WO2018163995A1 - パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット - Google Patents

パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット Download PDF

Info

Publication number
WO2018163995A1
WO2018163995A1 PCT/JP2018/008040 JP2018008040W WO2018163995A1 WO 2018163995 A1 WO2018163995 A1 WO 2018163995A1 JP 2018008040 W JP2018008040 W JP 2018008040W WO 2018163995 A1 WO2018163995 A1 WO 2018163995A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
substrate
mold
component
imprint
Prior art date
Application number
PCT/JP2018/008040
Other languages
English (en)
French (fr)
Inventor
啓子 千葉
晋吾 石田
敏明 安藤
伊藤 俊樹
ブライアン ティモシー スタコウィアック
ウェイジュン リウ
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to JP2019504542A priority Critical patent/JP7425602B2/ja
Priority to KR1020197028266A priority patent/KR102256347B1/ko
Priority to CN201880016546.2A priority patent/CN110392919B/zh
Publication of WO2018163995A1 publication Critical patent/WO2018163995A1/ja
Priority to US16/556,836 priority patent/US10935884B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Definitions

  • the present invention relates to a method of forming a pattern, a processed substrate using the same, a method of manufacturing an optical part and a quartz mold replica, and a pre-imprint treated coating material and a set thereof and an imprint resist.
  • a photocurable composition is cured in a state in which a mold (mold) having a fine uneven pattern formed on the surface is pressed against a substrate (wafer) coated with the photocurable composition (resist). Thereby, the concavo-convex pattern of the mold is transferred to the cured film of the photocurable composition to form the pattern on the substrate.
  • a minute structure of several nanometers order can be formed on a substrate.
  • a liquid curable composition (resist) 102 is discretely dropped onto the pattern formation region on the substrate 101 using an inkjet method (arrangement step, FIG. 1 (1)).
  • the dropped droplets of the curable composition 102 spread on the substrate 101 as shown by the arrows 104 indicating the spreading direction of the droplets (FIG. 1 (1)). This phenomenon is called prespread.
  • this curable composition 102 is formed into a pattern, and is molded using a mold (mold) 105 which is transparent to the irradiation light 106 described later (mold contact step, FIG. 1 (2)).
  • the curable composition 102 In the mold contact step, droplets of the curable composition 102 spread over the entire gap between the substrate 101 and the mold 105 (FIG. 1 (2)). This phenomenon is called spread. Further, in the mold contact step, the curable composition 102 is also filled into the inside of the recess on the mold 105 by capillary action as shown by the arrow 104 indicating the spreading direction of the droplets (FIG. 1 (2)) The enlarged part of). This filling phenomenon is called a fill. The time for the spread and fill to complete is called the fill time. After the filling of the curable composition 102 is completed, the curable composition 102 is irradiated with the irradiation light 106 to cure the curable composition 102 (light irradiation step, FIG.
  • a cured film (photocured film) 107 having a predetermined pattern shape is formed on the substrate.
  • the curable composition is combined in the desired pattern and the density of the desired pattern.
  • Patent Document 1 has a problem that the time from the start of mold contact to the completion of spread and fill (filling time) is long, and the throughput is low.
  • SST-NIL Short Spread Time Nanoimprint Lithography
  • a laminating step 1 (step (1)) of laminating a liquid curable composition (A1) 202 with a uniform film thickness on a substrate 201;
  • Laminating step 2 (step (2)) in which droplets of the curable composition (A2) 203 are discretely laminated on the curable composition (A1) 202 layer in the imprint apparatus, Mold contacting step (step (3)) of sandwiching a layer consisting of a mixture 208 of a curable composition (A1) 202 and a curable composition (A2) 203 between a mold 205 and a substrate 201;
  • a light irradiation step (step (4)) in which a layer consisting of a mixture 208 of the curable composition (A1) 202 and the curable composition (A2) 203 is cured at one time by irradiating the irradiation light 206 from the mold 205 side;
  • a release step (step (5)) in which the mold 205 is separated from the layer comprising the curable composition after curing.
  • a series of process units from step (2) to step (5) is referred to as "shot", and mold 205 is in contact with curable composition (A1) 202 and curable composition (A2) 203.
  • An area, that is, an area where a pattern is formed on the substrate 201 is referred to as a “shot area”.
  • SST-NIL shown in FIG. 2 has the following problems. That is, as shown in the schematic cross-sectional view of FIG. 3, the curable composition (A1) 302 is laminated on the substrate 301 over a larger area than the shot area, for example, the entire surface of the substrate using, for example, spin coating (see FIG. 3 (1).
  • the curable composition (A2) 303 is discretely laminated using, for example, an inkjet method, limited to the shot region (FIG. 3 (2)).
  • the arranged droplets of the curable composition (A2) 303 spread rapidly (prespread) in the direction indicated by the arrow 304 which indicates the spreading direction of the droplets by the Marangoni effect (Fig. 3 (2)).
  • the curable composition (A1) 302 and the curable composition (A2) 303 are different compositions, and from the laminating step 2 (FIG. 3 (2)) to the light irradiation step (FIG. 3 (4)) Mix. At this time, there is a region 309 where the curable composition (A1) 302 and the curable composition (A2) 303 are not sufficiently mixed (FIG. 3 (3)).
  • An object of the present invention is to provide an SST-NIL technique capable of processing a high throughput and a shot area with uniform accuracy.
  • the curable composition (A1) and the curable composition (A2) are at least the components (a) that are polymerizable compounds.
  • a compound having The curable composition according to the present embodiment may further contain a component (b) which is a photopolymerization initiator, a component (c) which is a non-polymerizable compound, and a component (d) which is a solvent.
  • the components included in the curable composition (A1) are components (a1) to (d1)
  • the components included in the curable composition (A2) are components (a2) to (d2). .
  • a cured film means a film obtained by polymerizing and curing the curable composition (A) on a substrate.
  • the shape of a cured film is not specifically limited, You may have a pattern shape on the surface.
  • component (a) Polymerizable compound
  • the component (a) which is a polymerizable compound reacts with a polymerization factor (such as a radical) generated from the component (b) which is a photopolymerization initiator, and is composed of a polymer compound by chain reaction (polymerization reaction). It is a compound that forms a film.
  • a polymerization factor such as a radical
  • the component (a) which is a polymeric compound may be comprised only from one type of polymeric compound, and may be comprised by multiple types of polymeric compounds.
  • the radically polymerizable compound is preferably a compound having one or more of an acryloyl group or a methacryloyl group, that is, a (meth) acrylic compound. Therefore, the curable composition (A) according to the present invention preferably contains a (meth) acrylic compound as the component (a), more preferably the main component of the component (a) is the (meth) acrylic compound Most preferably, the component (a) comprises a (meth) acrylic compound. In addition, that the main component of component (a) described here is a (meth) acrylic compound shows that 90 weight% or more of component (a) is a (meth) acrylic compound.
  • the radically polymerizable compound is composed of a plurality of types of compounds having one or more acryloyl groups or methacryloyl groups, it is preferable to include a monofunctional (meth) acrylic monomer and a polyfunctional (meth) acrylic monomer. This is because by combining a monofunctional (meth) acrylic monomer and a multifunctional (meth) acrylic monomer, a cured film having high mechanical strength can be obtained.
  • Examples of monofunctional (meth) acrylic compounds having one acryloyl group or methacryloyl group include phenoxyethyl (meth) acrylate, phenoxy-2-methylethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, and 3-phenoxy.
  • ALONIX registered trademark
  • M101, M102, M110, M111, M113, M117, M5700, TO-1317, M120, M150, M156 all manufactured by Toagosei Co., Ltd.
  • a polyfunctional (meth) acrylic compound having two or more acryloyl groups or methacryloyl groups for example, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth ) Acrylate, PO modified trimethylolpropane tri (meth) acrylate, EO, PO modified trimethylolpropane tri (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra ( Meta) acrylate, ethylene glycol di (meth) acrylate, tetra ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene Glycol di (meth) acrylate, 1,4-butanediol di (
  • (meth) acrylate means acrylate or methacrylate having an alcohol residue equivalent thereto.
  • the (meth) acryloyl group means a methacryloyl group having an acryloyl group or an alcohol residue equivalent thereto.
  • EO represents ethylene oxide
  • the EO-modified compound A is a compound in which a (meth) acrylic acid residue of compound A and an alcohol residue are linked via a block structure consisting of an ethylene oxide group oligomer or polymer Show.
  • PO represents propylene oxide
  • the (meth) acrylic acid residue and the alcohol residue of compound B are bonded to the PO modified compound B via a block structure composed of an oligomer or polymer of propylene oxide group Indicates a compound.
  • the mixing ratio of the polymerizable compound (a1) to the curable composition (A1) is the total weight of the components (a1), (b1) and (c1), ie, the curable composition excluding the component (d1). It is good for it to be 50 weight% or more and 100 weight% or less with respect to the total weight of the component of thing (A1). Also, it is preferably 80% by weight or more and 100% by weight or less, and more preferably more than 90% by weight and 100% by weight or less.
  • the compounding ratio in the curable composition (A1) of the component (a1) which is a polymerizable compound be 50% by weight or more based on the total weight of the component (a1), the component (b1) and the component (c1)
  • the obtained cured film can be a cured film having a certain degree of mechanical strength.
  • the mixing ratio of the polymerizable compound (a2) to the curable composition (A2) is the total weight of the components (a2), (b2) and (c2), ie, the curable composition excluding the component (d2) It is good that it is 50 to 99.9 weight% with respect to the total weight of the component of a thing (A2).
  • the curable composition (A1) preferably contains the component (d1), and the component (a1) is the total weight of the components of the curable composition (A1) containing the component (d1) It is preferable that the content is 0.01% by weight or more and 10% by weight or less.
  • the component (b) which is a photoinitiator in this specification is a compound which senses the light of a predetermined
  • the photopolymerization initiator is a polymerization initiator (radical generator) that generates radicals by light (infrared, visible light, ultraviolet light, far ultraviolet light, X-ray, charged particle beam such as electron beam, radiation, etc.) It is.
  • the component (b) may be composed of one kind of photopolymerization initiator, or may be composed of plural kinds of photopolymerization initiators.
  • radical generating agent for example, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- 2, which may have a substituent such as (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o- or p-methoxyphenyl) -4,5-diphenylimidazole dimer 2, 4,5-Triarylimidazole dimer; benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, 4-methoxy -4'-Dimethylaminobenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,
  • benzoin methyl Benzoin ether derivatives such as ether, benzoin ethyl ether, benzoin phenyl ether; benzoin derivatives such as benzoin, methylbenzoin, ethylbenzoin, propylbenzoin; benzyl derivatives such as benzyl dimethyl ketal; 9-phenylacridine, 1,7-bis (9 , 9'-acridinyl) heptane, etc .
  • N-phenylglycine derivatives such as N-phenylglycine; acetophenone, 3-methylacetophenone, acetophenone benzyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2- Acetophenone derivatives such as phenylacetophenone; Thioxanes such as thioxanthone, diethylthioxanthone, 2-isopropylthioxanthone, 2-
  • Irgacure registered trademark
  • 184 369, 651, 500, 819, 907, 784, 2959, 4265, CGI-1700, -1750, 1850, CG24-61
  • Darocur 1116, 1173 Lucirin (registered trademark) TPO, LR8893, LR8970 (above, made by BASF), Ubekryl P36 (made by UCB) and the like, but not limited thereto.
  • component (b) is preferably an acyl phosphine oxide polymerization initiator.
  • the acyl phosphine oxide type polymerization initiator is 2,4,6-trimethyl benzoyl diphenyl phosphine oxide, bis (2,4,6-trimethyl benzoyl) phenyl phosphine oxide, bis (2,6-6) Acyl phosphine oxide compounds such as dimethoxybenzoyl) -2,4,4-trimethylpentyl phosphine oxide.
  • the curable composition (A1) preferably has substantially no photoreactivity.
  • the mixing ratio of the component (b1) which is a photopolymerization initiator in the curable composition (A1) is the total weight of the component (a1), the component (b1) and the component (c1), ie, the component (d1) It is preferable to be less than 0.1% by weight based on the total weight of the components of the curable composition (A1) excluding. Furthermore, more preferably, it is 0.01% by weight or less.
  • the curable composition (A1) When the blending ratio of the component (b1) is less than 0.1% by weight based on the total weight of the component (a1), the component (b1) and the component (c1), the curable composition (A1) substantially emits light It has no reactivity. Therefore, the curable composition (A1) stacked in the adjacent shot area is unlikely to be cured by the irradiation light leaked to the adjacent shot area in the light irradiation step, and the adjacent shot area is not filled even in a short filling time. A pattern with few defects is obtained. The curing reaction of the curable composition (A1) in the shot area will be described later.
  • the compounding ratio of the component (b2) as a photopolymerization initiator in the curable composition (A2) is the total weight of the component (a2), the component (b2) and the component (c2), ie, the curability excluding the component (d2) It is good that it is 0.1 to 50 weight% with respect to the total weight of the component of a composition (A1). Also, it is preferably 0.1% by weight or more and 20% by weight or less, and more preferably more than 10% by weight and 20% by weight or less.
  • the compounding ratio of the component (b2) in the curable composition (A2) is 0.1% by weight or more based on the total weight of the component (a2), the component (b2) and the component (c2).
  • the curing speed can be increased and the reaction efficiency can be improved.
  • the obtained cured film has a certain degree of mechanical strength. It can be a cured film.
  • compositions (A1) and (A2) according to the present invention can be used in addition to the above-mentioned components (a) and (b) according to various purposes, insofar as the effects of the present invention are not impaired. It can contain component (c) which is a non-polymerizable compound. Such component (c) does not have a polymerizable functional group such as a (meth) acryloyl group, and does not have the ability to detect light of a predetermined wavelength and generate a polymerization factor (radical).
  • Compounds are mentioned. For example, a sensitizer, a hydrogen donor, an internally added release agent, a surfactant, an antioxidant, a polymer component, other additives and the like can be mentioned. A plurality of types of the above compounds may be contained as the component (c).
  • the sensitizer is a compound which is appropriately added for the purpose of accelerating the polymerization reaction and improving the reaction conversion rate.
  • a sensitizer a sensitizing dye etc. are mentioned, for example.
  • a sensitizing dye is a compound which is excited by absorbing light of a specific wavelength and interacts with the component (b) which is a photopolymerization initiator.
  • the interaction described here is an energy transfer, an electron transfer, etc. from the sensitizing dye of an excited state to the component (b) which is a photoinitiator.
  • the sensitizing dye include anthracene derivative, anthraquinone derivative, pyrene derivative, perylene derivative, carbazole derivative, benzophenone derivative, thioxanthone derivative, xanthone derivative, coumarin derivative, phenothiazine derivative, camphorquinone derivative, acridine dye, thiopyrilium salt type Dyes, merocyanine dyes, quinoline dyes, styryl quinoline dyes, ketocoumarin dyes, thioxanthene dyes, xanthene dyes, oxonol dyes, cyanine dyes, rhodamine dyes, pyrylium salt dyes and the like.
  • the sensitizing dye include, for example, N, N'-tetraethyl-4,4'-diaminobenzophenone which is a benzophenone derivative, 2-isopropylthioxanthone which is a thioxanthone derivative, and 7-diethylamino-4-which is a ketocoumarin type dye. Methyl coumarin, etc. may be mentioned.
  • a sensitizer may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • the hydrogen donor is a compound which reacts with an initiating radical generated from the component (b) which is a photopolymerization initiator or a radical at the polymerization growth terminal to generate a radical having higher reactivity. It is preferable to add when the component (b) which is a photoinitiator is an optical radical generating agent.
  • hydrogen donors include n-butylamine, di-n-butylamine, allylthiourea, triethylamine, triethylenetetramine, 4,4'-bis (dialkylamino) benzophenone, and N, N-dimethylaminobenzoic acid.
  • the hydrogen donor may be used alone or in combination of two or more.
  • the hydrogen donor may also have a function as a sensitizer.
  • An internal mold release agent is added to the curable composition for the purpose of reducing the interfacial bonding force between the mold and the cured product of the curable composition (A), that is, reducing the mold release force in the mold release step described later. It can be added.
  • the internally added type means that it has been added to the curable composition (A) in advance before the step of placing the curable composition (A).
  • surfactants such as silicone surfactants, fluorine surfactants, and hydrocarbon surfactants can be used. In the present invention, it is assumed that the internally added release agent does not have polymerizability.
  • polyalkylene oxide polyethylene oxide, polypropylene oxide, etc.
  • adduct of alcohol having a perfluoroalkyl group polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.) adduct of perfluoropolyether, etc. included.
  • the fluorine-based surfactant may have a hydroxyl group, an alkoxy group, an alkyl group, an amino group, a thiol group or the like in part (for example, an end group) of the molecular structure.
  • a commercially available product may be used as the fluorinated surfactant.
  • a commercial item for example, Megafac (registered trademark) F-444, TF-2066, TF-2067, TF-2068 (above, DIC products), Florard FC-430, FC-431 (above, Sumitomo 3M products) , Surflon (registered trademark) S-382 (manufactured by AGC), EFTOP EF-122A, 122B, 122C, EF-121, EF-126, EF-127, MF-100 (all manufactured by Tochem Products), PF-636 , PF-6320, PF-656, PF-6520 (all, manufactured by OMNOVA Solutions), Unidyne (registered trademark) DS-401, DS-403, DS-451 (manufactured by Daikin Industries, Ltd.), Futergent (registered trademark) 250, 251, 222F, 208G (made by Neos above) etc. are mentioned.
  • the internally added release agent may be a hydrocarbon surfactant.
  • the hydrocarbon surfactant includes, for example, an alkyl alcohol polyalkylene oxide adduct obtained by adding an alkylene oxide having 2 to 4 carbon atoms to an alkyl alcohol having 1 to 50 carbon atoms.
  • alkyl alcohol polyalkylene oxide adducts examples include methyl alcohol polyethylene oxide adduct, decyl alcohol polyethylene oxide adduct, lauryl alcohol polyethylene oxide adduct, cetyl alcohol polyethylene oxide adduct, stearyl alcohol polyethylene oxide adduct, stearyl alcohol polyethylene oxide / Polypropylene oxide adducts and the like can be mentioned.
  • the terminal group of the alkyl alcohol polyalkylene oxide adduct is not limited to the hydroxyl group which can be produced simply by adding a polyalkylene oxide to an alkyl alcohol.
  • This hydroxyl group may be substituted by another substituent, for example, a polar functional group such as a carboxyl group, an amino group, a pyridyl group, a thiol group or a silanol group, or a hydrophobic functional group such as an alkyl group or an alkoxy group.
  • a polar functional group such as a carboxyl group, an amino group, a pyridyl group, a thiol group or a silanol group
  • a hydrophobic functional group such as an alkyl group or an alkoxy group.
  • the alkyl alcohol polyalkylene oxide adduct may be a commercially available product.
  • Commercially available products include, for example, polyoxyethylene methyl ether (methyl alcohol polyethylene oxide adduct) (BLAUNON MP-400, MP-550, MP-1000) manufactured by Aoki Yushi Kogyo and polyoxyethylene decyl ether manufactured by Aoki Yushi Kogyo (Decyl alcohol polyethylene oxide adduct) (FINESURF D-1303, D-1305, D-1307, D-1310), Aoki Oil Co., Ltd.
  • polyoxyethylene lauryl ether (lauryl alcohol polyethylene oxide adduct) (BLAUNON EL-1505 ), Polyoxyethylene cetyl ether (cetyl alcohol polyethylene oxide adduct) manufactured by Aoki Yushi Kogyo Co., Ltd. (BLAUNON CH-305, CH-310), polyoxyethylene manufactured by Aoki Yushi Kogyo Co., Ltd. Lenstearyl ether (stearyl alcohol polyethylene oxide adduct) (BLAUNON SR-705, SR-707, SR-715, SR-720, SR-730, SR-750), Aoki Fat Industries, Ltd.
  • the internally added type releasing agent is preferably an alkyl alcohol polyalkylene oxide adduct, and more preferably a long chain alkyl alcohol polyalkylene oxide adduct.
  • One type of internal addition type release agent may be used alone, or two or more types may be mixed and used.
  • the compounding ratio of the component (c) which is a non-polymerizable compound in the curable composition (A) is the total weight of the component (a), the component (b) and the component (c), ie, the curability excluding the component (d) It is good that it is 0 to 50 weight% with respect to the total weight of the component of a composition (A). Further, it is preferably 0.1% by weight or more and 50% by weight or less, and more preferably 0.1% by weight or more and 20% by weight or less.
  • the cured film having a certain degree of mechanical strength is obtained by setting the blending ratio of the component (c) to 50% by weight or less based on the total weight of the component (a), the component (b) and the component (c) It can be a membrane.
  • the curable composition (A) which concerns on this invention may contain the component (d) which is a solvent.
  • the component (d) is not particularly limited as long as it is a solvent in which the component (a), the component (b) and the component (c) are dissolved.
  • a preferable solvent is a solvent having a boiling point of 80 ° C. or more and 200 ° C. or less at normal pressure. More preferably, it is a solvent having at least one of an ester structure, a ketone structure, a hydroxyl group and an ether structure.
