before final cold rolling is preferably a dry nitrogen atmosphere.
  • the average grain size before and after final cold rolling may be measured by the cutting method specified in JIS G0551:2020.
  • a vertical cross-sectional structure photograph an average value of grain sizes measured by a cutting method in the plate thickness direction and the rolling direction may be used.
  • An optical microscopic photograph can be used as the longitudinal section structure photograph, and for example, a photograph taken at a magnification of 50 times may be used.
  • the presence ratio of ⁇ 100 ⁇ ⁇ 0vw> oriented grains in the steel sheet before the final cold rolling is 10% or less of the total crystal grains. meet.
  • the degree of superheat is preferably 15° C. or less, more preferably 10° C. or less, and even more preferably 5° C. or less.
  • the average cooling rate of 900° C. or higher in the cooling process is set to 20° C./second (72000° C./hr.) or less.
  • the average cooling rate is desirably 10°C/sec (36000°C/hr.) or less, more desirably 5°C/sec (18000°C/hr.) or less.
  • the heating temperature is set to 1100° C. or less and the heating time is set to 2 hours or less, preferably 1 hour or less.
  • the existence ratio of ⁇ 100 ⁇ 0vw> oriented grains is measured as follows. Using OIM Analysis Version 7.3.1 (manufactured by TSL), the area ratio of each oriented grain of interest is extracted from the observation field by a scanning electron microscope observed under the following measurement conditions (tolerance is 10 ° ). The extracted area is divided by the area of the observation field to obtain a percentage. Let this percentage be the area ratio of each oriented grain.
  • ⁇ Measuring device Scanning electron microscope with electron beam backscatter diffraction device (SEM-EBSD)
  • SEM Scanning electron microscope with electron beam backscatter diffraction device
  • SEM "JSM-6400" (manufactured by JEOL)
  • EBSD detector “HIKARI” (manufactured by TSL)
  • Step interval 2 ⁇ m
  • ⁇ Measurement object Center layer (1/2 plate thickness) of the Z plane of the steel plate (the cut surface of the steel plate cut in the plate thickness direction)
  • ⁇ Measurement area 8000 ⁇ m ⁇ 2400 ⁇ m area
  • ⁇ Grain boundary The angle difference in crystal orientation is 15 ° or more (a continuous region with an angle difference of less than 15 ° is regarded as one crystal grain)
  • the thickness of the non-oriented electrical steel sheet according to this embodiment may be 0.35 mm or less. More preferably, it is 0.30 mm or less. On the other hand, excessive thinning significantly reduces the productivity of steel sheets and motors, so the thickness is preferably 0.10 mm or more. More preferably, it is 0.15 mm or more. Moreover, the average crystal grain size of the non-oriented electrical steel sheet according to the present embodiment is 10 ⁇ m or more and 200 ⁇ m or less.
  • the plate thickness can be measured with a micrometer.
  • the non-oriented electrical steel sheet used as a measurement sample has an insulating film etc. on the surface, it measures after removing this.
  • Example 1 Regarding symbols 1F and 1G in Table 1, in mass %, Si: 3.00%, sol.
  • a steel containing 0.50% Al, 0.20% Mn, 0.01% C, and other inevitable impurities was melted and hot-rolled to a thickness of 2 mm.
  • the hot-rolled sheet was heated to the annealing temperature (1,000° C. to 1,200° C.) at the average heating rate shown in Table 1 and annealed for 2 minutes.
  • the hot-rolled sheet was decarburized with a wet hydrogen atmosphere as the annealing atmosphere.
  • a hot-rolled and annealed sheet having a metal structure shown in Table 1 and having a thickness of 2 mm was obtained.
  • the hot-rolled and annealed sheet was cold-rolled to a sheet thickness of 0.25 mm, and annealed at 750° C. for 30 seconds (finish annealing) to obtain a non-oriented electrical steel sheet.
  • Cold rolling was performed by a single cold rolling method.
  • Table 1 shows the annealing temperature, average heating rate, and annealing atmosphere of the hot-rolled and annealed sheets.
  • the average grain size of the raw sheet before the final cold rolling was measured and shown in Table 1.
  • a disk having a diameter of ⁇ 60 mm was punched from the obtained non-oriented electrical steel sheet with a die, subjected to strain relief annealing (core annealing) at 750° C.
  • Magnetic properties were evaluated in the following manner. First, a square sample of 16 ⁇ 16 mm was cut out from the obtained non-oriented electrical steel sheet for magnetic measurement. Then, the cut samples were subjected to stress relief annealing (core annealing) at 750° C. for 2 hours, and iron loss W10/400 and magnetic flux density B50 were measured. When the iron loss W10/400 was 14.0 W/kg or less and the magnetic flux density B50 was 1.65 T or more, the non-oriented electrical steel sheet had excellent magnetic properties and was judged to pass. On the other hand, when at least one of the iron loss W10/400 of 14.0 W/kg or more and the magnetic flux density B50 of 1.65 T or less was satisfied, the magnetic properties were evaluated as inferior and were rejected.
  • stress relief annealing core annealing
  • the ratio of the difference between the maximum value and the minimum value of the diameter of the disc to the average diameter is 0.200% or less, and is shown in Table 1 as a pass (invention example).
  • those having a ratio of the difference between the maximum diameter and the minimum diameter to the average diameter exceeding 0.200% are shown in Table 1 as failure (comparative example).
  • 1A and 1B have an average grain size of more than 200 ⁇ m in the steel plate before the final cold rolling, and the existence ratio of grains with a size of more than 200 ⁇ m is more than 10%, and the circularity after stress relief annealing is It was disqualified because it did not meet the evaluation criteria.
  • the temperature reached by hot-rolled sheet annealing exceeded 1050 ° C., so the average grain size of the steel sheet before the final cold rolling was over 200 ⁇ m, and the abundance ratio of crystal grains over 200 ⁇ m was 10%. It is considered super.
  • the existence ratio of crystal grains exceeding 200 ⁇ m was 10%, but the average crystal grain size of the steel sheet before the final cold rolling was over 200 ⁇ m, and the roundness after stress relief annealing was outside the evaluation criteria. was unsuccessful.
  • the temperature reached by the hot-rolled sheet annealing exceeded 1050° C., and therefore the average grain size of the steel sheet before the final cold rolling exceeded 200 ⁇ m.
  • the average crystal grain size of the steel sheet before the final cold rolling was 200 ⁇ m or less, but the existence ratio of crystal grains exceeding 200 ⁇ m was more than 10%, and the roundness after annealing was outside the evaluation criteria. , was unsuccessful.
  • the hot-rolled sheet annealing reached a temperature of 1050°C, but the annealing was performed in a humid hydrogen atmosphere, so it is considered that the existence ratio of crystal grains exceeding 200 ⁇ m exceeded 10%.
  • 1I was rejected because the roundness after strain relief annealing was out of the standard.
  • the average heating rate of hot-rolled sheet annealing was 45° C./second, so it is considered that the existence ratio of crystal grains exceeding 200 ⁇ m exceeded 10%.
  • the average grain size of the steel sheet before final cold rolling is 200 ⁇ m or less, and the abundance ratio of grains exceeding 200 ⁇ m is 10% or less, and the roundness after annealing satisfies the evaluation criteria, so it was passed.
  • the average grain size of the steel sheet before the final cold rolling becomes 200 ⁇ m or less and exceeds 200 ⁇ m. 10% or less of the total crystal grains, and the desired circularity can be obtained after punching.
  • all of 1D, 1E, 1H, 1J to 1N which are examples of the present invention, provide low iron loss and sufficient magnetic flux density (good magnetic properties).
  • Example 2 (Example 2) % by mass, Si: 3.00%, sol. Melt steel containing 0.50% Al, 0.20% Mn, 0.0020% C, and other unavoidable impurities, and adjust the deoxidation time to change the amount of oxygen in the molten steel. let me Molten steel was poured into a mold, and ingots were produced by changing the degree of superheat of the molten steel and the average cooling rate at 900° C. or higher as shown in Table 2. The average cooling rate was as shown in Table 2. After heating the ingot at 1,100° C. to 1,200° C. for 1 to 5 hours, it was hot rolled to a sheet thickness of 1.8 mm. The hot-rolled sheet was annealed at 1,050° C.
  • the hot-rolled and annealed sheet was cold-rolled to a sheet thickness of 0.20 mm, and annealed at 750° C. for 30 seconds (finish annealing) to obtain a non-oriented electrical steel sheet.
  • Cold rolling was performed by a single cold rolling method. A disk having a diameter of ⁇ 60 mm was punched from the obtained non-oriented electrical steel sheet with a die, subjected to strain relief annealing (core annealing) at 750° C. for 2 hours, and the roundness was measured before and after the annealing.
  • the ratio of the difference between the maximum and minimum diameters to the average diameter is 0.200% or less, and is shown in Table 2 as a pass (invention example). Also, in Table 2, samples with a ratio of the difference between the maximum diameter and the minimum diameter to the average diameter exceeding 0.200% were rejected (comparative examples).
  • 2A, 2B, 2F, and 2G had an abundance ratio of ⁇ 100 ⁇ ⁇ 0vw> oriented grains of more than 10%, and the circularity after stress relief annealing was out of the evaluation criteria, so they were disqualified.
  • the heating temperature of the ingot before hot rolling exceeded 1100° C.
  • the heating time exceeded 2 hours.
  • the heating time of the ingot was 2 hours, but the heating temperature exceeded 1100°C.
  • the heating temperature of the ingot was 1100°C, and the heating time was 1 hour. It is considered that the existence ratio of grains exceeded 10%.
  • 2C, 2D, 2E, 2H, 2K to 2N had ⁇ 100 ⁇ ⁇ 0vw> oriented grains at an abundance ratio of 10% or less, and the circularity after annealing satisfied the evaluation criteria, so they passed. From the above, by setting the ingot heating temperature to 1100° C. or less, the heating time to 1 hour or less, and the cooling rate to 20° C./second (72000° C./hr.) or less, the ⁇ 100 ⁇ It can be seen that the existence ratio of 0vw> oriented grains is 10% or less of the total crystal grains, and the desired roundness is obtained after punching.
  • Example 3 Regarding symbols 1F and 1G in Table 3, in mass %, Si: 3.00%, sol.
  • a steel containing 0.50% Al, 0.20% Mn, 0.01% C, and other inevitable impurities was melted and hot-rolled to a thickness of 2 mm.
  • the hot-rolled sheet was heated to the annealing temperature (1,000° C. to 1,200° C.) at the average heating rate shown in Table 1 and annealed for 2 minutes.
  • the hot-rolled sheet was decarburized with a wet hydrogen atmosphere as the annealing atmosphere.
  • a hot-rolled and annealed sheet having a metal structure shown in Table 3 and having a thickness of 2 mm was obtained.
  • the mass % Si 3.00%, sol.
  • a steel containing 0.50% Al, 0.20% Mn, 0.0020% C, and other unavoidable impurities was melted and hot-rolled to a thickness of 2 mm.
  • the hot-rolled sheet was heated to the annealing temperature (1,000° C. to 1,200° C.) at the average heating rate shown in Table 1 and annealed for 2 minutes.
  • the annealing atmosphere was a dry nitrogen atmosphere.
  • a hot-rolled and annealed sheet having a metal structure shown in Table 3 and having a thickness of 2 mm was obtained.
  • the hot-rolled and annealed sheet was cold-rolled to a sheet thickness of 0.25 mm, and annealed at 750° C. for 30 seconds (finish annealing) to obtain a non-oriented electrical steel sheet.
  • Cold rolling was performed by a single cold rolling method.
  • Table 3 "Conditions for production of raw sheet”, shows the annealing temperature, average heating rate, and annealing atmosphere of the hot-rolled and annealed sheet.
  • the average grain size of the raw sheet before the final cold rolling was measured and shown in Table 3.
  • a disk having a diameter of ⁇ 60 mm was punched from the obtained non-oriented electrical steel sheet with a die, subjected to stress relief annealing (core annealing) at 750° C.
  • the average crystal grain size of the steel sheet before the final cold rolling is over 200 ⁇ m
  • the existence ratio of crystal grains over 200 ⁇ m is over 10%
  • the circularity after stress relief annealing is outside the evaluation criteria. Therefore, it was unsuccessful.
  • the temperature reached by hot-rolled sheet annealing exceeded 1050 ° C., so the average grain size of the steel sheet before the final cold rolling was over 200 ⁇ m, and the abundance ratio of crystal grains exceeding 200 ⁇ m was 10%. It is considered super.
  • the existence ratio of crystal grains exceeding 200 ⁇ m was 10%, but the average crystal grain size of the steel sheet before the final cold rolling was over 200 ⁇ m, and the circularity after stress relief annealing was outside the evaluation criteria.
  • the average grain size of the steel sheet before the final cold rolling is 200 ⁇ m or less
  • the existence ratio of crystal grains exceeding 200 ⁇ m is 10% or less
  • the circularity after annealing satisfies the evaluation criteria. Therefore, it passed.
  • the average grain size of the steel sheet before the final cold rolling becomes 200 ⁇ m or less and exceeds 200 ⁇ m. 10% or less of the total crystal grains, and the desired circularity can be obtained after punching.
  • the roundness before strain relief annealing did not satisfy the evaluation criteria, but the average grain size of the steel sheet before the final cold rolling was 200 ⁇ m or less, and the abundance ratio of grains exceeding 200 ⁇ m was 10% or less. , and the circularity after stress relief annealing satisfied the evaluation criteria, so it was passed.
  • both the circularity before stress relief annealing and the circularity after stress relief annealing satisfy the evaluation criteria, and the circularity before stress relief annealing does not satisfy the evaluation criteria but after stress relief annealing Circularity that satisfies the evaluation criteria is included.
  • examples of the invention also include those whose roundness before stress relief annealing satisfies the evaluation criteria, including rotor cores that are not subjected to stress relief annealing. Therefore, in the invention examples, at least one of the circularity before stress relief annealing and the circularity after stress relief annealing satisfies the evaluation criteria.
  • Example 4 A steel containing the components shown in Tables 4A and 4B in mass % and containing other unavoidable impurities was melted and hot-rolled to a thickness of 2 mm.
  • the hot-rolled sheet was annealed at 1,050°C for 2 minutes.
  • the annealing atmosphere was a dry nitrogen atmosphere, and hot-rolled and annealed sheets with a thickness of 2 mm and having metallographic structures shown in Tables 4A and 4B were obtained.
  • the hot-rolled and annealed sheet was cold-rolled to a sheet thickness of 0.25 mm, and annealed at 750° C. for 30 seconds (finish annealing) to obtain a non-oriented electrical steel sheet.
  • Cold rolling was performed by a single cold rolling method.
  • the average grain size of the raw sheet before the final cold rolling and the existence ratio of grains of more than 200 ⁇ m were measured.
  • a disk having a diameter of ⁇ 60 mm was punched from the obtained non-oriented electrical steel sheet with a die, subjected to stress relief annealing (core annealing) at 750° C. for 2 hours, and the roundness before and after stress relief annealing was measured.
  • core annealing stress relief annealing
  • the ratio of the difference between the maximum and minimum diameters to the average diameter of 0.200% or less is shown in Table 5 as passing (invention example).
  • a 16 ⁇ 16 mm square sample for magnetic measurement was cut from the obtained non-oriented electrical steel sheet, subjected to strain relief annealing (core annealing) at 750 ° C. for 2 hours, and iron loss W10/400 and magnetic flux density B50 were measured. did.
  • core annealing strain relief annealing
  • iron loss W10/400 was 14.00 W/kg or less
  • the magnetic flux density B50 was 1.650 T or more
  • stator core 22 core back 23 tooth 30 rotor core 31 rotor iron core 32 magnet 50 case 60 shaft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

