WO2018155084A1 - 電子制御装置および電子制御装置の異常正常判定方法 - Google Patents

電子制御装置および電子制御装置の異常正常判定方法 Download PDF

Info

Publication number
WO2018155084A1
WO2018155084A1 PCT/JP2018/002636 JP2018002636W WO2018155084A1 WO 2018155084 A1 WO2018155084 A1 WO 2018155084A1 JP 2018002636 W JP2018002636 W JP 2018002636W WO 2018155084 A1 WO2018155084 A1 WO 2018155084A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
injector
electronic control
control device
fuel cut
Prior art date
Application number
PCT/JP2018/002636
Other languages
English (en)
French (fr)
Inventor
泰志 杉山
純之 荒田
康夫 嶋
昌宏 土肥
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201880010259.0A priority Critical patent/CN110291286B/zh
Priority to US16/487,382 priority patent/US11008988B2/en
Priority to DE112018000220.9T priority patent/DE112018000220T5/de
Priority to JP2019501157A priority patent/JP6792048B2/ja
Publication of WO2018155084A1 publication Critical patent/WO2018155084A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/226Fail safe control for fuel injection pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an electronic control device and an abnormality normality determination method for the electronic control device.
  • an ECU electronic control unit
  • controls an engine for example, when a calculation abnormality of a microcomputer mounted on a vehicle occurs, a technique for cutting fuel injection is applied.
  • a fuel cut signal for forcibly turning off the injector drive circuit is provided separately from the fuel injection signal for turning on and off the injector drive circuit for injecting fuel from the injector.
  • the fuel cut signal may be carried by a microcomputer that detects an error between the actual engine torque and the calculated torque, or may be carried by a microcomputer monitoring function that detects a control abnormality of the microcomputer.
  • the fuel cut signal operates normally at least once after the vehicle driver turns on the ignition key and then turns off the ignition key and stops the ECU.
  • the function of outputting the fuel cut signal is a function related to vehicle safety, and it is desirable to check before starting the engine.
  • the current used to determine whether or not the fuel cut signal operates normally is small, in actual driving, it is necessary to flow a large current through the injector, and a large current also flows through the current detection circuit.
  • Patent Document 1 When the technique described in Patent Document 1 is applied to a direct injection injector drive circuit, the cost increase can be suppressed by using an existing circuit, but it is applied to other circuits that are not direct injection injector drive circuits. In some cases, it is difficult to avoid an increase in cost.
  • An object of the present invention is to provide an electronic control device having an abnormality detection circuit that is small and does not require a complicated circuit, and that can suppress an increase in cost even when applied to not only a direct injection injector drive circuit but also to other drive circuits, and It is to realize an abnormality normality determination method for an electronic control device.
  • the present invention is configured as follows.
  • an injector driving unit for supplying an injector driving current to an injector for injecting fuel
  • a logic unit for supplying a fuel injection signal and a fuel cut signal and driving the injector driving unit in accordance with the fuel injection signal and the fuel cut signal
  • a current detection unit having a resistance value greater than the resistance value of the injector driving unit and detecting that a minute current flows through the injector, and the fuel based on the minute current detected by the current detection unit.
  • an abnormal normality determination unit that determines whether or not the cut signal is normally supplied to the logic unit.
  • An injector driving section for supplying an injector driving current to an injector for injecting fuel; a logic section for supplying a fuel injection signal and a fuel cut signal; and driving the injector driving section in accordance with the fuel injection signal and the fuel cut signal; and the injector driving
  • the minute current detected by the current detection unit Based on the above, it is determined whether or not the fuel cut signal is normally supplied to the logic unit.
  • An electronic control device having an abnormality detection circuit capable of suppressing an increase in cost even when applied to other drive circuits as well as a direct injection injector drive circuit and an abnormal normal state of the electronic control device.
  • a determination method can be realized.
  • FIG. 5 is a diagram showing a fuel cut signal diagnostic sequence when the circuit configuration shown in FIG. 4 is used.
  • FIG. 5 is a diagram showing a sequence when an abnormality occurs in a fuel cut signal when the circuit configuration shown in FIG. 4 is used. It is a block diagram which shows the modification of 2nd Example of this invention.
  • FIG. 1 is a schematic configuration diagram of an electronic control device according to a first embodiment of the present invention, and is a block diagram showing an example arranged in an engine ECU 1.
  • an electronic control apparatus includes an injector driving circuit (injector driving unit) 3 (FET in the illustrated example) for driving an injector 2 for injecting fuel, and injector driving.
  • a fuel injection signal output unit 14 for outputting a fuel injection signal 4 for driving the circuit 3 and a fuel cut signal output for outputting a fuel cut signal 5 for permitting / prohibiting the fuel injection signal 4 to drive the injector drive circuit 3
  • logic circuit (logic unit) 6 a diagnostic current drive circuit 7 (FET in the example shown in the figure) different from the injector drive circuit 3 that allows a minute current to flow through the injector 2, a fuel injection signal 4,
  • a switch 8 (SW1 (first switch)) mounted between the diagnostic current drive circuit 7, a current detection circuit 9 for detecting a current flowing through the diagnostic current drive circuit 7, and an electric current Based on the detected current by the detection circuit 9, an abnormal normal judgment unit 17 for judging an abnormality normal fuel cut signal 5, and an operation control unit 16.
  • the current detection unit 9 includes a current detection resistor 91 having one end connected to the source of the FET that is the diagnostic circuit 7 and the other end grounded, and a differential having both ends of the current detection resistor 91 connected to the input ends.
  • An amplifier 92 and a current detection unit 93 to which the output terminal of the differential amplifier 92 is connected are provided. The current detected by the current detection unit 93 is supplied to the abnormality normality determination unit 17.
  • the combined resistance value of the diagnostic current drive circuit 7 and the current detection resistor 91 is larger than the resistance value of the injector drive circuit 3.
  • the injector 2 is connected to the drain of the FET that is the injector drive circuit 3.
  • the source of the injector drive circuit 3 is grounded.
  • the drain of the injector drive circuit 3 is connected to the drain of the FET that is the diagnostic current drive circuit 7.
  • the fuel injection signal 4 is input to the input terminal of the logic circuit 6, and the fuel cut signal is input to the negative input terminal of the logic circuit 6.
  • the output terminal of the logic circuit 6 is connected to the gate of the injector drive circuit 3.
  • the output signal 4 from the fuel injection signal output unit 14 is supplied to the gate of the diagnostic current drive circuit 7 via the switch 8.
  • the operation control unit 16 controls operations of the fuel injection signal output unit 14, the fuel cut signal output unit 15, the switch 8, and the abnormality normality determination unit 17.
  • the fuel cut signal 5 and the logic circuit 6 are configured to be in a permitted state when the fuel cut signal 5 is L (low).
  • the type and form of the logic circuit 6 are not specified, and various modifications can be made.
  • FIG. 2 is a diagram showing a diagnostic sequence of the fuel cut signal 5 in the circuit configuration of FIG.