  • it is a single solvent selected from propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, cyclohexanone, 2-heptanone, ⁇ -butyrolactone, ethyl lactate, or a mixed solvent thereof.
  • the curable composition (A1) which concerns on this embodiment contains a component (d1). It is because a spin coat method is preferable as a coating method of curable composition (A1) on a board
  • ⁇ Temperature at the time of blending of the curable composition (A)> the respective components are mixed and dissolved under predetermined temperature conditions. Specifically, it is performed in the range of 0 ° C. or more and 100 ° C. or less.
  • the curable compositions (A1) and (A2) according to the present invention are preferably liquids. This is because the spread and fill of the curable composition (A1) and / or (A2) are quickly completed, ie, the filling time is short, in the mold contacting step described later.
  • the viscosity at 25 ° C. of the mixture of components excluding the solvent (component (d1)) of the curable composition (A1) according to the present invention is preferably 1 mPa ⁇ s or more and 1000 mPa ⁇ s or less. Moreover, More preferably, they are 1 mPa * s or more and 500 mPa * s or less, More preferably, they are 1 mPa * s or more and 100 mPa * s or less.
  • the viscosity at 25 ° C. of the mixture of components excluding the solvent (component (d2)) of the curable composition (A2) according to the present invention is preferably 1 mPa ⁇ s or more and 100 mPa ⁇ s or less. Moreover, More preferably, they are 1 mPa * s or more and 50 mPa * s or less, More preferably, they are 1 mPa * s or more and 12 mPa * s or less.
  • Non-Patent Document 1 By setting the viscosity of the curable compositions (A1) and (A2) to 100 mPa ⁇ s or less, when the curable compositions (A1) and (A2) are brought into contact with the mold, spread and fill are completed quickly (Non-Patent Document 1). That is, by using the curable composition according to the present invention, the photo nanoimprinting method can be performed with high throughput. In addition, pattern defects due to filling defects are less likely to occur.
  • the coating unevenness is less likely to occur by setting the viscosity to 1 mPa ⁇ s or more. Furthermore, when the curable compositions (A1) and (A2) are brought into contact with the mold, the curable compositions (A1) and (A2) are less likely to flow out from the end of the mold.
  • the surface tension of the curable compositions (A1) and (A2) according to the present invention is 5 mN / m or more and 70 mN / m or less at 25 ° C. for the composition of the components excluding the solvent (d) Is preferred. Further, more preferably, it is 7 mN / m or more and 50 mN / m or less, and still more preferably 10 mN / m or more and 40 mN / m or less.
  • the capillary force works strongly, and therefore, filling (spread) when the curable composition (A1) and / or (A2) is brought into contact with the mold And fill) are completed in a short time (non-patent document 1). Further, by setting the surface tension to 70 mN / m or less, a cured film obtained by curing the curable composition becomes a cured film having surface smoothness.
  • the surface tension of the curable composition (A1) excluding the solvent (d1) is preferably higher than the surface tension of the curable composition (A2) excluding the solvent (d2). .
  • the prespread of the curable composition (A2) is accelerated (droplets spread widely) by the Marangoni effect described later, and the time required for the spread in the mold contact process described later is shortened, as a result This is because the filling time is shortened.
  • the Marangoni effect is a phenomenon of free surface movement caused by a local difference in surface tension of a liquid (Non-patent Document 2).
  • the surface tension that is, the difference in surface energy, as a driving force
  • a liquid with low surface tension diffuses to cover a wider surface. That is, if the curable composition (A1) having high surface tension is applied to the entire surface of the substrate and the curable composition (A2) having low surface tension is dropped, the prespread of the curable composition (A2) is accelerated.
  • the contact angles of the curable compositions (A1) and (A2) according to the present invention are 0 ° or more and 90 ° with respect to both the substrate surface and the mold surface for the composition of the components excluding the solvent (d). It is preferable that it is the following. If the contact angle is greater than 90 °, the capillary force acts in the negative direction (in the direction of contracting the contact interface between the mold and the curable composition) in the mold pattern or in the substrate-mold gap and does not fill. Moreover, it is particularly preferable that the angle is 0 ° or more and 30 ° or less. The lower the contact angle, the stronger the capillary force, and the higher the filling speed (Non-patent Document 1).
  • the curable compositions (A1) and (A2) according to the present invention preferably contain as little impurities as possible.
  • the impurities described herein mean those other than the components (a), (b), (c) and (d) described above.
  • the curable composition (A) which concerns on this invention is a thing obtained through the refinement
  • filtration using a filter is preferable.
  • the pore size is not less than 0.001 ⁇ m. It is preferable to filter with a 0 ⁇ m or less filter.
  • the filtered solution may be filtered again.
  • a plurality of filters with different pore sizes may be used for filtration.
  • filters made of polyethylene resin, polypropylene resin, fluorine resin, nylon resin, etc. can be used, it is not particularly limited.
  • the curable composition (A) which concerns on this invention for manufacturing a semiconductor integrated circuit
  • a metal atom is included in a curable composition (A). It is preferable to avoid mixing of the contained impurities (metal impurities) as much as possible.
  • the concentration of the metal impurity contained in the curable composition (A) is preferably 10 ppm or less, and more preferably 100 ppb or less.
  • the pattern formation method according to the present invention is an embodiment of a photo nanoimprint method.
  • the pattern formation method of the present invention is Layering step 1 (step (1)) in which the curable composition (A1) 202 of the present invention described above is laminated on a substrate 201 Laminating step 2 (step (2)) of laminating a curable composition (A2) 203 on the curable composition (A1) 202 layer, A mold contact step (step (3)) of sandwiching a layer formed by partially mixing the curable composition (A1) 202 and the curable composition (A2) 203 between the mold 205 and the substrate 201; A light irradiation step (step (4)) in which a layer formed by partially mixing the two types of curable compositions is cured at one time by irradiating the irradiation light 206 from the mold side, Release step (step (5)) for separating the mold 205 from the layer (the cured film 207 having a pattern shape) made of the curable composition after curing Have.
  • the cured film 207 having a pattern shape obtained by the manufacturing method of the present invention is preferably a film having a pattern of a size of 1 nm or more and 10 mm or less. More preferably, it is a film having a pattern of 10 nm to 100 ⁇ m in size.
  • a pattern forming technology for producing a film having a nano-sized (1 nm or more and 100 nm or less) pattern (concave and convex structure) using light is called an optical nanoimprinting method.
  • the pattern formation method according to the present invention utilizes a photo nanoimprint method. Each step will be described below.
  • Step (1) ⁇ Lamination Step 1 (Step (1))>
  • the curable composition (A1) 202 according to the present invention described above is laminated (coated) on the substrate 201 to form a coating film.
  • the substrate 201 on which the curable composition (A1) 202 is to be placed is a substrate to be processed, and a silicon wafer is usually used.
  • a processed layer may be formed on the substrate 201.
  • Another layer may be formed between the substrate 201 and the layer to be processed.
  • a replica quartz mold replica
  • a quartz imprint mold can be manufactured.
  • the substrate 201 is not limited to a silicon wafer or a quartz substrate.
  • the substrate 201 can be optionally selected from among those known as substrates for semiconductor devices such as aluminum, titanium-tungsten alloy, aluminum-silicon alloy, aluminum-copper-silicon alloy, silicon oxide, silicon nitride and the like. .
  • the surface of the substrate 201 (substrate to be processed) to be used or the layer to be processed is curable by surface treatment such as silane coupling treatment, silazane treatment, formation of an organic thin film, or the like.
  • the adhesion to the composition (A2) 203 may be improved.
  • the curable composition (A1) 202 on the substrate 201 or the layer to be processed
  • a method for disposing the curable composition (A1) 202 on the substrate 201 or the layer to be processed for example, an inkjet method, dip coating method, air knife coating method, curtain coating method, wire bar coating method, A gravure coating method, an extrusion coating method, a spin coating method, a slit scan method, or the like can be used.
  • the spin coating method is particularly preferable, and a uniform film is formed.
  • a baking step may be carried out as required to volatilize the component (d1) which is a solvent .
  • the average film thickness of the curable composition (A1) 202 is, for example, 2 nm or more and 10,000 nm or less, preferably 2 nm or more and 20 nm or less, and particularly preferably 3 nm or more and 5 nm or less. It is.
  • the curable composition (A1) 202 is laminated at once on most of the substrate surface in the step (1), and it comprises steps (2) to (5).
  • the repeat unit (shot) can be repeated plural times on the same substrate.
  • the film thickness of the liquid film of the curable composition (A1) 202 formed by using the spin coating method is required to have a thickness of at least 2 nm, preferably 3 nm, from the viewpoint of film formation. If the film thickness is 2 nm or less, the occurrence of pinholes can not be sufficiently prevented.
  • Step (2) ⁇ Lamination Step 2 (Step (2))>
  • the laminating step 2 as shown in FIG. 2 (2), it is preferable that droplets of the curable composition (A2) 203 be discretely dropped on the layer of the curable composition (A1) 202 and disposed. .
  • the most preferable inkjet method is used as the arrangement method of the present invention.
  • the droplets of the curable composition (A2) 203 are densely arranged on the substrate facing the area where the concaves are densely present on the mold, and sparsely arranged on the substrate facing the area where the concaves are sparsely present. Be done.
  • the residual film mentioned later can be controlled by uniform thickness irrespective of the density of the pattern on a mold.
  • the droplets of the curable composition (A2) 203 disposed in this step (2) show the spreading direction of the droplets by the Marangoni effect with the difference in surface energy (surface tension) as the driving force. It spreads quickly in the direction shown by the arrow 204 (pre-spread) (FIG. 2 (2)).
  • the inventors of the present invention found that the curable composition (A1) 202 and the curable composition (A2) 203 mix in the process of prespreading.
  • the curing of the curable composition (A1) 202 and the curable composition (A2) 203 results in curing
  • the component (b2) which is a photopolymerization initiator of the property composition (A2) 203 also transfers to the curable composition (A1) 202, and the curable composition (A1) 202 acquires photosensitivity for the first time.
  • the partially mixed curable composition (A1) 202 formed in the previous steps (1) and (2) (lamination steps 1 and 2) and the curability A mold 205 having a prototype pattern for transferring the pattern shape is brought into contact with a mixture 208 of the composition (A2) 203.
  • the mixture 208 of the curable composition (A1) 202 and the curable composition (A2) 203 partially mixed in the concave portions of the fine pattern that the mold 205 has on the surface is filled (filled), It becomes a liquid film filled in a pattern.
  • the mold 205 it is preferable to use the mold 205 made of a light transmitting material in consideration of the next step (light irradiation step).
  • the material of the material forming the mold 205 include glass, quartz, optically transparent resin such as PMMA, polycarbonate resin, etc., transparent metal vapor deposited film, flexible film such as polydimethylsiloxane, photocured film, metal film Etc. is preferred.
  • a light transparent resin is used as a material of the material of the mold 205, it is necessary to select a resin which does not dissolve in the components contained in the curable composition (A1) 202 and the curable composition (A2) 203.
  • the material of the material of the mold 205 be quartz, because the thermal expansion coefficient is small and the pattern distortion is small.
  • the fine pattern that the mold 205 has on the surface preferably has a pattern height of 4 nm or more and 200 nm or less.
  • the lower the pattern height the lower the force to peel off the mold 205 from the cured film 207 having a pattern shape in the release step, that is, the release force is lower, and the resist pattern is torn along with the release to the mask side.
  • the number of remaining mold release defects is small.
  • Adjacent resist patterns may contact each other due to elastic deformation of the resist pattern due to an impact when peeling off the mold 205, and the resist pattern may adhere or be damaged, but the pattern height is about twice or less of the pattern width (aspect If the ratio is 2 or less, there is a high possibility that those problems can be avoided.
  • the pattern height is too low, the processing accuracy of the substrate to be processed is low.
  • the mold 205 comprises curable compositions (A1) 202 and (A2) 203.
  • the surface treatment may be performed prior to the present step (3), which is a step of contacting the mold with the mold 205.
  • a method of surface treatment a method of applying a mold release agent to the surface of the mold 205 to form a mold release agent layer can be mentioned.
  • silicone type mold release agent silicone type mold release agent, fluorine type mold release agent, hydrocarbon type mold release agent, polyethylene type mold release agent, polypropylene type mold release agent, paraffin type mold release agent
  • examples include mold agents, montan-based release agents, carnauba-based release agents and the like.
  • commercially available coating-type mold release agents such as OPTOOL (registered trademark) DSX manufactured by Daikin Industries, Ltd. can also be suitably used.
  • a mold release agent may be used individually by 1 type, and may be used in combination of 2 or more types.
  • fluorine-based and hydrocarbon-based release agents are particularly preferable.
  • the curable composition (A1) 202 The pressure applied to the curable composition (A2) 203 is not particularly limited.
  • the pressure may be 0 MPa or more and 100 MPa or less.
  • the pressure is preferably 0 MPa or more and 50 MPa or less, more preferably 0 MPa or more and 30 MPa or less, and still more preferably 0 MPa or more and 20 MPa or less.
  • the spread of the curable composition (A2) 203 in the present step (3) is rapidly completed.
  • the spread is finally completed and the concentration of the curable composition (A1) 202 is high, but as described above, the curable composition (A1) Due to the low contact angle of 202, the fill is also completed quickly in this area.
  • the mold 205 and the curable composition (A1) 202 are completed.
  • the time which makes curable composition (A2) 203 contact can be set short. That is, it is one of the effects of the present invention that many pattern formation steps can be completed in a short time, and high productivity can be obtained.
  • the contact time is not particularly limited, but may be, for example, 0.1 seconds to 600 seconds.
  • the time is preferably 0.1 seconds or more and 3 seconds or less, and particularly preferably 0.1 seconds or more and 1.5 seconds or less. If it is shorter than 0.1 seconds, the spread and fill become insufficient, and a defect called an unfilled defect tends to occur frequently.
  • atmosphere control in order to prevent the influence on the hardening reaction by oxygen or moisture, it is preferable to perform atmosphere control.
  • Nitrogen, carbon dioxide, helium, argon, various chlorofluorocarbons, etc., or a mixed gas thereof can be mentioned as specific examples of the inert gas which can be used when performing the step (3) in an inert gas atmosphere.
  • the preferable pressure is 0.0001 atm or more and 10 atm or less.
  • the mold contacting step may be performed under an atmosphere containing a condensable gas (hereinafter referred to as "condensable gas atmosphere").
  • the condensable gas refers to the curable composition (A1) 202 and the curable composition (A2) 203 in the recess of the fine pattern formed on the mold 205 and in the gap between the mold 205 and the substrate 201.
  • the gas in the atmosphere refers to the gas that condenses and liquefies at the capillary pressure generated at the time of filling.
  • the condensable gas is present as a gas in the atmosphere before the mold 208 and the mixture 208 of the curable composition (A1) 202 and the curable composition (A2) 203 come into contact in the mold contact step (reference: FIG. Enlarged part of 1 (2)).
  • the gas filled in the concave portion of the fine pattern is liquefied by the capillary pressure generated by the curable composition (A1) 202 and the curable composition (A2) 203. Since the bubbles disappear, the filling property is excellent.
  • the condensable gas may be dissolved in the curable composition (A1) 202 and / or the curable composition (A2) 203.
  • the boiling point of the condensable gas is not limited as long as it is equal to or lower than the atmosphere temperature of the mold contact step, but is preferably -10 ° C to 25 ° C, more preferably 10 ° C to 25 ° C. If it is this range, the fillability is further excellent.
  • the vapor pressure of the condensable gas at the ambient temperature in the mold contact step is not limited as long as it is equal to or less than the mold pressure at the time of imprinting in the mold contact step, but 0.1 to 0.4 MPa is preferable. If it is this range, the fillability is further excellent. If the vapor pressure at ambient temperature is greater than 0.4 MPa, the effect of bubble disappearance tends to be insufficient. On the other hand, if the vapor pressure at ambient temperature is less than 0.1 MPa, decompression is required, and the apparatus tends to be complicated.
  • the atmosphere temperature in the mold contacting step is not particularly limited, but is preferably 20 ° C to 25 ° C.
  • chlorofluorocarbon such as trichlorofluoromethane, fluorocarbon (FC), hydrochlorofluorocarbon (HCFC), 1,1,1,3,3-pentafluoropropane (CHF 2 CH) 2
  • Fluorocarbons such as hydrofluorocarbons (HFCs) such as CF 3 , HFC-245fa and PFP, and hydrofluoroethers (HFE) such as pentafluoroethyl methyl ether (CF 3 CF 2 OCH 3 , HFE-245mc).
  • 1,1,1,3,3-pentafluoropropane (vapor pressure at 23 ° C., 0.14 MPa, from the viewpoint that the filling property at an atmosphere temperature of the mold contact step is excellent at 20 ° C. to 25 ° C.) Boiling point 15 ° C.), trichlorofluoromethane (vapor pressure at 23 ° C. 0.1056 MPa, boiling point 24 ° C.), and pentafluoroethyl methyl ether are preferred.
  • 1,1,1,3,3-pentafluoropropane is particularly preferable from the viewpoint of excellent safety.
  • the condensable gas may be used alone or in combination of two or more. Also, these condensable gases may be mixed with non-condensable gases such as air, nitrogen, carbon dioxide, helium, argon and the like. Helium is preferable as the non-condensable gas to be mixed with the condensable gas from the viewpoint of the filling property. Helium can permeate through the mold 205. Therefore, gas (condensable gas and helium) in the atmosphere together with the curable composition (A1) 202 and / or (A2) 203 is filled in the concave portion of the fine pattern formed on the mold 205 in the mold contact step. As the condensable gas liquefies, helium permeates through the mold.
  • non-condensable gases such as air, nitrogen, carbon dioxide, helium, argon and the like.
  • Helium is preferable as the non-condensable gas to be mixed with the condensable gas from the viewpoint of the filling property.
  • Helium can
  • the layer consisting of the mixture 208 of the curable composition (A1) 202 and the curable composition (A2) 203 is irradiated with the irradiation light 206 through the mold 205.
  • the curable composition (A1) 202 and / or the curable composition (A2) 203 filled in the fine pattern of the mold is irradiated with the irradiation light 206 from the mold 205 side.
  • the curable composition (A1) 202 and / or (A2) 203 filled in the fine pattern of the mold 205 is cured at one time by the irradiation light 206 to form a cured film 207 having a pattern shape.
  • the irradiation light 206 irradiated to the curable composition (A1) 202 and / or the curable composition (A2) 203 filled in the fine pattern of the mold 205 is the curable composition (A1) 202 and the curing property. It is selected according to the sensitivity wavelength of the composition (A2) 203. Specifically, it is preferable to appropriately select and use ultraviolet light having a wavelength of 150 nm or more and 400 nm or less, an X-ray, an electron beam or the like.
  • ultraviolet light is particularly preferable. This is because what is marketed as a curing assistant (photopolymerization initiator) has many compounds sensitive to ultraviolet light.
  • a light source emitting ultraviolet light for example, high pressure mercury lamp, super high pressure mercury lamp, low pressure mercury lamp, Deep-UV lamp, carbon arc lamp, chemical lamp, metal halide lamp, xenon lamp, KrF excimer laser, ArF excimer laser, F 2 Although an excimer laser etc. are mentioned, a super-high pressure mercury lamp is especially preferable.
  • the number of light sources used may be one or more.
  • when light irradiation is performed it may be performed on the entire surface of the curable composition (A1) 202 and / or the curable composition (A2) 203 filled in the fine pattern of the mold 205, You may only go there.
  • light irradiation may be intermittently performed a plurality of times over the entire area of the substrate 201, or may be continuously performed over the entire area.
  • the partial area A may be irradiated in the first irradiation process, and the area B different from the area A may be irradiated in the second irradiation process.
  • the leakage light that is, the diffusion of the light to the outside of the shot area is inevitable due to the limitations of the cost of the mold and the apparatus.
  • the curable composition (A1) 202 when the curable composition (A1) 202 substantially does not contain the photopolymerization initiator component (b1) (less than 0.1% by weight), the curable composition (A1) 202 alone is irradiated with light. There is little risk of hardening. For this reason, there is little possibility that the curable composition (A1) 202 on the adjacent shot area will be cured by the leaked light generated from the shot. Therefore, even in the adjacent shot, it is possible to form a pattern with few unfilled defects in a short filling time over the entire area.