この無方向性電磁鋼板は、鋼板表面に平行な断面において、結晶方位差が2°以上15°未満の境界を結晶粒界と見なしたとき、結晶粒径が200μm未満である結晶粒の面積率が10%以下を満足する。

Description

無方向性電磁鋼板
 本発明は、無方向性電磁鋼板に関する。
 本願は、2021年3月31日に、日本に出願された特願2021-061752号、および2021年6月15日、日本に出願された特願2021号-099597号に基づき優先権を主張し、その内容をここに援用する。
 近年、モータ等の電気機器の世界的な需要の高まりにより、モータ等の材料として用いられる無方向性電磁鋼板の需要が高まっている。
 特許文献1には、無方向性電磁鋼板を打抜いてモータコアを作製する方法において、打ち抜き金型の切り刃真円度を、無方向性電磁鋼板の伸び率に応じて制御することが記載されている。
日本国特開平10-24333号公報
 モータのステータコアに用いられる無方向性電磁鋼板は、ステータコアが金型で打ち抜かれた後、鉄損を低減するためにコア焼鈍が施される。なお、具体的には、先ず無方向性電磁鋼板からロータコアが打ち抜かれ、次にステータコアの内径が打ち抜かれた後、ステータコアの外径が打ち抜かれる。ステータコアにコア焼鈍により熱を加えることで、残留していた応力、歪みが解放され、鉄損が低減される。なお、ステータコアにはコア焼鈍が施されるが、高強度化のためにロータコアには焼鈍が施されないのが一般的である。
 ステータコアを金型で打ち抜いた後のステータコア内の残留応力分布が不均一であると、コア焼鈍の際の残留応力解放に伴うステータコアの形状変化が不均一になる。これにより、コア焼鈍前に得られていたステータコア内径の高い真円度がコア焼鈍により低下することがある。残留応力分布が不均一となる要因の1つに、打抜かれる無方向性電磁鋼板の組織的不均一が挙げられる。
 上記特許文献1に記載された技術は、打ち抜き金型の切り刃真円度を、無方向性電磁鋼板の伸び率に応じて制御するものであり、無方向性電磁鋼板の加工後の寸法精度を打ち抜き金型の寸法によって制御するものである。このため、特許文献1に記載された技術は、打ち抜き金型の寸法に依存することなく、所望の寸法精度を得ることが可能な無方向性電磁鋼板を提供することは想定していない。
 そこで、本発明は、加工後およびその後のコア焼鈍(歪取焼鈍)後の寸法精度の低下を抑制することが可能な無方向性電磁鋼板を提供することを目的とする。
 本開示の要旨は以下のとおりである。
(1)本発明の一実施形態に係る無方向性電磁鋼板は、鋼板表面に平行な断面において、結晶方位差が2°以上15°未満の境界を結晶粒界と見なしたとき、結晶粒径が200μm未満である結晶粒の面積率が10%以下を満足する。
(2)上記(1)に記載の無方向性電磁鋼板は、鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたときの最大結晶粒径をD15MAX、結晶方位差が2°以上の境界を結晶粒界と見なしたときの平均結晶粒径をD2AVEとしたとき、下記(1)式を満足してもよい。
  D15MAX/D2AVE≦5.0 ・・・(1)
(3)上記(1)または(2)に記載の無方向性電磁鋼板は、鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたとき、200μm以上の結晶粒径を有する結晶粒の形体を楕円で近似して得られる形体において、長軸長さをDL、短軸長さをDCとしたとき、下記(2)式を満足してもよい。
  DL/DC≦5.0 ・・・(2)
(4)上記(1)~(3)の何れか一項に記載の無方向性電磁鋼板は、質量%で、
  C :0%以上0.0050%以下、
  Si:2.00%以上3.25%以下、
  sol.Al:0%以上1.10%以下、
  Mn:0%以上1.10%以下、
  P :0%以上0.30%以下、
  S :0%以上0.0100%以下、
  N :0%以上0.0100%以下、
  Ti:0%以上0.1000%以下、
  V :0%以上0.100%以下、
  Zr:0%以上0.100%以下、
  Nb:0%以上0.100%以下、
  B :0%以上0.100%以下、
  O :0%以上0.100%以下、
  Mg:0%以上0.100%以下、
  Ca:0%以上0.010%以下、
  Cr:0%以上5.000%以下、
  Ni:0%以上5.000%以下、
  Cu:0%以上5.000%以下、
  Sn:0%以上0.100%以下、
  Sb:0%以上0.100%以下、
  Ce:0%以上0.100%以下、
  Nd:0%以上0.100%以下、
  Bi:0%以上0.100%以下、
  W :0%以上0.100%以下、
  Mo:0%以上0.100%以下、および
  Y :0%以上0.100%以下、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 板厚が0.10mm以上0.35mm以下であり、
 平均結晶粒径が10μm以上200μm以下であってもよい。
 本発明に係る上記実施形態によれば、加工後およびその後のコア焼鈍(歪取焼鈍)後の寸法精度の低下を抑制することが可能な無方向性電磁鋼板を提供することができる。
ステータコアの内部にロータコアが挿入された状態を示す平面図である。
 以下、図面を参照して本発明の一実施形態に係る無方向性電磁鋼板およびその製造方法について説明する。
 ステータコアに用いられる無方向性電磁鋼板は、ステータコアの形状に金型で打ち抜かれた後、鉄損を低減するために熱処理(コア焼鈍)が施される。打ち抜き後の鋼板に対し熱処理を施すことで、残留していた応力、歪みが解放され、鉄損が低減される。
 コア焼鈍の際に、ステータコアを金型で打ち抜いた後のステータコア内の残留応力分布が不均一であると、残留応力解放に伴うステータコアの形状変化が不均一になる。これにより、コア焼鈍前に得られていたステータコア内径の高い真円度がコア焼鈍により低下することがある。
 図1は、ステータコアの内部にロータコアが挿入された状態を示す平面図である。図1において、ステータコア21は、無方向性電磁鋼板を紙面垂直方向に積層して構成され、外周側のコアバック22と、コアバック22から内側に突出した複数のティース23から構成される。ティース23の先端よりも内側にはロータコア30が挿入される。ロータコア30は、ロータ鉄心31とロータ鉄心31の外周側に設けられてティース23の先端と対向する複数の磁石32を有する。ステータコア21の外周はケース50に保持されている。ロータ鉄心31の中心には、シャフト60が貫通し、シャフト60はロータ鉄心31に対して固定されている。シャフト60は、シャフト60の中心Oをステータコア21の内径の中心と一致させた状態で、ケース50(または他の固定部材)により中心Oを回転軸として回転可能に支持されている。
 図1では、ステータコアの内径は、具体的にはティース23の先端の内径Dである。上述した残留応力開放に伴うステータコア21の形状変化により、この内径Dの真円度が低下すると、ティース23の先端とロータ鉄心31との間のギャップが不均一になる。これにより、ロータコア30が回転する際のコギングトルクが大きくなる。コギングトルクの増大は、回転ムラ、振動、騒音等の要因となる。また、ステータコア21の内径の真円度が更に低下すると、ティース23の先端にロータコア30のロータ鉄心31が当たるなどの不具合が生じ得る。
 JIS B0621(1984)「幾何偏差の定義及び表示」では、「真円度とは、円形形態の幾何学的に正しい円からの狂いの大きさをいう」と定義されている。また、真円度の表示については「真円度は円形形体を二つの同心の幾何学的円で挟んだとき、同心二円の間隔が最小となる場合の二円の半径差で表し、真円度_mm又は真円度_μmと表示する」と記載されている。
 本実施形態では、真円度の評価基準として、円の直径の最大値と最小値の差を平均径で除算して得られる比率を採用する。なお、円の直径の最大値はJIS B0621(1984)に記載された上記同心二円のうち大きい円の直径であり、円の直径の最大値は上記同心二円のうち小さい円の直径である。また、平均径とは円の直径の最大値と最小値を平均した値である。したがって、本実施形態の真円度の評価基準は、JIS B0621(1984)に記載された同心二円の間隔が最小となる場合の二円の半径差である真円度を、二円の半径の平均値で除算して得られる比率に相当する。
 内径Dの最大値と最小値の差の平均径に対する比率が0.200%を超えると、ティース23の先端とロータ鉄心31との間のギャップが不均一になり、回転ムラ、振動、騒音等の要因となり、またティース23の先端にロータコア30のロータ鉄心31が当たるなどの不具合が発生するため、内径Dの最大値と最小値の差の平均直径に対する比率は0.200%以下とする。この比率は、好ましくは0.15%以下であり、さらに好ましくは0.100%以下である。比率は小さいほど好ましいため、下限は設けない。
 ステータコア内の残留応力分布が不均一となる要因の1つに、打抜かれる無方向性電磁鋼板の組織的不均一が挙げられる。特に、コア焼鈍前の無方向性電磁鋼板に再結晶組織と未再結晶組織とが混在する場合、それぞれの組織に残留する応力が異なるため、コア焼鈍時の応力解放度合いに差が生じる。その結果、ステータコア内のそれぞれの組織における形状変化にも差が生じることになる。再結晶組織と未再結晶組織とが無方向性電磁鋼板内で細かく分散している場合は、打ち抜き後のステータコアの内径の真円度の低下は比較的検知されにくい。しかし、無方向性電磁鋼板内で再結晶組織と未再結晶組織とが偏在している場合は、偏在するそれぞれの組織でコア焼鈍時の応力解放が異なるため、打ち抜き後のステータコアの内径の真円度が低下し、結果、モータ製造管理上のエラーが増加する。
 再結晶組織と未再結晶組織の偏在は、最終冷延前の鋼板の平均結晶粒径が比較的大きい場合、あるいは最終冷延前の鋼板に平均結晶粒径より大きい結晶粒が多数存在する場合に起きやすい。なお、「最終冷延前」とは、最終冷間圧延前に行われた最後の焼鈍後である。例えば熱延板焼鈍を実施しない一回冷延法であれば熱延巻取後が「最終冷延前」に相当し、熱延板焼鈍を実施する一回冷延法であれば熱延板焼鈍後が「最終冷延前」に相当し、二回冷延法または複数回冷延法であれば中間焼鈍後(最後の焼鈍後)が「最終冷延前」に相当する。
 また、最終冷延前に{100}<0vw>方位粒が多数存在していると、{100}<0vw>方位粒は冷延で圧延方向に延伸した粗大加工粒になり、その後の焼鈍で粗大な未再結晶組織として残留する。
 本実施形態の無方向性電磁鋼板は、鋼板表面に平行な断面において、結晶方位差が2°以上15°未満の境界を結晶粒界と見なしたとき、結晶粒径が200μm未満である結晶粒の面積率が10%以下を満足する。