  • the fuel injection signal 4 is set to H (high) at time t3 while the fuel cut signal 5 is set to H (high), that is, the prohibited side. Then, the fuel injection signal 4 is supplied to the gate of the diagnostic current drive circuit 7 via the switch 8, and the diagnostic current drive circuit 7 is turned on.
  • the current I1 injector drive current
  • the current I2 flows through the injector 2, the diagnostic current drive circuit (diagnostic current drive unit) 7, and the current detection resistor 91.
  • the current I2 flows only a minute current that does not cause the injector 2 to inject fuel.
  • the fuel cut signal 5 is set to H (high) at a time t5 before the injector 2 injects fuel, that is, in a state where the current I1 is a minute current before the injector 2 has a magnitude to inject fuel.
  • the output of the logic circuit 6 becomes 0 and the injector drive circuit 3 is turned off, so that the current I1 is turned off and the current I2 starts to flow without fuel being injected.
  • the current change of the current I2 is detected by the abnormal normality determination unit 17 by the current detection unit 93 of the current detection circuit 9, and in accordance with the high and low command signals of the fuel cut signal 5 of the operation control unit 16, By determining that the current I2 has changed, it can be confirmed that the fuel cut signal 5 is operating normally.
  • the diagnosis is completed, the switch 8 is turned off, and the fuel cut signal 5 is also set to L. Then, the current I1 flowing through the injector 2 is controlled by the on / off control of the injector drive circuit 3.
  • the fuel cut signal 5 is operated by inputting a short pulse that does not cause the fuel to be injected by the injector 2 so that the current that does not cause the fuel injection is high and low. It can be confirmed.
  • FIG. 3 is a diagram showing a sequence when an abnormality occurs in the fuel cut signal 5 when the circuit configuration shown in FIG. 1 is used.
  • the fuel injection signal 4 is set to H (high)
  • the fuel cut signal is in the L (low) state
  • the injector drive circuit 3 is turned on and the current I1 flows.
  • the abnormality normality determination unit 17 it is possible for the abnormality normality determination unit 17 to detect that the current that should originally flow through the current I2 does not flow, and to detect an abnormality in the fuel cut signal 5.
  • the current I1 becomes a large current, and if the fuel injection signal 4 is set to L (low) before fuel is injected from the injector 2, fuel injection at the time of diagnosis can be avoided.
  • the current detection circuit 9 detects the current I2 that changes with a short pulse of the fuel cut signal 5, so that the fuel cut signal 5 can cut off the current I1, and the injector 2 It can be confirmed that the fuel injection can be stopped.
  • the resistance value of the current detection resistor 91 of the diagnostic current drive circuit 7 and the current detection circuit 9 connected in parallel to the injector drive circuit 3 is compared with the resistance value of the injector drive circuit 3. Since the large current flowing through the injector 2 does not flow in the diagnostic current drive circuit 7 and the current detection circuit 9 even during actual driving of the injector 2, the current detection circuit 9 Can be avoided.
  • diagnostic current drive circuit 7 and the current detection circuit 9 are separate circuits from the injector drive circuit 3, not only the direct injection injector drive circuit but also other drive circuits can be used. Similar effects can be obtained.
  • an abnormality detection circuit that is small in size and does not require a complicated circuit, and can suppress an increase in cost even when applied to other drive circuits as well as a direct injection injector drive circuit.
  • An electronic control device and an abnormality normality determination method for the electronic control device can be realized.
  • the switch 8 (SW1) and the diagnostic current drive circuit 7 can be omitted.
  • the current detection circuit 9 may be mounted on the injector 2 side with respect to the diagnostic current drive circuit 7.
  • a short pulse of the fuel cut signal 5 is used to flow a current that does not cause fuel injection of the injector 2.
  • the fuel cut signal 5 becomes short when the current change becomes steep. There is a possibility that the pulse cannot be made.
  • the second embodiment of the present invention is a configuration example in which it is not necessary to create a short pulse with the fuel cut signal 5.
  • FIG. 4 is a block diagram showing a schematic configuration example when the electronic control device according to the second embodiment of the present invention is arranged in the ECU 1.
  • the difference between the first embodiment and the second embodiment is that the line from which the fuel injection signal 4 is supplied to the gate of the diagnostic drive circuit 7 is removed, and the output terminal of the logic circuit 6 is connected to the switch 10 (SW2 (first 2) and the gate of the injector drive circuit 3 and also connected to the gate of the diagnostic current drive circuit 7 via the switch 11 (SW3 (third switch)).
  • a voltage detection circuit (voltage detection unit) 12 for detecting a change in the voltage Vd between the injector 2 and the injector drive circuit 3 is disposed.
  • the operation control unit 16 is configured to also perform opening / closing control of the switch 10 and the switch 11. Further, the output of the voltage detection circuit 12 is supplied to the abnormality normality determination unit 17.
  • FIG. 5 is a diagram showing a diagnostic sequence of the fuel cut signal 5 when the circuit configuration shown in FIG. 4 is used.
  • the switch 10 When the initial diagnosis execution trigger is entered at time t0, the switch 10 (SW2) is turned off from on and the switch 11 (SW3) is turned on from off at time t1.
  • the fuel cut signal 5 is set to L (low), that is, the fuel injection signal 4 is set to H in the permitted state, the current I1 does not flow, but the diagnostic current drive circuit 7 is on, so the current I2 Flows.
  • the current detection resistor 91 of the diagnostic current drive circuit 7 and the current detection circuit (current detection unit) 9 has a sufficiently high resistance value, the current I2 flows only to such an extent that the injector 2 does not inject fuel. . In this state, if the fuel cut signal 5 is H, that is, the fuel cut is executed and the fuel injection is prohibited at time t2, the diagnostic current drive circuit 7 is turned off and the current I2 does not flow.
  • the injector drive circuit 3 will not be turned on if the fuel cut signal 5 is H, that is, the prohibition side.
  • This state can be detected by the voltage detection circuit 12. That is, the voltage detected by the voltage detection circuit 12 is maintained at a constant value from the time t0, so that the current that the fuel cut signal 5 flows to the injector 2 can be cut, and the operation of the injector drive circuit 3 is prohibited. It is possible to confirm what can be done.
  • FIG. 6 is a diagram showing a sequence when an abnormality occurs in the fuel cut signal 5 when the circuit configuration shown in FIG. 4 is used.
  • An example of an abnormality is when the fuel cut signal 5 is stuck to the permission side.
  • the fuel cut signal 5 is set to H, but since it is fixed to the permission side, it is actually L.
  • the diagnostic current drive circuit 7 is turned on.
  • the fuel cut signal 5 is H, the current I2 should be L, but the current I2 becomes L. Abnormality of the fuel cut signal 5 can be determined because the change cannot be detected.
  • the switch 10 (SW2) is turned off to turn off the drive circuit 3 before the fuel is injected from the injector 2 so that the current I1 does not flow.
  • the diagnosis ends at time t5.
  • the fuel cut signal 5 may be a signal from inside the ECU 1 that is a microcomputer, or may be a signal input from a microcomputer monitoring function of the ECU 1 that is a microcomputer.
  • the signal from the current detection circuit 9 is, for example, inside the microcomputer (ECU) 1. It may be configured to be read by the mounted AD converter 13 or the like.
  • the voltage detection circuit 12 shown in FIG. 4 is not shown, but it is also provided in the example of FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

