WO2018150787A1 - 免疫検査装置 - Google Patents

免疫検査装置 Download PDF

Info

Publication number
WO2018150787A1
WO2018150787A1 PCT/JP2018/001060 JP2018001060W WO2018150787A1 WO 2018150787 A1 WO2018150787 A1 WO 2018150787A1 JP 2018001060 W JP2018001060 W JP 2018001060W WO 2018150787 A1 WO2018150787 A1 WO 2018150787A1
Authority
WO
WIPO (PCT)
Prior art keywords
test piece
determination
sample liquid
image
unit
Prior art date
Application number
PCT/JP2018/001060
Other languages
English (en)
French (fr)
Inventor
圭一郎 佐藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18754094.3A priority Critical patent/EP3584577A4/en
Priority to CN201880010915.7A priority patent/CN110268267B/zh
Priority to JP2018568048A priority patent/JP6764955B2/ja
Publication of WO2018150787A1 publication Critical patent/WO2018150787A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • G01N33/54387Immunochromatographic test strips
    • G01N33/54388Immunochromatographic test strips based on lateral flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band

Definitions

  • the present invention relates to an immunological test apparatus.
  • An immunoassay device that detects or quantifies an antigen such as a virus in a specimen by using an antigen-antibody reaction is used for testing a viral infection such as influenza.
  • a specimen liquid is dropped onto a chromatographic test strip.
  • the sample liquid dropped on the test piece flows in the longitudinal direction through the test piece and passes through a reaction portion provided on the test piece.
  • the reaction part is colored by capturing the antigen in the sample liquid by antigen-antibody reaction, and the reaction part is imaged, and the antigen is detected or quantified based on the color intensity of the reaction part in the acquired image.
  • the color of the reaction part is affected by the time during which the reaction part is in contact with the sample liquid (reaction time). If the reaction time is different even if the antigen concentration in the sample liquid is the same, the color intensity of the reaction part Is different.
  • reaction time is different even if the antigen concentration in the sample liquid is the same, the color intensity of the reaction part Is different.
  • an addition state imaging that images an addition portion where a specimen liquid is dropped on a test piece is separated from an imaging sensor that images the reaction portion.
  • a sensor is further provided. Time measurement is started at the same time that the appropriate amount of sample liquid is dropped on the test piece based on the image acquired by the addition state imaging sensor, and the reaction part is imaged after a predetermined time has elapsed from the start of measurement. The reaction time is managed.
  • the reaction time is typically about 10 minutes, but if the analysis proceeds without dropping the sample liquid, the time required for the analysis including this reaction time is wasted. From the viewpoint of improving the efficiency of analysis work, it is desirable to detect forgetting dripping early and notify the operator.
  • the brightness of the image of the addition part acquired by the addition state imaging sensor is monitored, and the reference value is the brightness in a state where the sample liquid is not dropped. Based on the difference from the value, it is detected whether the sample liquid has reached an appropriate amount. In the above detection operation, it is not possible to detect a state in which the sample liquid as the reference value is not dropped, that is, forgetting to drop.
  • a display for prompting remeasurement is output to the display unit when the sample liquid does not reach an appropriate amount within a predetermined time after the test piece is mounted on the inspection apparatus.
  • an additional addition state imaging sensor for imaging the addition part of the test piece is required separately from the imaging sensor for imaging the reaction part of the test piece. Therefore, it is disadvantageous for downsizing and cost reduction of the inspection apparatus.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an immunological test apparatus capable of informing at an early stage that a sample liquid has been forgotten to be dropped on a chromatographic test piece.
  • the immunoassay device of one embodiment of the present invention is an immunity that images a chromatographic test piece in which a sample liquid is dropped and the dropped sample liquid flows in the longitudinal direction, and analyzes the sample liquid based on the obtained image
  • An inspection apparatus an imaging unit that images the chromatography test piece, a determination unit that determines whether or not the sample liquid is dropped on the chromatography test piece based on an image acquired by the imaging unit, and the above
  • a notification unit for reporting a determination result of the determination unit wherein the determination unit acquires a luminance change rate in a longitudinal direction of the chromatography test piece in a determination region set in the image, and the luminance change When there is a luminance step whose absolute value of the rate is equal to or greater than the first threshold, it is determined that the sample liquid has been dropped.
  • the immunoassay device of one embodiment of the present invention images a chromatographic test piece in which a sample liquid is dropped and the dropped sample liquid is flowed in the longitudinal direction, and the sample liquid is analyzed based on the obtained image
  • An imaging unit that images the chromatographic test piece, and a determination unit that determines whether or not the sample liquid is dropped on the chromatographic test piece based on an image acquired by the imaging unit.
  • a notification unit that notifies the determination result of the determination unit, wherein the determination unit detects a dark pixel having a luminance value equal to or less than a second threshold in the determination region set in the image, and When a predetermined number or more pixels are present, it is determined that the sample liquid has been dropped.
  • the immunoassay device of one embodiment of the present invention images a chromatographic test piece in which a sample liquid is dropped and the dropped sample liquid is flowed in the longitudinal direction, and analyzes the sample liquid based on the obtained image
  • An immunological test apparatus an imaging unit that images the chromatography test piece, a determination unit that determines the presence or absence of dripping of the sample liquid on the chromatography test piece based on an image acquired by the imaging unit, A notification unit that notifies the determination result of the determination unit, wherein the determination unit is a light having a luminance value equal to or greater than a third threshold value in a determination region set in the image for each of the plurality of images.
  • a pixel is detected, and it is determined that the sample liquid has been dropped when the number of bright pixels in each of the images decreases in the order in which the images are acquired.
  • an immunological test apparatus capable of promptly informing the user of forgetting to drop the sample liquid on the chromatographic test piece.
  • FIG. 1 It is a perspective view of an example of a cartridge which stored a chromatographic test piece for explaining an embodiment of the present invention.
  • FIG. 1 It is a schematic diagram of the chromatography test piece of FIG.
  • FIG. 1 It is a block diagram of an example of an immunoassay device for explaining an embodiment of the present invention.
  • It is a schematic diagram of the imaging part of the immunoassay apparatus of FIG. It is a schematic diagram which shows an example of the color tone of a chromatography test piece.
  • FIG. 1 and FIG. 2 show an example of a chromatographic test piece used for analyzing a sample liquid and a cartridge containing the chromatographic test piece for explaining an embodiment of the present invention.
  • a chromatographic test piece (hereinafter referred to as a test piece) 1 shown in FIGS. 1 and 2 is used for analysis for detecting or quantifying an antigen such as a virus in a sample liquid using an antigen-antibody reaction.
  • the test piece 1 is a strip-like thin piece made of a porous material such as cellulose, and is typically white.
  • the test piece 1 includes a dropping portion 2 provided at one end portion in the longitudinal direction x and a developing portion 3 provided adjacent to the dropping portion 2 in the longitudinal direction x.
  • the sample liquid is dropped on the dropping unit 2, and the sample liquid dropped on the dropping unit 2 flows from the dropping unit 2 to the developing unit 3 by capillary action, and further toward the end opposite to the dropping unit 2. 3 flows in the longitudinal direction x.
  • the dropping part 2 is provided with a labeled antibody b labeled with colloidal gold particles.
  • the labeled antibody b is dissolved in the sample liquid dropped on the dropping unit 2, and when the sample liquid contains the antigen a, it binds to the antigen a to form an antigen-antibody complex ab.
  • the antigen-antibody complex ab is moved along the flow of the sample liquid, and the surplus labeled antibody b remaining without binding to the antigen a is also moved along the flow of the sample liquid.
  • the developing unit 3 is provided with a reaction unit 4.
  • the reaction unit 4 has a determination line 5 for detecting or quantifying the antigen a in the sample liquid. Further, in this example, the control line 6 for detecting that the sample liquid appropriately flows into the test piece 1.
  • the determination line 5 and the control line 6 are provided across the development part 3 in the short direction y orthogonal to the longitudinal direction x, and the control line 6 is located downstream of the determination line 5 in the flow of the sample liquid. Is provided.
  • a first capture antibody c that binds to the antigen a is fixedly provided in the determination line 5 for detecting or quantifying the antigen a in the sample liquid.
  • the antigen-antibody complex ab moved along with the flow of the sample liquid is captured by the first capture antibody c in the determination line 5 and fixed to the determination line 5.
  • the determination line 5 is colored by the colloidal gold particles adhering to the labeled antibody b of the antigen-antibody complex ab, and the antigen-antibody complex ab to be fixed As the value increases, the color of the determination line 5 becomes stronger.
  • the coloration of the determination line 5 is optically detected as a change in absorbance, and the antigen a in the sample liquid is detected or quantified.
  • a second capture antibody d that binds to the labeled antibody b is fixedly provided on the control line 6 for detecting that the sample liquid has properly flowed to the test piece 1.
  • the surplus labeled antibody b that is moved in the flow of the sample liquid passes through the determination line 5 without being captured by the first capture antibody c, and is captured by the second capture antibody d of the control line 6, so that the control line 6 Fixed to.
  • the control line 6 is colored by the colloidal gold particles adhering to the labeled antibody b.
  • the control line 6 is displayed. The color becomes stronger.
  • control line 6 is colored by contact with the sample liquid regardless of whether or not the antigen a is contained in the sample liquid.
  • the coloration of the control line 6 is optically detected as a change in absorbance, and it is detected that the sample liquid has flowed appropriately through the test piece 1.
  • the test piece 1 is stored in a cartridge 7 and used.
  • the cartridge 7 is provided with an opening 8 facing the dropping portion 2 of the stored test piece 1, and the sample liquid is dropped into the dropping portion 2 through the opening 8.
  • the cartridge 7 is made of a transparent resin material, and the coloration of the reaction portion 4 (the determination line 5 and the control line 6) of the test piece 1 is optically detected through the cartridge 7.
  • 3 and 4 show an example of an immunological test apparatus that performs analysis using the test piece 1.
  • the immunological test apparatus 10 includes an operation unit 11, an imaging unit 12, a notification unit 13, a storage unit 14, and a control unit that supervises the operations of the operation unit 11, the imaging unit 12, the notification unit 13, and the storage unit 14. 15.
  • the operation unit 11 receives various instructions from the operator (for example, an analysis start instruction).
  • the operation unit 11 is configured by a hardware key such as a switch, for example.
  • the instruction received by the operation unit 11 is input to the control unit 15.
  • the imaging unit 12 optically detects the coloration of the reaction unit 4 (the determination line 5 and the control line 6) of the test piece 1.
  • the imaging unit 12 includes an installation unit 20 where the cartridge 7 containing the test piece 1 is installed, a light source 21 such as an LED (Light Emitting Diode), a CCD (Charge-Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor), and the like. Image sensor 22.
  • the test piece 1 of the cartridge 7 installed in the installation unit 20 is illuminated by the light source 21 and is imaged by the imaging element 22 in the illuminated state.
  • the acquired image of the test piece 1 is input to the control unit 15.
  • reports various information (for example, analysis result etc.) to an operator.
  • the notification unit 13 may include a display panel such as an LCD (Liquid Crystal Display) or an OELD (Organic Electro-Luminescence Display), and may display information by displaying images and characters on the display screen of the display panel.
  • the notification unit 13 includes an indicator lamp such as an LED (Light Emitting Diode), and may notify the information by lighting or blinking the indicator lamp.
  • reporting part 13 may alert
  • the storage unit 14 stores a control program and control data executed by the control unit 15, and stores various types of information such as analysis results.
  • the storage unit 14 includes a storage medium such as a flash memory, a hard disk, a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the control unit 15 controls the operations of the operation unit 11, the imaging unit 12, the notification unit 13, and the storage unit 14 by operating according to the control program.
  • the control unit 15 also functions as the image processing unit 23 and the analysis unit 24 by operating according to the control program.
  • the image processing unit 23 generates luminance information in which the color intensity of the reaction unit 4 (determination line 5 and control line 6) appearing in the image of the test piece 1 is quantified by the luminance of the image.
  • the analysis unit 24 detects or quantifies the antigen a in the sample liquid based on the color intensity of the determination line 5 indicated by the luminance information. In addition, the analysis unit 24 detects that the sample liquid appropriately flows to the test piece 1 based on the color intensity of the control line 6 indicated by the luminance information. And the analysis part 24 produces
  • control unit 15 operates according to the control program, and executes a predetermined analysis process when an analysis start instruction is input from the operation unit 11.
  • the predetermined analysis process appears in the step of measuring the elapse of a predetermined reaction time from the start of analysis, the step of causing the imaging unit 12 to image the test piece 1 after the elapse of the predetermined reaction time, and the acquired image of the test piece 1
  • the method includes generating luminance information in which the color intensity of the reaction unit 4 (determination line 5 and control line 6) is digitized by the luminance of the image, and generating an analysis result based on the generated luminance information.