 ここでは、結晶の境界を判断する境界の結晶方位差を15°未満と小さな方位差に限定している。このような小さな結晶方位差の粒界により結晶粒径が200μm未満の比較的微細な組織として観察される領域は、言い換えると同じような結晶方位を有する結晶が隣接した領域となっている。そしてこのような領域は、上述の再結晶組織と未再結晶組織とが偏在した不均一領域の存在を原因として、冷延および焼鈍により発生したものと考えられる。つまり、このような結晶方位差の小さな結晶が隣接した領域の面積率が小さいことにより、上述のような残留応力の偏在の原因となる再結晶組織と未再結晶組織とが偏在した組織が存在していなかったものと判断できる。本実施形態ではこの面積率を10%以下と限定する。好ましく5%未満である。なお、結晶粒界を判定する結晶方位差の下限を2°以上としたのは、結晶粒界と判断する結晶方位差があまりに小さい場合(例えば1°程度)だと、結晶のわずかな歪みや測定機器の精度によっては結晶の境界ではないものを結晶粒界と判断してしまうためである。
 なお、結晶方位差ならびに結晶粒の面積率は、以下のようにして測定する。
 まず、無方向性電磁鋼板から鋼板表面に平行な断面(鋼板の圧延方向及び板厚方向に平行な断面)を観察面として試料(結晶性試料)を採取し、観察面を研磨して鏡面に仕上げる。次に、走査電子顕微鏡(SEM:Scanning Electron Microscope)内に結晶性試料を大きく傾斜させて載置し、電子線を照射することでEBSD(Electron BackScatter Diffraction)パターンを得る。このEBSDパターンを専用のEBSD検出器により連続収集しながら、EBSDパターンに対し指数付けおよび結晶方位の算出を行う。なお、EBSD法による結晶構造解析は、倍率:100倍、視野数:5視野、1視野のサイズを800μm×1,000μm以上、として行う。得られたデータを「OIMアナリシス Version7.3.1」(TSL社製)で解析する。この際、隣接する測定点との結晶方位差が一定のしきい値以下の点の集合を、一つの結晶粒と見なす。観察視野全ての結晶粒の確定後、「OIMアナリシス Version7.3.1」(TSL社製)を用いて隣接粒間の結晶方位差、及び各結晶粒の面積を求める。
 また本実施形態では、鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたときの最大結晶粒径をD15MAX、結晶方位差が2°以上の境界を結晶粒界と見なしたときの平均結晶粒径をD2AVEとしたとき、下記式(1)を満足することが好ましい。
 D15MAX/D2AVE≦5.0 ・・・式(1)
 この比(D15MAX/D2AVE)は、上述の同じような結晶方位を有する結晶がどれくらい連続で隣接しているか、どの程度の広さに広がっているかを示す指標となる。ここで、D2AVEを判定する粒界は、D15MAXを判定する粒界を含むものとなっている。すなわち、D2AVEを求める際の結晶粒の組織は、D15MAXを求める際の結晶粒の一部を、小さな方位差の粒界でさらに分割した結晶組織となっている。この比が小さいほど、結晶方位差が15°以上の境界を結晶粒界と見なしたときの粗大な結晶粒が、結晶方位差が2°以上15°未満の小さな方位差の結晶粒界で細かく分断されている状況にあることを示す。そして、この比を5.0以下と限定することは、上述のような残留応力の偏在の原因となる再結晶組織と未再結晶組織とが偏在した組織が存在していなかったことを示す指標となる。D15MAX/D2AVEは好ましくは3.0以下である。
 さらに本実施形態では、鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたとき、200μm以上の結晶粒径を有する結晶粒の形体を楕円で近似して得られる形体において、長軸長さをDL、短軸長さをDCとしたとき、下記式(2)を満足することが好ましい。
 DL/DC≦5.0 ・・・式(2)
 ここで、楕円への近似は、例えば「“結晶粒形状に注目した強度特性評価による材質制御・材料保全法の検討”(原田ら、日本保全学会学術講演会要旨集、第2回、P150)」に記載の手順により処理すればよい。
 例えば、無方向性電磁鋼板の板幅方向の中心部から、圧延方向を長手方向とした幅15mm×長さ10mmの試験片を採取し、当該試験片の表面から板厚の約1/2まで研磨し鏡面に仕上げる。鏡面仕上げしたサンプルを、EBSDを組み込んだSEMを用いて観察倍率100倍で観察し、EBSD測定して結晶構造解析を行う。EBSD測定により得られたデータに対し、「OIMアナリシス Version7.3.1」(TSL社製)で結晶方位解析を行う。観察領域内に200μm以上の結晶粒径を有する結晶粒が複数存在する場合は、個別にDL/DCを算出し、それを平均するものとする。
 上述のように本実施形態は、粗大な結晶粒が、結晶方位差が2°以上15°未満の小さな方位差の結晶粒界で細かく分断されている状況を規定するものである。ここでいう「粗大な結晶粒」とは、結晶方位差が15°以上の境界を結晶粒界と見なしたときの結晶粒を指す。
 分割される粗大な結晶粒は、製造工程において冷間圧延により延伸し、それを分断する微細な結晶粒はこのような延伸した領域内で発生しやすい。言い換えると粗大な結晶粒が存在しているとしても、それが延伸していなければ、その粗大な結晶粒は上述のような残留応力の偏在の原因となる再結晶組織と未再結晶組織とが偏在した組織とは無関係に発生したものと考えるべきものである。つまり、真円度を低下させるような残留応力の偏在の原因となる組織は存在していなかったことを示す指標となる。好ましくはDL/DCは3.0以下である。
 本実施形態の無方向性電磁鋼板を得るための原板としては、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が全体の10%以下であることが好ましい。また、本実施形態の無方向性電磁鋼板を得るための原板としては、最終冷延前の鋼板の{100}<0vw>方位粒の存在比率が全体の10%以下であることが好ましい。
 このような原板は、前述の再結晶組織と未再結晶組織の偏在が抑制された鋼板となっており、打ち抜き時およびその後の焼鈍における真円度の低下を回避することを可能とする。
 なお、本実施形態における「無方向性電磁鋼板の原板」は、原板ままの状態でモータコアとして使用が可能である。つまり、本実施形態の構成としては「原板」と呼称するが、そのままでモータコアの素材である無方向性電磁鋼板として使用されることも想定される鋼板である。
 上記の結晶粒径および結晶方位に関する測定はEBSDにより実施する。結晶粒界、結晶粒径、結晶方位の判断は「OIMアナリシス Version7.3.1」(TSL社製)により実施し、測定値を得る。代表的な測定条件としては、ビーム径は1μm、結晶方位の尤度は10°とする。観察においては、データに偏りがないよう、十分に広い領域を観察する。例えば、観察される結晶粒の数で500個以上を含む領域を観察するものとする。特に観察対象となる結晶が偏在していると判断される場合は、観察領域が偏らず全体の状況を代表するに十分な広い領域を観察するよう注意する。
 本実施形態に係る無方向性電磁鋼板の化学組成は、Siを含有し、必要に応じて選択元素を含有し、残部がFe及び不純物からなる。以下、各元素について説明する。
 C:0%以上0.0050%以下
 C(炭素)は、不純物として含有され、磁気特性を劣化させる元素である。したがって、C含有量は0.0050%以下とする。好ましくは、0.0030%以下である。C含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値を0%超としてもよく、0.0010%以上としてもよい。
 Si:2.00%以上3.25%以下
 Si(ケイ素)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Si含有量は2.00%以上とする。また、Siは、無方向性電磁鋼板として、磁気特性と機械的な異方性とを両立させるのに有効な元素である。この場合、Si含有量は、2.50%超であることが好ましく、2.70%以上であることがさらに好ましく、2.90%以上であることがさらに好ましく、3.00%以上であることがさらに好ましい。一方、Siを過剰に含有させると磁束密度が著しく低下する。したがって、Si含有量は3.25%以下とする。Si含有量は、3.20%以下であることが好ましく、3.15%以下であることがさらに好ましい。
 sol.Al:0%以上1.10%以下
 Al(アルミニウム)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素であるが、Alを過剰に含有させると磁束密度が著しく低下する。このため、sol.Al含有量は1.10%未満とする。sol.Alは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、sol.Al含有量を0.10%以上とすることが好ましい。なお、sol.Alは、酸可溶性アルミニウムを意味する。
Mn:0%以上1.10%以下
 Mn(マンガン)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素である。ただ、Mnは、SiやAlに比べて合金コストが高いため、Mn含有量が多くなると経済的に不利となる。また、Mnを過剰に含有させると磁束密度が著しく低下する。このため、Mn含有量は1.10%以下とする。好ましくは0.90%以下である。Mnは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Mn含有量は、0.0010%以上であることが好ましく、0.0100%以上であることがさらに好ましい。
P:0%以上0.30%以下
 P(リン)は、一般に不純物として含有される元素である。ただ、無方向性電磁鋼板の集合組織を改善して磁気特性を向上させる作用を有するので、必要に応じて含有させてもよい。しかしながら、Pは固溶強化元素でもあるため、P含有量が過剰になると、鋼板が硬質化して冷間圧延が困難になる。このため、P含有量は0.30%以下とする。P含有量は、0.20%以下であることが好ましい。Pは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、P含有量は、0.001%以上であることが好ましく、0.015%以上であることがさらに好ましい。
S:0%以上0.0100%以下
 S(硫黄)は、不純物として含有され、鋼中のMnと結合して微細なMnSを形成し、焼鈍時の結晶粒の成長を阻害し、無方向性電磁鋼板の磁気特性を劣化させる。このため、S含有量は0.0100%以下とする。S含有量は、0.0050%以下であることが好ましく、0.0030%以下であることがさらに好ましい。S含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値を0.0001%としてもよい。
N:0%以上0.0100%以下