  • the photopolymerization initiator of the curable composition (A2) ( The component b2 is also transferred to the curable composition (A1) 202, and since the curable composition (A1) 202 obtains photosensitivity, the curable composition (A1) 202 and the curable composition (A2) 203 Both are cured by the irradiation light 206 to form a cured film 207 having a pattern shape.
  • a release step the cured film 207 having a pattern shape and the mold 205 are separated from the curable composition (A1) 202 and the curable composition (A2) 203 after curing.
  • the cured film 207 having a pattern shape and the mold 205 are separated.
  • a cured film 207 having a pattern shape that is a reverse pattern of the fine pattern formed on the mold 205 cured in the light irradiation step is obtained in a self-supporting state.
  • the cured film also remains in the concave portions of the uneven pattern of the cured film 207 having a pattern shape, this film is referred to as a residual film (reference: residual film 108 in FIG. 1 (4)).
  • the mold contact step is performed in a condensable gas atmosphere
  • the cured film 207 having a pattern shape and the mold 205 are separated in the mold release step
  • the cured film 207 having a pattern shape contacts the mold 205.
  • Condensable gas is vaporized as the pressure at the interface decreases.
  • the mold release force which is a force necessary to separate the cured film 207 having a pattern shape from the mold 205, tends to be reduced.
  • the method for separating the cured film 207 having a pattern shape from the mold 205 is not particularly limited as long as a part of the cured film 207 having a pattern shape is not physically damaged when separated, and various conditions are not particularly limited.
  • the substrate 201 substrate to be processed
  • the mold 205 may be moved away from the substrate 201 and peeled off.
  • the mold 205 may be fixed, and the substrate 201 may be moved away from the mold for separation.
  • both of them may be pulled in opposite directions to peel off.
  • the curable composition (A1) 202 substantially does not contain the photopolymerization initiator (b1) component
  • the curable composition (A1) 202 and the curable composition (A2) 203 result in a curable composition
  • the component (A2) 203 of the photopolymerization initiator (b2) is also transferred to the curable composition (A1) 202, and the curable composition (A1) 202 first acquires photosensitivity. Therefore, the volume of the curable composition (A2) 203 needs to be sufficient relative to the volume of the curable composition (A1) 202. If the mixing is insufficient, a film thickness distribution may occur in a cured film formed after the mixture is filled, cured and released.
  • the film thickness distribution decreased as Vr / Vc increased.
  • the thickness is usually 40 to 80 nm in the pattern formation of 10 to 100 nm level usually formed by photo nanoimprint . Therefore, a film thickness distribution of 4 to 8 nm or less, which is 10% of the thickness, is permitted, and a preferable film thickness distribution is 4 to 6 nm or less. Therefore, as can be seen from FIG. 4, Vr / Vc is required to be 4 or more, preferably 6 or more.
  • the film thickness of the liquid film of the curable composition (A1) 202 laminated in the lamination step 1 is at least 2 nm, preferably 3 nm, in order to prevent generation of pinholes and the like from the viewpoint of film formation. It is necessary, and Vc can not be made extremely small. And, when Vr is too large, a large number of dispensed droplets remain, and a large amount of residual film remains, which adversely affects the etching process in the subsequent step. Therefore, Vr / Vc is limited to 15 or less, preferably 10 or less. That is, Vr / Vc is preferably 4 or more and 15 or less, and more preferably 6 or more and 10 or less, as shown in the following formula (1).
  • a series of steps including the above steps (1) to (5), curing is performed with a pattern shape having a desired uneven pattern shape (pattern shape attributed to the uneven shape of mold 205) at a desired position.
  • a membrane 207 can be obtained.
  • the curable composition (A1) 202 is collectively laminated on most of the surface of the substrate 201 in step (1), and steps (2) to (5)
  • the repeating unit (shot) can be repeated plural times on the same substrate.
  • a plurality of desired concavo-convex pattern shapes pattern shapes attributed to the concavo-convex shape of the mold 205 are obtained at desired positions on the processing substrate.
  • the cured film 207 can be obtained.
  • the substrate to be processed or the layer to be processed on the substrate to be processed is patterned using processing means such as etching It can be processed.
  • pattern transfer may be performed using processing means such as etching. In this manner, a circuit structure based on the pattern shape of the cured film 207 having a pattern shape can be formed on the substrate 201. Thereby, a circuit board used in a semiconductor element or the like can be manufactured.
  • circuit board by connecting the circuit board and a circuit control mechanism of the circuit board or the like, electronic devices such as a display, a camera, and a medical device can be formed.
  • electronic devices such as a display, a camera, and a medical device can be formed.
  • semiconductor element mentioned here include LSI, system LSI, DRAM, SDRAM, RDRAM, DRDRAM, NAND flash and the like.
  • an optical component You can also get In such a case, an optical component having at least a substrate 201 and a cured film 207 having a pattern shape on the substrate 201 can be obtained.
  • a liquid film to be an imprinting pre-treatment coating is formed on a substrate 201, and droplets of imprint resist are applied to the liquid film to spread the droplet components in the substrate surface direction. It is an object of the present invention to provide an accelerated pre-imprint coating material.
  • a liquid film to be an imprinting pretreatment coating is formed on a substrate, and droplets of an imprint resist comprising a curable composition (A2) with respect to the liquid film to be an imprinting pretreatment coating
  • An imprint pre-treatment coating material comprising a curable composition (A1) that promotes the spread of the droplet component in the substrate surface direction by applying at least a component (a1) that is a polymerizable compound,
  • a value obtained by dividing the volume (Vr) of droplets per shot area by the volume (Vc) of the pre-imprint treatment coating is characterized in that the substrate is coated such that Vr / Vc is 4 or more and 15 or less.
  • the pre-imprint pre-treatment coating material is included.
  • the pre-imprint treatment coating material in which Vr / Vc is 6 or more and 10 or less is more preferable.
  • the surface tension of the composition of the components of the imprint pre-treated coating material excluding the solvent is higher than the surface tension of the composition of the components of the imprint resist excluding the solvent.
  • the surface tension of the composition of the component of the imprint pre-treatment coating material excluding the solvent is higher than the surface tension of the composition of the component of the imprint resist except the solvent, thereby providing a combined set Achieve a suitable imprint.
  • a combination in which the difference between the surface tension of the composition of the imprint pre-treatment coating material excluding the solvent and the surface tension of the composition of the imprint resist excluding the solvent is 1 mN / m to 25 mN / m More preferred is a set of
  • Another aspect of the present invention is also to provide a suitable substrate pretreatment method for imprinting by coating an imprint pretreatment coating material on the substrate.
  • the present invention also encompasses a pattern formation method for forming a pattern on a substrate.
  • a pattern formation method for forming a pattern on a substrate.
  • Example 1 Preparation of Curable Composition (A1-1) 75 parts by weight of tetraethylene glycol diacrylate (manufactured by Sartomer), 25 parts by weight of tricyclodecane dimethanol diacrylate (manufactured by Sartomer), and propylene glycol monomethyl 67000 parts by weight of ether acetate (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviated PGMEA) was blended, and this was filtered with a 0.2 ⁇ m ultrahigh molecular weight polyethylene filter to prepare a curable composition (A1-1) of Example 1 did.
  • PGMEA propylene glycol monomethyl 67000 parts by weight of ether acetate
  • Curable Composition (A2-1) About 45 parts by weight of monofunctional acrylate (isobornyl acrylate and benzyl acrylate) and about 48 parts by weight of difunctional acrylate (neopentyl glycol diacrylate) About 5 parts by weight of a photopolymerization initiator Lucirin.RTM. TPO and Irgacure.RTM.
  • a curable composition (A1-1) is coated on a silicon substrate using a spin coater to form a liquid film of a curable composition (A1-1) having a thickness of 3.8 nm. Obtained.
  • the surface tension of the curable composition (A1-1) disposed in the lower layer is higher than the surface tension of the curable composition (A2-1) dropped onto the upper layer, so that the Marangoni effect is developed and the curability is achieved.
  • Droplet spreading (prespread) of the composition (A2-1) was rapid. Therefore, the curable composition (A1-1) and the curable composition (A2-1) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-1) and the curable composition (A2-1) were mixed. At that time, the film thickness distribution could be kept to 1.1 nm or less.
  • the curable composition (A1-1) and the curable composition (A2-1) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-1)
  • the curable composition (A1-1) also acquired photopolymerizability by transferring the photopolymerization initiator component to the curable composition (A1-1). Therefore, the mixture of the curable composition (A1-1) and the curable composition (A2-1) was well cured in the light irradiation step.
  • Example 2 The same composition as in Example 1 was used as a curable composition (A1-2) and a curable composition (A2-2).
  • a liquid film of a curable composition (A1-2) having a thickness of 3.8 nm is formed by applying the curable composition (A1-2) on a silicon substrate using a spin coater. Obtained. 57564 drops of 0.31 pL droplets of the curable composition (A2-2) were formed on the film of the curable composition (A1-2) in the region of “shot area” 26 ⁇ 33 mm 2 using the inkjet method Arranged discretely. Vr / Vc was 5.5, which satisfied the equation (1). At this time, since the surface tension of the curable composition (A1-2) disposed in the lower layer is higher than the surface tension of the curable composition (A2-2) dropped in the upper layer, the Marangoni effect is expressed.
  • the spread (prespread) of the droplets of the curable composition (A2-2) was rapid. Therefore, the curable composition (A1-2) and the curable composition (A2-2) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-2) and the curable composition (A2-2) were mixed. At that time, the film thickness distribution could be suppressed to 4 nm or less.
  • the curable composition (A1-2) and the curable composition (A2-2) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-2)
  • the curable composition (A1-2) also acquired photopolymerizability by transfer of the photopolymerization initiator component to the curable composition (A1-2). Therefore, the mixture of the curable composition (A1-2) and the curable composition (A2-2) was well cured in the light irradiation step.
  • Example 3 The same composition as in Example 1 was used as a curable composition (A1-3) and a curable composition (A2-3).
  • a curable composition (A1-3) is coated on a silicon substrate using a spin coater to form a liquid film of a curable composition (A1-3) having a thickness of 3.8 nm. Obtained. 57564 drops of 0.37 pL droplets of the curable composition (A2-3) were formed on the film of the curable composition (A1-3) in the area of 26 ⁇ 33 mm 2 with a “shot area” of 26 ⁇ 33 mm 2 using an inkjet method. Arranged discretely. Vr / Vc was 6.5, which satisfied the equation (1).
  • the Marangoni effect is expressed.
  • the spread (prespread) of the droplets of the curable composition (A2-3) was rapid. Therefore, the curable composition (A1-3) and the curable composition (A2-3) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-3) and the curable composition (A2-3) were mixed. At that time, the film thickness distribution could be kept to 3.1 nm or less.
  • the curable composition (A1-3) and the curable composition (A2-3) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-3)
  • the curable composition (A1-3) also acquired photopolymerizability by transferring the photopolymerization initiator component to the curable composition (A1-3). Therefore, the mixture of the curable composition (A1-3) and the curable composition (A2-3) was well cured in the light irradiation step.
  • Example 4 The same composition as in Example 1 was used as a curable composition (A1-4) and a curable composition (A2-4).
  • a liquid film of a curable composition (A1-4) having a thickness of 3.8 nm is formed by applying the curable composition (A1-4) on a silicon substrate using a spin coater. Obtained. 43290 droplets of 0.39 pL droplets of the curable composition (A2-4) were formed on the film of the curable composition (A1-4) in the area of 26 ⁇ 33 mm 2 in the “shot area” by using the inkjet method. Arranged discretely. Vr / Vc was 5.2, which satisfied the equation (1).
  • the Marangoni effect is expressed.
  • the spread (prespread) of the droplets of the curable composition (A2-4) was rapid. Therefore, the curable composition (A1-4) and the curable composition (A2-4) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-4) and the curable composition (A2-4) were mixed. At that time, the film thickness distribution could be reduced to 5.3 nm or less.
  • the curable composition (A1-4) and the curable composition (A2-4) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-4)
  • the curable composition (A1-4) also acquired photopolymerizability by transferring the photopolymerization initiator component to the curable composition (A1-4). Therefore, the mixture of the curable composition (A1-4) and the curable composition (A2-4) was well cured in the light irradiation step.
  • Example 5 The same composition as in Example 1 was used as a curable composition (A1-5) and a curable composition (A2-5).
  • a liquid film of a curable composition (A1-5) having a thickness of 3.8 nm is formed by applying the curable composition (A1-5) on a silicon substrate using a spin coater. Obtained. 43290 drops of 0.5 pL droplets of the curable composition (A2-5) on the film of the curable composition (A1-5) in the region of “shot area” 26 ⁇ 33 mm 2 using the inkjet method Arranged discretely. Vr / Vc was 6.64, which satisfied the equation (1). At this time, since the surface tension of the curable composition (A1-5) disposed in the lower layer is higher than the surface tension of the curable composition (A2-5) dropped in the upper layer, the Marangoni effect is expressed.
  • the droplet spread (prespread) of the curable composition (A2-5) was rapid. Therefore, the curable composition (A1-5) and the curable composition (A2-5) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-5) and the curable composition (A2-5) were mixed. At that time, the film thickness distribution could be kept to 4.7 nm or less.
  • the curable composition (A1-5) and the curable composition (A2-5) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-5)
  • the curable composition (A1-5) also acquired photopolymerizability by transferring the photopolymerization initiator component to the curable composition (A1-5). Therefore, the mixture of the curable composition (A1-5) and the curable composition (A2-5) cured well in the light irradiation step.
  • Example 6 The same composition as in Example 1 was used as a curable composition (A1-6).
  • the curable composition (A1-6) was applied on a silicon substrate using a spin coater to obtain a liquid film of a curable composition (A1-6) having a thickness of 3 nm. . 28782 droplets of 0.43 pL droplets of the curable composition (A2-6) are formed on the film of the curable composition (A1-6) in the area of 26 ⁇ 33 mm 2 in the “shot area” by using the inkjet method. Arranged discretely. Vr / Vc was 4.81 and satisfied the equation (1).
  • the surface tension of the curable composition (A1-6) disposed in the lower layer is higher than the surface tension of the curable composition (A2-6) dropped onto the upper layer, so that the Marangoni effect is expressed.
  • the droplet spread (prespread) of the curable composition (A2-6) was rapid. Therefore, the curable composition (A1-6) and the curable composition (A2-6) were mixed, spread in the shot area in a short time of 1.1 seconds, and filled in the pattern portion.
  • the mold was released by irradiation with a UV light source of 10000 W / m 2 for 0.1 second to obtain a cured film in which the curable composition (A1-6) and the curable composition (A2-6) were mixed. At that time, the film thickness distribution could be kept to 4.4 nm or less.
  • the curable composition (A1-6) and the curable composition (A2-6) are mixed in a short time of 1.1 seconds, and from the curable composition (A2-6)
  • the curable composition (A1-6) also acquired photopolymerizability by transferring the photopolymerization initiator component to the curable composition (A1-6). Therefore, the mixture of the curable composition (A1-6) and the curable composition (A2-6) cured well in the light irradiation step.
  • Example 1 The same composition as in Example 1 was used as a curable composition (A1-1 ′) and a curable composition (A2-1 ′).
  • Photo nanoimprinting process A solution of a curable composition (A1-1 ′) having a thickness of 3.8 nm by applying the curable composition (A1-1 ′) on a silicon substrate using a spin coater I got a membrane. On the film of the curable composition (A1-1 ′) in the area of “shot area” 26 ⁇ 33 mm 2 , a droplet of 0.38 pL of the curable composition (A2-1 ′) was formed using an inkjet method. 28782 drops were placed discretely. Vr / Vc was 3.35, and did not satisfy Formula (1).
  • the surface tension of the curable composition (A1-1 ′) disposed in the lower layer is higher than the surface tension of the curable composition (A2-1 ′) dropped onto the upper layer, so the Marangoni effect is The spreading (prespreading) of the droplets of the curable composition (A2-1 ′) that developed and was rapid.
  • Curable Composition (A1-2 ′) Tetraethylene glycol diacrylate (manufactured by Sartomer): 75 parts by weight Tricyclodecanedimethanol diacrylate (manufactured by Sartomer): 25 parts by weight Propylene as a solvent component Glycol monomethyl ether acetate (manufactured by Tokyo Chemical Industry Co., Ltd., abbreviation PGMEA): 41500 parts by weight is blended, and this is filtered with a 0.2 ⁇ m ultrahigh molecular weight polyethylene filter, and the curable composition of Example 1 (A1-2 ′) Were prepared.
  • PGMEA glycol monomethyl ether acetate
  • Photo nanoimprinting process A solution of a curable composition (A1-2 ′) having a thickness of 6.2 nm by applying the curable composition (A1-2 ′) on a silicon substrate using a spin coater. I got a membrane. On the film of the curable composition (A1-2 ′) in the area of “shot area” 26 ⁇ 33 mm 2 , a droplet of 0.31 pL of the curable composition (A2-2 ′) was formed using an inkjet method. 57,564 drops were placed discretely. Vr / Vc was 3.35, and did not satisfy Formula (1).
  • the Marangoni effect is The spreading (prespreading) of the droplets of the curable composition (A2-2 ′) that appeared was rapid.
  • Comparative example 3 The same composition as Comparative Example 2 was used as a curable composition (A1-3 ′) and a curable composition (A2-3 ′).
  • Photo nanoimprinting process A solution of a curable composition (A1-3 ′) having a thickness of 6.2 nm by applying the curable composition (A1-3 ′) on a silicon substrate using a spin coater. I got a membrane. On the film of the curable composition (A1-3 ′) in the area of “shot area” 26 ⁇ 33 mm 2 , a 0.39 pL droplet of the curable composition (A2-3 ′) was formed using an inkjet method. 43,290 drops were placed discretely. Vr / Vc was 3.17 and did not satisfy the equation (1).
  • the Marangoni effect is The spreading (prespreading) of the droplets of the curable composition (A2-3 ′) that appeared was rapid.
  • the curable composition (A1-3 ′) and the curable composition (A2-3 ′) can be obtained in a short time of 1.1 seconds. It showed that the mixing of was insufficient.
  • Comparative example 4 The same composition as Comparative Example 2 was used as a curable composition (A1-4 ′) and a curable composition (A2-4 ′).
  • Photo nanoimprinting process A solution of a curable composition (A1-4 ′) having a thickness of 6.2 nm by applying the curable composition (A1-4 ′) on a silicon substrate using a spin coater I got a membrane. On the film of the curable composition (A1-4 ′) in the area of “shot area” 26 ⁇ 33 mm 2 , a 0.38 pL droplet of the curable composition (A2-4 ′) was formed using an inkjet method. 28782 drops were placed discretely. Vr / Vc was 2.06 and did not satisfy the equation (1).
  • the Marangoni effect is The spreading (prespreading) of the droplets of the curable composition (A2-4 ′) that appeared was rapid.
  • the curable composition (A1-4 ′) and the curable composition (A2-4 ′) can be obtained in a short time of 1.1 seconds. It showed that the mixing of was insufficient.
  • Example 5 A composition similar to that of Example 6 was used as a curable composition (A1-5 ′) and a composition similar to that of Comparative Example 2 as a curable composition (A2-5 ′).
  • Photo nanoimprinting process A solution of a curable composition (A1-5 ′) having a thickness of 6.2 nm by applying the curable composition (A1-5 ′) on a silicon substrate using a spin coater I got a membrane. On the film of the curable composition (A1-5 ′) in the area of “shot area” 26 ⁇ 33 mm 2 , a 0.43 pL droplet of the curable composition (A2-5 ′) is formed using an inkjet method. 28782 drops were placed discretely. Vr / Vc was 2.33 and did not satisfy the equation (1).
  • the surface tension of the curable composition (A1-5 ′) disposed in the lower layer is higher than the surface tension of the curable composition (A2-5 ′) dropped in the upper layer, so the Marangoni effect is The spreading (prespreading) of the droplets of the curable composition (A2-5 ′) that appeared was rapid.
  • the curable composition (A1-5 ') and the curable composition (A2-5') can be obtained in a short time of 1.1 seconds. It showed that the mixing of was insufficient.
  • an optical nanoimprint pattern can be formed with high throughput and high accuracy by using the method of the present invention.
  • Curable Composition (Resist) 104 Arrow indicating the spreading direction of droplets 105 Mold (mold) 106 Irradiated light 107 Cured film 108 having a pattern shape Residual film 201 Substrate 202 Curable composition (A1) 203 Curable composition (A2) 204 Arrow 205 indicating the spreading direction of the droplets Mold 206 Irradiated light 207 Cured film 208 having a pattern shape Mixture of a curable composition (A1) and a curable composition (A2) 301 substrate 302 curable composition (A1) 303 Curable composition (A2) 304 Arrow 305 indicating the spreading direction of droplets 305 Mold 306 Irradiated light 307 Cured film having a pattern shape 308 A mixture of a curable composition (A1) and a curable composition (A2) 309 Area not well mixed with composition