  • the reaction time is the time during which the reaction unit 4 is in contact with the sample liquid
  • the predetermined reaction time is when the sample liquid containing the antigen at a predetermined concentration flows through the test piece 1 placed horizontally. This is the time for the reaction unit 4 to color with sufficient intensity for detection, and is set appropriately.
  • control part 15 notifies the alerting
  • control unit 15 also functions as the determination unit 25 by operating according to the control program, determines whether or not the sample liquid is dripped onto the test piece 1, and causes the notification unit 13 to notify the determination result. Execute. This determination process will be described later.
  • the control line 6 based on the color intensity of the control line 6, it is detected that the sample liquid has flowed appropriately to the test piece 1, and it is determined whether or not the sample liquid has been dropped on the test piece 1 based on this detection result. Is possible. However, before the detection result is acquired, the predetermined reaction time has passed, and the image is used for generating luminance information in which the color intensity of the reaction unit 4 is digitized, that is, used for analyzing the sample liquid. It is necessary that an analysis image to be obtained is acquired. From the viewpoint of early notification of forgetting to drop the sample liquid on the test piece 1, the determination process is performed and the determination result is notified at least at a timing prior to the acquisition timing of the analysis image.
  • the hardware structure of the control unit 15 that performs various processes as the image processing unit 23, the analysis unit 24, and the determination unit 25 is a general-purpose processor such as a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array).
  • a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit) that can change the circuit configuration after manufacturing A dedicated electrical circuit is included.
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • Each processing unit (the image processing unit 23, the analysis unit 24, the determination unit 25, etc.) of the control unit 15 may be configured by one of the various processors described above for each processing unit, or the same type or different types. Or a combination of two or more processors (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). Further, the plurality of processing units may be configured by one processor.
  • one processor As an example of configuring a plurality of processing units by one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units. Second, as represented by a system-on-chip (SoC), a form of using a processor that realizes the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there. As described above, the various processing units are configured by using one or more of the various processors as a hardware structure. Further, the hardware structure of these various processors is more specifically an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
  • SoC system-on-chip
  • FIG. 5 is a schematic diagram showing the color tone of the test piece 1 while the sample liquid is flowing
  • FIG. 6 is a schematic diagram showing the color tone of the test piece 1 where the sample liquid has completely flowed.
  • the test piece 1 is white in a state where the sample liquid is not dropped, and the region wetted by the sample liquid becomes dark when the sample liquid is dropped and wetted.
  • a color-tone boundary B is generated between the developed area A1 that is already wetted with the sample liquid and the undeveloped area A2.
  • the boundary B of the color tone appears as a luminance step extending in the short direction y of the test piece 1 in the image of the test piece 1.
  • the image (determination image) of the test piece 1 used for determining whether or not the sample liquid is dripped is acquired at least before the sample liquid dropped on the test piece 1 flows through the test piece 1. .
  • the time required from the time when the sample liquid is dripped onto the test piece 1 to the time when it flows completely through the test piece 1 depends on the length of the test piece 1 and the inclination of the test piece 1 in the longitudinal direction x (flow direction of the sample liquid) with respect to the horizontal. However, it is typically about 2 minutes. Therefore, the determination image can be an image acquired 30 seconds to 1 minute 30 seconds after the sample liquid is dropped on the test piece 1, for example.
  • FIG. 7 shows an example of the luminance information of the determination image
  • FIG. 8 shows the luminance change rate acquired from the luminance information of FIG.
  • the luminance information shown in FIG. 7 is obtained by quantifying the image of the test piece 1 in the middle of the flow of the specimen liquid shown in FIG. 5 according to the luminance, and shows the luminance change in the longitudinal direction x of the test piece 1. Yes.
  • a color tone boundary B generated between the developed area A1 and the undeveloped area A2 of the test piece 1 appears as a luminance step ⁇ in the luminance information.
  • the method of digitization is not particularly limited.
  • YUV luminance signal, U: difference between luminance signal and blue component, V: difference between luminance signal and red component
  • YCbCr YCbCr
  • the Y signal is directly used when an image signal of the format (Y: luminance signal, Cb: difference between luminance signal and blue component, Cr: difference between luminance signal and red component) is output.
  • This method is simple because the signal output from the imaging unit 12 can be directly used, and is excellent in versatility because it does not depend on the color of the sample liquid.
  • any one of the YUV format U signal and V signal, or any one of the YCbCr format Cb signal and Cr signal can be used.
  • RGB red component, G: green component, B: blue component
  • Raw Raw image format
  • Any one of the signals, or any one of the Raw R signal, G signal, and B signal may be used.
  • the luminance corresponding to the boundary B1 between the developed area A1 and the undeveloped area A2 is used by using a signal of a color component that is highly sensitive to the color of the sample liquid. Since the step ⁇ can be enlarged and the detection accuracy of the luminance step ⁇ can be improved, it is suitable when the sample liquid is colored.
  • the luminance change in the longitudinal direction x may be generated based on the luminance value of any one pixel column extending in the longitudinal direction x, but preferably, the average value of the luminance values for each pixel column extending in the short direction y Is generated based on By using the average value, for example, noise caused by dust attached to the test piece 1, the cartridge 7, etc. can be reduced.
  • the luminance change rate shown in FIG. 8 is a luminance change rate generated from the luminance information of FIG. 7 and indicates the luminance change rate in the longitudinal direction x of the test piece 1.
  • Z n Y n ⁇ (Y n ⁇ m + Y n ⁇ m + 1 +...
  • the luminance step ⁇ corresponding to the boundary B appears as a peak P that is convex to the positive side in the luminance change rate.
  • the experimental value of the luminance change rate (absolute value) of the peak P obtained by actually imaging the test piece 1 on which the specimen liquid has been dropped with the immunological test apparatus 10 and the luminance of the developed area A1 and the undeveloped area A2
  • a first threshold TV 1 is set between the change rate (absolute value) and the experimental value of the change rate (absolute value), and a luminance step having a luminance change rate (absolute value) equal to or greater than the first threshold TV 1 is detected.
  • a luminance step of 1 or more it can be determined that the sample liquid is dropped on the test piece 1.
  • a setting example of the first threshold TV 1 is shown below.
  • the Y signal is used for digitizing the image of the test piece 1, and the luminance average value of 10 ⁇ 10 pixels corresponding to the white portion of the test piece 1 is set to 1.
  • the value (absolute value) is about 0.035, and the maximum value (absolute value) of the luminance change rate in the already developed area A1 and the undeveloped area A2 is 0.005.
  • FIG. 9 shows a flow of determination processing executed by the control unit 15 when determining whether or not the sample liquid is dripped based on the luminance step.
  • the control unit 15 when the analysis start instruction is input, for counting an elapsed from the start of analysis of a predetermined judgment time t 1 (step S1).
  • the predetermined determination time t 1 is a time shorter than the time required for the sample liquid dropped on the test piece 1 to flow through the test piece 1, and can be, for example, 30 seconds to 1 minute 30 seconds.
  • the control unit 15 After a predetermined determination time has elapsed, the control unit 15 causes the imaging unit 12 to image the test piece 1 (step S2). Then, the control unit 15 uses the image (determination image) of the test piece 1 acquired in step S2, acquires the luminance change rate in the longitudinal direction x of the determination image (step S3), and determines the determination image. Whether or not the sample liquid is dripped is determined based on the luminance change rate of the determination region set to (step S4).
  • the determination area may be set over the entire area of the determination image, or the determination image including at least an area in which the presence of the luminance step ⁇ corresponding to the boundary B is predicted when the determination time t 1 has elapsed. May be set to a part of the area.
  • the determination area is set as a partial area of the determination image, only the luminance change rate of the determination area may be acquired in step S3.
  • the control unit 15 determines whether or not the sample liquid is dropped (Step S5), it is determined that the sample liquid is not dropped (Step S5), the notification unit 13 is notified of the determination result (Step S6).
  • the control unit 15 determines that the sample liquid is dripped (step S7), and continues the determination process. Perform analysis processing.
  • the control unit 15 counts a lapse of a predetermined reaction time t 2 from the analysis start (step S8).
  • Predetermined reaction time t 2 when the specimen liquid containing the antigen at a predetermined concentration flows into the test piece 1 placed horizontally, a time reaction unit 4 is color former with sufficient strength in the detection, for example, It can be 20 minutes.
  • control unit 15 After a predetermined reaction time has elapsed, the control unit 15 causes the imaging unit 12 to image the test piece 1 (step S9). And the control part 15 uses the image (analysis image) of the test piece 1 acquired in step S8, and the luminance information which digitized the color intensity of the reaction part 4 (the determination line 5 and the control line 6). Is generated (step S10).
  • control unit 15 detects the color intensity of the reaction unit 4 (determination line 5 and control line 6) based on the luminance information generated in step S10 (step S11), and obtains it from the detected color intensity.
  • the informing unit 13 is notified of the analysis result (the detection result or the quantification result of the antigen in the sample liquid and the sample liquid appropriately flowing to the test piece 1) (step S12).
  • the control line 6 of the reaction unit 4 it is possible to detect the coloration of the control line 6 of the reaction unit 4 by determining whether or not the sample liquid is dripped based on the luminance step appearing in the determination region of the determination image of the test piece 1. without waiting for the predetermined elapsed reaction time t 2 made, it is possible to notify the dropping forgotten sample liquid at an early stage. In addition, it is possible to eliminate waste when the analysis is performed in a state where the dripping is forgotten, and to improve the efficiency of the analysis work. Moreover, since the image for determination of the test piece 1 and the image for analysis are acquired by the common imaging unit 12, the size and cost of the immunological test apparatus 10 can be reduced.
  • the determination region is set to a partial region of the image
  • the determination region is set on the upstream side of the flow of the sample liquid flowing through the test piece 1 with respect to the control line 6 in the image.
  • the determination region R is set upstream of the control line 6
  • the leading end of the flow of the sample liquid, that is, the boundary B reaches the determination region R at an early stage.
  • the sample liquid may flow through the test piece 1 before the predetermined determination time t 1 elapses, and the boundary B may disappear from the test piece 1.
  • the longitudinal direction x of the test piece 1 is inclined with respect to the horizontal due to the installation state of the immunological test apparatus 10, and the downstream side of the flow of the sample liquid flowing through the test piece 1 is relatively located on the lower side.
  • the case where the flow of the sample liquid becomes faster is exemplified.
  • the downstream side of the flow of the sample liquid flowing through the test piece 1 is disposed on the relatively upper side, the flow of the sample liquid becomes slow, and when the determination time t 1 has passed, the boundary B is the test piece 1. May not occur.
  • a sensor that detects the inclination of the test piece 1 with respect to the horizontal in the longitudinal direction x may be provided, and the determination time t 1 may be changed according to the inclination detected by the sensor.
  • the determination time t 1 when the longitudinal direction x of the test piece 1 is horizontal with respect is the slope downstream of the sample fluid flow through the test piece 1 is disposed relatively lower
  • the determination time t 1 is shortened, and when the inclination is such that the downstream side of the flow of the sample liquid flowing through the test piece 1 is relatively located on the upper side, the determination time t 1 may be extended.
  • the boundary B can be stored in the image of the test piece 1 and it can be determined appropriately whether the sample liquid is dripped.
  • the short direction y of the test piece 1 when the short direction y of the test piece 1 is inclined with respect to the horizontal, and the sample liquid flows toward one side of the test piece 1 in the short direction y, as shown in FIG. 1 may be inclined with respect to the short direction y.
  • the luminance information used for detecting the luminance step that is, the luminance change in the longitudinal direction x of the test piece 1 is preferably generated based on the average value of the luminance values for each pixel column extending in the short direction y.
  • the luminance and the luminance change rate of the luminance step corresponding to the boundary B may be smaller than the actual luminance and the luminance change rate by averaging.
  • the determination method of detecting the luminance level difference luminance change rate is the first threshold TV 1 or more, there is a fear that trouble occurs in the determination of whether or not the sample liquid is dropped.
  • the determination method described below is to detect whether or not the sample liquid is dropped based on the number of dark pixels by detecting dark pixels whose luminance value is equal to or less than the second threshold in the image of the test piece 1. is there.
  • FIG. 11 shows luminance information obtained by digitizing the image of the test piece 1 by luminance, and shows the luminance value of each pixel included in one pixel column extending in the longitudinal direction x of the test piece 1.