 N(窒素)は、不純物として含有され、Alと結合して微細なAlNを形成し、焼鈍時の結晶粒の成長を阻害し、磁気特性を劣化させる。このため、N含有量を0.0100%以下とする。N含有量は、0.0050%以下であることが好ましく0.0030%以下であることがさらに好ましい。N含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値は、0.0001%以上としてもよく、0.0015%超としてもよく、0.0020%以上としてもよい。
Ti:0%以上、0.1000%以下
 Ti(チタン)は、鋼中に不可避的に混入する元素であり、炭素または窒素と結合して析出物(炭化物、窒化物)を形成し得る。炭化物または窒化物が形成された場合には、これらの析出物そのものが無方向性電磁鋼板の磁気特性を劣化させる。さらには、炭化物または窒化物により仕上焼鈍中の結晶粒の成長が阻害され、無方向性電磁鋼板の磁気特性を劣化させる。したがって、Ti含有量は0.1000%以下とする。Ti含有量は0.0100%以下であるのが好ましく、0.0050%以下であるのがより好ましく、0.0020%以下であるのがさらに好ましい。Ti含有量は0%であってもよい。なお、Ti含有量の極度の低減は製造コストの増加を引き起こす場合があるため、Ti含有量は0.0005%以上であるのが好ましい。
Ca:0%以上0.010%以下
 Ca(カルシウム)は、粗大な硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制するので介在物制御に有効な選択元素であり、適度に添加すると結晶粒成長性を向上させて磁気特性(例えば、鉄損)を向上させる作用を有する。しかしながら、過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ca含有量は0.010%以下とする。Ca含有量は、0.008%以下であることが好ましく、0.005%以下であることがさらに好ましい。Caは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ca含有量を0.0003%以上とすることが好ましい。Ca含有量は、0.001%以上であることが好ましく、0.003%以上であることがさらに好ましい。
Cr:0%以上5.000%以下
 Cr(クロム)は、固有抵抗を高めて、磁気特性(例えば、鉄損)を向上させる選択元素である。しかしながら、過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cr含有量は5.000%以下とする。Cr含有量は、0.500%以下であることが好ましく、0.100%以下であることがさらに好ましい。Crは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Cr含有量は0.0010%以上であることが好ましい。
Ni:0%以上5.000%以下
 Ni(ニッケル)は、磁気特性(例えば、飽和磁束密度)を向上させる選択元素である。しかしながら、過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ni含有量は5.000%以下とする。Ni含有量は、0.500%以下であることが好ましく、0.100%以下であることがさらに好ましい。Niは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ni含有量は0.0010%以上であることが好ましい。
Cu:0%以上5.000%以下、
 Cu(銅)は、鋼板強度を向上させる選択元素である。しかしながら、過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cu含有量は5.000%以下とする。Cu含有量は、0.100%以下であることが好ましい。Cuは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Cu含有量は0.0010%以上であることが好ましい。
Sn:0%以上0.100%以下
Sb:0%以上0.100%以下
 Sn(錫)およびSb(アンチモン)は、無方向性電磁鋼板の集合組織を改善して磁気特性(例えば、磁束密度)を向上させる作用を有する選択元素であるので、必要に応じて含有させてもよい。しかしながら、過剰に含有させると、鋼を脆化させて冷延破断を引き起こすことがあり、また磁気特性を劣化させることがある。このため、SnおよびSbの含有量はそれぞれ0.100%以下とする。SnおよびSbは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Sn含有量は、0.001%以上であることが好ましく、0.010%以上であることがさらに好ましい。また、Sb含有量は、0.001%以上であることが好ましく、0.002%以上であることが好ましく、0.010%以上であることがさらに好ましく、0.025%超であることがさらに好ましい。
Ce:0%以上0.100%以下
 Ce(セリウム)は、粗大な硫化物、酸硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制し、粒成長性を良好にして鉄損を低減させる選択元素である。しかしながら、過剰に含有させると、硫化物および酸硫化物以外に酸化物も生成し、鉄損を劣化させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Ce含有量は0.100%以下とする。Ce含有量は、0.010%以下であることが好ましく、0.009%以下であることがさらに好ましく、0.008%以下であることがさらに好ましい。Ceは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ce含有量は0.001%以上であることが好ましい。Ce含有量は、0.002%以上であることがさらに好ましく、0.003%以上であることがさらに好ましく、0.005%以上であることがさらに好ましい。
 本実施形態に係る無方向性電磁鋼板の化学組成は、上記の元素に加えて、選択元素として、例えば、B、O、Mg、Ti、V、Zr、Nd、Bi、W、Mo、NbおよびYを含有してもよい。これらの選択元素の含有量は、公知の知見に基づいて制御すればよい。例えば、これらの選択元素の含有量は、以下とすればよい。
  V :0%以上0.100%以下、
  Zr:0%以上0.100%以下、
  Nb:0%以上0.100%以下、
  B :0%以上0.100%以下、
  O :0%以上0.100%以下、
  Mg:0%以上0.100%以下、
  Nd:0%以上0.100%以下、
  Bi:0%以上0.100%以下、
  W :0%以上0.100%以下、
  Mo:0%以上0.100%以下、および
  Y :0%以上0.100%以下。
 また、本実施形態に係る無方向性電磁鋼板は、化学組成として、質量%で、
  C :0.0010%以上0.0050%以下、
  sol.Al:0.10%以上1.10%未満、
  Mn:0.0010%以上1.10%以下、
  P :0.0010%以上0.30%以下、
  S :0.0001%以上0.0100%以下、
  N :0.0015%超0.0100%以下、
  Ti:0.0001%以上0.1000%以下、
  V :0.0001%以上0.100%以下、
  Zr:0.0002%以上0.100%以下、
  Nb:0.0001%以上0.100%以下、
  B :0.0001%以上0.100%以下、
  O :0.0001%以上0.100%以下、
  Mg:0.0001%以上0.100%以下、
  Ca:0.0003%以上0.010%以下、
  Cr:0.0010%以上5.000%以下、
  Ni:0.0010%以上5.000%以下、
  Cu:0.0010%以上5.000%以下、
  Sn:0.0010%以上0.100%以下、
  Sb:0.0010%以上0.100%以下、
  Ce:0.001%以上0.100%以下、
  Nd:0.002%以上0.100%以下、
  Bi:0.002%以上0.100%以下、
  W :0.002%以上0.100%以下、
  Mo:0.002%以上0.100%以下、および
  Y :0.002%以上0.100%以下、
 の少なくとも1種を含有することが好ましい。
 また、B含有量は0.01%以下であることが好ましく、O含有量は0.01%以下であることが好ましく、Mg含有量は0.005%以下であることが好ましく、Ti含有量は0.002%以下であることが好ましく、V含有量は0.002%以下であることが好ましく、Zr含有量は0.002%以下であることが好ましく、Nd含有量は0.01%以下であることが好ましく、Bi含有量は0.01%以下であることが好ましく、W含有量は0.01%以下であることが好ましく、Nb含有量は0.002%以下であることが好ましく、Y含有量は0.01%以下であることが好ましい。また、Ti含有量は0.001%以上であることが好ましく、V含有量は0.002%以上であることが好ましく、Nb含有量は0.002%以上であることが好ましい。
 上記した化学組成は、鋼の一般的な分析方法によって測定すればよい。例えば、化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、Siは二酸化けい素重量法を用い、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 なお、上記化学組成は、絶縁被膜等を含まない無方向性電磁鋼板の組成である。測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。例えば、次の方法で絶縁被膜等を除去すればよい。まず、絶縁被膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液、硫酸水溶液、硝酸水溶液に順に浸漬後、洗浄する。最後に、温風で乾燥させる。これにより、絶縁被膜が除去された無方向性電磁鋼板を得ることができる。また、研削によって絶縁被膜等を除去してもよい。
 さらに、本実施形態の無方向性電磁鋼板は、上記元素の他に、Sr、Ba、La、Pr、ZnおよびCdを含有させてもよい。Sr、Ba、La、Pr、ZnおよびCdは、結晶粒成長を阻害する硫化物を粗大にし、結晶粒成長を容易にするため、必要に応じて適宜含有させる。
 次に、本実施形態の無方向性電磁鋼板の好適な製造方法について説明する。
 上記の化学成分を含有する鋼に、例えば、製鋼、熱延、熱延板焼鈍、酸洗、冷延、焼鈍を行うことで無方向性電磁鋼板を得ることができる。例えば、溶鋼を急冷凝固法で直接熱延板としてもよいし、薄スラブ鋳造連続熱延で熱延板を得ることもできる。
 熱延板焼鈍は、加工組織の残留する熱延板を800~1050℃に加熱して再結晶、粒成長させるプロセスである。これにより、その後に続く冷延、焼鈍後に磁気特性にとって好ましい集合組織を作り込むことができる。また、α-γ変態の生じない成分系では、冷延でリジングと呼ばれる表面凹凸を生じさせないためにも、熱延板焼鈍を施すこともあるが、本実施形態では熱延板焼鈍は施さなくてもよい。