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

高スループット、かつ、ショット領域を均一な精度で加工可能なパターン形成方法を提供することを目的とする。 基板の表面に少なくとも重合性化合物である成分(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、硬化性組成物(A1)層上に少なくとも重合性化合物である成分(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、モールドと前記基板の間に前記硬化性組成物(A1)及び前記硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)をこの順に有する、光インプリント技術による硬化物パターン製造方法において、ショット領域あたりの前記硬化性組成物(A2)の体積(Vr)を前記硬化性組成物(A1)の体積(Vc)で除した値Vr/Vcが4以上15以下であることを特徴とするパターン形成方法。

Description

パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
 本発明は、パターン形成方法、それを用いた加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセットに関する。
 半導体デバイスやMEMS等においては、微細化の要求が高まっており、微細加工技術として、光ナノインプリント技術が注目されている。光ナノインプリント技術では、表面に微細な凹凸パターンが形成されたモールド(型)を光硬化性組成物(レジスト)が塗布された基板(ウエハ)に押しつけた状態で光硬化性組成物を硬化させる。これにより、モールドの凹凸パターンを光硬化性組成物の硬化膜に転写し、パターンを基板上に形成する。光ナノインプリント技術によれば、基板上に数ナノメートルオーダーの微細な構造体を形成することができる。
 特許文献1に記載の光ナノインプリント技術によるパターン形成方法を、図1の模式断面図を用いて説明する。まず、基板101上のパターン形成領域にインクジェット法を用いて、液状の硬化性組成物(レジスト)102を離散的に滴下する(配置工程、図1(1))。滴下された硬化性組成物102の液滴は、液滴の拡がる方向を示す矢印104で示すように、基板101上に広がる(図1(1))。この現象をプレスプレッドと呼ぶ。次に、この硬化性組成物102を、パターンが形成され、後述する照射光106に対して透明なモールド(型)105を用いて成形する(型接触工程、図1(2))。型接触工程においては、硬化性組成物102の液滴が基板101とモールド105の間隙の全域へ拡がる(図1(2))。この現象をスプレッドと呼ぶ。また、型接触工程においては、硬化性組成物102はモールド105上の凹部の内部へも毛細管現象により、液滴の拡がる方向を示す矢印104で示すように、充填される(図1(2)の拡大部)。この充填現象をフィルと呼ぶ。スプレッドとフィルが完了するまでの時間を充填時間と呼ぶ。硬化性組成物102の充填が完了した後、照射光106を照射して硬化性組成物102を硬化(光照射工程、図1(3))させたうえで引き離す(離型工程、図1(4))。これらの工程を実施することにより、所定のパターン形状を有する硬化膜(光硬化膜)107が基板上に形成される。インプリント装置導入前の基板101に硬化性組成物102を事前に均一な膜として形成するのではなく、本方式のように、所望のパターンの粗密に合わせてインプリント装置内に硬化性組成物102を離散的に配置することにより、より高精度な微細なパターンを形成することができる。
特許第4791357号公報 特開2011-159924号公報 特開2011-168003号公報 特開2011-187824号公報 特開2011-235571号公報
S.Reddy,R.T.Bonnecaze/Microelectronic Engineering,82(2005)60-70 N.Imaishi/Int. J. Microgravity Sci.No.31 Supplement 2014 (S5-S12)
 特許文献1に記載の光ナノインプリント技術においては、型接触開始からスプレッドとフィルが完了するまでの時間(充填時間)が長く、スループットが低い、という課題があった。
 そこで本発明者らは、充填時間が短い、つまり高スループットな光ナノインプリント技術(Short Spread Time Nanoimprint Lithography、以下、「SST-NIL」と称する。)を考案した。SST-NILは、図2の模式断面図に示すように、
 基板201上に、液状の硬化性組成物(A1)202を均一な膜厚で積層する積層工程1(工程(1))、
 インプリント装置内において硬化性組成物(A1)202層上に、硬化性組成物(A2)203の液滴を離散的に積層する積層工程2(工程(2))、
 モールド205と基板201の間に硬化性組成物(A1)202及び硬化性組成物(A2)203の混合物208からなる層をサンドイッチする型接触工程(工程(3))、
 硬化性組成物(A1)202と硬化性組成物(A2)203の混合物208からなる層をモールド205側から照射光206を照射することにより一度に硬化させる光照射工程(工程(4))、及び
 モールド205を硬化後の硬化性組成物からなる層から引き離す離型工程(工程(5))、
を有する、パターン形状を有する硬化膜207を得る技術である。
 SST-NILにおいて、工程(2)から工程(5)までの一連の工程単位を「ショット」と称し、モールド205が硬化性組成物(A1)202及び硬化性組成物(A2)203と接触する領域、つまり、基板201上でパターンが形成される領域を「ショット領域」と称する。
 SST-NILにおいては、離散的に滴下された硬化性組成物(A2)203の液滴が、硬化性組成物(A1)202の液膜上において速やかに拡大するため、充填時間が短く、高スループットである。SST-NILの詳しいメカニズムは後述する。なお、硬化性組成物(A1)202の積層工程1は、インプリント装置外、又は、インプリント装置内の別チャンバーで行われるため、インプリント装置のスループットに影響を与えることはない。
 また、特許文献2から5において、2種類の硬化性組成物を用いる工程が提案されているが、組成物の積層工程2においてインクジェット方式を用いてパターンの粗密にあわせて離散的に配置し、高精度なパターンを製造する手法については記載されていない。すなわち、SST-NILとは、2種類の硬化性組成物を用いた高精度なパターン精度と高スループット性能を両立する光ナノインプリントの新たな手法である。
 しかしながら、図2に示すSST-NILには次のような問題がある。すなわち、図3の模式断面図に示すように、硬化性組成物(A1)302は、基板301上にショット領域より広い面積、例えば基板全面に、例えばスピンコート法を用いて積層される(図3(1))。一方、硬化性組成物(A2)303は当該ショット領域に限定して、例えばインクジェット法を用いて離散的に積層される(図3(2))。配置された硬化性組成物(A2)303の液滴は、マランゴニ効果により液滴の拡がる方向を示す矢印304で示される方向に速やかに広がる(プレスプレッド)(図3(2))。ここで、硬化性組成物(A1)302と硬化性組成物(A2)303は、異なる組成物であり、積層工程2(図3(2))から光照射工程(図3(4))にかけて混合する。このとき硬化性組成物(A1)302と硬化性組成物(A2)303が十分に混合されていない領域309が存在する(図3(3))。その場合、硬化性組成物(A1)302及び硬化性組成物(A2)303の混合物308が硬化した領域の膜厚に比べ、硬化性組成物(A1)302が高濃度に存在する領域(硬化性組成物(A2)303の液滴間境界領域)の膜厚が薄くなり、パターン形状を有する硬化膜307の膜厚が不均一となることがわかった。パターン形状を有する硬化膜307の膜厚が不均一だと、ドライエッチングなどで下地基板を加工する際、均一に加工できない、という問題が生じる。
 前記のような問題を回避するには硬化性組成物(A1)と硬化性組成物(A2)の混合を十分に行う必要がある。硬化性組成物(A1)に硬化性組成物(A2)を拡散させるためには、硬化性組成物(A1)と硬化性組成物(A2)同士を長時間接液させることが有効だが、混合に時間をかけると1ショットにかかる時間が長くなるため、スループットが著しく低下する課題がある。
 そこで本発明は、高スループット、かつ、ショット領域を均一な精度で加工可能なSST-NIL技術を提供することを目的とする。
 上記課題を解決する本発明によれば、基板の表面に少なくとも重合性化合物である成分(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、前記硬化性組成物(A1)層上に少なくとも重合性化合物である成分(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、モールドと前記基板の間に前記硬化性組成物(A1)と前記硬化性組成物(A2)とが部分的に混合してなる層をサンドイッチする工程(3)、前記硬化性組成物(A1)と前記硬化性組成物(A2)が混合してなる層を前記モールド側から光を照射することにより一度に硬化させる工程(4)、及び前記モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)をこの順に実施することからなるパターン形成方法において、ショット領域あたりの前記硬化性組成物(A2)の体積(Vr)を前記硬化性組成物(A1)の体積(Vc)で除した値Vr/Vcが4以上15以下であることを特徴とするパターン形成方法が提供される。
 本発明によれば、高スループット、かつ、ショット領域を均一な精度で加工可能なパターン形成方法を提供することができる。
光ナノインプリント技術の先行例を示す模式断面図である。 本発明の光ナノインプリント技術を示す模式断面図である。 本発明が解決しようとする光ナノインプリント技術の課題を説明する模式断面図である。 本発明に係るVr/Vcと膜厚分布との関係を示す図である。
 以下、本発明の実施形態について適宜図面を参照しながら詳細に説明する。ただし、本発明は以下に説明する実施形態に限定されるものではない。また、本発明においては、その趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下に説明する実施形態に対して適宜変更、改良等が加えられたものについても本発明の範囲に含まれる。
 [硬化性組成物]
 本実施形態に係る硬化性組成物(A1)及び硬化性組成物(A2)(以下、両者を「硬化性組成物(A)」とも称する。)は、少なくとも重合性化合物である成分(a)を有する化合物である。本実施形態に係る硬化性組成物はさらに、光重合開始剤である成分(b)、非重合性化合物である成分(c)、溶剤である成分(d)を含有してもよい。なお、硬化性組成物(A1)に含まれる各成分を成分(a1)~成分(d1)とし、硬化性組成物(A2)に含まれる各成分を成分(a2)~成分(d2)とする。
 また、本明細書において硬化膜とは、基板上で硬化性組成物(A)を重合させて硬化させた膜を意味する。なお、硬化膜の形状は特に限定されず、表面にパターン形状を有していてもよい。
 以下、各成分について、詳細に説明する。
 <成分(a):重合性化合物>
 本明細書において重合性化合物である成分(a)は、光重合開始剤である成分(b)から発生した重合因子(ラジカル等)と反応し、連鎖反応(重合反応)によって高分子化合物からなる膜を形成する化合物である。
 このような重合性化合物としては、例えば、ラジカル重合性化合物が挙げられる。重合性化合物である成分(a)は、一種類の重合性化合物のみから構成されていてもよく、複数種類の重合性化合物で構成されていてもよい。
 ラジカル重合性化合物としては、アクリロイル基又はメタクリロイル基を1つ以上有する化合物、すなわち、(メタ)アクリル化合物であることが好ましい。したがって、本発明に係る硬化性組成物(A)は、成分(a)として(メタ)アクリル化合物を含むことが好ましく、成分(a)の主成分が(メタ)アクリル化合物であることがより好ましく、成分(a)が(メタ)アクリル化合物からなることが最も好ましい。なお、ここで記載する成分(a)の主成分が(メタ)アクリル化合物であるとは、成分(a)の90重量%以上が(メタ)アクリル化合物であることを示す。
 ラジカル重合性化合物が、アクリロイル基又はメタクリロイル基を1つ以上有する複数種類の化合物で構成される場合には、単官能(メタ)アクリルモノマーと多官能(メタ)アクリルモノマーを含むことが好ましい。これは、単官能(メタ)アクリルモノマーと多官能(メタ)アクリルモノマーを組み合わせることで、機械的強度が強い硬化膜が得られるからである。
 アクリロイル基又はメタクリロイル基を1つ有する単官能(メタ)アクリル化合物としては、例えば、フェノキシエチル(メタ)アクリレート、フェノキシ-2-メチルエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、3-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、4-フェニルフェノキシエチル(メタ)アクリレート、3-(2-フェニルフェニル)-2-ヒドロキシプロピル(メタ)アクリレート、EO変性p-クミルフェニル(メタ)アクリレート、2-ブロモフェノキシエチル(メタ)アクリレート、2,4-ジブロモフェノキシエチル(メタ)アクリレート、2,4,6-トリブロモフェノキシエチル(メタ)アクリレート、EO変性フェノキシ(メタ)アクリレート、PO変性フェノキシ(メタ)アクリレート、ポリオキシエチレンノニルフェニルエーテル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、ボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、アクリロイルモルホリン、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、イソアミル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ジアセトン(メタ)アクリルアミド、イソブトキシメチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、t-オクチル(メタ)アクリルアミド、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、7-アミノ-3,7-ジメチルオクチル(メタ)アクリレート、N,N-ジエチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等が挙げられるが、これらに限定されない。
 上記単官能(メタ)アクリル化合物の市販品としては、アロニックス(登録商標)M101、M102、M110、M111、M113、M117、M5700、TO-1317、M120、M150、M156(以上、東亞合成製)、MEDOL10、MIBDOL10、CHDOL10、MMDOL30、MEDOL30、MIBDOL30、CHDOL30、LA、IBXA、2-MTA、HPA、ビスコート#150、#155、#158、#190、#192、#193、#220、#2000、#2100、#2150(以上、大阪有機化学工業製)、ライトアクリレートBO-A、EC-A、DMP-A、THF-A、HOP-A、HOA-MPE、HOA-MPL、PO-A、P-200A、NP-4EA、NP-8EA、エポキシエステルM-600A(以上、共栄社化学製)、KAYARAD(登録商標) TC110S、R-564、R-128H(以上、日本化薬製)、NKエステルAMP-10G、AMP-20G(以上、新中村化学工業製)、FA-511A、512A、513A(以上、日立化成製)、PHE、CEA、PHE-2、PHE-4、BR-31、BR-31M、BR-32(以上、第一工業製薬製)、VP(BASF製)、ACMO、DMAA、DMAPAA(以上、興人製)等が挙げられるが、これらに限定されない。
 また、アクリロイル基又はメタクリロイル基を2つ以上有する多官能(メタ)アクリル化合物としては、例えば、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO,PO変性トリメチロールプロパントリ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(アクリロイルオキシ)イソシアヌレート、ビス(ヒドロキシメチル)トリシクロデカンジ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、EO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン、EO,PO変性2,2-ビス(4-((メタ)アクリロキシ)フェニル)プロパン等が挙げられるが、これらに限定されない。
 上記多官能(メタ)アクリル化合物の市販品としては、ユピマー(登録商標)UV SA1002、SA2007(以上、三菱化学製)、ビスコート#195、#230、#215、#260、#335HP、#295、#300、#360、#700、GPT、3PA(以上、大阪有機化学工業製)、ライトアクリレート4EG-A、9EG-A、NP-A、DCP-A、BP-4EA、BP-4PA、TMP-A、PE-3A、PE-4A、DPE-6A(以上、共栄社化学製)、KAYARAD(登録商標) PET-30、TMPTA、R-604、DPHA、DPCA-20、-30、-60、-120、HX-620、D-310、D-330(以上、日本化薬製)、アロニックス(登録商標)M208、M210、M215、M220、M240、M305、M309、M310、M315、M325、M400(以上、東亞合成製)、リポキシ(登録商標)VR-77、VR-60、VR-90(以上、昭和高分子製)等が挙げられるが、これらに限定されない。
 なお、上記の化合物群において、(メタ)アクリレートとは、アクリレート又はそれと同等のアルコール残基を有するメタクリレートを意味する。(メタ)アクリロイル基とは、アクリロイル基又はそれと同等のアルコール残基を有するメタクリロイル基を意味する。EOは、エチレンオキサイドを示し、EO変性化合物Aとは、化合物Aの(メタ)アクリル酸残基とアルコール残基がエチレンオキサイド基のオリゴマー又はポリマーからなるブロック構造を介して結合している化合物を示す。また、POは、プロピレンオキサイドを示し、PO変性化合物Bとは、化合物Bの(メタ)アクリル酸残基とアルコール残基がプロピレンオキサイド基のオリゴマー又はポリマーからなるブロック構造を介して結合している化合物を示す。
 重合性化合物である成分(a1)の硬化性組成物(A1)における配合割合は、成分(a1)、成分(b1)、成分(c1)の合計重量、すなわち成分(d1)を除く硬化性組成物(A1)の成分の合計重量に対して、50重量%以上100重量%以下であるとよい。また、好ましくは、80重量%以上100重量%以下であり、さらに好ましくは90重量%より大きく100重量%以下である。
 重合性化合物である成分(a1)の硬化性組成物(A1)における配合割合を、成分(a1)、成分(b1)、成分(c1)の合計重量に対して50重量%以上とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 重合性化合物である成分(a2)の硬化性組成物(A2)における配合割合は、成分(a2)、成分(b2)、成分(c2)の合計重量、すなわち成分(d2)を除く硬化性組成物(A2)の成分の合計重量に対して、50重量%以上99.9重量%以下であるとよい。また、好ましくは、80重量%以上99重量%以下であり、さらに好ましくは90重量%より大きく98重量%以下である。
 重合性化合物である成分(a2)の硬化性組成物(A2)における配合割合を、成分(a2)、成分(b2)、成分(c2)の合計重量に対して50重量%以上とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 また、後述するように、硬化性組成物(A1)は、成分(d1)を含有することが好ましく、成分(a1)は成分(d1)を含む硬化性組成物(A1)の成分の合計重量に対して、0.01重量%以上10重量%以下であるとよい。
 <成分(b):光重合開始剤>
 本明細書において光重合開始剤である成分(b)は、所定の波長の光を感知して重合因子(ラジカル)を発生させる化合物である。具体的には、光重合開始剤は、光(赤外線、可視光線、紫外線、遠紫外線、X線、電子線等の荷電粒子線等、放射線)によりラジカルを発生する重合開始剤(ラジカル発生剤)である。成分(b)は、一種類の光重合開始剤で構成されていてもよく、複数種類の光重合開始剤で構成されていてもよい。
 ラジカル発生剤としては、例えば、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-又はp-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の置換基を有してもよい2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4,4’-ジアミノベンゾフェノン等のベンゾフェノン誘導体;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノ-プロパン-1-オン等のα―アミノ芳香族ケトン誘導体;2-エチルアントラキノン、フェナントレンキノン、2-t-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナンタラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル誘導体;ベンゾイン、メチルベンゾイン、エチルベンゾイン、プロピルベンゾイン等のベンゾイン誘導体;ベンジルジメチルケタール等のベンジル誘導体;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン等のN-フェニルグリシン誘導体;アセトフェノン、3-メチルアセトフェノン、アセトフェノンベンジルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン誘導体;チオキサントン、ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン等のチオキサントン誘導体;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル誘導体;キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられるが、これらに限定されない。