  • the solid line indicates the luminance information when the sample liquid is dropped
  • the alternate long and short dash line indicates the luminance information when the sample liquid is not dropped.
  • the test piece 1 When the specimen liquid is not dropped, the test piece 1 is white, and the luminance value of each pixel indicated by the luminance information is generally high. On the other hand, in the test piece 1 in the case where the sample liquid is dripped, the developed area A1 whose color tone is relatively dark is expanded by flowing the sample liquid even slightly, and the luminance value of each pixel indicated by the luminance information is increased. Among them, the luminance value of the pixel corresponding to the already developed area A1 is a relatively low value.
  • the experimental value of the brightness values of the specimen 1 when the sample fluid has not been dropped have configured the second threshold value TV 2 between the experimental value of the luminance values of the already expanded region A1, the luminance value is second threshold TV 2 detects a dark pixel is less, when the number of pixels dark pixels is equal to or greater than a predetermined number, to that there is already an expansion area A1, i.e. the sample solution is dropped on the test piece 1 Can be determined.
  • YY (n, p) be the median luminance in the 2q ⁇ 2q region centered at, and 1 be the maximum luminance.
  • the minimum value of YY (n, p) of the test piece 1 on which the sample liquid is not dripped is 0.94
  • YY (n, p) of the developed area A1 of the test piece 1 on which the sample liquid is dripped is 0.94.
  • the second threshold value TV 2 does not necessarily need to be set by the above formula, and the minimum value of YY (n, p) when the sample liquid is not dropped and YY ( n, may be appropriately set between the maximum value of p) in the above example, if a value larger than the second threshold value TV 2 0.83 (e.g. 0.88), the dark pixel detection accuracy of the It is possible to increase.
  • FIG. 12 shows a flow of determination processing executed by the control unit 15 when determining whether or not the sample liquid is dripped based on the number of dark pixels.
  • Control unit 15 when the analysis start instruction is input, for counting a lapse of a predetermined judgment time t 3 from the analysis starts (step S21).
  • Predetermined judging time t 3 may be the same as the determination time t 1 used in the above determination process for detecting the luminance level difference may be different.
  • control unit 15 After the predetermined determination time has elapsed, the control unit 15 causes the imaging unit 12 to image the test piece 1 (step S22).
  • the control unit 15 uses the image (determination image) of the test piece 1 acquired in step S2, and acquires the luminance value of each pixel of the determination image (step S23).
  • the control unit 15 by applying the second threshold value TV 2 to the luminance value of each pixel of the determination image obtained at step S23, the dark pixels in the determination area set in the determination image Based on the detected number n of dark pixels, it is determined whether or not the sample liquid is dripped (step S24).
  • the determination area may be set over the entire area of the determination image, or may be set as a partial area of the determination image.
  • the determination area is set as a partial area of the determination image, Preferably, it is set on the upstream side of the flow of the sample liquid flowing through the test piece 1 with respect to the control line 6 in the image.
  • the control unit 15 determines that the sample liquid is not dripped (step S25).
  • the notification unit 13 is notified of the determination result (step S26).
  • the control unit 15 determines that the sample liquid is dropped (step S27), and executes the analysis process following the determination process. .
  • the coloration of the control line 6 of the reaction unit 4 is performed. There without waiting for the elapse of a predetermined reaction time t 2 to be detected, it is possible to notify the dropping forgotten sample liquid at an early stage. In addition, it is possible to eliminate waste when the analysis is performed in a state where the dripping is forgotten, and to improve the efficiency of the analysis work. Further, the dark pixel is generated in the determination image of the test piece 1 when the sample liquid flows even a little through the test piece 1, and the determination image of the test piece 1 also when the sample liquid completely flows through the test piece 1. Therefore, regardless of the inclination of the test piece 1 with respect to the horizontal in the longitudinal direction x, it can be stably determined whether or not the sample liquid is dripped.
  • the luminance values of the pixels indicated by the luminance information of the test piece 1 when the sample liquid is dropped are relatively
  • the luminance value of the pixel corresponding to the undeveloped area A2 is a relatively high value.
  • a third threshold TV 3 is set between the experimental value of the luminance value of the developed area A1 and the experimental value of the luminance value of the undeveloped area A2, and a plurality of determinations obtained at appropriate time intervals are used.
  • a bright pixel having a luminance value equal to or greater than the third threshold TV 3 is detected for each image, and the number of bright pixels in each of the plurality of determination images decreases in the image acquisition order, the undeveloped area A2 Can be determined to be reduced, that is, the sample liquid is dropped on the test piece 1.
  • YY (n, p) be the median luminance in the 2q ⁇ 2q region centered at, and 1 be the maximum luminance.
  • the test piece 1 to which the sample liquid is not dropped that is, the minimum value of YY (n, p) in the undeveloped area A2 is 0.94, and the YY of the already developed area A1 of the test piece 1 in which the specimen liquid is dropped.
  • the third threshold value TV 3 does not necessarily have to be set by the above formula, and the minimum value of YY (n, p) when the sample liquid is not dropped and YY when the sample liquid is dropped ( n, may be appropriately set between the maximum value of p) in the above example, the third threshold value TV 3 than 0.83 if a small value (e.g. 0.78), the bright pixel detection accuracy It is possible to increase.
  • j images (where j> 1 is an integer) are acquired, and a j ⁇ 1 ⁇ a j > ⁇ (integer where ⁇ > 0) always holds, where a j is the number of bright pixels in each image. In this case, it can be determined that the number of bright pixels is decreasing in the order of image acquisition.
  • FIG. 13 shows a flow of determination processing executed by the control unit 15 when determining whether or not the sample liquid is dripped based on the number of bright pixels.
  • two determination images are acquired.
  • the determination images are not limited to two, and may be three or more.
  • Control unit 15 when the analysis start instruction is input, for counting a lapse of a predetermined judgment time t 4 from the analysis starts (step S31).
  • Predetermined determination time t 4 may be the same as the determination time t 1 used in the above determination process for detecting the luminance level difference may be different.
  • control unit 15 After the predetermined determination time has elapsed, the control unit 15 causes the imaging unit 12 to image the test piece 1 (step S32). And the control part 15 acquires the luminance value of each pixel of this 1st image for a determination using the image (image for 1st determination) of the test piece 1 acquired in step S32 (step S33).
  • the control unit 15 applies the third threshold value TV 3 to the luminance value of each pixel of the first determination image acquired in step S33, so that it is within the determination region set in the first determination image. Are detected, and the number of detected bright pixels n1 is counted (step S34).
  • the determination area may be set over the entire area of the determination image, or may be set as a partial area of the determination image. When the determination area is set as a partial area of the determination image, Preferably, it is set on the upstream side of the flow of the sample liquid flowing through the test piece 1 with respect to the control line 6 in the image.
  • control unit 15 causes the imaging unit 12 to image the test piece 1 in step S32, and then causes the imaging unit 12 to image the test piece 1 again at an appropriate time interval (for example, 5 seconds) (step S32).
  • S35 The controller 15 uses the image of the test piece 1 (second determination image) acquired in step S35, and acquires the luminance value of each pixel of the second determination image (step S36).
  • control unit 15 applies the third threshold value TV 3 to the luminance value of each pixel of the second determination image acquired in step S36, so that it is within the determination region set in the second determination image.
  • the determination area set in the second determination image is the same as the determination area set in the first determination image.
  • Control unit 15 the pixel number n 1 of the bright pixel in the first determination image counted in step S34, on the basis of the pixel number n 2 of the light pixels of the second determination image counted in step S37, It is determined whether or not the sample liquid is dripped (step S38).
  • the control unit 15 determines that the sample liquid has not been dropped (step S39), and causes the notification unit 13 to notify the determination result (step S40).
  • the number of pixels n 2 of the bright pixel in the second determination image is bright pixel number of pixels n 1 is smaller than the first determination image, that is, when is decreasing, the control unit 15, the specimen liquid dripping It is determined that it has been performed (step S41), and analysis processing is executed following the determination processing.
  • the coloration of the control line 6 of the reaction unit 4 is performed. There without waiting for the elapse of a predetermined reaction time t 2 to be detected, it is possible to notify the dropping forgotten sample liquid at an early stage. In addition, it is possible to eliminate waste when the analysis is performed in a state where the dripping is forgotten, and to improve the efficiency of the analysis work. Furthermore, since the decrease in the number of bright pixels between a plurality of determination images is not affected by noise, illumination unevenness, etc. that can be detected as dark pixels, it is possible to stably determine whether or not the sample liquid is dripped. can do.
  • each determination method of the determination method for detecting a luminance step, the determination method for detecting a dark pixel, and the determination method for detecting a bright pixel has been described individually, but a plurality of determination methods may be combined.
  • the example shown in FIG. 14 is a combination of the determination method for detecting the luminance step shown in FIG. 9 and the determination method for detecting the dark pixel shown in FIG. Control unit 15, based on the brightness change rate of the determination image, it is determined whether or not the sample liquid is dropped (step S4), and the luminance level difference ⁇ is determined luminance change rate is the first threshold TV 1 or more If it does not exist in the image for use (step S4-No), the dark pixel of the image for determination is further detected, and it is determined whether or not the sample liquid is dripped based on the number n of dark pixels. (Step S24). When the number n of dark pixels is less than the predetermined number N, it is determined that the sample liquid has not been dropped (step S25). In this way, by combining a plurality of determination methods, it is possible to improve the determination accuracy when determining that the sample liquid is not dripped.
  • the determination method for detecting the luminance step and the determination method for detecting the dark pixel are combined, but the determination method for detecting the luminance step and the determination method for detecting the bright pixel are combined.
  • the determination method for detecting a dark pixel and the determination method for detecting a bright pixel may be combined, or the determination method for detecting a luminance step, the determination method for detecting a dark pixel, and a bright pixel are detected.
  • the determination method to be performed may be combined.
  • the immunological test apparatus images a chromatographic test piece in which a specimen liquid is dropped and the dropped specimen liquid is flowed in the longitudinal direction, and based on the obtained image.
  • An immunoassay device for analyzing the sample liquid, wherein an imaging unit that images the chromatography test piece, and whether or not the sample liquid is dropped on the chromatography test piece based on an image acquired by the imaging unit
  • a determination unit for determining, and a notification unit for notifying a determination result of the determination unit, wherein the determination unit has a luminance change rate in the longitudinal direction of the chromatography test piece in a determination region set in the image. Is obtained, and it is determined that the sample liquid has been dropped when there is a luminance step having an absolute value of the luminance change rate equal to or greater than the first threshold.
  • the immunoassay device disclosed in the present specification images a chromatographic test piece in which the sample liquid is dropped and the dropped sample liquid is flowed in the longitudinal direction, and the sample liquid is removed based on the obtained image.
  • An immunoassay device for analysis an imaging unit that images the chromatography test piece, and a determination unit that determines the presence or absence of dripping of the sample liquid on the chromatography test piece based on an image acquired by the imaging unit
  • a notification unit for reporting the determination result of the determination unit, wherein the determination unit detects a dark pixel whose luminance value is equal to or less than a second threshold in a determination region set in the image, and When there are a predetermined number or more of dark pixels, it is determined that the sample liquid has been dropped.
  • the immunological test apparatus images a chromatographic test piece in which a specimen liquid is dropped and the dropped specimen liquid is flowed in the longitudinal direction, and the specimen liquid is based on the obtained image.
  • An imaging unit that images the chromatographic test piece, and a determination that determines whether or not the sample liquid is dropped on the chromatographic test piece based on an image acquired by the imaging unit
  • a notification unit for reporting the determination result of the determination unit, wherein the determination unit has a luminance value equal to or greater than a third threshold value in a determination region set in the image for each of the plurality of images.
  • the chromatography test piece has a reaction part that is colored by contact with the sample liquid, and the determination region flows through the chromatography test piece rather than the reaction part in the image. It is set upstream of the flow of the sample liquid.
  • the determination unit may determine whether or not the sample liquid has been dropped on the chromatography test piece based on an image acquired by the imaging unit at a timing prior to the acquisition timing of the analysis image used for analyzing the sample liquid. Determine.
  • the imaging unit acquires the analysis image.
  • the present invention can provide an immunological test apparatus capable of informing at an early stage that a sample liquid has been forgotten to be dropped on a chromatographic test strip.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