 酸洗後、熱延板(もしくは熱延焼鈍板)に冷延を施し、所定の板厚を得る。冷延は中間焼鈍を挟まない一回冷延法としてもよいし、中間焼鈍を挟む二回冷延法や複数回の中間焼鈍を挟む複数回冷延法としてもよい。冷延後は、焼鈍(仕上げ焼鈍)を施し、無方向性電磁鋼板とする。なお、無方向性電磁鋼板の表面に絶縁材料を塗布し、かつ焼き付けることで絶縁被膜が形成されてもよい。
 本実施形態の無方向性電磁鋼板の製造工程は、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が結晶粒全体の10%以下である金属組織とするため、特に以下の条件を満たす。
 最終冷延前において、上記金属組織を得るには、例えば、熱延板焼鈍を実施する一回冷延法であれば熱延板焼鈍、二回冷延法または複数回冷延法であれば最終冷延前の中間焼鈍において、700℃以上の温度域での平均昇温速度を50℃/秒以上、最高到達板温(焼鈍温度)を1050℃以下とし、かつ均熱時間を3分以下にする。これら条件を満足する焼鈍を実施することで、最終冷延前において、平均結晶粒径が200μm以下、かつ200μm超の結晶粒の存在比率が結晶粒全体の10%以下である金属組織を得ることができる。すなわち、最終冷延前の段階にて、残留応力の偏在の原因となる再結晶組織と未再結晶組織とが偏在した組織の生成が抑制された鋼板を得ることができる。好ましくは、700℃以上の温度域での平均昇温速度は60℃/秒以上である。また、最高到達板温は、好ましくは1000℃以下である。均熱時間は、好ましくは2分以下であり、より好ましくは1分以下である。
 なお、熱延板焼鈍を施す前、或いは最終冷延前の中間焼鈍を施す前の鋼板の中に不均一な歪み分布を生じさせないことが重要である。例えば、鋼板をある程度回復および再結晶させた状態で10%以下の圧下率のスキンパス圧延を行うと、その後の焼鈍で特定の方位を有する結晶粒だけが異常粒成長する、いわゆる歪み誘起粒界移動が起こり、200μm超の結晶粒の存在比率が結晶粒全体の10%以上を占めることがある。したがって、焼鈍を施す前の鋼板の中に不均一な歪み分布を生じさせないためには、その前の圧延(熱延、及び冷延)を15%以上の圧下率とすることが重要である。
 また、熱延板焼鈍、もしくは最終冷延前の中間焼鈍における焼鈍雰囲気は、乾窒素雰囲気とする。焼鈍雰囲気を湿水素雰囲気とすると、鋼板表層が脱炭して表層が内層に比較して粗大な組織となる。この粗大な組織は、鋼板の中に不均一な歪分布を生じさせる原因となるので、熱延板焼鈍、もしくは最終冷延前の中間焼鈍における焼鈍雰囲気は、乾窒素雰囲気とするのが好ましい。
 最終冷延前後の平均結晶粒径は、JIS G0551:2020に規定される切断法により測定すればよい。例えば、縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば50倍の倍率で撮影した写真を用いればよい。
 また、本実施形態の無方向性電磁鋼板の製造工程は、最終冷延前の鋼板の{100}<0vw>方位粒の存在比率を結晶粒全体の10%以下とするため、特に以下の条件を満たす。
 最終冷延前の鋼板の{100}<0vw>方位粒の存在比率が結晶粒全体の10%以下である金属組織を得るには、α-γ変態の生じない成分系であれば、連続鋳造において電磁攪拌を活用することで、柱状晶の成長を妨げて、等軸晶の生成を促進することが有効である。また、溶鋼の凝固時、特定の酸化物等が多数存在すると、析出物を核として等軸晶の生成が促進される。一方、溶鋼の過熱度(溶鋼温度-溶鋼の凝固温度)が高く、凝固時の平均冷却速度が高いと柱状晶が発達しやすくなる。そのため、鋳造時の過熱度を低く、平均冷却速度を遅くすることで等軸晶の生成が促進される。
 具体的には、過熱度は15℃以下とすることが好ましく、より好ましくは10℃以下、さらに好ましくは5℃以下である。また、冷却過程の900℃以上の平均冷却速度を20℃/秒(72000℃/hr.)以下とする。平均冷却速度は望ましくは10℃/秒(36000℃/hr.)以下、さらに望ましくは5℃/秒(18000℃/hr.)以下である。また、鋳造後のスラブ、インゴットを熱延前に再加熱する際は、加熱温度を1100℃以下、かつ加熱時間を2時間以下、望ましくは1時間以下にする。
 {100}<0vw>方位粒の存在比率は、次の通り測定する。
 OIMアナリシス Version7.3.1(TSL社製)を用いて、下記測定条件で観察した走査型電子顕微鏡による観察視野の中から、目的とする各方位粒の面積率を抽出(裕度は10°に設定)する。その抽出した面積を、観察視野の面積で割り、百分率を求める。この百分率を各方位粒の面積率とする。
 なお、{100}<0vw>方位粒の存在比率の測定方法の詳細の条件は、次の通りである。
・測定装置:電子線後方散乱回折装置付き走査型電子顕微鏡(SEM-EBSD)
・SEM:「JSM-6400」(JEOL社製)
・EBSD検出器:「HIKARI」(TSL社製)
・ステップ間隔:2μm
・測定対象:鋼板のZ面(板厚方向に鋼板を切断した切断面)の中心層(板厚1/2部)
・測定領域:8000μm×2400μmの領域
・粒界:結晶方位の角度差が15°以上(角度差が15°未満の連続する領域を一つの結晶粒とする)
 以上、本実施形態に係る無方向性電磁鋼板について説明したが、本実施形態に係る無方向性電磁鋼板の板厚は、0.35mm以下としてよい。より好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させるので、板厚は0.10mm以上とすることが好ましい。より好ましくは、0.15mm以上である。
 また、本実施形態に係る無方向性電磁鋼板の平均結晶粒径は10μm以上200μm以下である。
 板厚は、マイクロメーターにより測定すればよい。なお、測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。
 なお、本開示は、上述した実施形態に限定されるものではない。上述した実施形態は例示であり、本開示の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様の作用効果を奏するものは、いかなるものであっても本開示の技術的範囲に包含される。
 以下、実施例を例示して、本開示を具体的に説明する。なお、実施例の条件は、本開示の実施可能性および効果を確認するために採用した一例であり、本開示は実施例の条件に限定されるものではない。本開示は、その要旨を逸脱せず、その目的を達成する限りにおいて、種々の条件を採用し得るものである。
 なお、表1、表2および表3中の下線は、本発明の範囲から外れた条件であること、製造条件が好ましくないこと、または真円度が好ましくないことを示している。
(実施例1)
 表1の符号1Fおよび1Gに関し、質量%で、Si:3.00%、sol.Al:0.50%、Mn:0.20%、C:0.01%を含有し、その他不可避的不純物を含む鋼を溶製し、熱延で板厚2mmに仕上げた。熱延板を、表1に示す平均昇温速度で焼鈍温度(1,000℃~1,200℃)まで加熱し、2分間熱延板焼鈍した。焼鈍雰囲気は湿水素雰囲気として熱延板を脱炭した。表1の金属組織を有する板厚2mmの熱延焼鈍板を得た。
 また、表1の符号1A~1E、1H~1Nに関し、質量%で、Si:3.00%、sol.Al:0.50%、Mn:0.20%、C:0.0020%を含有し、その他不可避的不純物を含む鋼を溶製し、熱延で板厚2mmに仕上げた。熱延板を、表1に示す平均昇温速度で焼鈍温度(1,000℃~1,200℃)まで加熱し、2分間熱延板焼鈍した。焼鈍雰囲気は乾窒素雰囲気とした。表1の金属組織を有する板厚2mmの熱延焼鈍板を得た。
 次に、熱延焼鈍板を冷延して板厚0.25mmとし、750℃で30秒の焼鈍(仕上げ焼鈍)を施して、無方向性電磁鋼板を得た。なお、冷延は一回冷延法とした。表1の「原板製造条件」には、熱延焼鈍板の焼鈍温度、平均昇温速度と焼鈍雰囲気が示されている。また、最終冷延前の原板の平均結晶粒径を測定し、表1に示した。
 得られた無方向性電磁鋼板から金型で直径φ60mmの円板を打抜き、750℃で2時間の歪取焼鈍(コア焼鈍)を施し、焼鈍前後での真円度を測定した。また、コア焼鈍後の円板において、上述した手法に従い、D15MAX/D2AVE、DL/DC、ならびに結晶粒径が200μm未満である結晶粒の面積率(表1中では“*1”と表記)をもとめた。
 磁気特性は以下の要領で評価した。
 まず、得られた無方向性電磁鋼板から、磁気測定用に16×16mmの正方形サンプルを切り出した。次いで、切り出したサンプルに対し750℃で2時間の歪取焼鈍(コア焼鈍)を施し、鉄損W10/400と磁束密度B50を測定した。鉄損W10/400が14.0W/kg以下であり、かつ、磁束密度B50が1.65T以上である場合、優れた磁気特性を備える無方向性電磁鋼板であるとして合格を判定した。一方、鉄損W10/400が14.0W/kg以上および磁束密度B50が1.65T以下の少なくとも一方を満たした場合、磁気特性が劣ると評価し、不合格とした。
 上述した評価基準に従い、円板の直径の最大値と最小値の差の平均直径に対する比率が0.200%以下のものを合格(発明例)として表1に記した。また、直径の最大値と最小値の差の平均直径に対する比率が0.200%を超えるものを不合格(比較例)として表1に記した。
 表1において、1A、1Bは最終冷延前の鋼板の平均結晶粒径が200μm超であり、かつ200μm超の結晶粒の存在比率が10%超であり、歪取焼鈍後の真円度が評価基準を外れたため、不合格であった。1A、1Bは熱延板焼鈍の到達温度がいずれも1050℃を超えていたため、最終冷延前の鋼板の平均結晶粒径が200μm超であり、かつ200μm超の結晶粒の存在比率が10%超になったものと考えられる。
 1Cは200μm超の結晶粒の存在比率が10%であったが、最終冷延前の鋼板の平均結晶粒径が200μm超であり、歪取焼鈍後の真円度が評価基準を外れたため、不合格であった。1Cは熱延板焼鈍の到達温度が1050℃を超えていたため、最終冷延前の鋼板の平均結晶粒径が200μm超になったものと考えられる。
 1F、1Gは最終冷延前の鋼板の平均結晶粒径が200μm以下であったが、200μm超の結晶粒の存在比率が10%超であり、焼鈍後の真円度が評価基準を外れたため、不合格であった。1F、1Gは熱延板焼鈍の到達温度が1050℃であったが、湿水素雰囲気で焼鈍を行ったため、200μm超の結晶粒の存在比率が10%超になったものと考えられる。
 1Iは、歪取焼鈍後の真円度が基準を外れたため、不合格であった。1Iは熱延板焼鈍の平均昇温速度45℃/秒であっため、200μm超の結晶粒の存在比率が10%超になったものと考えられる。