小型で、複雑な回路が不要であり、直噴インジェクタ駆動回路のみならず他の駆動回路に適用してもコストアップを抑制可能な異常検出回路を有する電子制御装置を実現する。 電流検出部9は、電流検出抵抗91と、差動増幅器92と、電流検出部93とを備える。電流検出部93が検出した電流が異常正常判断部17に供給される。診断電流駆動回路7と電流検出抵抗91との合成抵抗値はインジェクタ駆動回路3の抵抗値より高い。論理回路6の入力端には燃料噴射信号4が入力され、論理回路6の否定入力端には、燃料カット信号が入力される。論理回路6の出力端はインジェクタ駆動回路3のゲートに接続される。燃料噴射信号出力部14からの出力信号4はスイッチ8を介して診断電流駆動回路7のゲートに供給される。

Description

電子制御装置および電子制御装置の異常正常判定方法
 本発明は、電子制御装置および電子制御装置の異常正常判定方法に関する。
 エンジンを制御するECU(電子制御装置)において、例えば、車両に搭載されたマイコンの演算異常が発生した場合、燃料噴射をカットする技術が適用されている。
 このため、インジェクタから燃料を噴射させるためのインジェクタ駆動回路をオン、オフさせる燃料噴射信号とは別に、強制的にインジェクタ駆動回路をオフ状態にさせる燃料カット信号が具備されている。燃料カット信号は、実際のエンジントルクと演算トルクとの誤差を検出するマイコンが、担ってもよいし、マイコンの制御異常を検出するマイコン監視機能が担ってもよい。
 例えば、燃料カット信号に何らかの要因で異常が発生し、燃料噴射許可状態に固着してしまった場合、マイコン異常時に燃料カットが出来なくなるため、車両の動作制御を高精度に行うことが出来なくなる。
 そのため、燃料カット信号が正常に動作することを、車両運転手が、イグニッションキーをオンしてから、イグニッションキーをオフしてECUが停止するまでの間に、少なくとも1回確認しなければならない。
 さらには、燃料カット信号を出力する機能は、車両の安全に関わる機能であり、エンジン始動前に確認することが望ましいとされている。
 燃料カット信号の正常な動作を確認するには、インジェクタに電流を流した状態で燃料カット信号を出力することで、インジェクタに流れる電流が実際にカットされることを確認する必要がある。
 しかし、単純に上記方法を用いると、インジェクタに電流を流した状態が存在するため、不要な燃料を噴射してしまう。
 そこで、特許文献1に記載された技術においては、不要な燃料を噴射させないように、インジェクタ駆動回路をオン、オフ動作させて、燃料が噴射しない程度の電流をインジェクタに流した状態で、燃料カット信号が正常に動作することを確認している。
特開2016-108984号公報
 インジェクタが燃料を噴射するためには、一定以上の電流が必要である。特許文献1に記載の技術を用いれば、インジェクタに微小な電流を流すことが出来、不要な燃料を噴射してしまうことも無い。このため、エンジン始動前に、燃料カット信号が正常に動作するか否かを確認することが可能である。
 しかし、燃料カット信号が正常に動作するか否かに使用する電流は微小であるが、実駆動では、インジェクタに大電流を流す必要があり、電流検出回路にも大電流が流れる。
 このため、電流検出回路を大型化する必要があり、スペース及びコストの点で問題があった。
 また、燃料カット信号の動作確認時は、インジェクタが燃料を噴射しないように、電流を微小とするためのフィードバック制御が必要であり、そのための制御回路が複雑であり、コストアップの要因となっていた。
 特許文献1に記載の技術を直噴インジェクタ駆動回路に適用する場合は、既存の回路を使用することにより、コストアップを抑えることができるが、直噴インジェクタ駆動回路ではないその他の回路に適用する場合には、コストアップの回避は困難である。
 本発明の目的は、小型で、複雑な回路が不要であり、直噴インジェクタ駆動回路のみならず、他の駆動回路に適用してもコストアップを抑制可能な異常検出回路を有する電子制御装置および電子制御装置の異常正常判定方法を実現することである。
 上記目的を達成するため、本発明は次のように構成される。
 電子制御装置において、燃料を噴射するインジェクタにインジェクタ駆動電流を流すインジェクタ駆動部と、燃料噴射信号及び燃料カット信号が供給され、これら燃料噴射信号及び燃料カット信号に従って上記インジェクタ駆動部を駆動する論理部と、上記インジェクタ駆動部の抵抗値より大の抵抗値を有し、上記インジェクタに微小電流が流れることを検出する電流検出部と、上記電流検出部が検出した上記微小電流に基づいて、上記燃料カット信号が正常に上記論理部に供給されているか否かを判定する異常正常判断部とを備える。
 燃料を噴射するインジェクタにインジェクタ駆動電流を流すインジェクタ駆動部と、燃料噴射信号及び燃料カット信号が供給され、これら燃料噴射信号及び燃料カット信号に従って上記インジェクタ駆動部を駆動する論理部と、上記インジェクタ駆動部の抵抗値より大の抵抗値を有し、上記インジェクタに微小電流が流れることを検出する電流検出部とを有する電子制御装置の異常正常判断方法において、上記電流検出部が検出した上記微小電流に基づいて、上記燃料カット信号が正常に上記論理部に供給されているか否かを判定する。