免疫検査装置10は、クロマトグラフィー試験片1を撮像する撮像部12と、撮像部12によって取得された画像に基づいてクロマトグラフィー試験片1に対する検体液の滴下の有無を判定する判定部25と、判定部25の判定結果を報知する報知部13と、を備え、判定部25は、画像中に設定される判定領域Rにおいて、クロマトグラフィー試験片1の長手方向xの輝度変化率を取得し、輝度変化率の絶対値が第1閾値TV1以上である輝度段差Δが存在する場合に、検体液が滴下されたものと判定する。

Description

免疫検査装置
 本発明は、免疫検査装置に関する。
 インフルエンザ等のウイルス感染症の検査に、抗原抗体反応を利用して検体中のウイルス等の抗原を検出し又は定量する免疫検査装置が用いられている。この種の免疫検査装置では、典型的には、検体液がクロマトグラフィー試験片に滴下される。試験片に滴下された検体液は、試験片を長手方向に流れ、試験片に設けられている反応部を通過する。反応部は検体液中の抗原を抗原抗体反応によって捕捉することにより呈色し、この反応部が撮像され、取得された画像中の反応部の呈色強度に基づいて抗原が検出され又は定量される。
 反応部の呈色は、反応部が検体液と接触している時間(反応時間)に影響され、検体液中の抗原の濃度が同じであっても反応時間が異なれば反応部の呈色強度が異なる。特許文献1に記載された検査装置では、反応時間を高精度に管理する観点から、反応部を撮像する撮像センサとは別に、試験片において検体液が滴下される添加部を撮像する添加状態撮像センサがさらに設けられている。添加状態撮像センサによって取得される画像に基づいて適正量の検体液が試験片に滴下されたことが検出されるのと同時に時間計測が開始され、計測開始から所定時間経過後に反応部が撮像され、反応時間が管理されている。
日本国特開2010-32447号公報
 検体液は、オペレータによって試験片に滴下されるため、滴下忘れが生じ得る。例えば、上記反応時間は、典型的には10分程度とされるが、検体液が滴下されないまま分析が進められると、この反応時間を含めて分析に要する時間が無駄となる。分析作業の効率化の観点から、滴下忘れが早期に検出され、オペレータに報知されることが望ましい。
 特許文献1に記載された検査装置では、添加状態撮像センサによって取得される添加部の画像の明暗度が監視されており、検体液が滴下されていない状態での明暗度を基準値として、基準値からの差分に基づいて検体液が適正量に達したか否かが検出されている。以上の検出動作では、基準値とされる検体液が滴下されていない状態、すなわち滴下忘れを検出することはできない。
 また、特許文献1に記載された検査装置では、試験片が検査装置に装着されてから所定時間内に検体液が適正量に達しない場合に、再測定を促す表示が表示部に出力される。この表示に基づき、結果的に滴下忘れがオペレータに認識されるとしても、試験片の反応部を撮像する撮像センサとは別に試験片の添加部を撮像する追加の添加状態撮像センサが必要となるため、検査装置の小型化及び低コスト化に不利である。
 本発明は、上述した事情に鑑みなされたものであり、クロマトグラフィー試験片に対する検体液の滴下忘れを早期に報知可能な免疫検査装置を提供することを目的とする。
 本発明の一態様の免疫検査装置は、検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、上記画像中に設定される判定領域において、上記クロマトグラフィー試験片の長手方向の輝度変化率を取得し、上記輝度変化率の絶対値が第1閾値以上である輝度段差が存在する場合に、上記検体液が滴下されたものと判定する。
 また、本発明の一態様の免疫検査装置は、検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、上記画像中に設定される判定領域において、輝度値が第2閾値以下である暗画素を検出し、上記暗画素が所定数以上存在する場合に、上記検体液が滴下されたものと判定する。
 本発明の一態様の免疫検査装置は、検体液が滴下され且つ滴下された上記検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、複数枚の上記画像毎に、上記画像中に設定される判定領域において、輝度値が第3閾値以上である明画素を検出し、上記画像それぞれの上記明画素の画素数が上記画像の取得順に減少している場合に、上記検体液が滴下されたものと判定する。
 本発明によれば、クロマトグラフィー試験片に対する検体液の滴下忘れを早期に報知可能な免疫検査装置を提供することができる。
本発明の実施形態を説明するための、クロマトグラフィー試験片を収納したカートリッジの一例の斜視図である。 図1のクロマトグラフィー試験片の模式図である。 本発明の実施形態を説明するための、免疫検査装置の一例のブロック図である。 図3の免疫検査装置の撮像部の模式図である。 クロマトグラフィー試験片の色調の一例を示す模式図である。 クロマトグラフィー試験片の色調の他の例を示す模式図である。 クロマトグラフィー試験片の画像の輝度情報の一例を示すグラフである。 図7の輝度情報から取得される輝度変化率を示すグラフである。 図3の免疫検査装置の制御部が実行する判定処理の一例のフローチャートである。 クロマトグラフィー試験片の色調の他の例を示す模式図である。 クロマトグラフィー試験片の画像の輝度情報の他の例を示すグラフである。 図3の免疫検査装置の制御部が実行する判定処理の他の例のフローチャートである。 図3の免疫検査装置の制御部が実行する判定処理の他の例のフローチャートである。 図3の免疫検査装置の制御部が実行する判定処理の他の例のフローチャートである。
 図1及び図2は、本発明の実施形態を説明するための、検体液の分析に用いられるクロマトグラフィー試験片及びクロマトグラフィー試験片を収納したカートリッジの一例を示す。
 図1及び図2に示すクロマトグラフィー試験片(以下、試験片という)1は、抗原抗体反応を利用して検体液中のウイルス等の抗原を検出し又は定量する分析に用いられるものである。試験片1は、例えばセルロース等の多孔質材料からなる帯状の薄片であり、典型的には白色である。試験片1は、長手方向xの一方側の端部に設けられている滴下部2と、長手方向xに滴下部2に隣設されている展開部3とを備える。検体液は滴下部2に滴下され、滴下部2に滴下された検体液は、毛細管現象によって滴下部2から展開部3に流れ、さらに滴下部2とは反対側の端部に向けて展開部3を長手方向xに流れる。
 滴下部2には、金コロイド粒子によって標識された標識抗体bが設けられている。標識抗体bは、滴下部2に滴下された検体液に溶解し、検体液に抗原aが含まれている場合には抗原aと結合して抗原抗体複合物abを形成する。抗原抗体複合物abは検体液の流れに乗って移動され、抗原aと結合することなく残った余剰の標識抗体bもまた検体液の流れに乗って移動される。
 展開部3には、反応部4が設けられている。反応部4は、検体液中の抗原aを検出又は定量するための判定ライン5を有し、さらに本例では、検体液が試験片1に適切に流れたことを検出するためのコントロールライン6を有する。判定ライン5及びコントロールライン6は、長手方向xと直交する短手方向yに展開部3を横断して設けられており、コントロールライン6は、判定ライン5よりも検体液の流れの下流側に設けられている。
 検体液中の抗原aを検出又は定量するための判定ライン5には、抗原aと結合する第1捕捉抗体cが固定的に設けられている。検体液の流れに乗って移動される抗原抗体複合物abは、判定ライン5の第1捕捉抗体cに捕捉され、判定ライン5に固定される。抗原抗体複合物abが判定ライン5に固定されることにより、抗原抗体複合物abの標識抗体bに付着している金コロイド粒子によって判定ライン5が呈色し、固定される抗原抗体複合物abが増加するほどに判定ライン5の呈色が強くなる。この判定ライン5の呈色が吸光度の変化として光学的に検出され、検体液中の抗原aが検出又は定量される。
 検体液が試験片1に適切に流れたことを検出するためのコントロールライン6には、標識抗体bと結合する第2捕捉抗体dが固定的に設けられている。検体液の流れに乗って移動される余剰の標識抗体bは、第1捕捉抗体cに捕捉されずに判定ライン5を通過し、コントロールライン6の第2捕捉抗体dに捕捉され、コントロールライン6に固定される。標識抗体bがコントロールライン6に固定されることにより、標識抗体bに付着している金コロイド粒子によってコントロールライン6が呈色し、固定される標識抗体bが増加するほどにコントロールライン6の呈色が強くなる。すなわち、コントロールライン6は、検体液に抗原aが含まれているか否かにかかわらず、検体液と接触することによって呈色する。このコントロールライン6の呈色が吸光度の変化として光学的に検出され、検体液が試験片1に適切に流れたことが検出される。
 試験片1は、カートリッジ7に収納されて用いられる。カートリッジ7には、収納されている試験片1の滴下部2に対向する開口部8が設けられており、検体液は開口部8を通して滴下部2に滴下される。カートリッジ7は、透明な樹脂材料からなり、試験片1の反応部4(判定ライン5及びコントロールライン6)の呈色は、カートリッジ7を通して光学的に検出される。
 図3及び図4は、試験片1を用いて分析を実施する免疫検査装置の一例を示す。
 免疫検査装置10は、操作部11と、撮像部12と、報知部13と、記憶部14と、これら操作部11、撮像部12、報知部13、及び記憶部14の動作を統括する制御部15とを備える。
 操作部11は、オペレータの各種指示(例えば分析開始指示等)を受け付ける。操作部11は、例えばスイッチ等のハードウェアキーによって構成される。操作部11によって受け付けられた指示は、制御部15に入力される。
 撮像部12は、試験片1の反応部4(判定ライン5及びコントロールライン6)の呈色を光学的に検出する。撮像部12は、試験片1を収納したカートリッジ7が設置される設置部20と、LED(Light Emitting Diode)等の光源21と、CCD(Charge-Coupled Device)、CMOS(Complementary Metal Oxide Semiconductor)等の撮像素子22とを含む。設置部20に設置されたカートリッジ7の試験片1は、光源21によって照明され、照明された状態で撮像素子22によって撮像される。取得された試験片1の画像は、制御部15に入力される。
 報知部13は、オペレータに各種の情報(例えば分析結果等)を報知する。報知部13は、例えばLCD(Liquid Crystal Display)、OELD(Organic Electro-Luminescence Display)等の表示パネルを含み、表示パネルの表示画面に画像や文字を表示することによって情報を報知してもよい。また、報知部13は、LED(Light Emitting Diode)等の表示灯を含み、表示灯の点灯、点滅等によって情報を報知してもよい。また、報知部13は、ブザーを含み、音声によって情報を報知してもよい。