 1D、1E、1H、1J~1Nは、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が10%以下であり、焼鈍後の真円度が評価基準を満たしたため、合格であった。
 以上より、熱延板焼鈍の到達温度を1050℃以下とし、熱延板焼鈍の雰囲気を乾窒素雰囲気とすることで、最終冷延前の鋼板の平均結晶粒径が200μm以下となり、かつ200μm超の結晶粒の存在比率を結晶粒全体の10%以下となり、打ち抜き後に所望の真円度が得られることが判る。また、本発明例である1D、1E、1H、1J~1Nでは、いずれも低い鉄損、かつ十分な磁束密度(良好な磁気特性)が得られることが判る。
Figure JPOXMLDOC01-appb-T000001
(実施例2)
 質量%で、Si:3.00%、sol.Al:0.50%、Mn:0.20%、C:0.0020%を含有し、その他不可避的不純物を含む鋼を溶製し、脱酸時間を調整して溶鋼中の酸素量を変化させた。溶鋼を鋳型に注ぎ、溶鋼の過熱度、および900℃以上における平均冷却速度を表2に示すように変化させてインゴットを作製した。平均冷却速度は、表2の通りとした。インゴットを1,100℃~1,200℃で1~5時間加熱後、熱延で板厚1.8mmに仕上げた。熱延板を乾窒素雰囲気で1,050℃で2分間熱延板焼鈍し、表2の金属組織を有する板厚1.8mmの熱延焼鈍板を得た。
 次に、熱延焼鈍板を冷延して板厚0.20mmとし、750℃で30秒の焼鈍(仕上げ焼鈍)を施して、無方向性電磁鋼板を得た。なお、冷延は一回冷延法とした。
 得られた無方向性電磁鋼板から金型で直径φ60mmの円板を打抜き、750℃で2時間の歪取焼鈍(コア焼鈍)を施し、焼鈍前後での真円度を測定した。
 また、コア焼鈍後の円板において、(実施例1)と同様に、D15MAX/D2AVE、DL/DC、ならびに結晶粒径が200μm未満である結晶粒の面積率(表2中では“*1”と表記)をもとめた。さらに、得られたコア焼鈍後の円板の磁気特性も同様にして求めた。
 上述した評価基準に従い、直径の最大値と最小値の差の平均直径に対する比率が0.200%以下のものを合格(発明例)として表2に記した。また、直径の最大値と最小値の差の平均直径に対する比率が0.200%を超えるものを不合格(比較例)として表2に記した。
 表2において、2A、2B、2F、2Gは{100}<0vw>方位粒の存在比率が10%超であり、歪取焼鈍後の真円度が評価基準を外れたため、不合格であった。
 2Aは熱延前のインゴットの加熱温度が1100℃を超えており、加熱時間が2時間を超えていたため、{100}<0vw>方位粒の存在比率が10%超となったものと考えられる。
 また、2B、2Fはインゴットの加熱時間は2時間であったが、加熱温度が1100℃を超えていたため、{100}<0vw>方位粒の存在比率が10%超となったものと考えられる。
 また、2Gはインゴットの加熱温度が1100℃であり、加熱時間が1時間であるが、凝固時の冷却速度が比較的高かったため(200,000℃/hr.)、{100}<0vw>方位粒の存在比率が10%超となったものと考えられる。
 2C、2D、2E、2H、2K~2Nは,{100}<0vw>方位粒の存在比率が10%以下であり、焼鈍後の真円度が評価基準を満たしたため、合格であった。以上より、インゴットの加熱温度を1100℃以下、加熱時間を1時間以下、冷却速度を20℃/秒(72000℃/hr.)以下にすることで、最終冷延前の鋼板の{100}<0vw>方位粒の存在比率が結晶粒全体の10%以下となり、打ち抜き後に所望の真円度が得られることが判る。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 表3の符号1Fおよび1Gに関し、質量%で、Si:3.00%、sol.Al:0.50%、Mn:0.20%、C:0.01%を含有し、その他不可避的不純物を含む鋼を溶製し、熱延で板厚2mmに仕上げた。熱延板を、表1に示す平均昇温速度で焼鈍温度(1,000℃~1,200℃)まで加熱し、2分間熱延板焼鈍した。焼鈍雰囲気は湿水素雰囲気として熱延板を脱炭した。表3の金属組織を有する板厚2mmの熱延焼鈍板を得た。
 また、表3の符号1A~1E、1H~1Nに関し、質量%で、Si:3.00%、sol.Al:0.50%、Mn:0.20%、C:0.0020%を含有し、その他不可避的不純物を含む鋼を溶製し、熱延で板厚2mmに仕上げた。熱延板を、表1に示す平均昇温速度で焼鈍温度(1,000℃~1,200℃)まで加熱し、2分間熱延板焼鈍した。焼鈍雰囲気は乾窒素雰囲気とした。表3の金属組織を有する板厚2mmの熱延焼鈍板を得た。
 次に、熱延焼鈍板を冷延して板厚0.25mmとし、750℃で30秒の焼鈍(仕上げ焼鈍)を施して、無方向性電磁鋼板を得た。なお、冷延は一回冷延法とした。表3の「原板製造条件」には、熱延焼鈍板の焼鈍温度、平均昇温速度と焼鈍雰囲気が示されている。また、最終冷延前の原板の平均結晶粒径を測定し、表3に示した。
 得られた無方向性電磁鋼板から金型で直径φ60mmの円板を打抜き、750℃で2時間の歪取焼鈍(コア焼鈍)を施し、歪取焼鈍前後の真円度を測定した。
 また、コア焼鈍後の円板において、(実施例1)と同様に、D15MAX/D2AVE、DL/DC、ならびに結晶粒径が200μm未満である結晶粒の面積率(表3中では“*1”と表記)をもとめた。さらに、得られたコア焼鈍後の円板の磁気特性も同様にして求めた。
 上述した評価基準に従い、直径の最大値と最小値の差の平均直径に対する比率が0.200%以下のものを合格(発明例)として表3に記した。また、直径の最大値と最小値の差の平均直径に対する比率が0.200%を超えるものを不合格(比較例)として表3に記した。
 表3において、3A~3Hは、歪取焼鈍前の真円度は評価基準を満たしていた。しかし、3Jは、歪取焼鈍前の真円度は評価基準を満たさなかったが、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が10%以下であり、焼鈍後の真円度が評価基準を満たしたため、合格であった。
 3A、3Bは最終冷延前の鋼板の平均結晶粒径が200μm超であり、かつ200μm超の結晶粒の存在比率が10%超であり、歪取焼鈍後の真円度が評価基準を外れたため、不合格であった。3A、3Bは熱延板焼鈍の到達温度がいずれも1050℃を超えていたため、最終冷延前の鋼板の平均結晶粒径が200μm超であり、かつ200μm超の結晶粒の存在比率が10%超になったものと考えられる。3Cは200μm超の結晶粒の存在比率が10%であったが、最終冷延前の鋼板の平均結晶粒径が200μm超であり、歪取焼鈍後の真円度が評価基準を外れたため、不合格であった。
 3Cは熱延板焼鈍の到達温度が1050℃を超えていたため、最終冷延前の鋼板の平均結晶粒径が200μm超になったものと考えられる。3F、3Gは最終冷延前の鋼板の平均結晶粒径が200μm以下であったが、200μm超の結晶粒の存在比率が10%超であり、焼鈍後の真円度が評価基準を外れたため、不合格であった。
 3F、3Gは熱延板焼鈍の到達温度が1050℃であったが、湿水素雰囲気で焼鈍を行ったため、200μm超の結晶粒の存在比率が10%超になったものと考えられる。
 3D、3E、3Hは最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が10%以下であり、焼鈍後の真円度が評価基準を満たしたため、合格であった。
 以上より、熱延板焼鈍の到達温度を1050℃以下とし、熱延板焼鈍の雰囲気を乾窒素雰囲気とすることで、最終冷延前の鋼板の平均結晶粒径が200μm以下となり、かつ200μm超の結晶粒の存在比率を結晶粒全体の10%以下となり、打ち抜き後に所望の真円度が得られることが判る。
 3Jは、歪取焼鈍前の真円度は評価基準を満たさなかったが、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が10%以下であり、歪取焼鈍後の真円度が評価基準を満たしたため、合格であった。
 以上により、発明例として、歪取焼鈍前と歪取焼鈍後の真円度の双方が評価基準を満たすものと、歪取焼鈍前の真円度は評価基準を満たしていないが歪取焼鈍後の真円度が評価基準を満たすものが含まれる。更に、発明例として歪取焼鈍前の真円度が評価基準を満たすものも含まれ、これはロータコアのような歪取焼鈍が行われないものを含む。したがって、発明例は、歪取焼鈍前の真円度と歪取焼鈍後の真円度の少なくともいずれかが評価基準を満たすものである。
Figure JPOXMLDOC01-appb-T000003
(実施例4)
 質量%で、表4Aおよび4Bに示す成分を含有し、その他不可避的不純物を含む鋼を溶製し、熱延で板厚2mmに仕上げた。熱延板を1,050℃で2分間、熱延板焼鈍した。焼鈍雰囲気は乾窒素雰囲気とし、表4Aおよび4Bの金属組織を有する板厚2mmの熱延焼鈍板を得た。
 次に、熱延焼鈍板を冷延して板厚0.25mmとし、750℃で30秒の焼鈍(仕上げ焼鈍)を施して、無方向性電磁鋼板を得た。なお、冷延は一回冷延法とした。また、最終冷延前の原板の平均結晶粒径、200μm超の結晶粒の存在比率を測定し、表5に示した。
 得られた無方向性電磁鋼板から金型で直径φ60mmの円板を打抜き、750℃で2時間の歪取焼鈍(コア焼鈍)を施し、歪取焼鈍前後の真円度を測定した。
また、コア焼鈍後の円板において、上述した手法に従い、D15MAX/D2AVE、DL/DC、ならびに結晶粒径が200μm未満である結晶粒の面積率(表5中では“*1”と表記)をもとめた。
 上述した評価基準に従い、直径の最大値と最小値の差の平均直径に対する比率が0.200%以下のものを合格(発明例)として表5に記した。
 得られた無方向性電磁鋼板から、磁気測定用に16×16mmの正方形サンプルを切り出し、750℃で2時間の歪取焼鈍(コア焼鈍)を施し、鉄損W10/400と磁束密度B50を測定した。鉄損W10/400が14.00W/kg以下であり、かつ、磁束密度B50が1.650T以上である場合、優れた磁気特性を備える無方向性電磁鋼板であるとして合格を判定した。
 表5において、4A1~4Sはいずれも、最終冷延前の鋼板の平均結晶粒径が200μm以下であり、かつ200μm超の結晶粒の存在比率が10%以下であり、コア焼鈍後の真円度が評価基準を満たしたため、合格であった。また、本発明例である4A1~4Sでは、いずれも低い鉄損、かつ十分な磁束密度(良好な磁気特性)が得られることが判る。
 以上より、本発明によれば、最終冷延前の鋼板の平均結晶粒径が200μm以下となり、かつ200μm超の結晶粒の存在比率を結晶粒全体の10%以下となり、打ち抜き後、およびコア焼鈍後それぞれにおける良好な真円度と、良好な磁気特性を両立できることが判る。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
21 ステータコア
22 コアバック
23 ティース
30 ロータコア
31 ロータ鉄心
32 磁石
50 ケース
60 シャフト