 上記ラジカル発生剤の市販品として、Irgacure(登録商標)184、369、651、500、819、907、784、2959、4265、CGI-1700、-1750、-1850、CG24-61、Darocur 1116、1173、Lucirin(登録商標) TPO、LR8893、LR8970(以上、BASF製)、ユベクリルP36(UCB製)等が挙げられるが、これらに限定されない。
 これらの中でも、成分(b)は、アシルホスフィンオキサイド系重合開始剤であることが好ましい。なお、上記の例のうち、アシルホスフィンオキサイド系重合開始剤は、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイドなどのアシルホスフィンオキサイド化合物である。
 本発明において、硬化性組成物(A1)は実質的に光反応性を有さないことが好ましい。このために、光重合開始剤である成分(b1)の硬化性組成物(A1)における配合割合は、成分(a1)、成分(b1)、成分(c1)の合計重量、すなわち成分(d1)を除く硬化性組成物(A1)の成分の合計重量に対して、0.1重量%未満とすることが好ましい。また、さらに好ましくは、0.01重量%以下である。
 成分(b1)の配合割合を成分(a1)、成分(b1)、成分(c1)の合計重量に対して0.1重量%未満とした場合、硬化性組成物(A1)は実質的に光反応性を有さない。このため、光照射工程において隣接ショット領域に漏れた照射光により、隣接ショット領域に積層されている硬化性組成物(A1)が硬化する恐れが少なく、隣接ショット領域においても短い充填時間でも未充填欠陥が少ないパターンが得られるのである。当該ショット領域における硬化性組成物(A1)の硬化反応については、後述する。
 光重合開始剤である成分(b2)の硬化性組成物(A2)における配合割合は、成分(a2)、成分(b2)、成分(c2)の合計重量、すなわち成分(d2)を除く硬化性組成物(A1)の成分の合計重量に対して、0.1重量%以上50重量%以下であるとよい。また、好ましくは、0.1重量%以上20重量%以下であり、さらに好ましくは10重量%より大きく20重量%以下である。
 硬化性組成物(A2)における成分(b2)の配合割合を成分(a2)、成分(b2)、成分(c2)の合計重量に対して0.1重量%以上とすることにより、組成物の硬化速度が速くなり、反応効率を良くすることができる。また、成分(b2)の配合割合を成分(a2)、成分(b2)、成分(c2)の合計に対して50重量%以下とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 <成分(c):非重合性化合物>
 本発明に係る硬化性組成物(A1)及び(A2)は、前述した、成分(a)、成分(b)の他に、種々の目的に応じ、本発明の効果を損なわない範囲で、さらに非重合性化合物である成分(c)を含有することができる。このような成分(c)としては、(メタ)アクリロイル基などの重合性官能基を有さず、かつ、所定の波長の光を感知して重合因子(ラジカル)を発生させる能力を有さない化合物が挙げられる。例えば、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分、その他添加剤等が挙げられる。成分(c)として前記化合物を複数種類含有してもよい。
 増感剤は、重合反応促進や反応転化率の向上を目的として、適宜添加される化合物である。増感剤として、例えば、増感色素等が挙げられる。増感色素は、特定の波長の光を吸収することにより励起され、光重合開始剤である成分(b)と相互作用する化合物である。なお、ここで記載する相互作用とは、励起状態の増感色素から光重合開始剤である成分(b)へのエネルギー移動や電子移動等である。
 増感色素の具体例としては、アントラセン誘導体、アントラキノン誘導体、ピレン誘導体、ペリレン誘導体、カルバゾール誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、キサントン誘導体、クマリン誘導体、フェノチアジン誘導体、カンファキノン誘導体、アクリジン系色素、チオピリリウム塩系色素、メロシアニン系色素、キノリン系色素、スチリルキノリン系色素、ケトクマリン系色素、チオキサンテン系色素、キサンテン系色素、オキソノール系色素、シアニン系色素、ローダミン系色素、ピリリウム塩系色素等が挙げられるが、これらに限定されない。増感色素の好ましい具体例としては例えば、ベンゾフェノン誘導体であるN,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、チオキサントン誘導体である2-イソプロピルチオキサントン、ケトクマリン系色素である7-ジエチルアミノ-4-メチルクマリン、等が挙げられる。
 増感剤は、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。
 水素供与体は、光重合開始剤である成分(b)から発生した開始ラジカルや、重合成長末端のラジカルと反応し、より反応性が高いラジカルを発生する化合物である。光重合開始剤である成分(b)が光ラジカル発生剤である場合に添加することが好ましい。
 このような水素供与体の具体例としては、n-ブチルアミン、ジ-n-ブチルアミン、アリルチオ尿素、トリエチルアミン、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエタノールアミン、N-フェニルグリシンなどのアミン化合物、2-メルカプト-N-フェニルベンゾイミダゾール、メルカプトプロピオン酸エステル等のメルカプト化合物、s-ベンジルイソチウロニウム-p-トルエンスルフィネート等の硫黄化合物、トリ-n-ブチルホスフィン等のリン化合物等が挙げられるが、これらに限定されない。
 水素供与体は、一種類を単独で用いてもよいし二種類以上を混合して用いてもよい。また、水素供与体は、増感剤としての機能を有してもよい。
 モールドと硬化性組成物(A)の硬化物との間の界面結合力の低減、すなわち後述する離型工程における離型力の低減を目的として、硬化性組成物に内添型離型剤を添加することができる。本明細書において内添型とは、硬化性組成物(A)の配置工程の前に予め硬化性組成物(A)に添加されていることを意味する。
 内添型離型剤としては、シリコーン系界面活性剤、フッ素系界面活性剤及び炭化水素系界面活性剤等の界面活性剤等を使用できる。なお、本発明において内添型離型剤は、重合性を有さないものとする。
 フッ素系界面活性剤としては、パーフルオロアルキル基を有するアルコールのポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)付加物、パーフルオロポリエーテルのポリアルキレンオキサイド(ポリエチレンオキサイド、ポリプロピレンオキサイド等)付加物等が含まれる。なお、フッ素系界面活性剤は、分子構造の一部(例えば、末端基)に、ヒドロキシル基、アルコキシ基、アルキル基、アミノ基、チオール基等を有してもよい。
 フッ素系界面活性剤としては、市販品を使用してもよい。市販品としては、例えば、メガファック(登録商標)F-444、TF-2066、TF-2067、TF-2068(以上、DIC製)、フロラード FC-430、FC-431(以上、住友スリーエム製)、サーフロン(登録商標) S-382(AGC製)、EFTOP EF-122A、122B、122C、EF-121、EF-126、EF-127、MF-100(以上、トーケムプロダクツ製)、PF-636、PF-6320、PF-656、PF-6520(以上、OMNOVA Solutions製)、ユニダイン(登録商標)DS-401、DS-403、DS-451(以上、ダイキン工業製)、フタージェント(登録商標) 250、251、222F、208G(以上、ネオス製)等が挙げられる。
 また、内添型離型剤は、炭化水素系界面活性剤でもよい。炭化水素系界面活性剤としては、炭素数1~50のアルキルアルコールに炭素数2~4のアルキレンオキサイドを付加した、アルキルアルコールポリアルキレンオキサイド付加物等が含まれる。
 アルキルアルコールポリアルキレンオキサイド付加物としては、メチルアルコールポリエチレンオキサイド付加物、デシルアルコールポリエチレンオキサイド付加物、ラウリルアルコールポリエチレンオキサイド付加物、セチルアルコールポリエチレンオキサイド付加物、ステアリルアルコールポリエチレンオキサイド付加物、ステアリルアルコールポリエチレンオキサイド/ポリプロピレンオキサイド付加物等が挙げられる。なお、アルキルアルコールポリアルキレンオキサイド付加物の末端基は、単純にアルキルアルコールにポリアルキレンオキサイドを付加して製造できるヒドロキシル基に限定されない。このヒドロキシル基が他の置換基、例えば、カルボキシル基、アミノ基、ピリジル基、チオール基、シラノール基等の極性官能基やアルキル基、アルコキシ基等の疎水性官能基に置換されていてもよい。
 アルキルアルコールポリアルキレンオキサイド付加物は、市販品を使用してもよい。市販品としては、例えば、青木油脂工業製のポリオキシエチレンメチルエーテル(メチルアルコールポリエチレンオキサイド付加物)(BLAUNON MP-400、MP-550、MP-1000)、青木油脂工業製のポリオキシエチレンデシルエーテル(デシルアルコールポリエチレンオキサイド付加物)(FINESURF D-1303、D-1305、D-1307、D-1310)、青木油脂工業製のポリオキシエチレンラウリルエーテル(ラウリルアルコールポリエチレンオキサイド付加物)(BLAUNON EL-1505)、青木油脂工業製のポリオキシエチレンセチルエーテル(セチルアルコールポリエチレンオキサイド付加物)(BLAUNON CH-305、CH-310)、青木油脂工業製のポリオキシエチレンステアリルエーテル(ステアリルアルコールポリエチレンオキサイド付加物)(BLAUNON SR-705、SR-707、SR-715、SR-720、SR-730、SR-750)、青木油脂工業製のランダム重合型ポリオキシエチレンポリオキシプロピレンステアリルエーテル(BLAUNON SA-50/50 1000R、SA-30/70 2000R)、BASF製のポリオキシエチレンメチルエーテル(Pluriol(登録商標) A760E)、花王製のポリオキシエチレンアルキルエーテル(エマルゲンシリーズ)等が挙げられる。
 これらの炭化水素系界面活性剤の中でも内添型離型剤としては、アルキルアルコールポリアルキレンオキサイド付加物であることが好ましく、長鎖アルキルアルコールポリアルキレンオキサイド付加物であることがより好ましい。内添型離型剤は、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。
 非重合性化合物である成分(c)の硬化性組成物(A)における配合割合は、成分(a)、成分(b)、成分(c)の合計重量、すなわち成分(d)を除く硬化性組成物(A)の成分の合計重量に対して、0重量%以上50重量%以下であるとよい。また、好ましくは、0.1重量%以上50重量%以下であり、さらに好ましくは0.1重量%以上20重量%以下である。成分(c)の配合割合を成分(a)、成分(b)、成分(c)の合計重量に対して50重量%以下とすることにより、得られる硬化膜をある程度の機械的強度を有する硬化膜とすることができる。
 <成分(d):溶剤>
 本発明に係る硬化性組成物(A)は、溶剤である成分(d)を含有していてもよい。成分(d)としては、成分(a)、成分(b)、成分(c)が溶解する溶剤であれば、特に限定はされない。好ましい溶剤としては常圧における沸点が80℃以上200℃以下の溶剤である。さらに好ましくは、エステル構造、ケトン構造、水酸基、エーテル構造のいずれかを少なくとも1つ有する溶剤である。具体的には、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノン、2-ヘプタノン、γ-ブチロラクトン、乳酸エチルから選ばれる単独、あるいはこれらの混合溶剤である。
 本実施形態に係る硬化性組成物(A1)は、成分(d1)を含有することが好ましい。後述するように、基板上への硬化性組成物(A1)の塗布方法としてスピンコート法が好ましいためである。
 <硬化性組成物(A)の配合時の温度>
 本実施形態の硬化性組成物(A1)及び(A2)を調製する際には、各成分を所定の温度条件下で混合・溶解させる。具体的には、0℃以上100℃以下の範囲で行う。
 <硬化性組成物(A)の粘度>
 本発明に係る硬化性組成物(A1)及び(A2)は液体であることが好ましい。なぜならば、後述する型接触工程において、硬化性組成物(A1)及び/又は(A2)のスプレッド及びフィルが速やかに完了する、つまり充填時間が短いからである。
 本発明に係る硬化性組成物(A1)の溶剤(成分(d1))を除く成分の混合物の25℃での粘度は、1mPa・s以上1000mPa・s以下であることが好ましい。また、より好ましくは、1mPa・s以上500mPa・s以下であり、さらに好ましくは、1mPa・s以上100mPa・s以下である。
 本発明に係る硬化性組成物(A2)の溶剤(成分(d2))を除く成分の混合物の25℃での粘度は、1mPa・s以上100mPa・s以下であることが好ましい。また、より好ましくは、1mPa・s以上50mPa・s以下であり、さらに好ましくは、1mPa・s以上12mPa・s以下である。
 硬化性組成物(A1)及び(A2)の粘度を100mPa・s以下とすることにより、硬化性組成物(A1)及び(A2)をモールドに接触する際に、スプレッド及びフィルが速やかに完了する(非特許文献1)。つまり、本発明に係る硬化性組成物を用いることで、光ナノインプリント法を高いスループットで実施することができる。また、充填不良によるパターン欠陥が生じにくい。
 また、粘度を1mPa・s以上とすることにより、硬化性組成物(A1)及び(A2)を基板上に塗布する際に塗りムラが生じにくくなる。さらに、硬化性組成物(A1)及び(A2)をモールドに接触する際に、モールドの端部から硬化性組成物(A1)及び(A2)が流出しにくくなる。
 <硬化性組成物(A)の表面張力>
 本発明に係る硬化性組成物(A1)及び(A2)の表面張力は、溶剤である成分(d)を除く成分の組成物について25℃での表面張力が、5mN/m以上70mN/m以下であることが好ましい。また、より好ましくは、7mN/m以上50mN/m以下であり、さらに好ましくは、10mN/m以上40mN/m以下である。ここで、表面張力が高いほど、例えば5mN/m以上であると、毛細管力が強く働くため、硬化性組成物(A1)及び/又は(A2)をモールドに接触させた際に、充填(スプレッド及びフィル)が短時間で完了する(非特許文献1)。また、表面張力を70mN/m以下とすることにより、硬化性組成物を硬化して得られる硬化膜が表面平滑性を有する硬化膜となる。
 本発明においては、溶剤である成分(d1)を除く硬化性組成物(A1)の表面張力が、溶剤である成分(d2)を除く硬化性組成物(A2)の表面張力より高いことが好ましい。型接触工程前に、後述するマランゴニ効果により硬化性組成物(A2)のプレスプレッドが加速され(液滴が広範囲に広がり)、後述する型接触工程中のスプレッドに要する時間が短縮され、結果として充填時間が短縮されるためである。
 マランゴニ効果とは液体の表面張力の局所的な差に起因した自由表面移動の現象である(非特許文献2)。表面張力、つまり表面エネルギーの差を駆動力として、表面張力の低い液体が、より広い表面を覆うような拡散が生じる。つまり、基板全面に表面張力の高い硬化性組成物(A1)を塗布しておき、表面張力の低い硬化性組成物(A2)を滴下すれば、硬化性組成物(A2)のプレスプレッドが加速されるのである。
 <硬化性組成物(A)の接触角>
 本発明に係る硬化性組成物(A1)及び(A2)の接触角は、溶剤である成分(d)を除く成分の組成物について、基板表面及びモールド表面の双方に対して0°以上90°以下であることが好ましい。接触角が90°より大きいと、モールドパターンの内部や基板-モールドの間隙において毛細管力が負の方向(モールドと硬化性組成物間の接触界面を収縮させる方向)に働き、充填しない。また、0°以上30°以下であることが特に好ましい。接触角が低いほど毛細管力が強く働くため、充填速度が速い(非特許文献1)。
 <硬化性組成物(A)に混入している不純物>
 本発明に係る硬化性組成物(A1)及び(A2)は、できる限り不純物を含まないことが好ましい。ここで記載する不純物とは、前述した成分(a)、成分(b)、成分(c)及び成分(d)以外のものを意味する。
 したがって、本発明に係る硬化性組成物(A)は、精製工程を経て得られたものであることが好ましい。このような精製工程としては、フィルタを用いた濾過等が好ましい。フィルタを用いた濾過を行う際には、具体的には、前述した成分(a)、成分(b)及び必要に応じて添加する添加成分を混合した後、例えば、孔径0.001μm以上5.0μm以下のフィルタで濾過することが好ましい。フィルタを用いた濾過を行う際には、多段階で行ったり、多数回繰り返したりすることがさらに好ましい。また、濾過した液を再度濾過してもよい。孔径の異なるフィルタを複数用いて濾過してもよい。濾過に使用するフィルタとしては、ポリエチレン樹脂製、ポリプロピレン樹脂製、フッ素樹脂製、ナイロン樹脂製等のフィルタを使用することができるが、特に限定されるものではない。
 このような精製工程を経ることで、硬化性組成物(A)に混入したパーティクル等の不純物を取り除くことができる。これにより、パーティクル等の不純物によって、硬化性組成物を硬化した後に得られる硬化膜に不用意に凹凸が生じてパターンの欠陥が発生することを防止することができる。
 なお、本発明に係る硬化性組成物(A)を、半導体集積回路を製造するために使用する場合、製品の動作を阻害しないようにするため、硬化性組成物(A)中に金属原子を含有する不純物(金属不純物)が混入することを極力避けることが好ましい。このような場合、硬化性組成物(A)に含まれる金属不純物の濃度としては、10ppm以下が好ましく、100ppb以下にすることがさらに好ましい。
 [パターン形成方法]
 次に、本発明に係るパターン形成方法について、図2の模式断面図を用いて説明する。
 本発明に係るパターン形成方法は、光ナノインプリント方法の一形態である。本発明のパターン形成方法は、
 基板201上に、前述の本発明の硬化性組成物(A1)202を積層する積層工程1(工程(1))、
 前記硬化性組成物(A1)202層上に、硬化性組成物(A2)203を積層する積層工程2(工程(2))、
 モールド205と基板201の間に硬化性組成物(A1)202と硬化性組成物(A2)203が部分的に混合してなる層をサンドイッチする型接触工程(工程(3))、
 前記2種の硬化性組成物が部分的に混合してなる層をモールド側から照射光206を照射することにより一度に硬化させる光照射工程(工程(4))、
 モールド205を硬化後の硬化性組成物からなる層(パターン形状を有する硬化膜207)から引き離す離型工程(工程(5))、
を有する。
 本発明の製造方法によって得られるパターン形状を有する硬化膜207は、1nm以上10mm以下のサイズのパターンを有する膜であることが好ましい。また、10nm以上100μm以下のサイズのパターンを有する膜であることがより好ましい。なお、一般に、光を利用してナノサイズ(1nm以上100nm以下)のパターン(凹凸構造)を有する膜を作製するパターン形成技術は、光ナノインプリント法と呼ばれている。本発明に係るパターン形成方法は、光ナノインプリント法を利用している。以下、各工程について説明する。
 <積層工程1(工程(1))>
 積層工程1では、図2(1)に示す通り、前述した本発明に係る硬化性組成物(A1)202を基板201上に積層(塗布)して塗布膜を形成する。
 硬化性組成物(A1)202を配置する対象である基板201は、被加工基板であり、通常、シリコンウエハが用いられる。基板201上には、被加工層が形成されていてもよい。基板201及び被加工層の間にさらに他の層が形成されていてもよい。また、基板201として石英基板を用いれば、石英インプリントモールドのレプリカ(石英モールドレプリカ)を作製することができる。
 ただし、本発明において、基板201はシリコンウエハや石英基板に限定されるものではない。基板201は、アルミニウム、チタン-タングステン合金、アルミニウム-ケイ素合金、アルミニウム-銅-ケイ素合金、酸化ケイ素、窒化ケイ素等の半導体デバイス用基板として知られているものの中からも任意に選択することができる。
 なお、使用される基板201(被加工基板)あるいは被加工層の表面は、シランカップリング処理、シラザン処理、有機薄膜の成膜、等の表面処理によって硬化性組成物(A1)202及び硬化性組成物(A2)203との密着性を向上されていてもよい。
 本発明において、硬化性組成物(A1)202を基板201あるいは被加工層上に配置する方法としては、例えば、インクジェット法、ディップコート法、エアーナイフコート法、カーテンコート法、ワイヤーバーコート法、グラビアコート法、エクストルージョンコート法、スピンコート法、スリットスキャン法等を用いることができる。本発明においては、スピンコート法が特に好ましく、均一な膜が形成される。
 スピンコート法を用いて硬化性組成物(A1)202を基板201あるいは被加工層上に配置する場合、必要に応じてベーク工程を実施し、溶剤である成分(d1)を揮発させても良い。
 なお、硬化性組成物(A1)202の平均膜厚は、使用する用途によっても異なるが、例えば2nm以上10,000nm以下であり、好ましくは2nm以上20nm以下であり、特に好ましくは3nm以上5nm以下である。
 本発明のパターン形状を有する膜の製造方法では、工程(1)で基板表面の大部分に硬化性組成物(A1)202を一括して積層し、工程(2)~工程(5)からなる繰り返し単位(ショット)を、同一基板上で繰り返して複数回行うことができる。スピンコート法を用いて形成された硬化性組成物(A1)202の液膜の膜厚は、成膜性の観点から、最低2nm好ましくは3nmの厚さが必要である。2nm以下の膜厚では、ピンホールなどの発生を充分に防ぐことができない。
 <積層工程2(工程(2))>
 積層工程2では、図2(2)に示す通り、硬化性組成物(A2)203の液滴を、前記硬化性組成物(A1)202層上に離散的に滴下して配置することが好ましい。本発明の配置方法として最も好ましいインクジェット法を用いる。硬化性組成物(A2)203の液滴は、モールド上に凹部が密に存在する領域に対向する基板上には密に、凹部が疎に存在する領域に対向する基板上には疎に配置される。このことにより、後述する残膜を、モールド上のパターンの疎密によらずに均一な厚さに制御することができる。
 本工程(2)で配置された硬化性組成物(A2)203の液滴は、前述のように、表面エネルギー(表面張力)の差を駆動力とするマランゴニ効果により液滴の拡がる方向を示す矢印204で示される方向に速やかに広がる(プレスプレッド)(図2(2))。本発明の発明者らはプレスプレッドの過程において、硬化性組成物(A1)202及び硬化性組成物(A2)203が混合することを見出した。硬化性組成物(A1)202が光重合開始剤である成分(b1)を実質的に含有しない場合、硬化性組成物(A1)202及び硬化性組成物(A2)203の混合の結果、硬化性組成物(A2)203の光重合開始剤である成分(b2)が硬化性組成物(A1)202にも移行し、硬化性組成物(A1)202が初めて感光性を獲得するのである。
 <型接触工程(工程(3))>
 次に、図2(3)に示すように、前工程(1)及び(2)(積層工程1及び2)で形成された、部分的に混合した硬化性組成物(A1)202及び硬化性組成物(A2)203の混合物208にパターン形状を転写するための原型パターンを有するモールド205を接触させる。これにより、モールド205が表面に有する微細パターンの凹部に部分的に混合した硬化性組成物(A1)202及び硬化性組成物(A2)203の混合物208が充填(フィル)されて、モールドの微細パターンに充填(フィル)された液膜となる。
 モールド205としては、次の工程(光照射工程)を考慮して光透過性の材料で構成されたモールド205を用いるとよい。モールド205を構成する材料の材質としては、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂等の光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサン等の柔軟膜、光硬化膜、金属膜等が好ましい。ただし、モールド205を構成する材料の材質として光透明性樹脂を使用する場合は、硬化性組成物(A1)202及び硬化性組成物(A2)203に含まれる成分に溶解しない樹脂を選択する必要がある。熱膨張係数が小さくパターン歪みが小さいことから、モールド205を構成する材料の材質は、石英であることが特に好ましい。
 モールド205が表面に有する微細パターンは、4nm以上200nm以下のパターン高さを有することが好ましい。パターン高さが低いほど、離型工程においてモールド205をパターン形状を有する硬化膜207から引き剥がす力、すなわち離型力が低く、また、離型に伴ってレジストパターンがひきちぎられてマスク側に残存する離型欠陥数が少ない。モールド205を引き剥がす際の衝撃によるレジストパターンの弾性変形で隣接レジストパターン同士が接触し、レジストパターンが癒着あるいは破損する場合があるが、パターン幅に対してパターン高さが2倍程度以下(アスペクト比2以下)であると、それらの不具合を回避できる可能性が高い。一方、パターン高さが低過ぎると、被加工基板の加工精度が低い。
 モールド205には、硬化性組成物(A1)202及び硬化性組成物(A2)203とモールド205の表面との剥離性を向上させるために、硬化性組成物(A1)202及び(A2)203とモールド205との型接触工程である本工程(3)の前に表面処理を行っておいてもよい。表面処理の方法としては、モールド205の表面に離型剤を塗布して離型剤層を形成する方法が挙げられる。ここで、モールド205の表面に塗布する離型剤としては、シリコーン系離型剤、フッ素系離型剤、炭化水素系離型剤、ポリエチレン系離型剤、ポリプロピレン系離型剤、パラフィン系離型剤、モンタン系離型剤、カルナバ系離型剤等が挙げられる。例えば、ダイキン工業(株)製のオプツール(登録商標)DSX等の市販の塗布型離型剤も好適に用いることができる。なお、離型剤は、一種類を単独で用いてもよいし、二種類以上を併用して用いてもよい。これらの中でも、フッ素系及び炭化水素系の離型剤が特に好ましい。
 型接触工程において、図2(3)に示すように、モールド205と硬化性組成物(A1)202及び硬化性組成物(A2)203とを接触させる際に、硬化性組成物(A1)202及び硬化性組成物(A2)203に加える圧力は特に限定はされない。該圧力は0MPa以上100MPa以下とするとよい。また、該圧力は0MPa以上50MPa以下であることが好ましく、0MPa以上30MPa以下であることがより好ましく、0MPa以上20MPa以下であることがさらに好ましい。
 前工程(2)において硬化性組成物(A2)203の液滴のプレスプレッドが進行しているため、本工程(3)における硬化性組成物(A2)203のスプレッドは速やかに完了する。硬化性組成物(A2)203の液滴間境界領域においては、スプレッドが最後に完了し、かつ硬化性組成物(A1)202の濃度が高いが、前述のように硬化性組成物(A1)202の接触角が低いため、この領域においてもフィルが速やかに完了する。
 以上のように、本工程(3)において硬化性組成物(A1)202及び硬化性組成物(A2)203のスプレッド及びフィルが速やかに完了するため、モールド205と硬化性組成物(A1)202及び硬化性組成物(A2)203を接触させる時間を短く設定できる。つまり短時間で多くのパターン形成工程を完了でき、高い生産性を得られることが、本発明の効果の一つである。接触させる時間は、特に限定はされないが、例えば0.1秒以上600秒以下とすると良い。また、該時間は0.1秒以上3秒以下であることが好ましく、0.1秒以上1.5秒以下であることが特に好ましい。0.1秒より短いと、スプレッド及びフィルが不十分となり、未充填欠陥と呼ばれる欠陥が多発する傾向がある。
 本工程(3)は、酸素や水分による硬化反応への影響を防ぐため、雰囲気制御を行うことが好ましい。不活性ガス雰囲気下で本工程(3)を行う場合に使用することができる不活性ガスの具体例としては、窒素、二酸化炭素、ヘリウム、アルゴン、各種フロンガス等、あるいはこれらの混合ガスが挙げられる。大気雰囲気下を含めて特定のガスの雰囲気下で本工程(3)を行う場合、好ましい圧力は、0.0001気圧以上10気圧以下である。
 型接触工程は、凝縮性ガスを含む雰囲気(以下、「凝縮性ガス雰囲気」と称する。)下で行ってもよい。本明細書において凝縮性ガスとは、モールド205上に形成された微細パターンの凹部、及びモールド205と基板201との間隙に、硬化性組成物(A1)202及び硬化性組成物(A2)203と一緒に雰囲気中のガスが充填されたとき、充填時に発生する毛細管圧力で凝縮して液化するガスのことを指す。なお凝縮性ガスは、型接触工程で硬化性組成物(A1)202及び硬化性組成物(A2)203の混合物208とモールド205とが接触する前は雰囲気中に気体として存在する(参考:図1(2)の拡大部)。
 凝縮性ガス雰囲気下で型接触工程を行うと、微細パターンの凹部に充填されたガスが硬化性組成物(A1)202及び硬化性組成物(A2)203により発生する毛細管圧力により液化することで気泡が消滅するため、充填性が優れる。凝縮性ガスは、硬化性組成物(A1)202及び/又は硬化性組成物(A2)203に溶解してもよい。
 凝縮性ガスの沸点は、型接触工程の雰囲気温度以下であれば限定はされないが、-10℃~25℃が好ましく、さらに好ましくは10℃~25℃である。この範囲であれば、充填性がさらに優れる。
 凝縮性ガスの型接触工程の雰囲気温度での蒸気圧は、型接触工程で押印するときのモールド圧力以下であれば制限がないが、0.1~0.4MPaが好ましい。この範囲であれば、充填性がさらに優れる。雰囲気温度での蒸気圧が0.4MPaより大きいと、気泡の消滅の効果を十分に得ることができない傾向がある。一方、雰囲気温度での蒸気圧が0.1MPaよりも小さいと、減圧が必要となり、装置が複雑になる傾向がある。型接触工程の雰囲気温度は、特に制限がないが、20℃~25℃が好ましい。
 凝縮性ガスとして、具体的には、トリクロロフルオロメタン等のクロロフルオロカーボン(CFC)、フルオロカーボン(FC)、ハイドロクロロフルオロカーボン(HCFC)、1,1,1,3,3-ペンタフルオロプロパン(CHFCHCF、HFC-245fa、PFP)等のハイドロフルオロカーボン(HFC)、ペンタフルオロエチルメチルエーテル(CFCFOCH、HFE-245mc)等のハイドロフルオロエーテル(HFE)等のフロン類が挙げられる。
 これらのうち、型接触工程の雰囲気温度が20℃~25℃での充填性が優れるという観点から、1,1,1,3,3-ペンタフルオロプロパン(23℃での蒸気圧0.14MPa、沸点15℃)、トリクロロフルオロメタン(23℃での蒸気圧0.1056MPa、沸点24℃)、及びペンタフルオロエチルメチルエーテルが好ましい。さらに、安全性が優れるという観点から、1,1,1,3,3-ペンタフルオロプロパンが特に好ましい。
 凝縮性ガスは、一種類を単独で用いてもよいし、二種類以上を混合して用いてもよい。またこれら凝縮性ガスは、空気、窒素、二酸化炭素、ヘリウム、アルゴン等の非凝縮性ガスと混合して用いてもよい。凝縮性ガスと混合する非凝縮性ガスとしては、充填性の観点から、ヘリウムが好ましい。ヘリウムはモールド205を透過することができる。そのため、型接触工程でモールド205上に形成された微細パターンの凹部に硬化性組成物(A1)202及び/又は(A2)203と一緒に雰囲気中のガス(凝縮性ガス及びヘリウム)が充填されたとき、凝縮性ガスが液化するとともにヘリウムはモールドを透過する。
 <光照射工程(4)>
 次に、図2(4)に示すように、硬化性組成物(A1)202及び硬化性組成物(A2)203の混合物208からなる層に対し、モールド205を介して照射光206を照射する。より詳細には、モールドの微細パターンに充填された硬化性組成物(A1)202及び/又は硬化性組成物(A2)203に、モールド205側から照射光206を照射する。これにより、モールド205の微細パターンに充填された硬化性組成物(A1)202及び/又は(A2)203は、照射光206によって一度に硬化してパターン形状を有する硬化膜207となる。
 ここで、モールド205の微細パターンに充填された硬化性組成物(A1)202及び/又は硬化性組成物(A2)203に照射する照射光206は、硬化性組成物(A1)202及び硬化性組成物(A2)203の感度波長に応じて選択される。具体的には、150nm以上400nm以下の波長の紫外光や、X線、電子線等を適宜選択して使用することが好ましい。
 これらの中でも、照射光206としては、紫外光が特に好ましい。これは、硬化助剤(光重合開始剤)として市販されているものは、紫外光に感度を有する化合物が多いからである。ここで紫外光を発する光源としては、例えば、高圧水銀灯、超高圧水銀灯、低圧水銀灯、Deep-UVランプ、炭素アーク灯、ケミカルランプ、メタルハライドランプ、キセノンランプ、KrFエキシマレーザ、ArFエキシマレーザ、Fエキシマレーザ等が挙げられるが、超高圧水銀灯が特に好ましい。また使用する光源の数は1つでもよいし又は複数であってもよい。また、光照射を行う際には、モールド205の微細パターンに充填された硬化性組成物(A1)202及び/又は硬化性組成物(A2)203の全面に行ってもよく、一部領域にのみ行ってもよい。
 また、光照射は、基板201上の全領域に断続的に複数回行ってもよいし、全領域に連続照射してもよい。さらに、第一の照射過程で一部領域Aを照射し、第二の照射過程で領域Aとは異なる領域Bを照射してもよい。
 光照射工程においては、前述のように漏れ光、つまり当該ショット領域外への光の拡散が、モールド及び装置のコストの制約上不可避である。
 本発明において、硬化性組成物(A1)202が光重合開始剤成分(b1)を実質的に含有しない(0.1重量%未満)場合、硬化性組成物(A1)202は単独では光照射によって硬化する恐れが少ない。このため、当該ショットから発生した漏れ光によって隣接ショット領域上の硬化性組成物(A1)202が硬化する恐れが少ない。このため、隣接ショットにおいてもその全域で短い充填時間で未充填欠陥の少ないパターンを形成することができるのである。
 一方で、当該ショットにおいては、前述のように硬化性組成物(A1)202及び硬化性組成物(A2)203の部分的な混合の結果、硬化性組成物(A2)の光重合開始剤(b2)成分が硬化性組成物(A1)202にも移行し、硬化性組成物(A1)202が感光性を得るため、硬化性組成物(A1)202及び硬化性組成物(A2)203はいずれも、照射光206によって硬化してパターン形状を有する硬化膜207となるのである。
 <離型工程(5)>
 次に、離型工程において、硬化後の硬化性組成物(A1)202及び硬化性組成物(A2)203からなる、パターン形状を有する硬化膜207とモールド205と引き離す。本工程(5)では、図2(5)に示すように、パターン形状を有する硬化膜207とモールド205とを引き離す。光照射工程において硬化したモールド205上に形成された微細パターンの反転パターンとなるパターン形状を有する硬化膜207が自立した状態で得られる。なお、パターン形状を有する硬化膜207の凹凸パターンの凹部にも硬化膜が残存するが、この膜のことを残膜(参考:図1(4)中の残膜108)と呼ぶこととする。
 なお、型接触工程を凝縮性ガス雰囲気下で行った場合、離型工程でパターン形状を有する硬化膜207とモールド205とを引き離す際に、パターン形状を有する硬化膜207とモールド205とが接触する界面の圧力が低下することに伴って凝縮性ガスが気化する。これにより、パターン形状を有する硬化膜207とモールド205とを引き離すために必要な力である離型力を低減させる効果を奏する傾向がある。
 パターン形状を有する硬化膜207とモールド205とを引き離す方法としては、引き離す際にパターン形状を有する硬化膜207の一部が物理的に破損しなければ特に限定されず、各種条件等も特に限定されない。例えば、基板201(被加工基板)を固定してモールド205を基板201から遠ざかるように移動させて剥離してもよい。もしくは、モールド205を固定して基板201をモールドから遠ざかるように移動させて剥離してもよい。あるいは、これらの両方を正反対の方向へ引っ張って剥離してもよい。
 硬化性組成物(A1)202が実質的に光重合開始剤(b1)成分を含有しない場合、硬化性組成物(A1)202及び硬化性組成物(A2)203の混合の結果、硬化性組成物(A2)203の光重合開始剤(b2)成分が硬化性組成物(A1)202にも移行し、硬化性組成物(A1)202が初めて感光性を獲得する。そのため、硬化性組成物(A1)202の体積に対し、硬化性組成物(A2)203の体積が充分な量が必要となる。混合が不十分な場合は、混合物が充填硬化離型したのちに形成される硬化膜に膜厚分布が生じる場合がある。ショット領域あたりの硬化性組成物(A2)203の体積(Vr)を硬化性組成物(A1)202の体積(Vc)で除した値と膜厚分布(最厚部と最薄部の膜厚差)の相関を図4に示した。Vr/Vcが大きいほど膜厚分布は低減した。膜厚分布は、形成するパターンや最終的に加工するデバイスから要求される精度にもよるが、通常光ナノインプリントで形成する10~100nmレベルのパターン形成では、厚さは40~80nmで形成される。そのため、厚さの10%である4~8nm以下の膜厚分布が許容されており、好ましい膜厚分布は4~6nm以下である。そのため、図4からわかるようにVr/Vcは4以上好ましくは6以上必要とされる。
 また、積層工程1で積層される硬化性組成物(A1)202の液膜の膜厚は、成膜性の観点からピンホールなどの発生を防ぐには、最低2nm好ましくは3nmの厚さが必要であり、Vcを極端に小さくすることはできない。かつ、Vrが多すぎる場合、ディスペンスされた液滴が多く、残膜が多く残り、後工程のエッチング工程に悪影響を及ぼす。そのため、Vr/Vcは15以下、好ましくは10以下に制限される。すなわち、Vr/Vcは以下の式(1)に示されるように、4以上15以下であることが好ましく、また、6以上10以下であることがより好ましい。
      4≦Vr/Vc≦15・・・式(1)
      ショット領域:a(mm)
      インプリントレジスト体積:Vr(m)
      コーティング材体積:Vc(m)
      コーティング材塗布膜厚:t(nm)
      インプリントレジストのディスペンス量:Vd(pL)
      ディスペンス数:n
とすると
      Vr=Vd×nVc=at
 以上の工程(1)~工程(5)を有する一連の工程(製造プロセス)によって、所望の凹凸パターン形状(モールド205の凹凸形状に因むパターン形状)を、所望の位置に有するパターン形状を有する硬化膜207を得ることができる。
 本発明のパターン形状を有する膜の製造方法では、工程(1)で基板201表面の大部分に硬化性組成物(A1)202を一括して積層し、工程(2)~工程(5)からなる繰り返し単位(ショット)を、同一基板上で繰り返して複数回行うことができる。工程(2)~工程(5)からなる繰り返し単位(ショット)を複数回繰り返すことで、被加工基板の所望の位置に複数の所望の凹凸パターン形状(モールド205の凹凸形状に因むパターン形状)を有する硬化膜207を得ることができる。
 工程(1)~工程(5)を経て得られた、パターン形状を有する硬化膜207をマスクとして、被加工基板あるいは被加工基板上の被加工層をエッチングなどの加工手段を用いてパターン状に加工することができる。また、パターン形状を有する硬化膜207上にさらに被加工層を成膜した後に、エッチングなどの加工手段を用いてパターン転写を行っても良い。このようにして、パターン形状を有する硬化膜207のパターン形状に基づく回路構造を基板201上に形成することができる。これにより、半導体素子等で利用される回路基板を製造することができる。また、この回路基板と回路基板の回路制御機構などとを接続することにより、ディスプレイ、カメラ、医療装置などの電子機器を形成することもできる。ここでいう半導体素子とは、例えば、LSI、システムLSI、DRAM、SDRAM、RDRAM、D-RDRAM、NANDフラッシュ等が挙げられる。
 工程(1)~工程(5)を経て得られた、パターン形状を有する硬化膜207を回折格子や偏光板などの光学部材(光学部材の一部材として用いる場合を含む)として利用し、光学部品を得ることもできる。このような場合、少なくとも、基板201と、この基板201上のパターン形状を有する硬化膜207と、を有する光学部品とすることができる。
 <インプリント前処理コーティング材料(硬化性組成物(A1))及びインプリントレジスト(硬化性組成物(A2))、並びにそれらのセット>
 本発明の別の態様は、基板201上にインプリント前処理コーティングとなる液膜を形成し、液膜に対しインプリントレジストの液滴を付与することで液滴成分の基板面方向の広がりを促進するインプリント前処理コーティング材料を提供するものである。
 すなわち、本発明は、基板上にインプリント前処理コーティングとなる液膜を形成し、前記インプリント前処理コーティングとなる液膜に対し、硬化性組成物(A2)からなるインプリントレジストの液滴を付与することで液滴成分の基板面方向の広がりを促進する硬化性組成物(A1)からなるインプリント前処理コーティング材料であって、重合性化合物である成分(a1)を少なくとも有し、ショット領域あたりの液滴の体積(Vr)をインプリント前処理コーティングの体積(Vc)で除した値、Vr/Vcが4以上15以下となるように前記基板上にコーティングされることを特徴とするインプリント前処理コーティング材料を、包含する。また、Vr/Vcが6以上10以下となる、インプリント前処理コーティング材料が、より好ましい。
 特に、溶剤を除くインプリント前処理コーティング材料の成分の組成物の表面張力が、溶剤を除くインプリントレジストの成分の組成物の表面張力より高いことが好ましい。
 これにより、液膜に対し液滴を付与することで液滴成分の基板面方向の広がりが促進され、好適なインプリントを実現することができる。
 特に、インプリントレジストと、インプリント前処理コーティング材料とを組み合わせたセットとして提供されることが好ましい。
 すなわち、溶剤を除くインプリント前処理コーティング材料の成分の組成物の表面張力が、溶剤を除くインプリントレジストの成分の組成物の表面張力より高い、という関係で組み合わせたセットとして提供することで、好適なインプリントを実現する。
 さらに、溶剤を除くインプリント前処理コーティング材料の成分の組成物の表面張力と、溶剤を除くインプリントレジストの成分の組成物の表面張力の差が、1mN/m以上25mN/m以下である組み合わせのセットであるとより好ましい。
 また、本発明の別の側面は、インプリント前処理コーティング材料を基板上にコーティングすることで、インプリントを行うための好適な基板の前処理方法をも提供するものである。
 加えて本発明は、基板上にパターンを形成するためのパターン形成方法をも包含するものである。インプリント前処理コーティング材料がコーティングされた基板上にレジストを不連続に滴下する工程を有することで、レジスト成分の基板面方向の広がりが促進され、インプリントに要する時間を短縮することができる。
 以下、実施例により本発明をより詳細に説明するが、本発明の技術的範囲は以下に説明する実施例に限定されるものではない。なお、以下に使用される「部」及び「%」は特に示さない限りすべて重量基準である。
 (実施例1)
 (1)硬化性組成物(A1-1)の調製
 テトラエチレングリコールジアクリレート(Sartomer社製)の75重量部、トリシクロデカンジメタノールジアクリレート(Sartomer社製)の25重量部、及びプロピレングリコールモノメチルエーテルアセテート(東京化成工業製、略称PGMEA)の67000重量部を配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A1-1)を調製した。
 (2)硬化性組成物(A1-1)の表面張力の測定
 自動表面張力計DY-300(協和界面科学製)を用い、白金プレートを用いたプレート法により、25℃における硬化性組成物(A1-1)の溶剤である成分を除く組成物の表面張力を測定したところ、38.5mN/mであった。なお、測定は、測定回数5回、白金プレートのプリウェット浸漬距離0.35mmの条件で行った。1回目の測定値を除いて、2回目から5回目の測定値の平均値を表面張力とした。
 (3)硬化性組成物(A2-1)の調製
 約45重量部の単官能性アクリレート(イソボルニルアクリレート及びベンジルアクリレート)と、約48重量部の二官能性アクリレート(ネオペンチルグリコールジアクリレート)と、約5重量部の光重合開始剤Lucirin(登録商標)TPO及びIrgacure(登録商標)4265と、約0.5重量部の増感剤(2-イソプロピルチオキサントン)と、約3重量部のX-R-(OCHCHOHで表される界面活性剤(ただし、R=アルキル、アリール又はポリ(プロピレングリコール)であり、X=H又は-(OCHCHOHであり、nは整数(2~20、5~15又は10~12)である界面活性剤と、R=ポリ(プロピレングリコール)であり、X=-(OCHCHOHであり、n=10~12である界面活性剤の混合物)約0.5重量部%の増感剤(2-イソプロピルチオキサントン)と、フッ素系界面活性剤(アルキル基中の水素原子が全てフッ素原子に置換されたアルキル基を有するフッ素系界面活性剤)とを配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A2-1)を調製した。
 (4)硬化性組成物(A2-1)の表面張力の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A2-1)の表面張力を測定したところ、31mN/mであった。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-1)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-1)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-1)の膜の上に、インクジェット法を用いて硬化性組成物(A2-1)の0.37pLの液滴を75640滴離散的に配置した。このとき、Vr/Vcは、8.6となっており、式(1)をみたした。下層に配置されている硬化性組成物(A1-1)の表面張力は、その上層に滴下される硬化性組成物(A2-1)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-1)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-1)と硬化性組成物(A2-1)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-1)と硬化性組成物(A2-1)が混合した硬化膜を得た。その際に、膜厚分布は1.1nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-1)と硬化性組成物(A2-1)が混合し、硬化性組成物(A2-1)から光重合開始剤成分が硬化性組成物(A1-1)に移行することで硬化性組成物(A1-1)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-1)と硬化性組成物(A2-1)の混合物は良好に硬化した。
 (実施例2)
 実施例1と同様の組成物を硬化性組成物(A1-2)及び硬化性組成物(A2-2)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-2)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-2)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-2)の膜の上に、インクジェット法を用いて硬化性組成物(A2-2)の0.31pLの液滴を57564滴離散的に配置した。
Vr/Vcは、5.5となっており、式(1)をみたした。このとき、下層に配置されている硬化性組成物(A1-2)の表面張力は、その上層に滴下される硬化性組成物(A2-2)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-2)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-2)と硬化性組成物(A2-2)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-2)と硬化性組成物(A2-2)が混合した硬化膜を得た。その際に、膜厚分布は4nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-2)と硬化性組成物(A2-2)が混合し、硬化性組成物(A2-2)から光重合開始剤成分が硬化性組成物(A1-2)に移行することで硬化性組成物(A1-2)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-2)と硬化性組成物(A2-2)の混合物は良好に硬化した。
 (実施例3)
 実施例1と同様の組成物を硬化性組成物(A1-3)及び硬化性組成物(A2-3)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-3)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-3)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-3)の膜の上に、インクジェット法を用いて硬化性組成物(A2-3)の0.37pLの液滴を57564滴離散的に配置した。
Vr/Vcは、6.5となっており、式(1)をみたした。このとき、下層に配置されている硬化性組成物(A1-3)の表面張力は、その上層に滴下される硬化性組成物(A2-3)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-3)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-3)と硬化性組成物(A2-3)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-3)と硬化性組成物(A2-3)が混合した硬化膜を得た。その際に、膜厚分布は3.1nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-3)と硬化性組成物(A2-3)が混合し、硬化性組成物(A2-3)から光重合開始剤成分が硬化性組成物(A1-3)に移行することで硬化性組成物(A1-3)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-3)と硬化性組成物(A2-3)の混合物は良好に硬化した。
 (実施例4)
 実施例1と同様の組成物を硬化性組成物(A1-4)及び硬化性組成物(A2-4)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-4)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-4)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-4)の膜の上に、インクジェット法を用いて硬化性組成物(A2-4)の0.39pLの液滴を43290滴離散的に配置した。
 Vr/Vcは、5.2となっており、式(1)をみたした。このとき、下層に配置されている硬化性組成物(A1-4)の表面張力は、その上層に滴下される硬化性組成物(A2-4)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-4)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-4)と硬化性組成物(A2-4)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-4)と硬化性組成物(A2-4)が混合した硬化膜を得た。その際に、膜厚分布は5.3nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-4)と硬化性組成物(A2-4)が混合し、硬化性組成物(A2-4)から光重合開始剤成分が硬化性組成物(A1-4)に移行することで硬化性組成物(A1-4)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-4)と硬化性組成物(A2-4)の混合物は良好に硬化した。
 (実施例5)
 実施例1と同様の組成物を硬化性組成物(A1-5)及び硬化性組成物(A2-5)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-5)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-5)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-5)の膜の上に、インクジェット法を用いて硬化性組成物(A2-5)の0.5pLの液滴を43290滴離散的に配置した。
 Vr/Vcは、6.64となっており、式(1)をみたした。このとき、下層に配置されている硬化性組成物(A1-5)の表面張力は、その上層に滴下される硬化性組成物(A2-5)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-5)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-5)と硬化性組成物(A2-5)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-5)と硬化性組成物(A2-5)が混合した硬化膜を得た。その際に、膜厚分布は4.7nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-5)と硬化性組成物(A2-5)が混合し、硬化性組成物(A2-5)から光重合開始剤成分が硬化性組成物(A1-5)に移行することで硬化性組成物(A1-5)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-5)と硬化性組成物(A2-5)の混合物は良好に硬化した。
 (実施例6)
 実施例1と同様の組成物を硬化性組成物(A1-6)として用いた。
 (3)硬化性組成物(A2-6)の調製
 約45重量部の単官能性アクリレート(イソボルニルアクリレート及びベンジルアクリレート)と、約48重量部の二官能性アクリレート(ネオペンチルグリコールジアクリレート)と、約5重量部の光重合開始剤Lucirin(登録商標)TPO及びIrgacure(登録商標)4265と、約3重量部のX-R-(OCHCHOHで表される界面活性剤(ただし、R=アルキル、アリール又はポリ(プロピレングリコール)であり、X=H又は-(OCHCHOHであり、nは整数(2~20、5~15又は10~12)であるである界面活性剤と、R=ポリ(プロピレングリコール)であり、X=-(OCHCHOHであり、n=10~12である界面活性剤の混合物)、フッ素系界面活性剤(アルキル基中の水素原子が全てフッ素原子に置換されたアルキル基を有するフッ素系界面活性剤)とを配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A2-6)を調製した。
 (4)硬化性組成物(A2-6)の表面張力の測定
 硬化性組成物(A1-1)と同様の方法で硬化性組成物(A2-6)の表面張力を測定したところ、31.1mN/mであった。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-6)をシリコン基板上に塗布することで、3nmの厚さの硬化性組成物(A1-6)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-6)の膜の上に、インクジェット法を用いて硬化性組成物(A2-6)の0.43pLの液滴を28782滴離散的に配置した。
 Vr/Vcは、4.81となっており、式(1)をみたした。このとき、下層に配置されている硬化性組成物(A1-6)の表面張力は、その上層に滴下される硬化性組成物(A2-6)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-6)の液滴の拡大(プレスプレッド)は速やかであった。そのため、硬化性組成物(A1-6)と硬化性組成物(A2-6)が混合し、1.1秒という短時間でショット領域内にひろがり、かつパターン部に充填した。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-6)と硬化性組成物(A2-6)が混合した硬化膜を得た。その際に、膜厚分布は4.4nm以下におさえることができた。
 積層工程2及び型接触工程において、1.1秒という短時間で硬化性組成物(A1-6)と硬化性組成物(A2-6)が混合し、硬化性組成物(A2-6)から光重合開始剤成分が硬化性組成物(A1-6)に移行することで硬化性組成物(A1-6)も光重合性を獲得した。そのため、光照射工程において硬化性組成物(A1-6)と硬化性組成物(A2-6)の混合物は良好に硬化した。
 (比較例1)
 実施例1と同様の組成物を硬化性組成物(A1-1’)及び硬化性組成物(A2-1’)として用いた。
 (6)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-1’)をシリコン基板上に塗布することで、3.8nmの厚さの硬化性組成物(A1-1’)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-1’)の膜の上に、インクジェット法を用いて硬化性組成物(A2-1’)の0.38pLの液滴を28782滴離散的に配置した。
 Vr/Vcは、3.35となっており、式(1)をみたさなかった。このとき、下層に配置されている硬化性組成物(A1-1’)の表面張力は、その上層に滴下される硬化性組成物(A2-1’)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-1’)の液滴の拡大(プレスプレッド)は速やかであった。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-1’)と硬化性組成物(A2-1’)が部分的に混合した硬化膜を得た。その際に、膜厚分布は8.6nmとなり後工程に影響を及ぼす分布であった。
 式(1)を満たさないVr/Vcでは、積層工程2及び型接触工程において、1.1秒という短時間では硬化性組成物(A1-1’)と硬化性組成物(A2-1’)の混合が不十分であったことを示していた。
 (比較例2)
 (1)硬化性組成物(A1-2’)の調製
 テトラエチレングリコールジアクリレート(Sartomer社製):75重量部
 トリシクロデカンジメタノールジアクリレート(Sartomer社製):25重量部
溶剤成分であるプロピレングリコールモノメチルエーテルアセテート(東京化成工業製、略称PGMEA):41500重量部を配合し、これを0.2μmの超高分子量ポリエチレン製フィルタでろ過し、実施例1の硬化性組成物(A1-2’)を調製した。
 (2)硬化性組成物(A1-2’)の表面張力の測定
 自動表面張力計DY-300(協和界面科学製)を用い、白金プレートを用いたプレート法により、25℃における硬化性組成物(A1-2’)の溶剤成分を除く組成物の表面張力を測定したところ、38.5mN/mであった。なお、測定は、測定回数5回、白金プレートのプリウェット浸漬距離0.35mmの条件で行った。1回目の測定値を除いて、2回目から5回目の測定値の平均値を表面張力とした。
 一方、実施例1と同様の組成物を硬化性組成物(A2-2’)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-2’)をシリコン基板上に塗布することで、6.2nmの厚さの硬化性組成物(A1-2’)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-2’)の膜の上に、インクジェット法を用いて硬化性組成物(A2-2’)の0.31pLの液滴を57564滴離散的に配置した。
Vr/Vcは、3.35となっており、式(1)をみたさなかった。このとき、下層に配置されている硬化性組成物(A1-2’)の表面張力は、その上層に滴下される硬化性組成物(A2-2’)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-2’)の液滴の拡大(プレスプレッド)は速やかであった。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-2’)と硬化性組成物(A2-2’)が部分的に混合した硬化膜を得た。その際に、膜厚分布は6.5nmとなり後工程に影響を及ぼす分布であった。
 式(1)を満たさないVr/Vcでは、積層工程2及び型接触工程において、1.1秒という短時間では硬化性組成物(A1-2’)と硬化性組成物(A2-2’)の混合が不十分であったことを示していた。
 (比較例3)
比較例2と同様の組成物を硬化性組成物(A1-3’)及び硬化性組成物(A2-3’)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-3’)をシリコン基板上に塗布することで、6.2nmの厚さの硬化性組成物(A1-3’)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-3’)の膜の上に、インクジェット法を用いて硬化性組成物(A2-3’)の0.39pLの液滴を43290滴離散的に配置した。
Vr/Vcは、3.17となっており、式(1)をみたさなかった。このとき、下層に配置されている硬化性組成物(A1-3’)の表面張力は、その上層に滴下される硬化性組成物(A2-3’)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-3’)の液滴の拡大(プレスプレッド)は速やかであった。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-3’)と硬化性組成物(A2-3’)が部分的に混合した硬化膜を得た。その際に、膜厚分布は7.4nmとなり後工程に影響を及ぼす分布であった。
 式(1)を満たさないVr/Vcでは、積層工程2及び型接触工程において、1.1秒という短時間では硬化性組成物(A1-3’)と硬化性組成物(A2-3’)の混合が不十分であったことを示していた。
 (比較例4)
比較例2と同様の組成物を硬化性組成物(A1-4’)及び硬化性組成物(A2-4’)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-4’)をシリコン基板上に塗布することで、6.2nmの厚さの硬化性組成物(A1-4’)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-4’)の膜の上に、インクジェット法を用いて硬化性組成物(A2-4’)の0.38pLの液滴を28782滴離散的に配置した。
Vr/Vcは、2.06となっており、式(1)をみたさなかった。このとき、下層に配置されている硬化性組成物(A1-4’)の表面張力は、その上層に滴下される硬化性組成物(A2-4’)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-4’)の液滴の拡大(プレスプレッド)は速やかであった。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-4’)と硬化性組成物(A2-4’)が部分的に混合した硬化膜を得た。その際に、膜厚分布は8nmとなり後工程に影響を及ぼす分布であった。
 式(1)を満たさないVr/Vcでは、積層工程2及び型接触工程において、1.1秒という短時間では硬化性組成物(A1-4’)と硬化性組成物(A2-4’)の混合が不十分であったことを示していた。
 (比較例5)
実施例6と同様の組成物を硬化性組成物(A1-5’)及び比較例2と同様の組成物を硬化性組成物(A2-5’)として用いた。
 (5)光ナノインプリントプロセス
 スピンコーターを用いて硬化性組成物(A1-5’)をシリコン基板上に塗布することで、6.2nmの厚さの硬化性組成物(A1-5’)の液膜を得た。「ショット領域」26×33mmの領域の硬化性組成物(A1-5’)の膜の上に、インクジェット法を用いて硬化性組成物(A2-5’)の0.43pLの液滴を28782滴離散的に配置した。
Vr/Vcは、2.33となっており、式(1)をみたさなかった。このとき、下層に配置されている硬化性組成物(A1-5’)の表面張力は、その上層に滴下される硬化性組成物(A2-5’)の表面張力より高いので、マランゴニ効果が発現し、硬化性組成物(A2-5’)の液滴の拡大(プレスプレッド)は速やかであった。10000W/mのUV光源で0.1秒照射し、モールドを離型し、硬化性組成物(A1-5’)と硬化性組成物(A2-5’)が部分的に混合した硬化膜を得た。その際に、膜厚分布は7nmとなり後工程に影響を及ぼす分布であった。
 式(1)を満たさないVr/Vcでは、積層工程2及び型接触工程において、1.1秒という短時間では硬化性組成物(A1-5’)と硬化性組成物(A2-5’)の混合が不十分であったことを示していた。
 (実施例及び比較例のまとめ)
 実施例1~6及び比較例1~5の一覧を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 
 以上、本発明の方法を用いることで、高スループットかつ高い精度で光ナノインプリントパターンを形成できることが示される。
 この出願は2017年3月8日に出願された米国特許出願番号62/468、472の優先権を主張するものであり、それらの内容を引用してこの出願の一部とするものである。
101 基板
102 硬化性組成物(レジスト)
104 液滴の拡がる方向を示す矢印
105 モールド(型)
106 照射光
107 パターン形状を有する硬化膜
108 残膜
201 基板
202 硬化性組成物(A1)
203 硬化性組成物(A2)
204 液滴の拡がる方向を示す矢印
205 モールド
206 照射光
207 パターン形状を有する硬化膜
208 硬化性組成物(A1)及び硬化性組成物(A2)の混合物 
301 基板
302 硬化性組成物(A1)
303 硬化性組成物(A2)
304 液滴の拡がる方向を示す矢印
305 モールド
306 照射光
307 パターン形状を有する硬化膜 
308 硬化性組成物(A1)及び硬化性組成物(A2)の混合物 
309 組成物が十分に混合されていない領域

Claims (13)

  1.  基板の表面に、少なくとも重合性化合物である成分(a1)を含む硬化性組成物(A1)からなる層を積層する工程(1)、
     前記硬化性組成物(A1)層上に、少なくとも重合性化合物である成分(a2)を含む硬化性組成物(A2)の液滴を離散的に滴下して積層する工程(2)、
     モールドと前記基板の間に前記硬化性組成物(A1)及び前記硬化性組成物(A2)が部分的に混合してなる層をサンドイッチする工程(3)、
     前記硬化性組成物(A1)及び前記硬化性組成物(A2)が混合してなる層を前記モールド側から光を照射することにより一度に硬化させる工程(4)、及び
     前記モールドを硬化後の硬化性組成物からなる層から引き離す工程(5)、
    を該順に有するパターン形成方法において、
     ショット領域あたりの前記硬化性組成物(A2)の体積(Vr)を、前記硬化性組成物(A1)の体積(Vc)で除した値、Vr/Vcが4以上15以下であることを特徴とするパターン形成方法。
  2.  溶剤である成分(d1)を除く前記硬化性組成物(A1)の表面張力が、溶剤である成分(d2)を除く前記硬化性組成物(A2)の表面張力より高いことを特徴とする請求項1に記載のパターン形成方法。
  3.  前記硬化性組成物(A1)の光重合開始剤である成分(b1)が、溶剤である成分(d1)を除く前記硬化性組成物(A1)の全成分の合計重量に対して、0.1重量%未満であることを特徴とする請求項1又は2に記載のパターン形成方法。
  4.  前記Vr/Vcが6以上10以下であることを特徴とする請求項1から3のいずれか1項に記載のパターン形成方法。
  5.  請求項1から4のいずれか一項に記載のパターン形成方法を有することを特徴とする加工基板の製造方法。
  6.  請求項1から4のいずれか一項に記載のパターン形成方法を有することを特徴とする光学部品の製造方法。
  7.  請求項1から4のいずれか一項に記載のパターン形成方法を有することを特徴とする石英モールドレプリカの製造方法。
  8.  基板上にインプリント前処理コーティングとなる液膜を形成し、前記インプリント前処理コーティングとなる液膜に対し、硬化性組成物(A2)からなるインプリントレジストの液滴を付与することで液滴成分の基板面方向の広がりを促進する硬化性組成物(A1)からなるインプリント前処理コーティング材料であって、
     重合性化合物である成分(a1)を少なくとも有し、
     ショット領域あたりの前記液滴の体積(Vr)を前記インプリント前処理コーティングの体積(Vc)で除した値、Vr/Vcが4以上15以下となるように前記基板上にコーティングされることを特徴とするインプリント前処理コーティング材料。
  9.  請求項8に記載のインプリント前処理コーティング材料と、該インプリント前処理コーティング材料でコーティングされた基板に滴下するためのインプリントレジストと、を有するセット。
  10.  溶剤を除く前記インプリント前処理コーティング材料の成分の組成物の表面張力が、溶剤を除く前記インプリントレジストの成分の組成物の表面張力より高いことを特徴とする請求項9に記載のセット。
  11.  請求項9又は10のセットに用いるインプリントレジスト。
  12.  基板上に硬化性組成物を配置してインプリントを行うための前処理方法であって、請求項8に記載のインプリント前処理コーティング材料を前記基板上にコーティングすることを特徴とする前処理方法。
  13.  基板上にパターンを形成するためのパターン形成方法であって、請求項8に記載のインプリント前処理コーティング材料がコーティングされた前記基板上に前記インプリントレジストの液滴を不連続に滴下する工程を有することを特徴とするパターン形成方法。

     
PCT/JP2018/008040 2017-03-08 2018-03-02 パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット WO2018163995A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019504542A JP7425602B2 (ja) 2017-03-08 2018-03-02 パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
KR1020197028266A KR102256347B1 (ko) 2017-03-08 2018-03-02 패턴 형성 방법, 및 가공 기판, 광학 부품 및 석영 몰드 레플리카의 제조 방법, 및 임프린트 전처리 코팅 재료 및 그와 임프린트 레지스트와의 세트
CN201880016546.2A CN110392919B (zh) 2017-03-08 2018-03-02 图案形成方法和加工基板、光学部件和石英模具复制品的制造方法以及用于压印预处理的涂覆材料及其与压印抗蚀剂的组合
US16/556,836 US10935884B2 (en) 2017-03-08 2019-08-30 Pattern forming method and methods for manufacturing processed substrate, optical component and quartz mold replica as well as coating material for imprint pretreatment and set thereof with imprint resist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762468472P 2017-03-08 2017-03-08
US62/468,472 2017-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/556,836 Continuation US10935884B2 (en) 2017-03-08 2019-08-30 Pattern forming method and methods for manufacturing processed substrate, optical component and quartz mold replica as well as coating material for imprint pretreatment and set thereof with imprint resist

Publications (1)

Publication Number Publication Date
WO2018163995A1 true WO2018163995A1 (ja) 2018-09-13

Family

ID=63447618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008040 WO2018163995A1 (ja) 2017-03-08 2018-03-02 パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット

Country Status (6)

Country Link
US (1) US10935884B2 (ja)
JP (1) JP7425602B2 (ja)
KR (1) KR102256347B1 (ja)
CN (1) CN110392919B (ja)
TW (1) TWI680349B (ja)
WO (1) WO2018163995A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317793B2 (en) 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US10509313B2 (en) 2016-06-28 2019-12-17 Canon Kabushiki Kaisha Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
US10620539B2 (en) 2016-03-31 2020-04-14 Canon Kabushiki Kaisha Curing substrate pretreatment compositions in nanoimprint lithography
US10668677B2 (en) 2015-09-08 2020-06-02 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10935884B2 (en) 2017-03-08 2021-03-02 Canon Kabushiki Kaisha Pattern forming method and methods for manufacturing processed substrate, optical component and quartz mold replica as well as coating material for imprint pretreatment and set thereof with imprint resist
US11037785B2 (en) 2017-03-08 2021-06-15 Canon Kabushiki Kaisha Method for fabricating pattern of cured product and methods for manufacturing optical component, circuit board and quartz mold replica as well as coating material for imprint pretreatment and cured product thereof
US11281097B2 (en) 2017-03-08 2022-03-22 Canon Kabushiki Kaisha Method for forming pattern by using photo-nanoimprint technology, imprint apparatus, and curable composition
US11327397B2 (en) 2017-03-08 2022-05-10 Canon Kabushiki Kaisha Pattern forming method, coating material for imprint pretreatment and substrate pretreatment method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6983760B2 (ja) * 2016-04-08 2021-12-17 キヤノン株式会社 硬化物パターンの形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法、およびインプリント前処理コート用材料
WO2019031409A1 (ja) 2017-08-10 2019-02-14 キヤノン株式会社 パターン形成方法
US11752519B2 (en) 2020-06-19 2023-09-12 Canon Kabushiki Kaisha Planarization method and photocurable composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009083172A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 光インプリント方法
JP2010087528A (ja) * 2000-07-16 2010-04-15 Board Of Regents The Univ Of Texas System 基板とこの前記基板から所定の距離をおいて位置するテンプレート間の整列を決定する方法
JP2010258182A (ja) * 2009-04-24 2010-11-11 Hitachi High-Technologies Corp 微細構造転写方法及び微細構造転写装置
WO2011013630A1 (ja) * 2009-07-29 2011-02-03 日産化学工業株式会社 ナノインプリント用レジスト下層膜形成組成物
JP2012069762A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp ナノインプリント方法およびそれを利用した基板の加工方法
JP2013093552A (ja) * 2011-10-07 2013-05-16 Fujifilm Corp インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP2013122044A (ja) * 2011-11-10 2013-06-20 Canon Inc 光硬化性組成物、及びこれを用いるパターン形成方法
JP2015179806A (ja) * 2013-09-18 2015-10-08 キヤノン株式会社 膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、及び光硬化性組成物
JP2016006843A (ja) * 2014-02-26 2016-01-14 キヤノン株式会社 光硬化性組成物、硬化物、これを用いた、パターン形状を有する膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
WO2016027843A1 (ja) * 2014-08-21 2016-02-25 富士フイルム株式会社 下層膜形成用樹脂組成物、積層体、パターン形成方法、インプリント形成用キットおよびデバイスの製造方法
WO2016031879A1 (ja) * 2014-08-27 2016-03-03 富士フイルム株式会社 下層膜形成用樹脂組成物、積層体、パターン形成方法、インプリント形成用キットおよびデバイスの製造方法
JP2016164977A (ja) * 2015-02-27 2016-09-08 キヤノン株式会社 ナノインプリント用液体材料、ナノインプリント用液体材料の製造方法、硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法、および電子部品の製造方法
JP2017055108A (ja) * 2015-09-08 2017-03-16 キヤノン株式会社 ナノインプリントリソグラフィーにおける充填時間を短縮するための基板の前処理
WO2018051961A1 (ja) * 2016-09-16 2018-03-22 富士フイルム株式会社 パターン形成方法および半導体素子の製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432634B2 (en) 2000-10-27 2008-10-07 Board Of Regents, University Of Texas System Remote center compliant flexure device
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
US6696220B2 (en) 2000-10-12 2004-02-24 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro-and nano-imprint lithography
US20050160011A1 (en) 2004-01-20 2005-07-21 Molecular Imprints, Inc. Method for concurrently employing differing materials to form a layer on a substrate
WO2002006902A2 (en) 2000-07-17 2002-01-24 Board Of Regents, The University Of Texas System Method and system of automatic fluid dispensing for imprint lithography processes
US20050274219A1 (en) 2004-06-01 2005-12-15 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US7387508B2 (en) 2004-06-01 2008-06-17 Molecular Imprints Inc. Compliant device for nano-scale manufacturing
US20060005657A1 (en) 2004-06-01 2006-01-12 Molecular Imprints, Inc. Method and system to control movement of a body for nano-scale manufacturing
US20050064344A1 (en) 2003-09-18 2005-03-24 University Of Texas System Board Of Regents Imprint lithography templates having alignment marks
US7157036B2 (en) 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US20050160934A1 (en) 2004-01-23 2005-07-28 Molecular Imprints, Inc. Materials and methods for imprint lithography
US20060108710A1 (en) 2004-11-24 2006-05-25 Molecular Imprints, Inc. Method to reduce adhesion between a conformable region and a mold
US7307118B2 (en) 2004-11-24 2007-12-11 Molecular Imprints, Inc. Composition to reduce adhesion between a conformable region and a mold
MXPA06012065A (es) * 2004-04-22 2008-01-16 Ice Energy Inc Regulador de fase mezclada para manejar refrigerante en un sistema de enfriamiento y almacenamiento de energia de alta eficiencia basado en refrigerante.
US20050275311A1 (en) 2004-06-01 2005-12-15 Molecular Imprints, Inc. Compliant device for nano-scale manufacturing
KR20070086766A (ko) 2004-12-01 2007-08-27 몰레큘러 임프린츠 인코퍼레이티드 임프린트 리소그래피 공정용 열관리를 위한 노출 방법
JP5000112B2 (ja) * 2005-09-09 2012-08-15 東京応化工業株式会社 ナノインプリントリソグラフィによるパターン形成方法
US8142703B2 (en) 2005-10-05 2012-03-27 Molecular Imprints, Inc. Imprint lithography method
JP5473266B2 (ja) * 2007-08-03 2014-04-16 キヤノン株式会社 インプリント方法および基板の加工方法、基板の加工方法による半導体デバイスの製造方法
JP2010080680A (ja) * 2008-09-26 2010-04-08 Bridgestone Corp 凹凸パターンの形成方法及び凹凸パターンの製造装置
JP5483083B2 (ja) 2010-02-03 2014-05-07 富士フイルム株式会社 微細パターン製造方法
JP5596367B2 (ja) 2010-02-22 2014-09-24 富士フイルム株式会社 パターン製造方法
JP5463170B2 (ja) 2010-03-10 2014-04-09 富士フイルム株式会社 微細パターン製造方法、微細パターン付き基板、微細パターン付き基板を含む光源装置および画像表示装置
JP5599648B2 (ja) 2010-05-12 2014-10-01 富士フイルム株式会社 微細パターン製造方法および微細パターン付き基板
JP5754965B2 (ja) * 2011-02-07 2015-07-29 キヤノン株式会社 インプリント装置、および、物品の製造方法
US20170066208A1 (en) 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US20170068159A1 (en) 2015-09-08 2017-03-09 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US10829644B2 (en) 2016-03-31 2020-11-10 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10883006B2 (en) 2016-03-31 2021-01-05 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754243B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754245B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10845700B2 (en) 2016-03-31 2020-11-24 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10754244B2 (en) 2016-03-31 2020-08-25 Canon Kabushiki Kaisha Pattern forming method as well as production methods for processed substrate, optical component, circuit board, electronic component and imprint mold
US10578965B2 (en) 2016-03-31 2020-03-03 Canon Kabushiki Kaisha Pattern forming method
JP6983760B2 (ja) 2016-04-08 2021-12-17 キヤノン株式会社 硬化物パターンの形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法、およびインプリント前処理コート用材料
JP7066674B2 (ja) 2017-03-08 2022-05-13 キヤノン株式会社 パターン形成方法、インプリント前処理コーティング材料、及び基板の前処理方法
CN110392919B (zh) 2017-03-08 2024-01-16 佳能株式会社 图案形成方法和加工基板、光学部件和石英模具复制品的制造方法以及用于压印预处理的涂覆材料及其与压印抗蚀剂的组合
WO2018164017A1 (ja) 2017-03-08 2018-09-13 キヤノン株式会社 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物
KR102265572B1 (ko) 2017-03-08 2021-06-17 캐논 가부시끼가이샤 광 나노임프린트 기술을 사용한 패턴 형성 방법, 임프린트 장치 및 경화성 조성물

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087528A (ja) * 2000-07-16 2010-04-15 Board Of Regents The Univ Of Texas System 基板とこの前記基板から所定の距離をおいて位置するテンプレート間の整列を決定する方法
JP2009083172A (ja) * 2007-09-28 2009-04-23 Hitachi Ltd 光インプリント方法
JP2010258182A (ja) * 2009-04-24 2010-11-11 Hitachi High-Technologies Corp 微細構造転写方法及び微細構造転写装置
WO2011013630A1 (ja) * 2009-07-29 2011-02-03 日産化学工業株式会社 ナノインプリント用レジスト下層膜形成組成物
JP2012069762A (ja) * 2010-09-24 2012-04-05 Fujifilm Corp ナノインプリント方法およびそれを利用した基板の加工方法
JP2013093552A (ja) * 2011-10-07 2013-05-16 Fujifilm Corp インプリント用下層膜組成物およびこれを用いたパターン形成方法
JP2013122044A (ja) * 2011-11-10 2013-06-20 Canon Inc 光硬化性組成物、及びこれを用いるパターン形成方法
JP2015179806A (ja) * 2013-09-18 2015-10-08 キヤノン株式会社 膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、及び光硬化性組成物
JP2016006843A (ja) * 2014-02-26 2016-01-14 キヤノン株式会社 光硬化性組成物、硬化物、これを用いた、パターン形状を有する膜の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法
WO2016027843A1 (ja) * 2014-08-21 2016-02-25 富士フイルム株式会社 下層膜形成用樹脂組成物、積層体、パターン形成方法、インプリント形成用キットおよびデバイスの製造方法
WO2016031879A1 (ja) * 2014-08-27 2016-03-03 富士フイルム株式会社 下層膜形成用樹脂組成物、積層体、パターン形成方法、インプリント形成用キットおよびデバイスの製造方法
JP2016164977A (ja) * 2015-02-27 2016-09-08 キヤノン株式会社 ナノインプリント用液体材料、ナノインプリント用液体材料の製造方法、硬化物パターンの製造方法、光学部品の製造方法、回路基板の製造方法、および電子部品の製造方法
JP2017055108A (ja) * 2015-09-08 2017-03-16 キヤノン株式会社 ナノインプリントリソグラフィーにおける充填時間を短縮するための基板の前処理
WO2018051961A1 (ja) * 2016-09-16 2018-03-22 富士フイルム株式会社 パターン形成方法および半導体素子の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488753B2 (en) 2015-09-08 2019-11-26 Canon Kabushiki Kaisha Substrate pretreatment and etch uniformity in nanoimprint lithography
US10668677B2 (en) 2015-09-08 2020-06-02 Canon Kabushiki Kaisha Substrate pretreatment for reducing fill time in nanoimprint lithography
US10620539B2 (en) 2016-03-31 2020-04-14 Canon Kabushiki Kaisha Curing substrate pretreatment compositions in nanoimprint lithography
US10509313B2 (en) 2016-06-28 2019-12-17 Canon Kabushiki Kaisha Imprint resist with fluorinated photoinitiator and substrate pretreatment for reducing fill time in nanoimprint lithography
US10317793B2 (en) 2017-03-03 2019-06-11 Canon Kabushiki Kaisha Substrate pretreatment compositions for nanoimprint lithography
US10935884B2 (en) 2017-03-08 2021-03-02 Canon Kabushiki Kaisha Pattern forming method and methods for manufacturing processed substrate, optical component and quartz mold replica as well as coating material for imprint pretreatment and set thereof with imprint resist
US11037785B2 (en) 2017-03-08 2021-06-15 Canon Kabushiki Kaisha Method for fabricating pattern of cured product and methods for manufacturing optical component, circuit board and quartz mold replica as well as coating material for imprint pretreatment and cured product thereof
US11281097B2 (en) 2017-03-08 2022-03-22 Canon Kabushiki Kaisha Method for forming pattern by using photo-nanoimprint technology, imprint apparatus, and curable composition
US11327397B2 (en) 2017-03-08 2022-05-10 Canon Kabushiki Kaisha Pattern forming method, coating material for imprint pretreatment and substrate pretreatment method

Also Published As

Publication number Publication date
US10935884B2 (en) 2021-03-02
TWI680349B (zh) 2019-12-21
CN110392919B (zh) 2024-01-16
CN110392919A (zh) 2019-10-29
TW201833661A (zh) 2018-09-16
JP7425602B2 (ja) 2024-01-31
KR102256347B1 (ko) 2021-05-27
KR20190117751A (ko) 2019-10-16
US20190391484A1 (en) 2019-12-26
JPWO2018163995A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6855448B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP7155002B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6884757B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6983757B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP6806766B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
JP7425602B2 (ja) パターン形成方法、ならびに加工基板、光学部品及び石英モールドレプリカの製造方法、ならびにインプリント前処理コーティング材料及びそれとインプリントレジストとのセット
JP7094878B2 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、石英モールドレプリカの製造方法、半導体素子の製造方法
KR102208977B1 (ko) 패턴 형성 방법과, 가공 기판, 광학 부품, 회로 기판, 전자 부품 및 임프린트 몰드의 제조 방법
JP7066674B2 (ja) パターン形成方法、インプリント前処理コーティング材料、及び基板の前処理方法
JP7328888B2 (ja) 硬化物パターンの製造方法、光学部品、回路基板および石英モールドレプリカの製造方法、ならびにインプリント前処理コート用材料およびその硬化物
WO2017130853A1 (ja) パターン形成方法、加工基板の製造方法、光学部品の製造方法、回路基板の製造方法、電子部品の製造方法、インプリントモールドの製造方法
WO2018164016A1 (ja) 光ナノインプリント技術を用いたパターン形成方法、インプリント装置、および硬化性組成物
JP2023539968A (ja) 平坦化方法及び光硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028266

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18764186

Country of ref document: EP

Kind code of ref document: A1