 記憶部14は、制御部15によって実行される制御プログラム及び制御データを記憶しており、また、分析結果等の各種の情報を記憶する。記憶部14は、例えばフラッシュメモリ、ハードディスク、ROM(Read Only Memory)、RAM(Random Access Memory)等の格納媒体によって構成される。
 制御部15は、制御プログラムに従って動作することにより、操作部11、撮像部12、報知部13、及び記憶部14の動作を統括する。また、制御部15は、制御プログラムに従って動作することにより、画像処理部23、分析部24としても機能する。
 画像処理部23は、試験片1の画像に表れる反応部4(判定ライン5及びコントロールライン6)の呈色強度を、画像の輝度によって数値化した輝度情報を生成する。
 分析部24は、輝度情報によって示される判定ライン5の呈色強度に基づいて検体液中の抗原aを検出又は定量する。また、分析部24は、輝度情報によって示されるコントロールライン6の呈色強度に基づいて検体液が試験片1に適切に流れたことを検出する。そして、分析部24は、以上の分析の結果を生成する。
 上記構成において、制御部15は、制御プログラムに従って動作することにより、操作部11から分析開始指示が入力されると、所定の分析プロセスを実行する。所定の分析プロセスは、分析開始から所定の反応時間の経過を計時するステップと、所定の反応時間経過後に撮像部12に試験片1を撮像させるステップと、取得された試験片1の画像に表れる反応部4(判定ライン5及びコントロールライン6)の呈色強度を画像の輝度によって数値化した輝度情報を生成するステップと、生成した輝度情報に基づいて分析結果を生成するステップとを含む。なお、反応時間は、反応部4が検体液と接触している時間であり、所定の反応時間は、抗原を所定の濃度で含む検体液が水平に置かれた試験片1を流れた場合に、反応部4が検出に十分な強度で呈色する時間であり、適宜設定される。
 そして、制御部15は、上記所定の分析プロセスを経て生成された分析結果を報知部13に報知させ、また、記憶部14に記憶させる。
 さらに、制御部15は、制御プログラムに従って動作することにより、判定部25としても機能し、試験片1に検体液が滴下されているか否かを判定し、判定結果を報知部13に報知させる処理を実行する。この判定処理については後述する。
 本例では、コントロールライン6の呈色強度に基づいて検体液が試験片1に適切に流れたことが検出され、この検出結果によっても試験片1に検体液が滴下されたか否かの判定は可能である。ただし、この検出結果が取得されるまでには、上記所定の反応時間が経過して、反応部4の呈色強度を数値化した輝度情報を生成するための画像、すなわち検体液の分析に用いられる分析用画像が取得されることを要する。試験片1に対する検体液の滴下忘れを早期に報知する観点から、上記判定処理の実行、及び判定結果の報知は、少なくとも分析用画像の取得タイミングよりも前のタイミングで行われる。
 画像処理部23、分析部24、判定部25として各種の処理を行う制御部15のハードウェア的な構造は、汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 制御部15の各処理部(画像処理部23、分析部24、判定部25等)は、処理部毎に、上記各種のプロセッサのうちの一つのプロセッサによって構成されてもよいし、同種又は異種の二つ以上のプロセッサの組み合わせ(例えば、複数のFPGAや、CPUとFPGAとの組み合わせ)によって構成されてもよい。また、複数の処理部が一つのプロセッサによって構成されてもよい。
 複数の処理部を一つのプロセッサによって構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、一つ以上のCPUとソフトウェアの組み合せで一つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を一つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを一つ以上用いて構成される。さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。
 以下、試験片1に検体液が滴下されているか否かを判定する判定方法について説明する。
 図5は、検体液が流れている途中の試験片1の色調を示す模式図であり、図6は検体液が流れきった試験片1の色調を示す模式図である。
 試験片1は、検体液が滴下されていない状態では白色であり、検体液が滴下されて濡れることによって検体液に濡れた領域は暗くなる。図5に示すように、検体液が流れている途中の試験片1、すなわち検体液の流れの先端が試験片1の滴下部2とは反対側の端部に達する以前の試験片1では、既に検体液に濡れた既展開領域A1と、未展開領域A2との間に色調の境界Bが生じる。この色調の境界Bは、試験片1の画像において、試験片1の短手方向yに延びる輝度段差となって表れる。
 そこで、試験片1の画像の輝度段差を検出することによって、試験片1に検体液が滴下されているか否かを判定することが可能である。すなわち、輝度段差が検出された場合には、検体液が滴下されているものと判定することができ、輝度段差が検出されない場合には、検体液が滴下されていないものと判定することができる。
 ただし、図6に示すように、検体液が流れきった試験片1、すなわち検体液の流れの先端が試験片1の滴下部2とは反対側の端部に達した試験片1では、試験片1の全体が既展開領域A1となり、境界Bは消失してしまう。したがって、検体液が滴下されているか否かの判定に用いられる試験片1の画像(判定用画像)は、少なくとも試験片1に滴下された検体液が試験片1を流れきる以前に取得される。
 検体液が試験片1に滴下されてから試験片1を流れきるまでに要する時間は、試験片1の長さ及び試験片1の長手方向x(検体液の流れ方向)の水平に対する傾きにもよるが、典型的には2分程度である。このことから、判定用画像は、例えば検体液が試験片1に滴下されてから30秒~1分30秒経過後に取得された画像とすることができる。
 図7は、判定用画像の輝度情報の一例を示し、図8は、図7の輝度情報から取得される輝度変化率を示す。
 図7に示す輝度情報は、図5に示した検体液が流れている途中の試験片1の画像を、輝度によって数値化したものであり、試験片1の長手方向xの輝度変化を示している。試験片1の既展開領域A1と未展開領域A2との間に生じる色調の境界Bは、輝度情報において、輝度段差Δとなって表れている。
 数値化の手法は、特に限定されるものではないが、例えば撮像部12からYUV(Y:輝度信号、U:輝度信号と青色成分の差、V:輝度信号と赤色成分の差)形式又はYCbCr(Y:輝度信号、Cb:輝度信号と青色成分の差、Cr:輝度信号と赤色成分の差)形式の画像信号が出力される場合に、Y信号を直接用いる方法がある。この方法は、撮像部12から出力される信号を直接用いることができるので簡便であり、且つ検体液の色によらないので汎用性に優れる。
 また、Y信号に替えて、YUV形式のU信号及びV信号のうちいずれか一つの信号、又はYCbCr形式のCb信号及びCr信号のうちいずれか一つの信号を用いることもでき、また、撮像部12からRGB(R:赤色成分、G:緑色成分、B:青色成分)形式又はRaw(Raw image format)形式の画像信号が出力される場合に、RGB形式のR信号、G信号、及びB信号のうちいずれか一つの信号、又はRaw形式のR信号、G信号、及びB信号のうちいずれか一つの信号を用いることもできる。この方法は、検体液が着色されている場合に、検体液の色に対して感度の高い色成分の信号を用いることにより、既展開領域A1と未展開領域A2との境界B1に対応する輝度段差Δを拡大でき、輝度段差Δの検出精度を高めることができるので、検体液が着色されている場合に好適である。
 なお、Y信号、U信号、V信号、Cb信号、Cr信号、R信号、G信号、B信号の各信号を単独で使用する場合に、信号の0を黒色とし、1を白色とする。
 長手方向xの輝度変化は、長手方向xに延びる任意の一つの画素列の輝度値に基づいて生成されてもよいが、好ましくは、短手方向yに延びる画素列毎の輝度値の平均値に基づいて生成される。平均値を用いることにより、例えば試験片1、カートリッジ7等に付着したゴミに起因するノイズを低減することができる。
 図8に示す輝度変化率は、図7の輝度情報から生成される輝度変化率であり、試験片1の長手方向xの輝度変化率を示している。試験片1の滴下部2をx=0とし、x=0,1,2・・・1023の位置の画素の輝度値をY,Y,Y・・・Y1023とした場合に、あるx=n(ただし、n=m+1、m>1の整数)における輝度変化率Zは、例えば式(1)によって求めることができる。Z=Y-(Yn-m+Yn-m+1+・・・+Yn-1)/m・・・(1)
 さらに、Z~Zn-l(ただし、l>1の整数であり、n>l)の中央値ZZを求め、このZZを判定用の輝度変化率として採用することにより、ノイズを低減することができる。なお、xの値域は撮像部12の画素分解能に応じて変更され、上記の例ではx方向の分解能が1024画素の場合である。また、mの値は、撮像部12の分解能や感度に応じて適宜設定可能である。
 境界Bに対応する輝度段差Δは、輝度変化率において正側に凸となるピークPとなって表れる。例えば、検体液が滴下された試験片1を実際に免疫検査装置10で撮像して得たピークPの輝度変化率(絶対値)の実験値と、既展開領域A1及び未展開領域A2の輝度変化率(絶対値)の実験値との間で第1閾値TVを設定しておき、輝度変化率(絶対値)が第1閾値TV以上である輝度段差を検出し、第1閾値TV以上である輝度段差が存在する場合に、検体液が試験片1に滴下されているものと判定することができる。
 第1閾値TVの設定例を以下に示す。まず、試験片1の画像の数値化にY信号を用い、試験片1の白色部分に対応する10X10画素の輝度平均値を1とする。そして、式(1)のm、lをそれぞれm=5、l=5として、検体液が滴下されている試験片1の輝度変化率ZZを求めたところ、ピークPの輝度変化率の最大値(絶対値)は約0.035であり、既展開領域A1及び未展開領域A2の輝度変化率の最大値(絶対値)は0.005であったとする。この場合に、第1閾値TVは(0.035-0.005)/2=0.015とすることができる。なお、第1閾値TVは、必ずしも上式によって設定される必要はなく、既展開領域A1及び未展開領域A2の輝度変化率のバラつきを考慮した上で、ピークPの輝度変化率と既展開領域A1及び未展開領域A2の輝度変化率との間で適宜設定可能である。 
 図9は、輝度段差に基づいて検体液が滴下されているか否かを判定する場合の、制御部15が実行する判定処理のフローを示す。
 検体液が試験片1に滴下された後に直ちに分析が開始されるものとして、制御部15は、分析開始指示が入力されると、分析開始から所定の判定時間tの経過を計時する(ステップS1)。所定の判定時間tは、試験片1に滴下された検体液が試験片1を流れきるのに要する時間よりも短い時間であり、例えば30秒~1分30秒とすることができる。