Claims (4)

  1.  鋼板表面に平行な断面において、結晶方位差が2°以上15°未満の境界を結晶粒界と見なしたとき、結晶粒径が200μm未満である結晶粒の面積率が10%以下を満足することを特徴とする無方向性電磁鋼板。
  2.  鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたときの最大結晶粒径をD15MAX、結晶方位差が2°以上の境界を結晶粒界と見なしたときの平均結晶粒径をD2AVEとしたとき、下記(1)式を満足することを特徴とする、請求項1に記載の無方向性電磁鋼板。
      D15MAX/D2AVE≦5.0 ・・・(1)
  3.  鋼板表面に平行な断面において、結晶方位差が15°以上の境界を結晶粒界と見なしたとき、200μm以上の結晶粒径を有する結晶粒の形体を楕円で近似して得られる形体において、長軸長さをDL、短軸長さをDCとしたとき、下記(2)式を満足することを特徴とする請求項1または2に記載の無方向性電磁鋼板。
      DL/DC≦5.0 ・・・(2)
  4.  質量%で、
      C :0%以上0.0050%以下、
      Si:2.00%以上3.25%以下、
      sol.Al:0%以上1.10%以下、
      Mn:0%以上1.10%以下、
      P :0%以上0.30%以下、
      S :0%以上0.0100%以下、
      N :0%以上0.0100%以下、
      Ti:0%以上0.1000%以下、
      V :0%以上0.100%以下、
      Zr:0%以上0.100%以下、
      Nb:0%以上0.100%以下、
      B :0%以上0.100%以下、
      O :0%以上0.100%以下、
      Mg:0%以上0.100%以下、
      Ca:0%以上0.010%以下、
      Cr:0%以上5.000%以下、
      Ni:0%以上5.000%以下、
      Cu:0%以上5.000%以下、
      Sn:0%以上0.100%以下、
      Sb:0%以上0.100%以下、
      Ce:0%以上0.100%以下、
      Nd:0%以上0.100%以下、
      Bi:0%以上0.100%以下、
      W :0%以上0.100%以下、
      Mo:0%以上0.100%以下、および
      Y :0%以上0.100%以下、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     板厚が0.10mm以上0.35mm以下であり、
     平均結晶粒径が10μm以上200μm以下である
    ことを特徴とする請求項1~3のいずれか一項に記載の無方向性電磁鋼板。
PCT/JP2022/015948 2021-03-31 2022-03-30 無方向性電磁鋼板 WO2022210870A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237032623A KR20230150986A (ko) 2021-03-31 2022-03-30 무방향성 전자 강판
EP22781080.1A EP4317474A1 (en) 2021-03-31 2022-03-30 Non-oriented electromagnetic steel sheet
JP2023511478A JPWO2022210870A1 (ja) 2021-03-31 2022-03-30
US18/284,032 US20240153684A1 (en) 2021-03-31 2022-03-30 Non-oriented electrical steel sheet
CN202280025365.2A CN117120648A (zh) 2021-03-31 2022-03-30 无取向性电磁钢板
BR112023019184A BR112023019184A2 (pt) 2021-03-31 2022-03-30 Chapa de aço elétrico não orientada