 小型で、複雑な回路が不要であり、直噴インジェクタ駆動回路のみならず、他の駆動回路に適用してもコストアップを抑制可能な異常検出回路を有する電子制御装置および電子制御装置の異常正常判定方法を実現することができる。
本発明の第1実施例による電子制御装置の概略構成図であり、エンジンECU内に配置された例を示すブロック図である。る。 図1の回路構成における、燃料カット信号の診断シーケンスを示した図である。 図1に示した回路構成を用いた場合における、燃料カット信号に異常が発生した場合のシーケンスを示す図である。 本発明の第2実施例である電子制御装置として、ECU内に配置される場合の概略構成例を示すブロック図である。 図4に示した回路構成を用いた場合における、燃料カット信号の診断シーケンスを示す図である。 図4に示した回路構成を用いた場合における、燃料カット信号に異常が発生した場合のシーケンスを示す図である。 本発明の第2実施例の変形例を示すブロック図である。
 以下、添付図面を参照して、本発明の実施形態について説明する。
 (第1実施例)
 図1は、本発明の第1実施例による電子制御装置の概略構成図であり、エンジンECU1内に配置された例を示すブロック図である。
 図1において、本発明の第1実施例である電子制御装置は、燃料を噴射するためのインジェクタ2を駆動するインジェクタ駆動回路(インジェククタ駆動部)3(図示した例ではFET)と、インジェクタ駆動回路3を駆動する燃料噴射信号4を出力する燃料噴射信号出力部14と、燃料噴射信号4がインジェクタ駆動回路3を駆動することの許可・禁止を行う燃料カット信号5を出力する燃料カット信号出力部15と、論理回路(論理部)6と、インジェクタ2に微小な電流を流す、インジェクタ駆動回路3とは別の診断電流駆動回路7(図示して例ではFET)と、燃料噴射信号4と診断電流駆動回路7との間に実装されたスイッチ8(SW1(第1スイッチ))と、診断電流駆動回路7に流れる電流を検出する電流検出回路9と、電流検出回路9により検出された電流に基づいて、燃料カット信号5の異常正常を判断する異常正常判断部17と、動作制御部16とを備えている。
 電流検出部9は、診断回路7であるFETのソースに一方端が接続され、他方端が接地された電流検出抵抗91と、この電流検出抵抗91の両端が、入力端に接続された差動増幅器92と、この差動増幅器92の出力端が接続された電流検出部93とを備えている。電流検出部93が検出した電流が異常正常判断部17に供給される。
 診断電流駆動回路7と電流検出抵抗91との合成抵抗値は、インジェクタ駆動回路3の抵抗値より大の構成となっている。
 インジェクタ2は、インジェクタ駆動回路3であるFETのドレインに接続されている。また、インジェクタ駆動回路3のソースは接地されている。インジェクタ駆動回路3のドレインは、診断電流駆動回路7であるFETのドレインに接続されている。
 論理回路6の入力端には、燃料噴射信号4が入力され、論理回路6の否定入力端には、燃料カット信号が入力される。論理回路6の出力端は、インジェクタ駆動回路3のゲートに接続されている。
 燃料噴射信号出力部14からの出力信号4は、スイッチ8を介して診断電流駆動回路7のゲートに供給される。
 動作制御部16は、燃料噴射信号出力部14、燃料カット信号出力部15、スイッチ8、及び異常正常判断部17の動作を制御する。
 図1に示した例においては、燃料カット信号5および論理回路6に関して、燃料カット信号5がL(ロー)の場合を許可状態とした構成である。なお、論理回路6に関して、その種別、形態は特定されるものでなく、種々の変形が可能である。
 図2は、図1の回路構成における、燃料カット信号5の診断シーケンスを示した図である。
 図2において、時点t0にて動作制御部16に初期診断実行トリガが入ると、動作制御部16は、時点t1にて、オフであったスイッチ8(SW1)をオンとする。この時点では、燃料噴噴射信号4及び燃料カット信号5は、共にロー(L)の状態である。
 時点t2にて、燃料カット信号5をH(ハイ)、つまり禁止側とした状態で、時点t3にて、燃料噴射信号4をH(ハイ)とさせる。すると、燃料噴射信号4がスイッチ8を介して診断電流駆動回路7のゲートに供給され、診断電流駆動回路7がオンとなる。
 一方、時点t3では、燃料カット信号5は、Hの状態であるから、論理回路6の出力は0であるから、駆動回路3はオフの状態である。よって、駆動回路3には電流I1(インジェクタ駆動電流)は流れないが、インジェクタ2、診断電流駆動回路(診断電流駆動部)7及び電流検出抵抗91には電流I2が流れる。
 診断電流駆動回路7および電流検出回路9は、十分高い抵抗値を有しているため、電流I2は、インジェクタ2が燃料を噴射しない程度の微小電流しか流れない。
 その状態で、時点t4にて、燃料カット信号5をL(ロー)にすると、論理回路6の出力は1となり、インジェクタ駆動回路3がオンとなり、インジェクタ2及びインジェクタ駆動回路3に電流I1が流れ始めて増加していく。その場合、電流I2は、非常に小さい電流であるため、電流I1がインジェクタ駆動回路3に流れ始めると、電流I2に流れる電流はほぼ0になる。
 そして、インジェクタ2が燃料噴射する前の時点t5、つまり、電流I1が、インジェクタ2により、燃料を噴射する大きさとなる前の微小電流の状態で、燃料カット信号5をH(ハイ)にする。これにより、論理回路6の出力が0となり、インジェクタ駆動回路3がオフとなるため、燃料が噴射されることなく、電流I1がOFFとなり、電流I2が流れ始める。
 電流I2の電流変化は、電流検出回路9の電流検出部93で検出された電流を異常正常判断部17により検出され、動作制御部16の燃料カット信号5のハイ、ロー指令信号に応じて、電流I2が変化していることを判断することで、燃料カット信号5が正常に動作していることを確認することができる。
 時点t6にて、診断は終了し、スイッチ8がオフとされるとともに燃料カット信号5もLとされる。そして、インジェクタ駆動回路3のオンオフ制御によりインジェクタ2に流される電流I1が制御される。
 このように、燃料カット信号5を、インジェクタ2により燃料が噴射されない程度の短パルスを入力することで、燃料噴射させない程度の電流をハイ、ローとさせて、燃料カット信号5が動作していることを確認可能である。
 図3は、図1に示した回路構成を用いた場合における、燃料カット信号5に異常が発生した場合のシーケンスを示す図である。
 異常の一例として、燃料カット信号5が、燃料カット許可側に固着した場合を挙げる。
 図3において、時点t0にて、診断実行トリガが入ると、時点t1にてスイッチ8(SW1)がオンとなり、燃料噴射出力部14がスイッチ8を介して診断電流駆動回路7に接続される。
 時点t2にて、燃料カット信号5をH(ハイ)としたいが、時点t0以前にて、許可側に固着される異常が発生しているので、燃料カット信号5は、実際にはL(ロー)となっている(破線図示)。
 時点t3にて、燃料噴射信号4をH(ハイ)にすると、燃料カット信号はL(ロー)の状態であるので、インジェクタ駆動回路3がオンとなり、電流I1が流れる。この場合、本来、電流I2に流れるべき電流が流れないことを異常正常判断部17が検出し、燃料カット信号5の異常を検出することが可能である。異常を検知したとき、電流I1が大電流となり、インジェクタ2から燃料が噴射される前に、燃料噴射信号4をL(ロー)とすれば、診断時における燃料噴射を回避することができる。
 以上の第1実施例によれば、電流検出回路9が、燃料カット信号5の短パルスで変化する電流I2を検出することで、燃料カット信号5が、電流I1を遮断可能であり、インジェクタ2の燃料噴射を停止できることを確認可能である。
 つまり、第1実施例によれば、インジェクタ駆動回路3に並列に接続された診断電流駆動回路7及び電流検出回路9の電流検出抵抗91の抵抗値が、インジェクタ駆動回路3の抵抗値に比較して十分大の値に設定されているため、インジェクタ2の実駆動においても、診断電流駆動回路7及び電流検出回路9には、インジェクタ2に流れる大電流が流れることは無いため、電流検出回路9の大型化を回避することができる。
 また、燃料カット信号5の動作確認時に、インジェクタ2が燃料を噴射しないように、電流を微小とするためのフィードバック制御が不要であり、コストアップを抑制することができる。
 さらに、診断電流駆動回路7及び電流検出回路9は、インジェクタ駆動回路3とは、別箇の回路となっているため、直噴インジェクタ駆動回路のみならず、他の駆動回路に適用しても、同様な効果を得ることができる。
 すなわち、第1実施例によれば、小型で、複雑な回路が不要であり、直噴インジェクタ駆動回路のみならず、他の駆動回路に適用してもコストアップを抑制可能な異常検出回路を有する電子制御装置および電子制御装置の異常正常判定方法を実現することができる。
 なお、エンジン動作中における燃料噴射特性に影響を及ぼさないほど、電流I2が微小な電流である場合は、スイッチ8(SW1)及び診断電流駆動回路7は省略することができる。
 また、電流検出回路9は、診断電流駆動回路7に対してインジェクタ2側に実装してもよい。
 (第2実施例)
 次に、本発明の第2実施例について説明する。
 第1実施例では、燃料カット信号5の短パルスを用いて、インジェクタ2の燃料噴射が発生しない電流を流す構成となっている。
 しかし、例えば、インジェクタ2のインダクタンス成分が小さく、電流変化が急峻となる場合、あるいは、低温状態でインジェクタ2の抵抗値が小さくなるため、電流変化が急峻となる場合において、燃料カット信号5の短パルスが作れない可能性がある。
 そこで、本発明の第2実施例は、燃料カット信号5で短パルスを作らなくても良い構成例である。
 図4は、本発明の第2実施例である電子制御装置として、ECU1内に配置される場合の概略構成例を示すブロック図である。
 第1実施例と第2実施例との相違点は、燃料噴射信号4が、診断駆動回路7のゲートに供給されるラインが除かれ、論理回路6の出力端が、スイッチ10(SW2(第2スイッチ))を介してインジェクタ駆動回路3のゲートに接続されると共に、スイッチ11(SW3(第3スイッチ))を介して診断電流駆動回路7のゲートに接続されている。また、第2実施例においては、インジェクタ2とインジェクタ駆動回路3との間の、電圧Vdの変化を検出する電圧検出回路(電圧検出部)12が配置されている。
 なお、図4の例においては、図示は省略するが、図1に示した燃料噴射信号出力部14、燃料カット信号出力部15、動作制御部16、及び異常正常判断部17を備えている。ただし、動作制御部16は、スイッチ10及びスイッチ11の開閉制御も行う構成となっている。また、電圧検出回路12の出力は、異常正常判断部17に供給される構成となっている。
 図5は、図4に示した回路構成を用いた場合における、燃料カット信号5の診断シーケンスを示す図である。
 時点t0にて初期診断実行トリガが入ると、時点t1にてスイッチ10(SW2)が、オンからオフとなり、スイッチ11(SW3)がオフからオンとなる。このとき、燃料カット信号5をL(ロー)、つまり許可の状態において、燃料噴射信号4をHとすると、電流I1は流れないが、診断電流駆動回路7はオンとなっているので、電流I2が流れる。
 診断電流駆動回路7および電流検出回路(電流検出部)9の電流検出抵抗91は、十分高い抵抗値を有しているため、電流I2は、インジェクタ2が燃料を噴射しない程度の電流しか流れない。その状態で、時点t2にて、燃料カット信号5をH、つまり燃料カットを実行し、燃料噴射禁止状態とすると、診断電流駆動回路7がオフとなり、電流I2は流れなくなる。
 電流I2の変化を、電流検出回路9で検出することで、燃料カット信号5が動作していることを確認可能である。
 また、時点t3にて、スイッチ10(SW2)をオンにしても、燃料カット信号5がH、つまり禁止側となっていれば、インジェクタ駆動回路3がオンになることはない。この状態は、電圧検出回路12で検出することが可能である。つまり、電圧検出回路12で検出する電圧は、時点t0から一定値を維持していることにより、燃料カット信号5がインジェクタ2に流れる電流をカットできることおよび、インジェクタ駆動回路3の動作を禁止状態に出来ることを確認することが可能である。
 図6は、図4に示した回路構成を用いた場合における、燃料カット信号5に異常が発生した場合のシーケンスを示す図である。
 異常の一例として、燃料カット信号5が許可側に固着した場合を挙げる。
 図6において、時点t0にて、診断実行トリガが入ると、時点t1にてスイッチ10(SW2)が、オンからオフとなり、スイッチ11(SW3)がオフからオンとなる。このとき、燃料カット信号5をL(ロー)、つまり許可の状態において、燃料噴射信号4をHとすると、電流I1は流れないが、診断電流駆動回路7はオンとなっているので、電流I2が流れる。
 時点t2にて、燃料カット信号5をHとしたいが、許可側に固着されているので、実際にはLとなっている。燃料噴射信号4がHとなると、診断電流駆動回路7がオンとなるが、燃料カット信号5がHの状態では、電流I2はLとなるはずであるが、電流I2がLとなるような電流変化を検出できないことで、燃料カット信号5の異常を判定可能である。
 また、時点t3にて、スイッチ10(SW2)をオンとすると、燃料カット信号5がHの状態であれば、駆動回路3はオンとはならず、電圧回路12が検出する電圧はHの状態である。一方、燃料カット信号5がLの状態であれば、駆動回路3がオンとなり、電流I1が流れははじめ、電圧検出回路12が検出する電圧がLとなる。よって、電圧検出回路12が検出する電圧を監視すれば、燃料カット信号5の異常を判定(検出)することが可能である。
 そして、時点t4にて、スイッチ10(SW2)をオフとすることにより、インジェクタ2から燃料が噴射される前に駆動回路3をオフとし、電流I1が流れないようにする。時点t5にて、診断は終了する。
 以上のように、本発明の第2実施例によれば、燃料カット信号5の短パルスを作れない場合であっても、第1実施例と同様な効果を得ることができる。
 なお、燃料カット信号5は、マイコンであるECU1内部から信号でも良いし、マイコンであるECU1のマイコン監視機能からの信号入力でも良い。
 また、ECU1内部から信号及びイコン監視機能からの信号双方を入力信号とするOR回路から入力されても良い。
 また、実施例2において、電流検出回路9の電流検出抵抗91に流れる電流I2を、インジェクタ2からの燃料噴射に影響を与えないほど小さくできる場合、図7のように、論理回路6の出力端と、インジェクタ駆動回路3のゲートとの間にスイッチ10を配置し、スイッチ8及び診断用駆動回路7を削除しても、電流検出回路9からの信号を、例えば、マイコン(ECU)1内部に搭載されたADコンバータ13などで読み取る構成でも良い。なお、図7においては、図4に示した電圧検出回路12の図示は省略したが、図7の例にも備えられるものである。
 以上に説明した各実施例や各種の変化例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されない。
 1・・・ECU、2・・・インジェクタ、3・・・インジェクタ駆動回路、4・・・燃料噴射信号、5・・・燃料カット信号、6・・・論理回路、7・・・診断電流駆動回路、8・・・スイッチ(SW1(第1スイッチ))、9・・・電流検出回路、10・・・スイッチ(SW2(第2スイッチ))、11・・・スイッチ(SW3(第3スイッチ)、12・・・電圧検出回路、13・・・ADコンバータ、14・・・燃料噴射出力部、15・・・燃料カット信号出力部、16・・・動作制御部、17・・・異常正常判断部、91・・・電流検出抵抗、92・・・差動増幅器、93・・・電流検出部

Claims (13)

  1.  燃料を噴射するインジェクタにインジェクタ駆動電流を流すインジェクタ駆動部と、
     燃料噴射信号及び燃料カット信号が供給され、これら燃料噴射信号及び燃料カット信号に従って上記インジェクタ駆動回路を駆動する論理部と、
     上記インジェクタ駆動部の抵抗値より大の抵抗値を有し、上記インジェクタに微小電流が流れることを検出する電流検出部と、
     上記電流検出部が検出した上記微小電流に基づいて、上記燃料カット信号が正常に上記論理回部に供給されているか否かを判定する異常正常判断部と、
     を備えることを特徴とする電子制御装置。
  2.  請求項1に記載の電子制御装置において、
     上記微小電流は、インジェクタ駆動電流より小さい電流であり、上記インジェクタから燃料噴射が実行されない電流であることを特徴とする電子制御装置。
  3.  請求項2に記載の電子制御装置において、
     上記インジェクタ駆動部により上記インジェクタ駆動電流を流すために、上記燃料噴射信号をハイ状態とし、上記燃料噴射信号がハイ状態である期間に、上記燃料カット信号が短時間だけ燃料カットを実行しない状態とする動作制御部をさらに備え、上記短時間は、上記インジェクタから燃料の噴射が実行されない時間であることを特徴とする電子制御装置。
  4.  請求項3に記載の電子制御装置において、
     上記異常正常判断部は、上記燃料カット信号が短時間だけ燃料カットを実行しない状態であるときに、上記電流検出部が検出した上記微小電流が変化したときは、上記燃料カット信号は正常に動作していると判断することを特徴とする電子制御装置。
  5.  請求項4に記載の電子制御装置において、
     上記インジェクタと上記電流検出部との間に接続され、上記インジェクタから上記電流検出部に上記微小電流を流す診断電流駆動部と、上記燃料噴射信号を上記診断電流駆動部に供給するか否かを切り替える第1のスイッチとをさらに備え、上記第1のスイッチを介して上記燃料噴射信号が上記診断電流駆動部に供給される状態であって、上記燃料カット信号が燃料カットを実行する状態のとき、上記診断電流駆動部が上記インジェクタから上記電流検出部に上記微小電流を流すことを特徴とする電子制御装置。
  6.  請求項1に記載の電子制御装置において、
     上記インジェクタ駆動部と上記インジェクタとの間における電圧を検出する電圧検出部と、上記論理部からの出力信号を上記インジェクタ駆動部に供給するか否かを切り替える第2のスイッチとをさらに備え、上記燃料カット信号が燃料カットを実行する状態であるときに、上記電流検出部により微小電流が検出される状態から検出されない状態に変化し、微小電流が検出されない状態にて、上記第2のスイッチにより、上記論理部からの出力信号が上記インジェクタ駆動部に供給されている状態であるときに、上記電圧検出部により検出された電圧が変化しない場合には、上記燃料カット信号は正常に動作していると判断することを特徴とする電子制御装置。
  7.  請求項6に記載の電子制御装置において、
     上記インジェクタと上記電流検出部との間に接続され、上記インジェクタから上記電流検出部に上記微小電流を流す診断電流駆動部と、上記論理部からの出力信号を上記診断電流駆動部に供給するか否かを切り替える第3のスイッチとをさらに備えることを特徴とする電子制御装置。
  8.  燃料を噴射するインジェクタにインジェクタ駆動電流を流すインジェクタ駆動部と、燃料噴射信号及び燃料カット信号が供給され、これら燃料噴射信号及び燃料カット信号に従って上記インジェクタ駆動部を駆動する論理部と、上記インジェクタ駆動部の抵抗値より大の抵抗値を有し、上記インジェクタに微小電流が流れることを検出する電流検出部とを有する電子制御装置の異常正常判断方法において、
     上記電流検出部が検出した上記微小電流に基づいて、上記燃料カット信号が正常に上記論理部に供給されているか否かを判定することを特徴とする電子制御装置の異常正常判定方法。
  9.  請求項8に記載の電子制御装置の異常正常判定方法において、
     上記微小電流は、インジェクタ駆動電流より小さい電流であり、上記インジェクタから燃料噴射が実行されない電流であることを特徴とする電子制御装置の異常正常判定方法。
  10.  請求項9に記載の電子制御装置の異常正常判定方法において、
     上記インジェクタ駆動部により上記インジェクタ駆動電流を流すために、上記燃料噴射信号をハイ状態とし、上記燃料噴射信号がハイ状態である期間に、上記燃料カット信号が、上記インジェクタから燃料の噴射が実行されない短時間だけ燃料カットを実行しない状態とすることを特徴とする電子制御装置の異常正常判定方法。
  11.  請求項10に記載の電子制御装置の異常正常判定方法において、
     上記燃料カット信号が短時間だけ燃料カットを実行しない状態であるときに、上記電流検出部が検出した上記微小電流が変化したときは、上記燃料カット信号は正常に動作していると判断することを特徴とする電子制御装置の異常正常判定方法。
  12.  請求項11に記載の電子制御装置の異常正常判定方法において、
     上記電子制御装置は、上記インジェクタと上記電流検出部との間に接続され、上記インジェクタから上記電流検出部に上記微小電流を流す診断電流駆動部と、上記燃料噴射信号を上記診断電流駆動部に供給するか否かを切り替える第1のスイッチとを備え、上記第1のスイッチを介して上記燃料噴射信号が上記診断電流駆動部に供給される状態であって、上記燃料カット信号が燃料カットを実行する状態のとき、上記診断電流駆動部が上記インジェクタから上記電流検出部に上記微小電流を流すことを特徴とする電子制御装置の異常正常判定方法。
  13.  請求項8に記載の電子制御装置の異常正常判定方法において、
     上記電子制御装置は、上記インジェクタ駆動部と上記インジェクタとの間における電圧を検出する電圧検出部と、上記論理部からの出力信号を上記インジェクタ駆動部に供給するか否かを切り替える第2のスイッチとを備え、上記燃料カット信号が燃料カットを実行する状態であるときに、上記電流検出部により微小電流が検出される状態から検出されない状態に変化し、微小電流が検出されない状態にて、上記第2のスイッチにより、上記論理部からの出力信号が上記インジェクタ駆動部に供給されている状態であるときに、上記電圧検出部により検出された電圧が変化しない場合には、上記燃料カット信号は正常に動作していると判断することを特徴とする電子制御装置の異常正常判定方法。
PCT/JP2018/002636 2017-02-21 2018-01-29 電子制御装置および電子制御装置の異常正常判定方法 WO2018155084A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880010259.0A CN110291286B (zh) 2017-02-21 2018-01-29 电子控制装置以及电子控制装置的异常正常判定方法
US16/487,382 US11008988B2 (en) 2017-02-21 2018-01-29 Electronic control device and abnormality/normality determination method of electronic control device
DE112018000220.9T DE112018000220T5 (de) 2017-02-21 2018-01-29 Elektronische Steuervorrichtung und Anomalie/Normalzustands-Bestimmungsverfahren einer elektronischen Steuervorrichtung
JP2019501157A JP6792048B2 (ja) 2017-02-21 2018-01-29 電子制御装置および電子制御装置の異常正常判定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029838 2017-02-21
JP2017-029838 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018155084A1 true WO2018155084A1 (ja) 2018-08-30

Family

ID=63253654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002636 WO2018155084A1 (ja) 2017-02-21 2018-01-29 電子制御装置および電子制御装置の異常正常判定方法

Country Status (5)

Country Link
US (1) US11008988B2 (ja)
JP (1) JP6792048B2 (ja)
CN (1) CN110291286B (ja)
DE (1) DE112018000220T5 (ja)
WO (1) WO2018155084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260998A1 (ja) * 2020-06-23 2021-12-30 日立Astemo株式会社 燃料噴射制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116379A1 (de) * 2017-07-20 2019-01-24 Liebherr-Components Deggendorf Gmbh Vorrichtung zur Zustandserfassung eines Injektors
CN111886407B (zh) * 2018-03-22 2022-09-27 日立安斯泰莫株式会社 内燃机控制装置
JP7304856B2 (ja) * 2018-07-03 2023-07-07 日立Astemo株式会社 負荷駆動回路、負荷駆動システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324710A (ja) * 2000-12-28 2002-11-08 Komatsu Ltd 誘導負荷の異常判断装置および方法
JP2003113732A (ja) * 2001-08-02 2003-04-18 Mikuni Corp 燃料噴射方法
JP2013024080A (ja) * 2011-07-19 2013-02-04 Denso Corp 燃料噴射制御装置
JP2016108984A (ja) * 2014-12-03 2016-06-20 株式会社デンソー インジェクタ駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243418A (ja) * 2008-03-31 2009-10-22 Hitachi Ltd 内燃機関の燃料噴射装置のためのインジェクタ駆動回路
WO2015015541A1 (ja) * 2013-07-29 2015-02-05 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置および燃料噴射システム
WO2015163077A1 (ja) * 2014-04-25 2015-10-29 日立オートモティブシステムズ株式会社 電磁式燃料噴射弁の制御装置
WO2016136392A1 (ja) * 2015-02-27 2016-09-01 日立オートモティブシステムズ株式会社 燃料噴射装置、燃料噴射装置の制御装置、燃料噴射装置の制御方法、燃料噴射システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324710A (ja) * 2000-12-28 2002-11-08 Komatsu Ltd 誘導負荷の異常判断装置および方法
JP2003113732A (ja) * 2001-08-02 2003-04-18 Mikuni Corp 燃料噴射方法
JP2013024080A (ja) * 2011-07-19 2013-02-04 Denso Corp 燃料噴射制御装置
JP2016108984A (ja) * 2014-12-03 2016-06-20 株式会社デンソー インジェクタ駆動装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021260998A1 (ja) * 2020-06-23 2021-12-30 日立Astemo株式会社 燃料噴射制御装置
JPWO2021260998A1 (ja) * 2020-06-23 2021-12-30
JP7312326B2 (ja) 2020-06-23 2023-07-20 日立Astemo株式会社 燃料噴射制御装置
US11885275B2 (en) 2020-06-23 2024-01-30 Hitachi Astemo, Ltd. Fuel injection control device

Also Published As

Publication number Publication date
CN110291286A (zh) 2019-09-27
US20200056570A1 (en) 2020-02-20
US11008988B2 (en) 2021-05-18
DE112018000220T5 (de) 2019-09-05
JPWO2018155084A1 (ja) 2019-11-07
JP6792048B2 (ja) 2020-11-25
CN110291286B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2018155084A1 (ja) 電子制御装置および電子制御装置の異常正常判定方法
US8548641B2 (en) Load drive circuit
JP2012224149A (ja) 電動パワーステアリング装置
US6194792B1 (en) Controller for automobile
JP4186934B2 (ja) 電磁弁駆動装置
US20130057065A1 (en) Engine control unit for driving an electric circuit and method
JP6692312B2 (ja) 電子制御装置
JPH08159924A (ja) 車載用電子制御装置及び車載用電子制御装置の故障検出方法
JP5099041B2 (ja) 燃料ポンプ制御装置
JP6707873B2 (ja) 車両用負荷駆動制御装置
JP2010065660A (ja) 車両用始動制御システム
US11905906B2 (en) Load drive device and method of controlling fuel injection device
JP6742192B2 (ja) 電子制御装置
JPH0847296A (ja) 車両用電動モータ制御装置
JP6181011B2 (ja) 内燃機関の制御装置
JP2012118686A (ja) 監視装置及び電子装置
WO2020059351A1 (ja) 電子制御装置
KR20200069677A (ko) 경고등 구동 장치 및 경고등 구동 방법
JPH07149247A (ja) 電磁クラッチ制御装置および電動式パワーステアリング装置
JP2017215291A (ja) 車両用異常判定装置
JP7265562B2 (ja) アクチュエータを制御する制御装置
JP7065195B2 (ja) インジェクタ制御装置
KR100717950B1 (ko) 자동차의 램프 구동 장치 및 방법
JP2009231409A (ja) リニアソレノイド駆動装置
US10523136B2 (en) Inverter device and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501157

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18757344

Country of ref document: EP

Kind code of ref document: A1