 所定の判定時間経過後、制御部15は、撮像部12に試験片1を撮像させる(ステップS2)。そして、制御部15は、ステップS2にて取得された試験片1の画像(判定用画像)を用い、この判定用画像の長手方向xの輝度変化率を取得し(ステップS3)、判定用画像に設定される判定領域の輝度変化率に基づいて、検体液が滴下されているか否かを判定する(ステップS4)。
 ここで判定領域は、判定用画像の全域に設定されてもよいし、判定時間tが経過した時点で境界Bに対応する輝度段差Δの存在が予測される領域を少なくとも含んだ判定用画像の一部の領域に設定されてもよい。判定領域が判定用画像の一部の領域に設定される場合に、上記ステップS3において、判定領域の輝度変化率のみを取得するようにしてもよい。判定領域が判定用画像の一部の領域に設定されることにより、制御部15にかかる処理負荷を軽減することができる。
 検体液が滴下されているか否かの判定において、制御部15は、輝度変化率が第1閾値TV以上である輝度段差Δが存在しない場合に、検体液が滴下されていないものと判定し(ステップS5)、報知部13に判定結果を報知させる(ステップS6)。一方、輝度変化率が第1閾値TV以上である輝度段差Δが存在する場合には、制御部15は、検体液が滴下されているものと判定し(ステップS7)、判定処理に続けて分析処理を実行する。
 判定処理に続く分析処理では、制御部15は、分析開始から所定の反応時間tの経過を計時する(ステップS8)。所定の反応時間tは、抗原を所定の濃度で含む検体液が水平に置かれた試験片1に流れた場合に、反応部4が検出に十分な強度で呈色する時間であり、例えば20分とすることができる。
 所定の反応時間経過後、制御部15は、撮像部12に試験片1を撮像させる(ステップS9)。そして、制御部15は、ステップS8にて取得された試験片1の画像(分析用画像)を用いて、反応部4(判定ライン5及びコントロールライン6)の呈色強度を数値化した輝度情報を生成する(ステップS10)。
 そして、制御部15は、ステップS10にて生成した輝度情報に基づいて反応部4(判定ライン5及びコントロールライン6)の呈色強度を検出し(ステップS11)、検出された呈色強度から得られる分析結果(検体液中の抗原の検出結果又は定量結果、及び検体液が試験片1に適切に流れたこと)を報知部13に報知させる(ステップS12)。
 このように、試験片1の判定用画像の判定領域に表れる輝度段差に基づいて検体液が滴下されているか否かを判定することにより、反応部4のコントロールライン6の呈色が検出可能となる所定の反応時間tの経過を待たずに、早期に検体液の滴下忘れを報知することが可能となる。そして、滴下忘れの状態で分析が進められた場合の無駄を排し、分析作業の効率化を図ることができる。また、試験片1の判定用画像と、分析用画像とを、共通の撮像部12によって取得するので、免疫検査装置10の小型化及び低コスト化を図ることもできる。
 コントロールライン6の呈色が検出可能となる所定の反応時間tの経過を待たずに、早期に検体液の滴下忘れを報知する観点から、判定領域が画像の一部の領域に設定される場合に、好ましくは、判定領域は、画像中のコントロールライン6よりも、試験片1を流れる検体液の流れの上流側に設定される。図5に示すように、判定領域Rがコントロールライン6よりも上流側に設定されることにより、検体液の流れの先端、すなわち境界Bが早期に判定領域Rに達し、これにより、分析開始から判定用画像が取得されるまでの判定時間tを短縮して、さらに早期に検体液の滴下忘れを報知することができる。
 なお、上記の判定処理において、所定の判定時間tが経過する以前に検体液が試験片1を流れきり、境界Bが試験片1から消失してしまう場合がある。このような場合として、免疫検査装置10の設置状況に起因して試験片1の長手方向xが水平に対して傾き、試験片1を流れる検体液の流れの下流側が相対的に下側に配置され、検体液の流れが速くなる場合が例示される。逆に、試験片1を流れる検体液の流れの下流側が相対的に上側に配置される場合には、検体液の流れが遅くなり、判定時間tが経過した時点で境界Bが試験片1に生じない可能性がある。これらの場合に対し、例えば試験片1の長手方向xの水平に対する傾きを検出するセンサを設け、センサによって検出される傾きに応じて判定時間tを変更するようにしてもよい。
 具体的には、試験片1の長手方向xが水平である場合の判定時間tを基準とし、試験片1を流れる検体液の流れの下流側が相対的に下側に配置される傾きである場合には判定時間tを短縮し、試験片1を流れる検体液の流れの下流側が相対的に上側に配置される傾きである場合には判定時間tを延長すればよい。これにより、試験片1の長手方向xの水平に対する傾きにかかわらず、境界Bを試験片1の画像に収め、検体液が滴下されているか否かを適切に判定することができる。
 ただし、試験片1の長手方向xの水平に対する傾きが過大である場合、すなわち検体液の流れが過度に速いか又は過度に遅い場合などであって、試験片1の長手方向xの水平に対する傾きに応じて判定時間tを変更したとしても境界Bを試験片1の画像に収めることができない場合に、輝度段差を検出する上記の判定方法では検体液が滴下されているか否かの判定に支障が生じる虞がある。
 また、試験片1の短手方向yが水平に対して傾き、検体液が試験片1の短手方向yの片側に片寄って流れた場合に、図10に示すように、境界Bが試験片1の短手方向yに対して傾斜する場合がある。輝度段差の検出に用いられる輝度情報、すなわち試験片1の長手方向xの輝度変化は、好ましくは、短手方向yに延びる画素列毎の輝度値の平均値に基づいて生成されるが、境界Bが短手方向yに対して傾斜している場合に、境界Bに対応する輝度段差の輝度及び輝度変化率が、平均化によって実際の輝度及び輝度変化率よりも小さくなる可能性がある。この場合に、輝度変化率が第1閾値TV以上である輝度段差を検出する上記の判定方法において、検体液が滴下されているか否かの判定に支障が生じる虞がある。
 以下に説明する判定方法は、試験片1の画像において輝度値が第2閾値以下である暗画素を検出し、暗画素の数に基づいて検体液が滴下されているか否かを判定するものである。
 図11は、試験片1の画像を輝度によって数値化した輝度情報であり、試験片1の長手方向xに延びる一つの画素列に含まれる各画素の輝度値を示している。そして、図中、実線は、検体液が滴下されている場合の輝度情報を示し、一点鎖線は、検体液が滴下されていない場合の輝度情報を示している。
 検体液が滴下されていない場合の試験片1は白色であり、その輝度情報によって示される各画素の輝度値は総じて高い値となっている。一方、検体液が滴下されている場合の試験片1では、検体液が僅かでも流れることによって、色調が相対的に暗い既展開領域A1が広がり、その輝度情報によって示される各画素の輝度値のうち既展開領域A1に対応する画素の輝度値は、相対的に低い値となっている。
 検体液が滴下されていない場合の試験片1の輝度値の実験値と、既展開領域A1の輝度値の実験値との間で第2閾値TVを設定しておき、輝度値が第2閾値TV以下である暗画素を検出し、暗画素の画素数が所定数以上である場合に、既展開領域A1が存在している、すなわち検体液が試験片1に滴下されているものと判定することができる。
 第2閾値TVの設定例を以下に示す。x=n、y=pの位置の画素の輝度をY(n、p)とし、Y(n-q、p-q)~Y(n+q、p+q)の中央値、すなわち座標(n、p)を中心とした2q×2qの領域における輝度の中央値をYY(n、p)とし、輝度の最大値を1とする。検体液が滴下されていない試験片1のYY(n、p)の最小値が0.94であり、検体液が滴下されている試験片1の既展開領域A1のYY(n、p)の最大値が0.72であった場合に、第2閾値TVは(0.94+0.72)/2=0.83とすることができる。なお、第2閾値TVは、必ずしも上式により設定される必要はなく、検体液が滴下されていない場合のYY(n、p)の最小値と検体液が滴下されている場合のYY(n、p)の最大値との間で適宜設定可能であり、上記の例において、第2閾値TVを0.83よりも大きな値(例えば0.88)とすれば、暗画素の検出精度を高めることが可能である。
 図12は、暗画素の画素数に基づいて検体液が滴下されているか否かを判定する場合の、制御部15が実行する判定処理のフローを示す。
 制御部15は、分析開始指示が入力されると、分析開始から所定の判定時間tの経過を計時する(ステップS21)。所定の判定時間tは、輝度段差を検出する上記の判定処理に用いられた判定時間tと同じであってもよいし、異なっていてもよい。
 所定の判定時間経過後、制御部15は、撮像部12に試験片1を撮像させる(ステップS22)。制御部15は、ステップS2にて取得された試験片1の画像(判定用画像)を用い、この判定用画像の各画素の輝度値を取得する(ステップS23)。
 そして、制御部15は、ステップS23にて取得した判定用画像の各画素の輝度値に対して第2閾値TVを適用することにより、判定用画像に設定される判定領域内の暗画素を検出し、検出した暗画素の画素数nに基づいて、検体液が滴下されているか否かを判定する(ステップS24)。判定領域は、判定用画像の全域に設定されてもよいし、判定用画像の一部の領域に設定されてもよく、判定領域が判定用画像の一部の領域に設定される場合に、好ましくは画像中のコントロールライン6よりも、試験片1を流れる検体液の流れの上流側に設定される。
 検体液が滴下されているか否かの判定において、暗画素の画素数nが所定数N未満である場合に、制御部15は、検体液が滴下されていないものと判定し(ステップS25)、報知部13に判定結果を報知させる(ステップS26)。一方、暗画素の画素数nが所定数N以上である場合には、制御部15は、検体液が滴下されているものと判定し(ステップS27)、判定処理に続けて分析処理を実行する。
 所定数Nは特に限定されず、例えばN=1であってもよいが、好ましくは、所定数Nは複数である。試験片1、カートリッジ7等に付着したゴミに起因するノイズが暗画素として検出される可能性があり、また、撮像部12の光源21のセッティングに起因する試験片1上の照明ムラが暗画素として検出される可能性もあるが、所定数Nを複数とすることによって、ノイズ、照明ムラ等の影響を低減し、判定精度を高めることができる。
 判定処理に続く分析処理は、図9に示したステップS8~ステップS12と同一であるので、説明を省略する。
 このように、試験片1の判定用画像の判定領域に含まれる暗画素の画素数に基づいて検体液が滴下されているか否かを判定することにより、反応部4のコントロールライン6の呈色が検出可能となる所定の反応時間tの経過を待たずに、早期に検体液の滴下忘れを報知することが可能となる。そして、滴下忘れの状態で分析が進められた場合の無駄を排し、分析作業の効率化を図ることができる。さらに、暗画素は、検体液が試験片1を僅かでも流れることによって試験片1の判定用画像に生じ、また、検体液が試験片1を流れきった場合にも試験片1の判定用画像に生じていることから、試験片1の長手方向xの水平に対する傾きにかかわらず、検体液が滴下されているか否かを安定して判定することができる。
 なお、明画素を検出することによっても、検体液が滴下されているか否かを判定することができる。
 再び、図11を参照して、検体液が滴下されている場合の試験片1の輝度情報によって示される各画素の輝度値のうち、既展開領域A1に対応する画素の輝度値は相対的に低い値となっており、未展開領域A2に対応する画素の輝度値は相対的に高い値となっている。そして、時間の経過に伴い検体液が流れると、既展開領域A1は拡大していき、逆に未展開領域A2は縮小していく。
 既展開領域A1の輝度値の実験値と、未展開領域A2の輝度値の実験値との間で第3閾値TVを設定しておき、適宜な時間間隔で取得された複数枚の判定用画像毎に輝度値が第3閾値TV以上である明画素を検出し、複数枚の判定用画像それぞれの明画素の画素数が、画像の取得順に減少している場合に、未展開領域A2が縮小している、すなわち検体液が試験片1に滴下されているものと判定することができる。
 第3閾値TVの設定例を以下に示す。x=n、y=pの位置の画素の輝度をY(n、p)とし、Y(n-q、p-q)~Y(n+q、p+q)の中央値、すなわち座標(n、p)を中心とした2q×2qの領域における輝度の中央値をYY(n、p)とし、輝度の最大値を1とする。検体液が滴下されていない試験片1、すなわち未展開領域A2のYY(n、p)の最小値が0.94であり、検体液が滴下されている試験片1の既展開領域A1のYY(n、p)の最大値が0.72であった場合に、第3閾値TVは(0.94+0.72)/2=0.83とすることができる。なお、第3閾値TVは、必ずしも上式により設定される必要はなく、検体液が滴下されていない場合のYY(n、p)の最小値と検体液が滴下されている場合のYY(n、p)の最大値との間で適宜設定可能であり、上記の例において、第3閾値TVを0.83よりも小さな値(例えば0.78)とすれば、明画素の検出精度を高めることが可能である。
 そして、j枚(ただし、j>1の整数)の画像を取得し、各画像の明画素の数をaとして、aj-1-a>α(α>0の整数)が常に成り立つ場合に、明画素の画素数が画像の取得順に減少していると判断することができる。好ましくは、jは3以上であり、また、αは撮像部12の欠陥画素を含めたノイズに基づいて適宜設定でき、例えばj=5、α=10とすることができる。
 図13は、明画素の画素数に基づいて検体液が滴下されているか否かを判定する場合の、制御部15が実行する判定処理のフローを示す。なお、以下では、二枚の判定用画像を取得するものとして説明するが、判定用画像は二枚に限定されず、三枚以上の複数枚であってもよい。
 制御部15は、分析開始指示が入力されると、分析開始から所定の判定時間tの経過を計時する(ステップS31)。所定の判定時間tは、輝度段差を検出する上記の判定処理に用いられた判定時間tと同じであってもよいし、異なっていてもよい。
 所定の判定時間経過後、制御部15は、撮像部12に試験片1を撮像させる(ステップS32)。そして、制御部15は、ステップS32にて取得された試験片1の画像(第1判定用画像)を用い、この第1判定用画像の各画素の輝度値を取得する(ステップS33)。
 そして、制御部15は、ステップS33にて取得した第1判定用画像の各画素の輝度値に対して第3閾値TVを適用することにより、第1判定用画像に設定される判定領域内の明画素を検出し、検出した明画素の画素数n1をカウントする(ステップS34)。判定領域は、判定用画像の全域に設定されてもよいし、判定用画像の一部の領域に設定されてもよく、判定領域が判定用画像の一部の領域に設定される場合に、好ましくは画像中のコントロールライン6よりも、試験片1を流れる検体液の流れの上流側に設定される。
 また、制御部15は、ステップS32にて撮像部12に試験片1を撮像させた後、適宜な時間間隔(例えば5秒)をあけて、再び撮像部12に試験片1を撮像させる(ステップS35)。制御部15は、ステップS35にて取得された試験片1の画像(第2判定用画像)を用い、この第2判定用画像の各画素の輝度値を取得する(ステップS36)。
 そして、制御部15は、ステップS36にて取得した第2判定用画像の各画素の輝度値に対して第3閾値TVを適用することにより、第2判定用画像に設定される判定領域内の明画素を検出し、検出した明画素の画素数n2をカウントする(ステップS37)。なお、第2判定用画像に設定される判定領域は、第1判定用画像に設定された判定領域と同じとする。
 制御部15は、ステップS34にてカウントした第1判定用画像の明画素の画素数nと、ステップS37にてカウントした第2判定用画像の明画素の画素数nとに基づいて、検体液が滴下されているか否かを判定する(ステップS38)。
 検体液が滴下されているか否かの判定において、第2判定用画像の明画素の画素数nが第1判定用画像の明画素の画素数n以上、すなわち減少していない場合に、制御部15は、検体液が滴下されていないものと判定し(ステップS39)、報知部13に判定結果を報知させる(ステップS40)。一方、第2判定用画像の明画素の画素数nが第1判定用画像の明画素の画素数nより小さい、すなわち減少している場合には、制御部15は、検体液が滴下されているものと判定し(ステップS41)、判定処理に続けて分析処理を実行する。
 判定処理に続く分析処理は、図9に示したステップS8~ステップS12と同一であるので、説明を省略する。
 このように、試験片1の判定用画像の判定領域に含まれる明画素の画素数に基づいて検体液が滴下されているか否かを判定することにより、反応部4のコントロールライン6の呈色が検出可能となる所定の反応時間tの経過を待たずに、早期に検体液の滴下忘れを報知することが可能となる。そして、滴下忘れの状態で分析が進められた場合の無駄を排し、分析作業の効率化を図ることができる。さらに、複数枚の判定用画像間における明画素の画素数の減少は、暗画素として検出され得るノイズ、照明ムラ等には影響されないので、検体液が滴下されているか否かを安定して判定することができる。
 ここまで、輝度段差を検出する判定方法、暗画素を検出する判定方法、及び明画素を検出する判定方法の各判定方法を個別に説明したが、複数の判定方法を組み合わせてもよい。
 図14に示す例は、図9に示した輝度段差を検出する判定方法と、図12に示した暗画素を検出する判定方法とを組み合わせたものである。制御部15は、判定用画像の輝度変化率に基づいて、検体液が滴下されているか否かを判定し(ステップS4)、輝度変化率が第1閾値TV以上である輝度段差Δが判定用画像に存在しない場合(ステップS4-No)には、さらに、判定用画像の暗画素を検出して、暗画素の画素数nに基づいて、検体液が滴下されているか否かを判定する(ステップS24)。そして、暗画素の画素数nが所定数N未満である場合に、検体液が滴下されていないものと判定する(ステップS25)。このように、複数の判定方法を組み合わせることにより、検体液が滴下されていないと判定する場合の判定精度を高めることができる。
 図14に示した例では、輝度段差を検出する判定方法と暗画素を検出する判定方法とが組みわされているが、輝度段差を検出する判定方法と明画素を検出する判定方法とが組み合わされてもよいし、暗画素を検出する判定方法と明画素を検出する判定方法とが組み合わされてもよいし、輝度段差を検出する判定方法と暗画素を検出する判定方法と明画素を検出する判定方法とが組み合わされてもよい。
 以上、説明したとおり、本明細書に開示された免疫検査装置は、検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、上記画像中に設定される判定領域において、上記クロマトグラフィー試験片の長手方向の輝度変化率を取得し、上記輝度変化率の絶対値が第1閾値以上である輝度段差が存在する場合に、上記検体液が滴下されたものと判定する。
 また、本明細書に開示された免疫検査装置は、検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、上記画像中に設定される判定領域において、輝度値が第2閾値以下である暗画素を検出し、上記暗画素が所定数以上存在する場合に、上記検体液が滴下されたものと判定する。
 また、本明細書に開示された免疫検査装置は、検体液が滴下され且つ滴下された上記検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて上記検体液を分析する免疫検査装置であって、上記クロマトグラフィー試験片を撮像する撮像部と、上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する判定部と、上記判定部の判定結果を報知する報知部と、を備え、上記判定部は、複数枚の上記画像毎に、上記画像中に設定される判定領域において、輝度値が第3閾値以上である明画素を検出し、上記画像それぞれの上記明画素の画素数が上記画像の取得順に減少している場合に、上記検体液が滴下されたものと判定する。
 また、上記クロマトグラフィー試験片は、上記検体液との接触によって呈色する反応部を有するものであり、上記判定領域は、上記画像中の上記反応部よりも、上記クロマトグラフィー試験片を流れる上記検体液の流れの上流側に設定される。
 また、上記判定部は、上記検体液の分析に用いられる分析用画像の取得タイミングより前のタイミングで上記撮像部によって取得された画像に基づいて上記クロマトグラフィー試験片に対する上記検体液の滴下の有無を判定する。
 また、上記撮像部は、上記分析用画像を取得する。
 本発明は、クロマトグラフィー試験片に対する検体液の滴下忘れを早期に報知可能な免疫検査装置を提供することができる。
 以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。本出願は、2017年2月14日出願の日本特許出願(特願2017-025362)に基づくものであり、その内容はここに参照として取り込まれる。
1 クロマトグラフィー試験片
2 滴下部
3 展開部
4 反応部
5 判定ライン
6 コントロールライン
7 カートリッジ
10 免疫検査装置
11 操作部
12 撮像部
13 報知部
14 記憶部
15 制御部
20 設置部
21 光源
22 撮像素子
23 画像処理部
24 分析部
25 判定部
a 抗原
b 標識抗体
ab 抗原抗体複合物
c 第1捕捉抗体
d 第2捕捉抗体
A1 既展開領域
A2 未展開領域
B 境界
n 画素数
N 所定数
n1 画素数
n2 画素数
P ピーク
R 判定領域
 判定時間
 反応時間
 判定時間
 判定時間
TV 第1閾値
TV 第2閾値
TV 第3閾値
x 長手方向
Y 短手方向
Δ 輝度段差
 

Claims (6)

  1.  検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて前記検体液を分析する免疫検査装置であって、
     前記クロマトグラフィー試験片を撮像する撮像部と、
     前記撮像部によって取得された画像に基づいて前記クロマトグラフィー試験片に対する前記検体液の滴下の有無を判定する判定部と、
     前記判定部の判定結果を報知する報知部と、
     を備え、
     前記判定部は、
     前記画像中に設定される判定領域において、前記クロマトグラフィー試験片の長手方向の輝度変化率を取得し、
     前記輝度変化率の絶対値が第1閾値以上である輝度段差が存在する場合に、前記検体液が滴下されたものと判定する免疫検査装置。
  2.  検体液が滴下され且つ滴下された検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて前記検体液を分析する免疫検査装置であって、
     前記クロマトグラフィー試験片を撮像する撮像部と、
     前記撮像部によって取得された画像に基づいて前記クロマトグラフィー試験片に対する前記検体液の滴下の有無を判定する判定部と、
     前記判定部の判定結果を報知する報知部と、
     を備え、
     前記判定部は、
     前記画像中に設定される判定領域において、輝度値が第2閾値以下である暗画素を検出し、
     前記暗画素が所定数以上存在する場合に、前記検体液が滴下されたものと判定する免疫検査装置。
  3.  検体液が滴下され且つ滴下された前記検体液が長手方向に流されるクロマトグラフィー試験片を撮像し、得られた画像に基づいて前記検体液を分析する免疫検査装置であって、
     前記クロマトグラフィー試験片を撮像する撮像部と、
     前記撮像部によって取得された画像に基づいて前記クロマトグラフィー試験片に対する前記検体液の滴下の有無を判定する判定部と、
     前記判定部の判定結果を報知する報知部と、
     を備え、
     前記判定部は、
     複数枚の前記画像毎に、前記画像中に設定される判定領域において、輝度値が第3閾値以上である明画素を検出し、
     前記画像それぞれの前記明画素の画素数が前記画像の取得順に減少している場合に、前記検体液が滴下されたものと判定する免疫検査装置。
  4.  請求項1から3のいずれか一項記載の免疫検査装置であって、
     前記クロマトグラフィー試験片は、前記検体液との接触によって呈色する反応部を有するものであり、
     前記判定領域は、前記画像中の前記反応部よりも、前記クロマトグラフィー試験片を流れる前記検体液の流れの上流側に設定される免疫検査装置。
  5.  請求項1から4のいずれか一項記載の免疫検査装置であって、
     前記判定部は、前記検体液の分析に用いられる分析用画像の取得タイミングより前のタイミングで前記撮像部によって取得された画像に基づいて前記クロマトグラフィー試験片に対する前記検体液の滴下の有無を判定する免疫検査装置。
  6.  請求項5記載の免疫検査装置であって、
     前記撮像部は、前記分析用画像を取得する免疫検査装置。
     
PCT/JP2018/001060 2017-02-14 2018-01-16 免疫検査装置 WO2018150787A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18754094.3A EP3584577A4 (en) 2017-02-14 2018-01-16 IMMUNOLOGICAL TEST DEVICE
CN201880010915.7A CN110268267B (zh) 2017-02-14 2018-01-16 免疫检查装置
JP2018568048A JP6764955B2 (ja) 2017-02-14 2018-01-16 免疫検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025362 2017-02-14
JP2017-025362 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018150787A1 true WO2018150787A1 (ja) 2018-08-23

Family

ID=63170534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001060 WO2018150787A1 (ja) 2017-02-14 2018-01-16 免疫検査装置

Country Status (5)

Country Link
EP (1) EP3584577A4 (ja)
JP (1) JP6764955B2 (ja)
CN (1) CN110268267B (ja)
TW (1) TW201831902A (ja)
WO (1) WO2018150787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004564A3 (de) * 2019-07-05 2021-04-22 Schebo Biotech Ag Vorrichtung zur auslesung eines test-kits zum nachweis von biomarkern
WO2022203017A1 (ja) * 2021-03-24 2022-09-29 富士フイルム株式会社 イムノクロマトグラフ検査装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288730A (ja) * 1996-04-23 1997-11-04 Dam Suigenchi Kankyo Seibi Center 画像識別方法および装置
WO2009128205A1 (ja) * 2008-04-18 2009-10-22 パナソニック株式会社 液体試料分析方法
JP2010032447A (ja) 2008-07-31 2010-02-12 Panasonic Corp 免疫クロマトグラフィー測定装置
JP2010101758A (ja) * 2008-10-24 2010-05-06 Panasonic Corp クロマトグラフィー試験片およびクロマトグラフィー試験片の使用状態判定方法
JP2013174519A (ja) * 2012-02-27 2013-09-05 Fujifilm Corp 検体検査システム、検査カートリッジおよび検体検査装置
JP2017025362A (ja) 2015-07-17 2017-02-02 トヨタ自動車株式会社 通電加熱装置および通電加熱方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902939B2 (ja) * 2001-10-26 2007-04-11 株式会社日立ハイテクノロジーズ 標本中の微小領域測定装置及び方法
JP2009098080A (ja) * 2007-10-19 2009-05-07 Panasonic Corp 免疫クロマトグラフィー測定装置
JP4850165B2 (ja) * 2007-11-02 2012-01-11 パナソニック株式会社 クロマトグラフィー検査装置およびクロマトグラフィー試験片の劣化判定方法
JP5543310B2 (ja) * 2010-09-29 2014-07-09 富士フイルム株式会社 イムノクロマトグラフ検査方法および装置
DE102010052976A1 (de) * 2010-11-30 2012-05-31 Bruker Daltonik Gmbh Unterstützung der händischen Präparation von Proben auf einem Probenträger für eine Ionisierung mit matrix-unterstützter Laserdesorption
CN103477226A (zh) * 2011-03-31 2013-12-25 积水医疗株式会社 能将不含试样的样品确定为不当操作样品的免疫层析检测方法及其使用的测试条
US9598715B2 (en) * 2011-09-30 2017-03-21 Arkray, Inc. Method for measuring color change of oxidation-reduction indicator
CN102509064A (zh) * 2011-11-16 2012-06-20 天津九安医疗电子股份有限公司 基于摄像方式获取检测试纸信息的管理系统及其工作方法
US9445749B2 (en) * 2013-01-21 2016-09-20 Cornell University Smartphone-based apparatus and method for obtaining repeatable, quantitative colorimetric measurement
CN104198482A (zh) * 2014-09-05 2014-12-10 北京智云达科技有限公司 一种试纸读取方法和装置
CN104298970B (zh) * 2014-09-26 2017-10-27 博奥生物集团有限公司 一种基于颜色特征的摄像头识别和检测方法
JP6492501B2 (ja) * 2014-10-03 2019-04-03 ニプロ株式会社 判定装置、判定方法及びコンピュータプログラム
CN204258929U (zh) * 2014-11-03 2015-04-08 中国计量学院 一种胶体金便携式ccd读数仪的数据采集和处理系统
CN106228168B (zh) * 2016-07-29 2019-08-16 北京小米移动软件有限公司 卡片图像反光检测方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09288730A (ja) * 1996-04-23 1997-11-04 Dam Suigenchi Kankyo Seibi Center 画像識別方法および装置
WO2009128205A1 (ja) * 2008-04-18 2009-10-22 パナソニック株式会社 液体試料分析方法
JP2010032447A (ja) 2008-07-31 2010-02-12 Panasonic Corp 免疫クロマトグラフィー測定装置
JP2010101758A (ja) * 2008-10-24 2010-05-06 Panasonic Corp クロマトグラフィー試験片およびクロマトグラフィー試験片の使用状態判定方法
JP2013174519A (ja) * 2012-02-27 2013-09-05 Fujifilm Corp 検体検査システム、検査カートリッジおよび検体検査装置
JP2017025362A (ja) 2015-07-17 2017-02-02 トヨタ自動車株式会社 通電加熱装置および通電加熱方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3584577A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021004564A3 (de) * 2019-07-05 2021-04-22 Schebo Biotech Ag Vorrichtung zur auslesung eines test-kits zum nachweis von biomarkern
WO2022203017A1 (ja) * 2021-03-24 2022-09-29 富士フイルム株式会社 イムノクロマトグラフ検査装置

Also Published As

Publication number Publication date
EP3584577A1 (en) 2019-12-25
TW201831902A (zh) 2018-09-01
JP6764955B2 (ja) 2020-10-07
JPWO2018150787A1 (ja) 2019-11-07
CN110268267B (zh) 2022-11-11
EP3584577A4 (en) 2020-04-29
CN110268267A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
JP5267617B2 (ja) 分析装置および分析方法
JP5482721B2 (ja) 分析装置
KR100753595B1 (ko) 휴대단말기를 이용한 임상화학 측정 시스템 및 그 방법
WO2018150787A1 (ja) 免疫検査装置
JP6032837B2 (ja) 分析装置
CN111323423B (zh) 缺陷检测装置及缺陷检测方法
JP2010019667A (ja) 画像計測装置及びコンピュータプログラム
JP2013079880A (ja) 画質検査方法、画質検査装置及び画質検査プログラム
Preechaburana et al. HDR imaging evaluation of a NT-proBNP test with a mobile phone
JP6680909B2 (ja) 免疫検査装置
JP7397942B2 (ja) 検査判定機および検査判定方法
JP2018500576A (ja) 光学測定の構成
US20190346467A1 (en) Analysis apparatus, analysis system, method for managing analysis apparatus, and program
JP2003028755A (ja) 反射板検査装置および反射板検査方法
JP2008175558A (ja) 外観検査装置および外観検査方法
JPH11337470A (ja) フロー式粒子画像分析装置
JP2019164048A (ja) 検査装置及び検査方法
JP5135899B2 (ja) 周期性パターンのムラ検査方法及びムラ検査装置
JP3474619B2 (ja) 2重映り検査方法
JP2007192563A (ja) 欠陥検出方法、表示デバイス評価方法および欠陥検出装置
JPH02272598A (ja) ディスプレイ表示画面検査装置
JP2007257095A (ja) 画像処理装置
CN116067623A (zh) 投影光机的质量检测方法、设备及介质
JP2006329964A (ja) ディスプレイパネル自動検査装置
JPH0949782A (ja) カラーフィルタの欠陥検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754094

Country of ref document: EP

Effective date: 20190916