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021061752 2021-03-31
JP2021-061752 2021-03-31
JP2021099597 2021-06-15
JP2021-099597 2021-06-15

Publications (1)

Publication Number Publication Date
WO2022210870A1 true WO2022210870A1 (ja) 2022-10-06

Family

ID=83459492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015948 WO2022210870A1 (ja) 2021-03-31 2022-03-30 無方向性電磁鋼板

Country Status (6)

Country Link
US (1) US20240153684A1 (ja)
EP (1) EP4317474A1 (ja)
JP (1) JPWO2022210870A1 (ja)
KR (1) KR20230150986A (ja)
BR (1) BR112023019184A2 (ja)
WO (1) WO2022210870A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939526A (ja) * 1972-08-23 1974-04-13
JPH02263920A (ja) * 1989-04-03 1990-10-26 Nippon Steel Corp 低温用無方向性高磁束密度電磁鋼の製造方法
JPH03219020A (ja) * 1990-01-23 1991-09-26 Nkk Corp 無方向性電磁鋼板の製造方法
JPH1024333A (ja) 1996-07-10 1998-01-27 Nippon Steel Corp 無方向性電磁鋼板の打抜き方法
WO2018164185A1 (ja) * 2017-03-07 2018-09-13 新日鐵住金株式会社 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
JP2018165383A (ja) * 2017-03-28 2018-10-25 新日鐵住金株式会社 無方向性電磁鋼板
JP2019035116A (ja) * 2017-08-16 2019-03-07 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2021061752A (ja) 2019-10-10 2021-04-22 三菱マヒンドラ農機株式会社 コンバイン
JP2021099597A (ja) 2019-12-20 2021-07-01 株式会社東芝 Icカード及び携帯可能電子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939526A (ja) * 1972-08-23 1974-04-13
JPH02263920A (ja) * 1989-04-03 1990-10-26 Nippon Steel Corp 低温用無方向性高磁束密度電磁鋼の製造方法
JPH03219020A (ja) * 1990-01-23 1991-09-26 Nkk Corp 無方向性電磁鋼板の製造方法
JPH1024333A (ja) 1996-07-10 1998-01-27 Nippon Steel Corp 無方向性電磁鋼板の打抜き方法
WO2018164185A1 (ja) * 2017-03-07 2018-09-13 新日鐵住金株式会社 無方向性電磁鋼板、及び、無方向性電磁鋼板の製造方法
JP2018165383A (ja) * 2017-03-28 2018-10-25 新日鐵住金株式会社 無方向性電磁鋼板
JP2019035116A (ja) * 2017-08-16 2019-03-07 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2021061752A (ja) 2019-10-10 2021-04-22 三菱マヒンドラ農機株式会社 コンバイン
JP2021099597A (ja) 2019-12-20 2021-07-01 株式会社東芝 Icカード及び携帯可能電子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HARADA ET AL.: "Investigation of Material Control and Material Maintenance Method by Evaluation of Strength Properties Considering Grain Shape", PROCEEDINGS OF 2ND ANNUAL CONFERENCE OF THE JAPAN SOCIETY OF MAINTENOLOGY, pages 150

Also Published As

Publication number Publication date
BR112023019184A2 (pt) 2023-10-17
TW202242159A (zh) 2022-11-01
JPWO2022210870A1 (ja) 2022-10-06
EP4317474A1 (en) 2024-02-07
US20240153684A1 (en) 2024-05-09
KR20230150986A (ko) 2023-10-31

Similar Documents

Publication Publication Date Title
JP6891682B2 (ja) 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
KR20190112757A (ko) 무방향성 전자 강판 및 무방향성 전자 강판의 제조 방법
US20030024606A1 (en) Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
KR102501748B1 (ko) 무방향성 전자 강판
CN111868280B (zh) 无取向电磁钢板
JP2023507594A (ja) 無方向性電磁鋼板およびその製造方法
JP7119519B2 (ja) 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
WO2022210870A1 (ja) 無方向性電磁鋼板
JP6969473B2 (ja) 無方向性電磁鋼板
KR102561512B1 (ko) 무방향성 전자 강판 및 그 제조 방법
TWI836392B (zh) 無方向性電磁鋼板
JP7256361B2 (ja) 無方向性電磁鋼板およびその製造方法、ipmモータのロータコア鉄心
JP7159592B2 (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP7184226B1 (ja) 回転電機、ステータの鉄心およびロータの鉄心のセット、回転電機の製造方法、無方向性電磁鋼板の製造方法、回転電機のロータおよびステータの製造方法並びに無方向性電磁鋼板のセット
CN117120648A (zh) 无取向性电磁钢板
US12009709B2 (en) Rotating electrical machine, stator core and rotor core set, method for manufacturing rotating electrical machine, method for manufacturing non-oriented electrical steel sheet, method for manufacturing rotor and stator of rotating electrical machine, and non-oriented electrical steel sheet set
JP7211532B2 (ja) 無方向性電磁鋼板の製造方法
JP7231133B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7415135B2 (ja) 無方向性電磁鋼板の製造方法
CN117597459A (zh) 无方向性电磁钢板及其制造方法以及马达铁芯
CN117651785A (zh) 无方向性电磁钢板及其制造方法
JP2020094254A (ja) かしめ性に優れた高強度無方向性電磁鋼板
KR20220032109A (ko) 무방향성 전자 강판의 제조 방법
JP2021080497A (ja) 無方向性電磁鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023511478

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237032623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18284032

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019184

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023019184

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230920

WWE Wipo information: entry into national phase

Ref document number: 2022781080

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022781080

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE