WO2018147508A1 - 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지 - Google Patents

실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지 Download PDF

Info

Publication number
WO2018147508A1
WO2018147508A1 PCT/KR2017/005334 KR2017005334W WO2018147508A1 WO 2018147508 A1 WO2018147508 A1 WO 2018147508A1 KR 2017005334 W KR2017005334 W KR 2017005334W WO 2018147508 A1 WO2018147508 A1 WO 2018147508A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
carbon
composite
graphene
solution
Prior art date
Application number
PCT/KR2017/005334
Other languages
English (en)
French (fr)
Inventor
장희동
장한권
길대섭
최지혁
김선경
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to US16/483,932 priority Critical patent/US11362326B2/en
Publication of WO2018147508A1 publication Critical patent/WO2018147508A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a process for producing a silicone-carbon-graphene composite, a composite produced thereby, and a secondary battery using the same. More particularly, the present invention relates to a silicon- Carbon-graphene composite, a composite produced thereby, and a secondary battery using the same.
  • silicon-based anode materials are attracting attention and can exhibit electric capacity of about 10 times higher than that of carbon-based anode materials.
  • cracking of the electrode occurs due to a large volume change occurring during charging and discharging of the lithium ion secondary battery, and a solid electrolyte interface (SEI) is continuously formed on the silicon surface by the decomposition reaction of the lithium ion and the electrolyte.
  • SEI solid electrolyte interface
  • Liu et al. Liu et al. (Liu et al., 2012) reported a study to solve the problem by coating carbon on silicon particles using a yolk-shell design.
  • a carbon precursor was prepared by carbonization using polydopamine. Silicon oxide was coated on the silicon surface and removed to form a void.
  • Liu et al. (Liu et al., 2015) synthesized graphene in micron-sized silicon particles by freeze-drying and liquid-phase reduction.
  • the lithium ion secondary battery showed a low capacity of 750 mAh / g . This is attributed to the cracking of the electrode due to the large volume change caused by the charging and discharging of the silicon particles having a size of 1 to 10 microns and cracking of the electrode despite the existence of graphene.
  • Non-Patent Document 1 Liu, N., Wu, H., McDowell, MT, Yao, Y., Wang, C. and Cui, Y. (2012), A Yolk-Shell Design for Stabilized and Scalable Li- Battery Alloy Anodes, Nano Letters, 6, 3315-3321. (Released in December 2012)
  • Non-Patent Document 2 Liu, X., Chao, D., Zhang, Q., Liu, H., Hu, H., Zhao, J., Li, Y., Huang, Y., Lin, J. , and Shen, AX (2015), The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anodes from fading, Scientific Reports, 5, 15665.
  • a method of manufacturing a silicon carbide semiconductor device comprising: (1) preparing a suspension by adding a carbon precursor solution to silicon and wet pulverizing the silicon precursor solution; Spray-drying the suspension to form a silicon-carbon composite (step 2); And a step (3) of spray-drying and heat-treating the mixed solution of the silicon-carbon composite and the graphene oxide.
  • the silicon of step 1 may be prepared by acid leaching the waste silicon sludge and selectively separating and recovering silicon (step 0).
  • the step 0 further comprises drying after the acid leaching, wherein the solution containing the waste silicon sludge subjected to the drying step is subjected to ultrasonic treatment and then centrifuged to selectively remove and recover the silicon have.
  • the ultrasonic treatment in step 0 may be performed for 1 hour to 10 hours, and the centrifugation in step 0 may be performed for 1 minute to 60 minutes at a rotation speed of 100 rpm to 1000 rpm.
  • the carbon precursor of step 1 comprises at least one selected from the group consisting of monosaccharides, disaccharides, polysaccharides, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and polyvinyl alcohol can do.
  • the mixing ratio of silicon to carbon precursor in step 1 may be 1: 0.1 to 1: 2.
  • the wet grinding of step 1 may be carried out such that the average particle size of the silicon is 0.1 ⁇ to 1 ⁇ .
  • the wet grinding of step 1 above may be carried out through one method selected from the group consisting of a bead mill, a basket mill, an impact mill and a ball mill.
  • the spray of step 2 is performed through ultrasonic spray, and the ultrasonic frequency may be 1.0 Mhz to 2.5 Mhz.
  • drying in step 2 may be performed by passing the sprayed material through a transporting gas to a tubular furnace.
  • the graphene oxide concentration of the solution of step 3 may be from 0.05 wt% to 0.2 wt%, and the concentration of the silicon-carbon composite of the solution of step 3 may be from 0.1 wt% to 3 wt% .
  • spray drying of step 3 comprises spraying a solution of the silicon-carbon composite and graphene oxide into an aerosol droplet through the air nozzle (step 3a); And passing the sprayed droplets through a conveying gas to a tubular heating furnace, followed by drying and heat treatment (step 3b).
  • the heat treatment temperature in step 3 or step 3b may be 500 ° C to 1000 ° C.
  • another aspect of the present invention is a method for separating and recovering silicon from a waste silicon sludge by acid leaching, ultrasound treatment and centrifugation (step 0); Adding a carbon precursor solution to the recovered silicon and wet-milling the suspension to prepare a suspension (step 1); Ultrasonic spray drying the suspension to form a silicon-carbon composite (step 2); Spraying a solution of the silicon-carbon composite and the graphene oxide into an aerosol droplet through the air nozzle (step 3a); And a step (3b) of passing the sprayed droplets through a conveying gas to a tubular heating furnace, followed by drying and heat treatment (step 3b).
  • another aspect of the present invention provides a silicon-carbon composite including a carbon layer formed by surrounding silicon particles; And a graphene layer surrounding the agglomerate comprising a plurality of the silicon-carbon composites, wherein the graphene layer has a mean grain size of 0.5 mu m to 20 mu m, and the graphene layer is formed by aggregating a plurality of crumpled graphene sheets To form a silicon-carbon-graphene composite.
  • another aspect of the present invention provides a semiconductor device comprising: a cathode; An anode comprising the silicon-carbon-graphene composite of claim 15; A separator provided between the anode and the cathode; And an electrolyte.
  • the electrical conductivity can be further increased, a large volume change can be controlled, and the charge / discharge electrochemical characteristics can be improved.
  • the secondary battery to which the composite is applied as an electrode can not exhibit direct contact between the surface of the composite silicon and the electrolyte during charging / discharging, and thus can exhibit excellent battery characteristics to prevent electrode damage.
  • FIG. 1 is a schematic view showing an example of a method for producing silicon-carbon-graphene according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing another example of a method of manufacturing silicon-carbon-graphene according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram schematically showing another example of the method for producing silicon-carbon-graphene according to one embodiment of the present invention.
  • FIG. 5 is a graph showing particle distribution according to the number of pulverization in Experimental Example 1 of the present invention.
  • FIG. 6 is an FE-SEM photograph showing the shape of the silicon-carbon composite according to the weight ratio of glucose / silicon in Experimental Example 2 of the present invention.
  • Example 7 is a graph showing the result of thermogravimetric analysis of the silicon-carbon composite according to the weight ratio of glucose / silicon in Experimental Example 2 of the present invention.
  • FIG. 8 is a graph showing the X-ray diffraction analysis results of the silicon-carbon composite according to the weight ratio of glucose / silicon in Experimental Example 3 of the present invention.
  • FIG. 9 is a graph showing the results of Raman spectroscopy of a silicon-carbon composite according to the weight ratio of glucose / silicon in Experimental Example 3 of the present invention.
  • FIG 10 is an FE-SEM photograph showing the shape of a silicon-carbon-graphene composite according to the weight ratio of glucose / silicon in Experimental Example 4 of the present invention.
  • FIG. 11 is a graph showing the results of X-ray diffraction analysis of a silicon-carbon-graphene composite according to the weight ratio of glucose / silicon in Experimental Example 5 of the present invention.
  • FIG. 12 is a graph showing the results of Raman spectroscopy of a silicon-carbon-graphene composite according to the weight ratio of glucose / silicon in Experimental Example 5 of the present invention.
  • FIG. 13 is a graph showing the charging / discharging characteristics of a secondary battery in which a silicon-carbon-graphene composite according to a weight ratio of glucose / silicon is applied to a negative electrode in Experimental Example 6 of the present invention.
  • Step 1 (S10) of preparing a suspension by adding a carbon precursor solution to silicon and wet pulverizing the suspension;
  • the step 1 (S10) comprises adding a carbon precursor solution to silicon and wet-milling the suspension to prepare a suspension.
  • the silicon of step 1 may be prepared by acid leaching the waste silicon sludge and selectively separating and recovering silicon (step 0) (S00).
  • the waste silicon sludge in step 0 may be generated in a silicon wafer manufacturing process or may be generated in a cutting or polishing process of a silicon wafer.
  • silicon sludge containing a large amount of silicon particles and silicon carbide may be generated by using a cutting slurry containing silicon carbide and cutting oil as a metal wire saw.
  • hydrochloric acid sulfuric acid, nitric acid and the like
  • hydrochloric acid can be preferably used.
  • silicon is liable to be dissolved, which is undesirable.
  • the acid leaching in step 0 can be performed by adding the waste silicon sludge to an acid solution, and the concentration of the acid solution is preferably 1 M to 5 M.
  • the metal impurities of the waste silicon sludge can be easily removed at the acid leaching concentration and resource waste can be minimized.
  • the acid leaching of the step 0 is preferably carried out at a temperature of 50 ° C to 150 ° C for 1 hour to 10 hours.
  • the metal impurities of the waste silicon sludge can be easily removed at the acid leaching temperature and time, and energy waste can be minimized.
  • the acid leached solution of step 0 may be cooled to room temperature, the filtrate may be separated, and then the distilled water may be added to the remaining waste silicon sludge to perform cleaning.
  • the step 0 may further include drying after the acid leaching, and the solution containing the waste silicon sludge subjected to the drying step may be subjected to ultrasonic treatment and then centrifuged to selectively separate and recover the silicon.
  • the solution containing waste silicon sludge in step 0 preferably has a solid ratio (g: mL) of waste silicon sludge: distilled water of 1: 50 to 200.
  • the ultrasonic wave and the centrifugal separation of the subsequent stage can be easily performed in the above-mentioned solid-liquid ratio, and waste of resources can be minimized.
  • the ultrasonic treatment in step 0 is preferably performed for 1 hour to 10 hours.
  • the silicon and silicon carbide of the waste silicon sludge in the solution can be easily separated at the time of the ultrasonic treatment, and energy waste can be minimized.
  • the centrifugation in step 0 is preferably performed by centrifuging the ultrasonic treated solution at a rotation speed of 100 rpm to 1000 rpm for 1 minute to 60 minutes.
  • the silicon can be easily recovered at the centrifugal rotation speed and time and energy waste can be minimized.
  • the carbon precursor of step 1 may include at least one selected from the group consisting of monosaccharides, disaccharides, polysaccharides, polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and polyvinyl alcohol (PVA).
  • the monosaccharide of step 1 may be galactose, glucose and fructose, and the disaccharide of step 1 may be sucrose, maltose and lactose, and the polysaccharide of step 1 may be dextran, starch, xylan, inulin, Galactan, and the like.
  • the carbon precursor of step 1 above may preferably comprise a monosaccharide, more preferably glucose.
  • the carbon precursor of step 1 may be coated on the surface of the silicon particles through a subsequent heat treatment process to form a carbon layer.
  • the mixing weight ratio of the silicon to the carbon precursor may be 1: 0.1 to 1: 2, preferably 1: 0.1 to 1, and more preferably 1: 0.5 to 1. If the mixing ratio by weight of the silicon and carbon precursor in step 1 is less than 1: 0.1, there may arise a problem that the damage and oxidation of silicon can not be prevented during the subsequent grinding treatment, and the electrode comprising the composite prepared through the subsequent step There is a possibility that the charge-discharge characteristics are lowered. If the mixing weight ratio of silicon and carbon precursor in step 1 is more than 1: 2, waste of the carbon precursor may occur in preventing the damage and oxidation of silicon in the subsequent grinding treatment, There is a fear that the electrostatic capacity of the electrode included therein is reduced.
  • the mixture of the silicon and the carbon precursor of the step 1 is preferably a solution containing 1 wt% to 10 wt% of silicon.
  • the wet grinding treatment of the subsequent step can be easily performed in the silicon concentration of the mixture, and resource waste can be minimized.
  • the wet pulverization of the step 1 may be performed so that the average particle size of the silicon is 0.1 to 2 mu m, preferably, the average particle size of the silicon is 0.1 to 1 mu m. If the wet grinding is carried out such that the average particle size of the silicon is less than 0.1 ⁇ , there may arise a problem that a large number of silicon particles are aggregated and carbon coating is not easily performed, and the average particle size of the silicon is more than 2 ⁇ If wet pulverization is performed, there is a fear that cracks may occur during charging and discharging of the electrode including the composite produced in the subsequent step.
  • the wet pulverization of the step 1 may be carried out one to three times, preferably three times.
  • the desired silicon average particle size can be easily reached at the above crushing frequency, and energy waste can be minimized.
  • the wet pulverization of the step 1 may be carried out through one kind of method selected from the group consisting of a bead mill, a basket mill, an impact mill and a ball mill, and preferably can be carried out through a bead mill using metal oxide beads have.
  • the bead mill of step 1 is performed at a rotor rotation speed of 1000 rpm to 7000 rpm, and the transporting flow rate of the carbon precursor is 20 ml / min to 200 ml / min.
  • the damage and oxidation of the silicon surface can be prevented at the rotor rotation speed and the feed flow rate of the bead mill of step 1, but it can be easily pulverized to the desired silicon particle size, and energy and resource waste can be minimized.
  • the concentration of the silicon-carbon precursor suspension prepared in step 1 may be from 0.2 wt% to 3 wt%.
  • concentration of the suspension of step 1 is not limited to the concentration at which the spray drying process of the subsequent step can be effectively carried out.
  • step (S20) the suspension is spray-dried to form a silicon-carbon composite.
  • the spray of step 2 may be carried out through ultrasonic spraying.
  • the ultrasonic frequency of the ultrasonic spray is preferably 1.0 Mhz to 2.5 Mhz. A droplet sprayed evenly at the frequency can be formed, and energy waste can be minimized.
  • the drying in step 2 may be carried out by passing the sprayed material through a conveying gas to a tubular heating furnace.
  • the flow rate of the carrier gas may be from 0.5 L / min to 5 L / min.
  • the transport gas may be an inert gas, and it is preferable to use argon, nitrogen and helium gas in particular. It is possible to uniformly control the average particle size of the silicon-carbon composite to be produced at the flow rate of the transportation gas and to minimize the energy waste.
  • the drying temperature in step 2 is preferably 200 ° C to 450 ° C. At this drying temperature, the silicon-carbon composite can be easily formed and energy waste can be minimized.
  • the step 3 is a step of spray-drying and heat-treating a solution prepared by mixing the silicon-carbon composite and the graphene oxide.
  • the solvent may be added so that the graphene oxide concentration of the solution of step 3 is 0.05 wt% to 0.2 wt%, and the silicon-carbon composite concentration is 0.1 wt% to 3 wt%.
  • the spray drying process of the subsequent step can be easily performed at the graphene oxide concentration and the silicon-carbon composite concentration, so that the silicon-carbon-graphene composite can be effectively formed and resource waste can be minimized.
  • Spray drying the step 3 is performed by spraying a solution obtained by mixing the silicon-carbon composite and the graphene oxide with the aerosol droplets through the air nozzle (step S31);
  • step 3b Passing the sprayed droplets through a conveying gas to a tubular heating furnace, drying and heat-treating (step 3b) (S32).
  • the adiabatic nozzle of the step 3a can atomize the liquid by mixed dispersion by collision of the liquid and the gas. Unlike the conventional direct pressurizing nozzle, the air nozzle has the advantage of being capable of maintaining an ultra fine spray even at a low pressure.
  • the heating furnace transfer of the droplet of step 3b may be transferred through one or more gases selected from the group consisting of argon, helium and nitrogen, and preferably may be transferred through argon gas.
  • the flow rate of the gas at the time of transferring the droplets to the droplet of the step 3b may be 5 L / min to 15 L / min, preferably 5 L / min to 10 L / min.
  • the flow rate during the transfer of the liquid droplet in the step 3b may be 2 ml / min to 10 ml / min, preferably 2 ml / min to 8 ml / min. Drying and self-assembly of the droplets can be easily performed at the transport gas flow rate and the droplet flow rate, and energy waste can be minimized.
  • the drying temperature of step 3 or 3b may be 150 ° C to 250 ° C, preferably 180 ° C to 220 ° C. If the drying temperature is lower than 150 ° C, a problem that the solvent in the droplet can not be evaporated partially and remains, a problem that graphene grains having a crumpled shape can not be easily formed in the aggregated graphene oxide layer may occur, Is above 250 DEG C, excessive energy may be wasted in forming the composite comprising the graphene oxide layer.
  • the graphene oxide sheet is collected by capillary molding, and the graphene oxide layer in the crushed shape is transferred to the silicon- May be formed on the composite.
  • the composite subjected to drying in step 3b may be collected in a filter through a cyclone and then subjected to a heat treatment for reduction of graphene oxide and complete carbonization of the carbon precursor.
  • the heat treatment in the step 3 or 3b may be performed at a temperature of 500 ° C to 1000 ° C, preferably 600 ° C to 900 ° C. If the heat treatment temperature is less than 600 ° C, reduction of the graphene oxide and carbonization efficiency of the carbon precursor may be deteriorated. If the heat treatment temperature is higher than 1000 ° C, reduction of the graphene oxide and carbonization of the carbon precursor Excessive energy waste can occur.
  • the heat treatment in the step 3b may be performed in a muffle furnace and may be performed in at least one gas atmosphere selected from the group consisting of argon, helium and nitrogen, preferably in an argon gas atmosphere .
  • the gas may exhibit a predetermined flow rate and may be from 0.5 l / min to 2 l / min, but is not limited thereto, as long as the flow rate of the gas can be easily performed by the reduction and carbonization heat treatment.
  • the heat treatment of step 3 or 3b may be performed for 10 minutes to 100 minutes, preferably for 15 minutes to 80 minutes. If the heat treatment time is less than 10 minutes, the graphene oxide may not be effectively reduced. If the heat treatment time exceeds 100 minutes, excess energy may be wasted in reducing graphene oxide.
  • the double carbon-graphene coating layer formed by surrounding the silicon particles through the above-described manufacturing method is a method in which a lithium secondary battery is decomposed and decomposed to form an unstable solid It is possible to prevent the formation of the solid electrolyte interface (SEI) and to maintain the constant capacity without decreasing the capacity as the charge / discharge cycle progresses, and it is possible to accommodate the large volume change of the silicon.
  • SEI solid electrolyte interface
  • Step S00 of acid-leaching waste silicon sludge, selectively separating and recovering silicon through ultrasonic treatment and centrifugation;
  • step 2 Forming a silicon-carbon composite by ultrasonic spray drying the suspension (step 2) (S20);
  • step 0 to step 3b detailed description in each step may be as described above.
  • a method of producing a silicon-carbon-graphene composite by a single process a colloid solution obtained by mixing a water-soluble carbon precursor (PVP, glucose) and a graphene oxide with a silicon sludge solution composed of silicon particles and silicon carbide particles is ultrasonicated
  • the silicon-carbon-graphene composite can be prepared by spraying the colloid solution and then drying and heat-treating the mixture, which can be utilized in the secondary battery anode material.
  • the silicon-carbon-graphene composite produced by the single process as described above showed a capacity of 1500 mAh / g as a result of the evaluation of the characteristics of the lithium ion secondary battery.
  • the single - process silicon - carbon - graphene composites were spherical in shape, with one porous body consisting of silicon and carbon particles inside and surrounded by graphene on the outside. Silicon-carbon-graphene composites prepared by a single process may not be able to maintain a high capacitance during long-term use because some silicon particles are not completely wrapped with carbon material.
  • a silicon-graphene composite is prepared through a liquid phase reaction and an etching process, and carbon is coated on the silicon-graphene by thermal decomposition of acetylene gas at 800 ° C. for 10 minutes in a CVD process, - carbon composites can be prepared.
  • acetylene gas at 800 ° C. for 10 minutes in a CVD process
  • - carbon composites can be prepared.
  • a capacity of 1000 mAh / g was exhibited.
  • environmental problems due to harmful substances such as the use of hydrofluoric acid in the etching process, may occur, and the silicon-graphene surface may not be uniformly coated with carbon by the pyrolysis process of acetylene gas.
  • the silicon particles are completely enclosed with the carbon material, the silicon surface and the electrolyte do not directly contact with each other, so that the lithium ion secondary battery can be used as an excellent high capacity anode material.
  • micron-sized silicon particles separated and recovered from waste silicon sludge composed of silicon and silicon carbide particles are pulverized together with the carbon precursor solution to obtain a particle size Was first reduced to a predetermined size while a carbon precursor-coated silicon-carbon suspension was first prepared.
  • a spherical silicon-carbon composite with silicon inside and a carbon precursor on the outside is prepared, and the resulting silicon-carbon composite is mixed with graphene oxide and graphen oxide is wrapped in the silicon-carbon composite through an aerosol process To produce a silicon - carbon - graphene composite, and developed an electrode material for an excellent secondary battery electrode material.
  • silicon-carbon composites may be present within the silicon-carbon-graphene complex according to one aspect of the present invention, and graphenes may wrap the silicon-carbon composites once externally to form a grapevine-like shape have.
  • the composite prepared by the manufacturing method according to one aspect of the present invention is a structure in which the silicon particles are completely enclosed by the double carbon material, and unlike the simple silicon-carbon-graphene composite, exhibits a high electric conductivity when evaluating the characteristics of the lithium ion secondary battery And the charge / discharge electrochemical characteristics can be improved by controlling a large volume change. Furthermore, since the silicon-carbon-graphene composite produced by the present invention does not directly contact the surface of the silicon and the electrolyte during charging and discharging of the lithium secondary battery, it can accommodate a large volume expansion, thereby preventing electrode damage and exhibiting excellent battery characteristics .
  • a silicon-carbon composite comprising a carbon layer formed surrounding the silicon particles
  • the graphene layer has a mean particle size of from 0.5 mu m to 20 mu m and the graphene layer is formed by agglomerating a plurality of wrinkled graphene sheets.
  • the silicon-carbon-graphene composite can be produced through the above-described production method (steps 1 to 3).
  • the silicon particle size of the silicon-carbon-graphene composite may be 0.1 ⁇ to 1 ⁇ .
  • the carbon layer thickness of the silicon-carbon-graphene composite may be between 1 nm and 5 nm.
  • the thickness of the graphene layer of the silicon-carbon-graphene composite may be between 10 nm and 30 nm.
  • the average particle size of the silicon-carbon-graphene composite may be between 0.5 ⁇ m and 20 ⁇ m, and preferably between 0.5 ⁇ m and 10 ⁇ m.
  • the silicon-carbon-graphene composite has a unique structure including a plurality of silicon-carbon composites and a graphene layer surrounding the silicon-carbon composites, and the particle size range of the silicon-carbon-graphene composite has high electrical conductivity And the charge / discharge electrochemical characteristics can be improved. That is, since the silicon surface and the electrolyte are not in direct contact with each other during charging and discharging, the generation of the solid electrolyte interface layer can be prevented and a large volume expansion can be accommodated.
  • An anode comprising the silicon-carbon-graphene composite as described above;
  • a separator provided between the anode and the cathode; And an electrolyte.
  • the secondary battery may be a lithium secondary battery, and the composite may be used as a negative electrode active material of a lithium secondary battery.
  • Step 0 First, acid leaching was performed to remove metal impurities contained in the waste silicon sludge. Acid leaching was carried out using hydrochloric acid (HCl, 36%, Sigma Aldrich). 5 g of waste silicon sludge and 2 M of hydrochloric acid were mixed in a 500 ml Erlenmeyer flask and reacted sufficiently at a temperature of 100 ° C for 5 hours. After the reaction, the temperature of the mixed solution was lowered to room temperature, washed twice with 5 L of distilled water using a vacuum filter, and then dried.
  • hydrochloric acid HCl, 36%, Sigma Aldrich
  • Silicon was separated and recovered from waste silicon sludge which had undergone acid leaching process by ultrasonic treatment and centrifugation process.
  • 5 g of refined waste silicon sludge was uniformly dispersed in 500 ml of distilled water to prepare a colloidal solution.
  • Ultrasonic treatment was performed for 5 hours to separate silicon and silicon carbide from the prepared colloidal solution.
  • the ultrasonic treated colloidal solution was recovered from the silicon particles using a centrifugal separator (VS-5500N, Vision Science), and was rotated at a rotation speed of 500 rpm (27 g-force) for 12 minutes, ≪ / RTI > was recovered.
  • Step 1 Grinding was carried out in order to miniaturize the size of the silicon particles recovered in step 1 above.
  • glucose was injected to prevent oxidation and to coat the carbon precursor.
  • the equipment used for the grinding process is an ultra-apex mill (UAM-015, kotobukilnd. Co. Ltd.). It consists of cylinder and rotor.
  • the bead used for grinding is 0.05 mm zirconia (ZrO2).
  • the rotational speed of the rotor was fixed at 4500 rpm and the precursor transferring velocity was fixed at 90 ml / min.
  • the silicon concentration was fixed to 5 wt% and the weight ratio of glucose / silicon was adjusted to 0.1 to obtain a silicon-glucose suspension having a particle size of 1 ⁇ m or less under all conditions. That is, an aqueous solution of glucose, which is a carbon compound, encloses the surface of silicon in the pulverizing step and prevents the formation of silicon oxide on the silicon surface due to the oxidation process which occurs during high-speed pulverization, and produces a silicone-glucose suspension in which glucose is uniformly distributed on the surface of silicon particles Respectively.
  • Step 2 The silicon-glucose suspension prepared in step 1 above was subjected to an ultrasonic spray drying process to prepare a silicon-carbon composite in which the surface of the silicon particles was coated with a carbon precursor.
  • the ultrasonic spray drying process was carried out using ultrasonic spray nozzle, tubular heating furnace with temperature of 400 °C and transfer gas flow rate of 1 l / min.
  • the concentration of silicon - glucose suspension used in the spraying process was 0.5 wt%.
  • Step 3a The silicon-carbon composite produced in step 2 was recovered and mixed with graphene oxide to prepare a silicon-carbon-graphen oxide composite by a nozzle-type spray drying process.
  • the concentration of the silicon-carbon complex in the mixed solution was 1 wt%, and the concentration of graphene oxide was 0.1 wt%.
  • the colloidal solution was sprayed through the air nozzle under constant pressure, and the solvent was evaporated into a preheated drying chamber at a temperature of 200 ° C.
  • the flow rate of the dispersing gas and the flow rate of the precursor were controlled to be 10 l / min and 4.5 ml / min of argon, respectively, and the silicon-carbon-graphen oxide composite was recovered from the cyclone.
  • Step 3b The silicon-carbon-graphene oxide composite recovered in step 3a is subjected to heat treatment at 800 DEG C for 30 minutes in an Ar atmosphere and a flow rate of 1 l / min to completely reduce graphene oxide to graphene, Carbonization to finally produce a silicon-carbon-graphene composite.
  • a silicon-carbon-graphene composite was prepared in the same manner as in Example 1 except that in Step 1 of Example 1, the weight ratio of glucose / silicon was changed to 0.3.
  • a silicon-carbon-graphene composite was prepared in the same manner as in Example 1, except that in Step 1 of Example 1, the weight ratio of glucose / silicon was changed to 0.5.
  • a silicon-carbon-graphene composite was prepared in the same manner as in Example 1, except that in Step 1 of Example 1, the weight ratio of glucose / silicon was changed to 1.
  • the silicon particles prepared in Step 0 of Example 1 and the silicon particles obtained by the wet grinding process of Step 1 were measured by FE-SEM, and the particle size distribution according to the number of pulverization was measured. 4 and 5.
  • the silicon particles before grinding locally confirmed in the FE-SEM results showed a size of 2 ⁇ m or more, and after the grinding, silicon particles having a size of about 500 nm or less could be identified.
  • the silicon particles before crushing had a distribution in the range of 1 ⁇ m to 10 ⁇ m, and that the particle size tended to decrease with increasing number of crushing cycles of 1, 2, and 3, And a particle size distribution of 100 nm to 1 mu m. Therefore, it was confirmed that the size of silicon particles could be effectively reduced and the particle size could be controlled through the wet grinding process.
  • the produced silicon-carbon composites were spherical in all conditions and had a particle size of 500 nm to 2 ⁇ . That is, the shape difference according to the weight ratio of glucose / silicon was not so large.
  • the carbon content in the composite was measured at 25 ° C. to 800 ° C. in an air atmosphere at a rate of 5 ° C./min.
  • weight changes were observed by combustion of carbon from 150 °C to 500 °C, and at 600 °C and above, the weight of the sample slightly increased due to the oxidation reaction of silicon particles.
  • the glucose / silicon weight ratios were 0.1, 0.3, 0.5, and 1, the silicon contents in the composites were found to be about 85%, 79%, 68%, and 55%, respectively. Which is similar to the concentration of glucose in the suspension. Therefore, it was confirmed that the ultrasonic spray drying process is an efficient process for controlling the content of silicon wrapped in carbon when manufacturing a silicon-carbon composite.
  • the silicon peak could be confirmed at around 28 deg. Under all conditions. However, the crystal phase of carbon was high and the crystal phase of silicon was relatively low, which could not be confirmed. In addition, since the silicon oxide crystal phase did not appear, it was confirmed that the carbon compound, glucose, inhibited the silicon oxidation reaction occurring in the high-speed pulverization step.
  • silicon and carbon and graphene of the silicon-carbon-graphene composite after the heat treatment can be confirmed. It was found that about 518 cm -1 indicates silicon, and 1340 cm -1 and 1600 cm -1 indicate carbon and graphene.
  • the results of the silicon particles showed a high initial capacity of 2800 mAh / g while a tendency to decrease sharply as the cycle progressed, and 500 mAh / g after 15 cycles. This shows that when the content of silicon in the composite increases, it exhibits a high packing density in the solid state, which inhibits the movement of the electrolyte and can not accommodate a large volume change of silicon during charging and discharging, resulting in low cycle stability.
  • the silicon-carbon-graphene composites showed initial capacities of 1000 mAh / g, 1900 mAh / g, 2000 mAh / g and 2300 mAh / g when the glucose / silicon weight ratio was 0.1, 0.3, 0.5, Although the initial capacity is low, all of them show more than 1800 mAh / g at 25 cycles, indicating a stable retention rate. 13 (a) and 13 (b), the silicon-carbon-graphene composite exhibited the most stable cycle retention ratio at 2200 mAh / g at 30 cycles when the glucose / silicon weight ratio was 1, 99% or more.
  • the composite with silicone coated with carbon after additionally coated with graphene prevents the formation of an unstable solid electrolyte interfacial layer by avoiding direct contact of the electrolyte and can accommodate a large volume change of silicon during charging and discharging.
  • glucose / silicon weight ratio was 0.1, 0.3, and 0.5, it was 1600 mAh / g, 1900 mAh / g and 2000 mAh / g at 30 cycles and the coulombic efficiency was about 95%, 95% and 99% Retention rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명의 일 실시예는 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1); 상기 현탁액을 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2); 및 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 분무 건조하고 열처리하는 단계(단계 3);를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법을 제공한다.

Description

실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지
본 발명은 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지에 관한 것으로, 더욱 상세하게는 폐 실리콘 슬러지를 전처리하고, 이를 첨가제와 혼합 후 분무 건조 및 열처리하여 실리콘-탄소-그래핀 복합체를 제조하는 방법, 이에 따라 제조된 복합체 및 이를 적용한 이차전지에 관한 것이다.
반도체 및 태양전지용 실리콘 웨이퍼를 만들기 위한 실리콘 잉곳의 절단공정에서는 많은 양의 실리콘 입자를 포함한 슬러지가 발생되고 이중 대부분이 폐기물로 처리되고 있다. 그러나 폐 실리콘 슬러지로부터 분리, 회수된 실리콘은 고부가가치 활용을 위해 리튬이온 이차전지 음극소재로 응용하면 경제적 및 환경적 측면에서 큰 효과를 얻을 수 있을 것으로 보인다. 리튬이온 이차전지는 고출력, 고에너지 특성으로 인해 휴대용 전자 기기, 하이브리드 자동차 등의 주된 에너지원으로 에너지 산업분야에서 주목을 받고 있다. 현재 리튬이온 이차전지 음극소재로 사용하고 있는 탄소계 음극소재는 짧은 시간 안에 쿨롱 효율 99.9%까지 도달할 수 있지만, 전기 용량의 한계를 가지고 있다. 이러한 한계를 극복하기 위한 유망한 음극소재로 실리콘계 음극소재가 각광받고 있으며, 탄소계 음극소재 대비 약 10 배 이상의 전기 용량을 나타낼 수 있다. 그러나 실리콘은 리튬이온 이차전지의 충·방전 시 발생하는 큰 부피 변화로 인해 전극의 균열이 일어나고, 리튬이온과 전해액의 분해 반응에 의해 실리콘 표면에 연속적으로 불안정한 고체 전해질 계면(Solid Electrolyte Interface, SEI)이 형성되어 충·방전 사이클이 진행됨에 따라 전기 용량이 감소하는 문제점이 있다. 이러한 문제점을 해결하기 위해 여러 연구자들이 실리콘과 탄소계 물질을 복합화 하는 연구를 진행하고 있다.
Liu 등(Liu et al., 2012)은 요크-쉘(yolk-shell) 디자인을 이용하여 실리콘 입자에 탄소를 코팅함으로써 문제점을 보완하고자 한 연구를 보고하였다. 탄소 전구체로 폴리도파민(polydopamine)을 사용하여 탄화과정을 거쳐 제조하였으며, 실리콘 표면에 실리콘 산화물을 코팅후 제거함으로써 보이드(void)를 생성했다. 그러나 탄소 코팅으로 충·방전 시 발생하는 실리콘의 큰 부피 변화를 수용하기 어려웠고, 실리콘 산화물을 제거할 때 유해 물질을 사용함으로써 환경오염 문제가 발생하는 문제점을 보였다.
Liu 등(Liu et al., 2015)은 동결건조법과 액상환원법을 이용하여 마이크론 크기의 실리콘 입자에 그래핀을 복합화하여 제조하였는데 리튬이온 이차전지 특성평가 결과 750 mAh/g의 낮은 용량 값을 나타내었다. 이것은 1 내지 10 마이크론의 크기를 갖는 실리콘 입자가 충·방전 시 발생하는 큰 부피 변화로 인해 전극의 균열이 일어나 그래핀이 존재함에도 불구하고 전극의 균열이 일어났기 때문으로 분석되었다.
따라서, 실리콘과 탄소계 물질을 복합화하여 충·방전 시 실리콘의 큰 부피 변화를 충분히 수용할 수 있도록 하고, 충·방전 특성을 향상시킬 수 있는 전극재의 개발이 필요한 실정이다.
(비특허문헌 1)Liu, N., Wu, H., McDowell, M. T., Yao, Y., Wang, C. and Cui, Y. (2012), A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes, Nano Letters, 6, 3315-3321. (2012년 12월 공개)
(비특허문헌 2)Liu, X., Chao, D., Zhang, Q., Liu, H., Hu, H., Zhao, J., Li, Y., Huang, Y., Lin, J., and Shen, A. X. (2015), The roles of lithium-philic giant nitrogen-doped graphene in protecting micron-sized silicon anode from fading, Scientific Reports, 5, 15665. (2015년 10월 공개)
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 실리콘 입자들이 탄소물질로 균일하게 코팅되도록 하고, 이를 그래핀으로 한번 더 코팅되도록 하는 복합체 및 이의 제조방법을 제공하는 데 있다.
또한, 리튬 이차전지의 충방전 시 전극에서 부피 팽창을 수용할 수 있도록 하고, 안정적인 충방전 특성을 나타내는 복합체 및 이의 제조방법을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1); 상기 현탁액을 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2); 및 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 분무 건조하고 열처리하는 단계(단계 3);를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법을 제공한다.
일 실시예에 있어서, 상기 단계 1의 실리콘은 폐 실리콘 슬러지를 산 침출하고, 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0);를 통해 마련될 수 있다.
일 실시예에 있어서, 상기 단계 0은 상기 산 침출 후 건조단계를 더 포함하고, 상기 건조단계가 수행된 폐 실리콘 슬러지를 포함하는 용액을 초음파 처리 후 원심분리하여 실리콘을 선택적으로 분리 및 회수할 수 있다.
일 실시예에 있어서, 상기 단계 0의 초음파 처리는 1 시간 내지 10 시간 동안 수행될 수 있고, 상기 단계 0의 원심분리는 100 rpm 내지 1000 rpm의 회전속도로 1 분 내지 60 분간 수행될 수 있다.
일 실시예에 있어서, 상기 단계 1의 탄소 전구체는 단당류, 이당류, 다당류, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG) 및 폴리비닐알콜(PVA)로 이루어지는 군으로부터 선택된 1종 이상을 포함할 수 있다.
일 실시예에 있어서, 상기 단계 1은 상기 실리콘과 탄소 전구체의 혼합 중량비가 1 : 0.1 내지 1 : 2일 수 있다.
일 실시예에 있어서, 상기 단계 1의 습식 분쇄는 상기 실리콘의 평균 입자 크기가 0.1 ㎛ 내지 1 ㎛가 되도록 수행될 수 있다.
일 실시예에 있어서, 상기 단계 1의 습식 분쇄는 비드 밀, 바스켓 밀, 애트리션 밀 및 볼 밀로 이루어지는 군으로부터 선택된 1종의 방법을 통해 수행될 수 있다.
일 실시예에 있어서, 상기 단계 2의 분무는 초음파 분무를 통해 수행되고, 초음파 주파수는 1.0 Mhz 내지 2.5 Mhz일 수 있다.
일 실시예에 있어서, 상기 단계 2의 건조는 분무된 물질을 운송가스를 통해 관상형 가열로로 통과시킴으로써 수행될 수 있다.
일 실시예에 있어서, 상기 단계 3의 용액의 그래핀 산화물 농도는 0.05 wt % 내지 0.2 wt%일 수 있고, 상기 단계 3의 용액의 실리콘-탄소 복합체 농도는 0.1 wt% 내지 3 wt%일 수 있다.
일 실시예에 있어서, 상기 단계 3의 분무 건조는 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a); 및 상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b);를 통해 수행될 수 있다.
일 실시예에 있어서, 상기 단계 3 또는 단계 3b의 열처리 온도는 500 ℃ 내지 1000 ℃일 수 있다.
상기와 같은 목적을 달성하기 위해, 본 발명의 다른 일 측면은 폐 실리콘 슬러지를 산 침출하고, 초음파 처리 및 원심분리를 통해 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0); 상기 회수된 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1); 상기 현탁액을 초음파 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2); 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a); 및 상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b)를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법을 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 일 측면은 실리콘 입자를 둘러싸며 형성된 탄소 층을 포함하는 실리콘-탄소 복합체; 및 상기 실리콘-탄소 복합체를 복수 개 포함하는 응집체를 둘러싸며 형성된 그래핀 층;을 포함하고, 0.5 ㎛ 내지 20 ㎛의 평균 입자크기를 가지며, 상기 그래핀 층은 복수 개의 구겨진 그래핀 시트들이 응집되어 형성된, 실리콘-탄소-그래핀 복합체를 제공한다.
상기와 같은 목적을 달성하기 위해, 본 발명의 또 다른 일 측면은 양극; 제15항의 실리콘-탄소-그래핀 복합체를 포함하는 음극; 상기 양극 및 음극 사이에 구비되는 분리막; 및 전해질;을 포함하는, 이차전지를 제공한다.
본 발명의 일 측면에 따르면, 제조된 복합체를 이차전지 전극소재로 적용 시 전기전도도를 더욱 증가시키고, 큰 부피변화를 제어할 수 있어, 충방전 전기화학 특성이 향상될 수 있다.
또한, 제조된 복합체를 전극으로 적용한 이차전지는 충방전시 복합체 실리콘 표면과 전해액이 직접적으로 접촉되지 못하여, 전극 손상을 방지하는 우수한 전지특성을 나타낼 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 의한 실리콘-탄소-그래핀 제조방법의 일례를 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 의한 실리콘-탄소-그래핀 제조방법의 다른 일례를 나타낸 개략도이다.
도 3은 본 발명의 일 실시에에 의한 실리콘-탄소-그래핀 제조방법의 또 다른 일례를 개략적으로 나타낸 모식도이다.
도 4는 본 발명의 실험예 1에서 분쇄 전후의 실리콘 입자 형상을 나타낸 FE-SEM 사진이다.
도 5는 본 발명의 실험예 1에서 분쇄 횟수에 따른 입자 분포도를 나타낸 그래프이다.
도 6은 본 발명의 실험예 2에서 글루코스/실리콘 중량비에 따른 실리콘-탄소 복합체의 형상을 나타낸 FE-SEM 사진이다.
도 7은 본 발명의 실험예 2에서 글루코스/실리콘 중량비에 따른 실리콘-탄소 복합체의 열중량분석 결과를 나타낸 그래프이다.
도 8은 본 발명의 실험예 3에서 글루코스/실리콘 중량비에 따른 실리콘-탄소 복합체의 X선 회절 분석 결과를 나타낸 그래프이다.
도 9는 본 발명의 실험예 3에서 글루코스/실리콘 중량비에 따른 실리콘-탄소 복합체의 라만 분광법 수행 결과를 나타낸 그래프이다.
도 10은 본 발명의 실험예 4에서 글루코스/실리콘 중량비에 따른 실리콘-탄소-그래핀 복합체의 형상을 나타낸 FE-SEM 사진이다.
도 11은 본 발명의 실험예 5에서 글루코스/실리콘 중량비에 따른 실리콘-탄소-그래핀 복합체의 X선 회절 분석 결과를 나타낸 그래프이다.
도 12는 본 발명의 실험예 5에서 글루코스/실리콘 중량비에 따른 실리콘-탄소-그래핀 복합체의 라만 분광법 수행 결과를 나타낸 그래프이다.
도 13은 본 발명의 실험예 6에서 글루코스/실리콘 중량비에 따른 실리콘-탄소-그래핀 복합체를 음극으로 적용한 이차전지의 충방전 특성을 나타낸 그래프이다.
이하, 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 이점 및 특징, 그리고 그것을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에 개시되는 실시예들에 의해 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
나아가, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
본 발명의 일 측면은,
실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1)(S10);
상기 현탁액을 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2)(S20); 및
상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 분무 건조하고 열처리하는 단계(단계 3)(S30);를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법을 제공한다.
이하, 본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체 제조방법에 대하여 각 단계별로 상세히 설명한다.
본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체 제조방법에 있어서, 상기 단계 1(S10)은 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조한다.
상기 단계 1의 실리콘은 폐 실리콘 슬러지를 산 침출하고, 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0)(S00);를 통해 마련될 수 있다.
상기 단계 0의 폐 실리콘 슬러지는 실리콘 웨이퍼 제조 공정에서 발생하는 것일 수 있고, 실리콘 웨이퍼의 절단 또는 연마 공정에서 발생하는 것일 수 있다. 상기 절단 공정에서 금속 와이어쏘(wire saw)로 실리콘 탄화물과 절삭유 등을 함유한 절단용 슬러리를 사용함에 따라 다량의 실리콘입자와 실리콘 탄화물이 함유된 실리콘 슬러지가 발생하게 될 수 있다.
상기 단계 0의 산 침출에 사용될 수 있는 산으로, 염산, 황산, 질산 등을 사용할 수 있고, 바람직하게는 염산을 사용할 수 있다. 혼합 산의 경우, 실리콘이 용해될 우려가 있어 바람직하지 않다.
상기 단계 0의 산 침출은 산 용액에 상기 폐 실리콘 슬러지를 첨가하여 수행될 수 있고, 상기 산 용액의 농도는 1 M 내지 5 M인 것이 바람직하다. 상기 산 침출 농도에서 폐 실리콘 슬러지의 금속 불순물들이 용이하게 제거될 수 있고, 자원 낭비를 최소화할 수 있다.
상기 단계 0의 산 침출은 50 ℃ 내지 150 ℃의 온도에서 1 시간 내지 10 시간 동안 수행되는 것이 바람직하다. 상기 산 침출 온도 및 시간에서 폐 실리콘 슬러지의 금속 불순물들이 용이하게 제거될 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 0의 산 침출 수행된 용액을 상온으로 냉각시키고, 여액을 분리한 다음, 남은 폐 실리콘 슬러지에 증류수를 가하여 세척이 수행될 수 있다.
상기 단계 0은 상기 산 침출 후 건조단계를 더 포함할 수 있고, 상기 건조단계가 수행된 폐 실리콘 슬러지를 포함하는 용액을 초음파 처리 후 원심분리하여 실리콘을 선택적으로 분리 및 회수할 수 있다.
상기 단계 0의 폐 실리콘 슬러지를 포함하는 용액은 상기 폐 실리콘 슬러지 : 증류수의 고액비(g:mL)가 1 : 50 내지 200 인 것이 바람직하다. 상기의 고액비에서 후속 단계의 초음파 및 원심분리 처리가 용이하게 이루어질 수 있고, 자원 낭비를 최소화할 수 있다.
상기 단계 0의 초음파 처리는 1 시간 내지 10 시간 동안 수행되는 것이 바람직하다. 상기 초음파 처리 시간에서 상기 용액 내 폐 실리콘 슬러지의 실리콘과 실리콘 탄화물이 용이하게 분리될 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 0의 원심분리는 상기 초음파 처리된 용액을 원심 분리기를 통해 100 rpm 내지 1000 rpm의 회전속도로 1 분 내지 60 분 동안 수행되는 것이 바람직하다. 상기의 원심분리 회전속도 및 시간에서 실리콘을 용이하게 회수할 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 1의 탄소 전구체는 단당류, 이당류, 다당류, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG) 및 폴리비닐알콜(PVA)로 이루어지는 군으로부터 선택된 1종 이상을 포함할 수 있다. 상기 단계 1의 단당류는 갈락토스, 글루코스 및 프럭토스 등일 수 있고, 상기 단계 1의 이당류는 수크로스, 말토스 및 락토스 등일 수 있으며, 상기 단계 1의 다당류는 덱스트란, 전분, 자일란, 이눌린, 레반 및 갈락탄 등일 수 있다. 상기 단계 1의 탄소 전구체는 바람직하게는 단당류를 포함할 수 있고, 더욱 바람직하게는 글루코스를 포함할 수 있다. 상기 단계 1의 탄소 전구체는 후속 열처리 과정을 통해 실리콘 입자 표면에 코팅되며 탄소 층을 형성할 수 있다.
상기 단계 1은 상기 실리콘과 탄소 전구체의 혼합 중량비가 1 : 0.1 내지 1 : 2일 수 있고, 바람직하게는 1 : 0.1 내지 1일 수 있으며, 더욱 바람직하게는 1 : 0.5 내지 1일 수 있다. 상기 단계 1의 실리콘 및 탄소 전구체 혼합 중량비가 1 : 0.1 미만이라면, 후속 단계의 분쇄 처리 시 실리콘의 손상 및 산화를 방지하지 못하는 문제가 발생할 수 있고, 후속 단계를 통해 제조되는 복합체를 포함하는 전극의 충방전 특성이 저하될 우려가 있다. 상기 단계 1의 실리콘 및 탄소 전구체 혼합 중량비가 1 : 2 초과라면, 후속 단계의 분쇄 처리 시 실리콘의 손상 및 산화를 방지하는 데 있어 탄소 전구체의 낭비가 발생할 수 있고, 후속 단계를 통해 제조되는 복합체를 포함하는 전극의 정전용량이 감소될 우려가 있다.
상기 단계 1의 실리콘 및 탄소 전구체가 혼합된 혼합물은 실리콘이 1 wt% 내지 10 wt%로 포함된 용액인 것이 바람직하다. 상기 혼합물의 실리콘 농도에서 후속 단계의 습식 분쇄 처리가 용이하게 수행될 수 있고, 자원 낭비를 최소화할 수 있다.
상기 단계 1의 습식 분쇄는 상기 실리콘의 평균 입자 크기가 0.1 ㎛ 내지 2 ㎛가 되도록 수행될 수 있고, 바람직하게는 상기 실리콘의 평균 입자 크기가 0.1 ㎛ 내지 1 ㎛가 되도록 수행될 수 있다. 상기 실리콘의 평균 입자 크기가 0.1 ㎛ 미만이 되도록 습식 분쇄가 수행된다면, 실리콘 입자들이 다수 응집되어 탄소 코팅이 용이하게 이루어지지 못하는 문제가 발생할 수 있고, 상기 실리콘의 평균 입자 크기가 2 ㎛ 초과가 되도록 습식 분쇄가 수행된다면, 후속 단계에서 제조되는 복합체를 포함하는 전극의 충방전 시 균열이 발생할 우려가 있다.
상기 단계 1의 습식 분쇄는 1 회 내지 3 회로 수행될 수 있고, 바람직하게는 3회 수행될 수 있다. 상기의 분쇄 횟수에서 목적으로 하는 실리콘 평균 입자 크기에 용이하게 도달할 수 있고, 에너지 낭비를 최소화 할 수 있다.
상기 단계 1의 습식 분쇄는 비드 밀, 바스켓 밀, 애트리션 밀 및 볼 밀로 이루어지는 군으로부터 선택된 1종의 방법을 통해 수행될 수 있고, 바람직하게는 금속 산화물 비드를 이용한 비드 밀을 통해 수행될 수 있다.
상기 단계 1의 비드 밀은 1000 rpm 내지 7000 rpm의 로터 회전속도로 수행되는 것이 바람직하고, 탄소 전구체의 이송유량이 20 ml/min 내지 200 ml/min이 되도록 수행되는 것이 바람직하다. 상기 단계 1의 비드 밀의 로터 회전속도 및 이송유량에서 실리콘 표면의 손상 및 산화를 방지하되, 용이하게 목적으로 하는 실리콘 입자 크기로 분쇄가 이루어질 수 있고, 에너지 및 자원 낭비를 최소화할 수 있다.
상기 단계 1에서 제조되는 실리콘-탄소전구체 현탁액의 농도는 0.2 wt% 내지 3 wt%일 수 있다. 상기 단계 1의 현탁액의 농도가 후속 단계의 분무 건조 공정이 효과적으로 수행될 수 있는 농도라면 이에 제한하는 것은 아니다.
본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체 제조방법에 있어서, 상기 단계 2(S20)는 상기 현탁액을 분무 건조하여 실리콘-탄소 복합체를 형성한다.
상기 단계 2의 분무는 초음파 분무를 통해 수행될 수 있다. 상기 초음파 분무의 초음파 주파수는 1.0 Mhz 내지 2.5 Mhz인 것이 바람직하다. 상기 주파수에서 고르게 분무된 액적이 형성될 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 2의 건조는 분무된 물질을 운송가스를 통해 관상형 가열로로 통과시킴으로써 수행될 수 있다. 상기 운송가스의 유량은 0.5 L/min 내지 5 L/min일 수 있다. 상기 운송가스는 불활성 가스일 수 있고, 구체적으로 아르곤, 질소 및 헬륨 가스를 사용하는 것이 바람직하다. 상기의 운송가스 유량에서 제조될 실리콘-탄소 복합체의 평균 입자 크기를 균일하게 제어할 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 2의 건조 온도는 200 ℃ 내지 450 ℃인 것이 바람직하다. 상기 건조 온도에서 실리콘-탄소 복합체가 용이하게 형성될 수 있고, 에너지 낭비를 최소화할 수 있다.
본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체 제조방법에 있어서, 상기 단계 3은 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 분무 건조하고 열처리한다.
상기 단계 3의 용액의 그래핀 산화물 농도는 0.05 wt % 내지 0.2 wt%가 되도록 하되, 실리콘-탄소 복합체 농도는 0.1 wt% 내지 3 wt%가 되도록 용매가 첨가되어 혼합이 수행될 수 있다. 상기의 그래핀 산화물 농도 및 실리콘-탄소 복합체 농도에서 후속 단계의 분무 건조 공정이 용이하게 이루어져 실리콘-탄소-그래핀 복합체가 효과적으로 형성될 수 있고, 자원 낭비를 최소화할 수 있다.
상기 단계 3의 분무 건조는 상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a)(S31); 및
상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b)(S32);를 통해 수행될 수 있다.
상기 단계 3a의 이류체 노즐은 액체와 기체의 충돌에 의한 혼합 분산에 의해 액체를 미립화할 수 있다. 상기 이류체 노즐은 종래의 직접 가압방식에 의한 노즐과는 달리 낮은 압력에서도 초미세 분무를 유지할 수 있는 장점이 있다.
상기 단계 3b의 액적의 가열로 이송은 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스를 통해 이송될 수 있고, 바람직하게는 아르곤 가스를 통해 이송될 수 있다.
상기 단계 3b의 액적의 가열로 이송 시 가스의 유속은 5 L/min 내지 15 L/min일 수 있고, 바람직하게는 5 L/min 내지 10 L/min일 수 있다. 상기 단계 3b의 액적의 가열로 이송 시 유속은 2 ml/min 내지 10 ml/min일 수 있고, 바람직하게는 2 ml/min 내지 8 ml/min일 수 있다. 상기의 운송가스 유속 및 액적 유속에서 액적들의 건조 및 자가조립이 용이하게 이루어질 수 있고, 에너지 낭비를 최소화할 수 있다.
상기 단계 3 또는 3b의 건조 온도는 150 ℃ 내지 250 ℃의 일 수 있고, 바람직하게는 180 ℃ 내지 220 ℃일 수 있다. 상기 건조 온도가 150 ℃ 미만이라면, 액적 내 용매가 일부 증발되지 못하고 잔류하는 문제, 구겨진 형상의 그래핀들이 응집된 그래핀 산화물 층을 용이하게 형성하지 못하는 문제가 발생할 수 있고, 상기 가열로의 온도가 250 ℃ 초과라면, 그래핀 산화물 층을 포함하는 복합체를 형성하는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 3b의 가열로 이송을 통한 건조로 액적 내에 존재하는 용매가 증발되면, 그래핀 산화물 시트가 모세관 몰딩(capillary molding) 현상에 의해 서로 모이게 되며, 이에 구겨진 형상의 그래핀 산화물 층이 실리콘-탄소 복합체 상에 형성되게 될 수 있다.
상기 단계 3b의 건조가 수행된 복합체는 사이클론을 통해 필터에 포집될 수 있고, 이후 그래핀 산화물의 환원 및 탄소 전구체의 완전 탄화를 위한 열처리를 수행할 수 있다.
상기 단계 3 또는 3b의 열처리는 500 ℃ 내지 1000 ℃의 온도에서 수행될 수 있고, 바람직하게는 600 ℃ 내지 900 ℃의 온도에서 수행될 수 있다. 상기 열처리 온도가 600 ℃ 미만이라면, 그래핀 산화물의 환원 및 탄소전구체의 탄화 효율이 저하될 우려가 있을 수 있고, 상기 열처리 온도가 1000℃ 초과라면, 그래핀 산화물의 환원 및 탄소 전구체의 탄화에 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기 단계 3b의 열처리는 머플로(muffle furnace)에서 수행될 수 있고, 아르곤, 헬륨 및 질소로 이루어지는 군으로부터 선택된 1종 이상의 가스 분위기에서 수행될 수 있으며, 바람직하게는 아르곤 가스 분위기에서 수행될 수 있다.
상기 단계 3b의 열처리 시 가스는 소정의 유속을 나타낼 수 있고, 0.5 l/min 내지 2 l/min일 수 있으나, 환원 및 탄화 열처리가 용이하게 수행될 수 있는 가스의 유속이라면 이에 제한하는 것은 아니다.
상기 단계 3 또는 3b의 열처리는 10 분 내지 100 분 동안 수행될 수 있고, 바람직하게는 15 분 내지 80 분 동안 수행될 수 있다. 상기 열처리 시간이 10 분 미만이라면, 그래핀 산화물이 효과적으로 환원되지 못하는 문제가 발생할 수 있고, 상기 열처리 시간이 100 분 초과라면, 그래핀 산화물을 환원시키는 데 있어 과도한 에너지의 낭비가 발생할 수 있다.
상기의 제조방법(단계 1 내지 단계 3)을 통해, 실리콘 입자를 둘러싸며 형성되는 이중 탄소-그래핀 코팅층은 리튬 이차전지의 충·방전 시 리튬이온과 전해액의 분해 반응에 의해 실리콘 표면에 불안정한 고체 전해질 계면(Solid Electrolyte Interface, SEI)의 형성을 방지하여 충· 방전 사이클이 진행됨에 따라 전기 용량이 감소하지 않고 일정하게 유지하는 역할을 수행 할 수 있고, 실리콘의 큰 부피변화를 수용할 수 있다.
본 발명의 다른 일 측면은,
폐 실리콘 슬러지를 산 침출하고, 초음파 처리 및 원심분리를 통해 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0)(S00);
상기 회수된 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1)(S10);
상기 현탁액을 초음파 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2)(S20);
상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a)(S31); 및
상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b)(S32)를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법을 제공한다.
상기의 제조방법(단계 0 내지 단계 3b)에 있어서, 각 단계별 상세한 설명은 앞서 설명한 바와 같을 수 있다.
한편, 실리콘-탄소-그래핀 복합체를 단일 공정으로 제조하는 방법으로, 실리콘 입자와 실리콘 카바이드 입자로 구성된 실리콘 슬러지 용액에 수용성 탄소전구체(PVP, 글루코즈) 및 그래핀 산화물을 혼합한 콜로이드 용액을 초음파 처리하여 분리하는 동시에 콜로이드 용액을 분무하고, 이후에 건조 및 열처리 공정을 통해 실리콘-탄소-그래핀 복합체를 제조할 수 있고, 이차전지 음극재에 활용할 수 있다.
다만, 상기와 같은 단일 공정으로 제조된 실리콘-탄소-그래핀 복합체는 리튬이온 이차전지 특성평가 결과 1500 mAh/g의 용량을 나타내었다. 단일공정으로 제조된 실리콘-탄소-그래핀 복합체는 구형의 형상이였으며 내부에 실리콘과 탄소입자로 구성된 하나의 다공체가 존재하고 외부에 그 다공체의 표면을 그래핀으로 감싼 형태이었다. 단일공정으로 제조된 실리콘-탄소-그래핀 복합체는 일부 실리콘 입자들이 탄소물질로 완벽히 감싸지지 않아 장시간 사용시 높은 정전용량을 유지하기가 쉽지 않은 문제가 발생할 수 있다.
또 다른 복합체 제조방법으로, 액상반응과 식각과정을 거쳐 실리콘-그래핀 복합체를 만들고, CVD 공정인 800 ℃에서 10 분동안 아세틸렌 가스의 열분해를 거쳐 실리콘-그래핀 위에 탄소를 코팅하여 실리콘-그래핀-탄소 복합체를 제조할 수 있다. 이때 제조된 복합체를 적용한 리튬이온 이차전지 특성평가 결과 1000 mAh/g의 용량을 나타내었다. 하지만, 식각과정에서 불산을 사용하는 등 유해물질로 인한 환경 문제가 발생되고, 아세틸렌 가스의 열분해 공정으로 실리콘-그래핀 표면이 탄소로 균일하게 코팅되지 않는 문제점이 나타날 수 있다.
이러한 문제점을 해결하기 위해 실리콘 입자가 탄소물질로 이중으로 완벽히 감싸여진다면 실리콘 표면과 전해액이 직접적으로 접촉되지 않아 리튬이온 이차전지 응용시 우수한 고용량의 음극재로 사용이 가능할 수 있다.
따라서, 본 발명의 일 측면에서는 상기의 단일공정으로 복합체를 제조하는 것과는 달리, 실리콘과 실리콘 카바이드 입자로 구성된 폐 실리콘 슬러지로부터 분리, 회수된 마이크론 크기의 실리콘 입자들을 탄소 전구체 용액과 함께 분쇄하여 입자크기를 소정의 크기로 감소시킴과 동시에 탄소 전구체가 코팅된 실리콘-탄소 현탁액을 1차적으로 제조하였다. 내부에는 실리콘이, 외부에는 탄소 전구체가 코팅된 구형의 실리콘-탄소 복합체를 제조하고, 제조된 실리콘-탄소 복합체를 그래핀 산화물과 혼합한 후 에어로졸 공정을 통하여 그래핀 산화물이 실리콘-탄소 복합체를 감싸도록 결합시켜 실리콘-탄소-그래핀 복합체를 제조하였으며, 우수한 이차전지 전극소재용 전극재를 개발하였다.
본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체의 내부에는 여러 개의 실리콘-탄소 복합체가 존재할 수 있고, 그래핀이 외부에서 실리콘-탄소 복합체들을 한번 더 감싸아서 포도송이와 같은 형상을 나타낼 수 있다.
본 발명의 일 측면에 따른 제조방법으로 제조된 복합체는 실리콘 입자가 이중 탄소소재로 완전히 감싸여진 구조로써, 단순 실리콘-탄소-그래핀 복합체와는 달리 리튬이온 이차전지 특성평가시 높은 전기전도도를 나타낼 수 있고, 큰 부피변화를 제어하여 충·방전 전기화학 특성이 향상될 수 있다. 더 나아가, 제조된 실리콘-탄소-그래핀 복합체는 리튬이차전지 충·방전시 실리콘 표면과 전해액이 직접적으로 접촉되지 않아 큰 부피 팽창을 수용할 수 있으므로 전극 손상을 방지하여 우수한 전지특성을 나타낼 수 있다.
본 발명의 다른 일 측면은,
실리콘 입자를 둘러싸며 형성된 탄소 층을 포함하는 실리콘-탄소 복합체; 및
상기 실리콘-탄소 복합체를 복수 개 포함하는 응집체를 둘러싸며 형성된 그래핀 층;을 포함하고,
0.5 ㎛ 내지 20 ㎛의 평균 입자크기를 가지며, 상기 그래핀 층은 복수 개의 구겨진 그래핀 시트들이 응집되어 형성된, 실리콘-탄소-그래핀 복합체를 제공한다.
상기 실리콘-탄소-그래핀 복합체는 상기의 제조방법(단계 1 내지 단계 3)을 통해 제조될 수 있다.
상기 실리콘-탄소-그래핀 복합체의 실리콘 입자 크기는 0.1 ㎛ 내지 1 ㎛일 수 있다.
상기 실리콘-탄소-그래핀 복합체의 탄소 층 두께는 1 nm 내지 5 nm일 수 있다.
상기 실리콘-탄소-그래핀 복합체의 그래핀 층 두께는 10 nm 내지 30 nm 일 수 있다.
상기 실리콘-탄소-그래핀 복합체의 평균 입자 크기는 0.5 ㎛ 내지 20 ㎛일 수 있고, 바람직하게는 0.5 ㎛ 내지 10 ㎛일 수 있다.
상기 실리콘-탄소-그래핀 복합체는 내부에 복수 개의 실리콘-탄소 복합체들과 이들을 둘러싸는 그래핀 층을 포함하는 특유의 구조 및 상기의 입자크기 범위로 인해, 리튬이온 이차전지 적용 시 높은 전기전도도를 나타낼 수 있고, 충·방전 전기화학 특성이 향상될 수 있다. 즉, 충·방전시 실리콘 표면과 전해액이 직접적으로 접촉되지 않아 고체 전해질 계면 층의 생성을 방지하며, 큰 부피 팽창을 수용할 수 있는 효과가 나타날 수 있다.
본 발명의 또 다른 일 측면은,
양극; 상기의 실리콘-탄소-그래핀 복합체를 포함하는 음극;
상기 양극 및 음극 사이에 구비되는 분리막; 및 전해질;을 포함하는, 이차전지를 제공한다.
상기 이차전지는 리튬 이차전지일 수 있고, 상기 복합체를 리튬 이차전지의 음극활물질로 적용할 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
< 실시예 1> Si -C- Gr 복합체 제조
단계 0 : 먼저 폐 실리콘 슬러지에 함유되어 있는 금속 불순물을 제거하기 위해 산 침출을 수행하였다. 산 침출은 염산(HCl, 36%, Sigma Aldrich)을 사용하여 수행하였다. 500 ml 삼각 플라스크에 폐 실리콘 슬러지 5 g과 염산 2 M을 혼합한 뒤, 100 ℃의 온도에서 5 시간동안 충분히 반응시켜 주었다. 반응 후 혼합 용액의 온도를 상온으로 낮춘 다음, 진공 필터를 이용해 증류수 5 L로 2 회 세척한 뒤 건조시켰다.
산 침출 과정을 거친 폐 실리콘 슬러지로부터 초음파 처리와 원심분리 공정을 이용하여 실리콘을 분리 및 회수하였다. 먼저, 정제된 폐 실리콘 슬러지 5 g을 500 ml 증류수에 고르게 분산시켜 콜로이드 상으로 준비하였다. 준비된 콜로이드 용액 내 실리콘과 실리콘 탄화물을 분리해 주기 위해 5 시간 동안 초음파 처리를 해 주었다. 초음파 처리를 거친 콜로이드 용액을 원심분리기(VS-5500N, Vision Science)를 이용하여 실리콘 입자들을 회수하였고, 회전속도 500 rpm(27 g-force)에서 회전시간 12 분으로 진행하여, 1 ㎛ 내지 5 ㎛의 평균 입자크기를 갖는 실리콘을 회수하였다.
단계 1 : 상기 단계 1에서 회수된 실리콘 입자의 크기를 미세화하기 위하여 분쇄를 수행하였다. 분쇄과정에서 산화방지 및 탄소 전구체의 코팅을 위하여 글루코스를 주입하였다. 분쇄공정에 사용된 장비는 비즈 밀(ultra apex mill, UAM-015, kotobukilnd. Co. Ltd.)이다. 이것은 실린더 내부와 로터로 구성되어 있으며 분쇄에 사용한 비드는 0.05 mm 지르코니아(ZrO2)를 사용하였다. 로터의 회전속도는 4500 rpm, 전구체 이송유랑은 90 ml/min으로 고정하여 분쇄하였다. 이때 실리콘 농도는 5 wt%로 고정하고 글루코스/실리콘의 중량비를 0.1로 하여 분쇄를 거쳐 모든 조건에서 1 ㎛ 이하의 입자 크기를 갖는 실리콘-글루코스 현탁액을 얻었다. 즉, 탄소 화합물인 글루코스 수용액이 분쇄공정에서 실리콘의 표면을 감싸는 동시에 고속 분쇄시 발생하는 산화과정으로 인한 실리콘 표면의 산화실리콘 생성을 방지해주고 글루코스가 실리콘 입자 표면에 고르게 분포된 실리콘-글루코즈 현탁액을 제조하였다.
단계 2 : 상기 단계 1에서 제조된 실리콘-글루코즈 현탁액은 초음파 분무건조 공정을 통해 실리콘 입자표면이 탄소 전구체로 코팅된 실리콘-탄소 복합체를 제조하였다. 초음파 분무 건조 공정은 초음파 분무 노즐과 온도 400 ℃, 이송가스 유량이 1 l/min인 관상형 가열로를 통해 수행되었으며, 분무공정에 사용되는 실리콘-글루코즈 현탁액 농도는 0.5 wt%이었다.
단계 3a : 상기 단계 2에서 제조한 실리콘-탄소 복합체를 회수한 뒤, 그래핀 산화물과 함께 혼합한 용액을 노즐형 분무 건조 공정으로 실리콘-탄소-그래핀 산화물 복합체를 제조하였다. 이때 혼합용액의 실리콘-탄소 복합체의 농도는 1 wt%이고, 그래핀 산화물의 농도는 0.1 wt%로 하였다. 노즐형 분무 건조기는 일정한 압력 하에서 콜로이드 용액을 이류체 노즐을 통해 분사하여 온도 200 ℃로 예열된 건조 챔버(chamber)로 용매 증발 과정을 거치도록 하였다. 이때 분산 가스의 유량과 전구체의 이송유량은 각각 아르곤 10 l/min, 4.5 ml/min 이 되도록 하였고, 사이클론에서 실리콘-탄소-그래핀 산화물 복합체를 회수하였다.
단계 3b : 상기 단계 3a에서 회수된 실리콘-탄소-그래핀 산화물 복합체를 Ar 분위기, 유량 1 l/min에서 800 ℃로 30 분 동안 열처리 과정을 거쳐 그래핀 산화물을 그래핀으로 완전히 환원시키고, 글루코스를 탄화시켜 최종적으로 실리콘-탄소-그래핀 복합체를 제조하였다.
< 실시예 2> Si -C- Gr 복합체 제조 / Si:Glucose = 1:0.3
상기 실시예 1의 단계 1에서, 글루코스/실리콘 중량비를 0.3으로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 실리콘-탄소-그래핀 복합체를 제조하였다.
< 실시예 3> Si -C- Gr 복합체 제조 / Si:Glucose = 1:0.5
상기 실시예 1의 단계 1에서, 글루코스/실리콘 중량비를 0.5로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 실리콘-탄소-그래핀 복합체를 제조하였다.
< 실시예 4> Si -C- Gr 복합체 제조 / Si:Glucose = 1:1
상기 실시예 1의 단계 1에서, 글루코스/실리콘 중량비를 1로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 수행하여 실리콘-탄소-그래핀 복합체를 제조하였다.
< 실험예 1> 실리콘 입자의 습식 분쇄 전후 결과 분석
상기 실시예 1의 단계 0을 통해 마련되는 실리콘 입자와, 상기 실리콘 입자를 상기 단계 1의 습식 분쇄 처리한 입자 결과를 FE-SEM으로 측정하였고, 분쇄 횟수에 따른 입자크기 분포도를 측정하으며, 이를 도 4 및 도 5에 나타내었다.
도 4에 나타낸 바와 같이, FE-SEM결과에서 국소적으로 확인된 분쇄 하기 전의 실리콘 입자는 2 ㎛ 이상 크기를 나타내었고, 분쇄 후에는 약 500 nm 이하의 크기인 실리콘 입자를 확인할 수 있었다.
도 5를 참조하면, 분쇄 전의 실리콘 입자는 대체로 1 ㎛ 내지 10 ㎛ 영역의 분포를 가졌음을 알 수 있었고, 분쇄 횟수가 1, 2, 3회로 증가할수록 입자사이즈가 감소하는 경향을 확인하였으며, 개략적으로 100 nm 내지 1 ㎛의 입자 크기 분포도를 나타내었다. 따라서, 습식 분쇄공정을 통하여 실리콘 입자의 크기를 효과적으로 줄일 수 있었고 입자 사이즈를 조절할 수 있음을 확인하였다.
< 실험예 2> 실리콘-탄소 복합체의 형상 측정 및 열중량분석
상기 실시예 1 내지 실시예 4의 단계 0 내지 2를 통해 제조된 실리콘-탄소 복합체의 형상을 FE-SEM을 통해 촬영하였고, 열중량분석(TGA)을 수행하였으며, 그 결과를 도 6 및 도 7에 나타내었다.
도 6에 나타낸 바와 같이, 제조된 실리콘-탄소 복합체는 모든 조건에서 대체로 구형이었으며 입자크기는 500 nm 내지 2 ㎛인 것을 확인하였다. 즉, 글루코스/실리콘 중량비에 따른 형상차이는 크게 나타나지 않았다.
도 7을 참조하면, 열중량분석에서 복합체 내의 탄소함량을 알아보기 위하여 공기 분위기에서 25 ℃부터 800 ℃까지 5 ℃/min의 승온속도로 측정하였다. 그 결과 약 150 ℃ 에서 500 ℃까지 탄소의 연소로 무게 변화가 나타났고, 600℃ 이상에서는 실리콘 입자의 산화반응으로 시료의 무게가 약간 증가하였다. 글루코스/실리콘 중량비가 0.1, 0.3, 0.5, 1 일 때, 복합체 내 실리콘 함량이 각각 약 85 %, 79 %, 68 %, 55 %로 나타나는 것을 확인할 수 있었다. 이는 현탁액 중 탄소원료로 투입된 글루코스의 농도 비율과 유사한 값을 나타냈다. 따라서, 초음파 분무 건조 공정은 실리콘-탄소 복합체 제조 시 탄소에 감싸지는 실리콘의 함량을 제어할 수 있는 효율적인 공정임을 확인할 수 있었다.
< 실험예 3> 실리콘-탄소 복합체의 XRD 및 Raman 분석
상기 실시예 1 내지 실시예 4의 단계 0 내지 2를 통해 제조된 실리콘-탄소 복합체의 X선 회절 분석을 수행하였고, 라만 분광법을 수행하였으며, 그 결과를 도 8 및 도 9에 나타내었다.
도 8에 나타낸 바와 같이, 모든 조건에서 약 28˚ 부근에서 실리콘 피크를 확인할 수 있었다. 하지만, 탄소의 결정상은 실리콘의 결정상을 나타내는 결정상이 높고 탄소의 결정상은 상대적으로 낮아 확인할 수 없었다. 또한, 산화 실리콘 결정상이 나타나지 않으므로 고속 분쇄 공정 시 발생되는 실리콘 산화반응을 탄소화합물인 글루코스가 방지하였음을 확인할 수 있었다.
도 9를 참조하면, 라만 분광법 결과로부터 그래핀 없이 제조된 실리콘-탄소 복합체의 실리콘과 탄소의 존재를 확인할 수 있다. 약 518 cm-1은 실리콘을 나타내고, 1340cm-1과 1600cm-1은 탄소를 나타내고 있었다.
< 실험예 4> 실리콘-탄소- 그래핀 복합체의 형상 측정
상기 실시예 1 내지 실시예 4에서 제조된 실리콘-탄소-그래핀 복합체 각각의 형상을 FE-SEM으로 촬영하였으며, 이를 도 10에 나타내었다.
도 10에 나타낸 바와 같이, FE-SEM 결과로부터 표면에 모세관 압축으로 인해 주름이 많고 구겨진 형태의 그래핀을 확인할 수 있었고, 표면에 드러난 실리콘은 거의 없는 것으로 나타났다.
< 실험예 5> 실리콘-탄소- 그래핀 복합체의 XRD 및 Raman 분석
상기 실시예 1 내지 실시예 4에서 제조된 실리콘-탄소-그래핀 복합체의 X선 회절 분석을 수행하였고, 라만 분광법을 수행하였으며, 그 결과를 도 11 및 도 12에 나타내었다.
도 11에 나타낸 바와 같이, 약 28˚ 부근에서 열처리 후의 실리콘-탄소-그래핀 복합체 내에 실리콘이 존재하는 것을 확인하였으며, 약 25˚ 내지 30˚ 에 완만하게 그래핀 피크가 나타날 것으로 예상하지만 실리콘의 피크가 매우 강하게 나타나 그래핀의 피크를 구분하기는 힘든 것으로 보였다.
도 12를 참조하면, 열처리 후의 실리콘-탄소-그래핀 복합체의 실리콘과 탄소 및 그래핀을 확인할 수 있다. 약 518 cm-1은 실리콘을 나타내고, 1340 cm-1과 1600 cm-1은 탄소 및 그래핀을 나타내고 있음을 알 수 있었다.
< 실험예 6> 실리콘-탄소- 그래핀 복합체를 적용한 이차전지의 충방전 특성 분석
상기 실시예 1 내지 실시예 4에서 제조된 실리콘-탄소-그래핀 복합체 및 단일 실리콘 입자를 음극재로 적용한 이차전지의 충방전 시험을 진행하여 전지의 수명 특성을 분석하였고, 그 결과를 도 13 (a) 및 (b)에 나타내었다.
도 13 (a)에 나타낸 바와 같이, 실리콘 입자의 결과는 초기 용량 2800 mAh/g으로 높은 반면 사이클이 진행됨에 따라 급격히 감소하는 경향을 나타내어, 15 사이클 이후에는 500 mAh/g을 나타냈다. 이는 복합체 내 실리콘의 함량이 증가하면 고체 상태에서의 높은 충전(packing) 밀도를 나타내 전해액의 이동을 저해시키고, 충·방전 시 실리콘의 큰 부피변화를 수용할 수 없어 낮은 사이클 안정성을 나타내는 것으로 보인다. 반면에 실리콘-탄소-그래핀 복합체는 글루코스/실리콘 중량비가 0.1, 0.3, 0.5, 1일때 초기 용량이 1000 mAh/g, 1900 mAh/g, 2000 mAh/g, 2300 mAh/g으로 각각 나타내어 실리콘보다는 초기용량이 낮지만, 25 사이클에서 모두 1800 mAh/g 이상을 보여 안정한 유지율을 나타내고 있다. 도 13 (a) 및 (b)를 참조하면, 그 중에서 실리콘-탄소-그래핀 복합체는 글루코스/실리콘 중량비가 1일 때 30 사이클에서 2200 mAh/g을 보여 가장 안정적인 사이클 유지율을 나타내고, 쿨롱 효율이 99% 이상을 유지하는 것을 나타내었다. 실리콘 입자를 탄소로 코팅후에 그래핀으로 추가 코팅한 복합체는 전해액의 직접적인 접촉을 피해 불안정한 고체 전해질 계면 층 생성을 방지하고, 충·방전 시 실리콘의 큰 부피변화를 수용할 수 있어 나타나는 결과로 보인다. 또한, 글루코스/실리콘 중량비가 0.1, 0.3, 0.5일때, 30 사이클에서는 1600 mAh/g, 1900 mAh/g, 2000 mAh/g을 나타내었고, 쿨롱 효율도 약 95 %, 95 %, 99 % 이상으로 높은 유지율을 나타내는 것을 확인하였다.
지금까지 본 발명의 일 측면에 따른 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지에 관한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시 변형이 가능함은 자명하다.
그러므로 본 발명의 범위에는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (16)

  1. 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1);
    상기 현탁액을 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2); 및
    상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 분무 건조하고 열처리하는 단계(단계 3);를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법.
  2. 제1항에 있어서,
    상기 단계 1의 실리콘은,
    폐 실리콘 슬러지를 산 침출하고, 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0);를 통해 마련되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  3. 제2항에 있어서,
    상기 단계 0은,
    상기 산 침출 후 건조단계를 더 포함하고, 상기 건조단계가 수행된 폐 실리콘 슬러지를 포함하는 용액을 초음파 처리 후 원심분리하여 실리콘을 선택적으로 분리 및 회수하는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  4. 제3항에 있어서,
    상기 단계 0의 초음파 처리는,
    1 시간 내지 10 시간 동안 수행되고,
    상기 단계 0의 원심분리는,
    100 rpm 내지 1000 rpm의 회전속도로 1 분 내지 60 분간 수행되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  5. 제1항에 있어서,
    상기 단계 1의 탄소 전구체는,
    단당류, 이당류, 다당류, 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG) 및 폴리비닐알콜(PVA)로 이루어지는 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  6. 제1항에 있어서,
    상기 단계 1은,
    상기 실리콘과 탄소 전구체의 혼합 중량비가 1 : 0.1 내지 1 : 2인 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  7. 제1항에 있어서,
    상기 단계 1의 습식 분쇄는,
    상기 실리콘의 평균 입자 크기가 0.1 ㎛ 내지 1 ㎛가 되도록 수행되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  8. 제1항에 있어서,
    상기 단계 1의 습식 분쇄는,
    비드 밀, 바스켓 밀, 애트리션 밀 및 볼 밀로 이루어지는 군으로부터 선택된 1종의 방법을 통해 수행되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  9. 제1항에 있어서,
    상기 단계 2의 분무는,
    초음파 분무를 통해 수행되고, 초음파 주파수는 1.0 Mhz 내지 2.5 Mhz인 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  10. 제1항에 있어서,
    상기 단계 2의 건조는,
    분무된 물질을 운송가스를 통해 관상형 가열로로 통과시킴으로써 수행되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  11. 제1항에 있어서,
    상기 단계 3의 용액의 그래핀 산화물 농도는,
    0.05 wt % 내지 0.2 wt%이고,
    상기 단계 3의 용액의 실리콘-탄소 복합체 농도는,
    0.1 wt% 내지 3 wt%인 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  12. 제1항에 있어서,
    상기 단계 3의 분무 건조는,
    상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a); 및
    상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b);를 통해 수행되는 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  13. 제1항 또는 제12항에 있어서,
    상기 단계 3 또는 단계 3b의 열처리 온도는,
    500 ℃ 내지 1000 ℃인 것을 특징으로 하는 실리콘-탄소-그래핀 복합체 제조방법.
  14. 폐 실리콘 슬러지를 산 침출하고, 초음파 처리 및 원심분리를 통해 실리콘을 선택적으로 분리 및 회수하는 단계(단계 0);
    상기 회수된 실리콘에 탄소 전구체 용액를 첨가하며 습식 분쇄하여 현탁액을 제조하는 단계(단계 1);
    상기 현탁액을 초음파 분무 건조하여 실리콘-탄소 복합체를 형성하는 단계(단계 2);
    상기 실리콘-탄소 복합체 및 그래핀 산화물을 혼합한 용액을 이류체 노즐을 통해 에어로졸 액적으로 분무하는 단계(단계 3a); 및
    상기 분무된 액적을 운송가스를 통해 관상형 가열로로 통과시켜 건조하고, 열처리하는 단계(단계 3b)를 포함하는, 실리콘-탄소-그래핀 복합체 제조방법.
  15. 실리콘 입자를 둘러싸며 형성된 탄소 층을 포함하는 실리콘-탄소 복합체; 및
    상기 실리콘-탄소 복합체를 복수 개 포함하는 응집체를 둘러싸며 형성된 그래핀 층;을 포함하고,
    0.5 ㎛ 내지 20 ㎛의 평균 입자크기를 가지며, 상기 그래핀 층은 복수 개의 구겨진 그래핀 시트들이 응집되어 형성된, 실리콘-탄소-그래핀 복합체.
  16. 양극; 제15항의 실리콘-탄소-그래핀 복합체를 포함하는 음극;
    상기 양극 및 음극 사이에 구비되는 분리막; 및 전해질;을 포함하는, 이차전지.
PCT/KR2017/005334 2017-02-09 2017-05-23 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지 WO2018147508A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/483,932 US11362326B2 (en) 2017-02-09 2017-05-23 Method for preparing silicon-carbon-graphene composite, composite prepared according thereto, and secondary battery to which same is applied

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0018239 2017-02-09
KR1020170018239A KR101767393B1 (ko) 2017-02-09 2017-02-09 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지

Publications (1)

Publication Number Publication Date
WO2018147508A1 true WO2018147508A1 (ko) 2018-08-16

Family

ID=59651426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005334 WO2018147508A1 (ko) 2017-02-09 2017-05-23 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지

Country Status (4)

Country Link
US (1) US11362326B2 (ko)
KR (1) KR101767393B1 (ko)
CN (1) CN108417782B (ko)
WO (1) WO2018147508A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301215A (zh) * 2018-09-30 2019-02-01 陕西煤业化工技术研究院有限责任公司 一种高容量硅碳负极活性材料及其制备方法及其应用
US20210242450A1 (en) * 2020-02-05 2021-08-05 Korea Institute Of Geoscience And Mineral Resources Silicon-carbon-graphene composite and manufacturing method thereof, and lithium ion secondary battery using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212939B1 (ko) 2017-12-04 2021-02-04 한국전기연구원 산화그래핀환원물-실리콘 금속입자 복합체, 복합체 제조방법 및 복합체를 포함하는 이차전지용 전극
KR101889356B1 (ko) * 2018-01-31 2018-08-17 한국지질자원연구원 실리콘-탄소나노튜브-탄소 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
KR102011800B1 (ko) * 2018-04-18 2019-08-19 주식회사 크레진 자성 그래핀 나노 분말 복합체 제조방법
CN108736006B (zh) * 2018-07-26 2021-06-22 福州大学 一种制备硅-碳复合材料的方法
KR102212969B1 (ko) * 2018-08-29 2021-02-05 한국전기연구원 폴리머가 첨가된 산화그래핀 환원물-실리콘 금속입자 복합체 제조방법, 이에 의하여 제조되는 복합체 및 복합체를 이용하는 이차전지용 음극재
CN110600684A (zh) * 2018-09-12 2019-12-20 湖北万润新能源科技发展有限公司 一种锂离子电池用硅碳负极材料及其制备方法
KR102250814B1 (ko) * 2019-05-17 2021-05-12 한국과학기술연구원 탄소 코팅된 그래핀, 실리콘 나노입자, 탄소나노튜브를 포함하는 리튬이차전지 음극재용 복합체, 이의 제조방법
CN110429263B (zh) * 2019-08-13 2021-11-02 宁波富理电池材料科技有限公司 一种石墨烯/硅碳复合材料、其制备方法及应用
CN110797531B (zh) * 2019-10-11 2022-04-12 合肥国轩高科动力能源有限公司 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法
CN111063890A (zh) * 2019-12-20 2020-04-24 北方奥钛纳米技术有限公司 一种石墨烯改性硅碳材料、制备方法及其应用
CN111383847A (zh) * 2020-03-25 2020-07-07 上海理工大学 一种石墨烯负载金属氧化物电极材料的制备方法
US20230238514A1 (en) * 2020-06-02 2023-07-27 Daejoo Electronic Materials Co., Ltd. Silicon-based carbon composite, preparation method therefor, and anode active material comprising same
KR102395188B1 (ko) * 2020-12-10 2022-05-10 한국메탈실리콘 주식회사 실리콘 부산물을 이용하는 실리콘 복합체 제조 방법 및 실리콘 복합체
KR102332301B1 (ko) * 2021-06-25 2021-12-01 대진첨단소재 주식회사 실리콘-탄소 고분자 복합체 및 기계화학적 결합법을 이용한 이의 제조방법
KR20230083169A (ko) * 2021-12-02 2023-06-09 대주전자재료 주식회사 다공성 규소-탄소 복합체, 이의 제조방법 및 이를 포함하는 음극 활물질
TWI805123B (zh) * 2021-12-10 2023-06-11 芯量科技股份有限公司 矽碳複合負極材料及其製備方法與應用
CN114975962A (zh) * 2022-06-24 2022-08-30 内蒙古瑞盛天然石墨应用技术研究院 利用光伏废硅粉与氧化石墨烯制备硅碳负极材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050096328A (ko) * 2004-03-30 2005-10-06 고등기술연구원연구조합 반도체 웨이퍼 폐슬러지의 재생장치
KR20110082894A (ko) * 2010-01-12 2011-07-20 주식회사 이앤알이 폐 실리콘웨이퍼 슬러지의 재활용 방법 및 장치
KR101634723B1 (ko) * 2015-12-30 2016-06-30 한국지질자원연구원 실리콘 슬러지로부터 실리콘-카본-그래핀 복합체의 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101396521B1 (ko) 2011-08-05 2014-05-22 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR101355816B1 (ko) 2012-04-11 2014-01-28 한국지질자원연구원 실리콘 슬러지로부터 실리콘의 분리 및 회수방법
KR101650184B1 (ko) 2014-12-12 2016-08-23 한국지질자원연구원 실리콘입자의 회수방법 및 이차전지 음극재의 제조방법
CN105870496A (zh) 2016-06-20 2016-08-17 中国科学院兰州化学物理研究所 一种用于锂离子电池负极材料的豆荚状硅@非晶炭@石墨烯纳米卷复合材料
CN106058181A (zh) * 2016-07-06 2016-10-26 上海交通大学 石墨烯支撑的碳包覆硅纳米颗粒复合电极材料的制备方法
CN105958036A (zh) * 2016-07-07 2016-09-21 天津普兰能源科技有限公司 一种锂离子电池的碳包覆硅负极材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050096328A (ko) * 2004-03-30 2005-10-06 고등기술연구원연구조합 반도체 웨이퍼 폐슬러지의 재생장치
KR20110082894A (ko) * 2010-01-12 2011-07-20 주식회사 이앤알이 폐 실리콘웨이퍼 슬러지의 재활용 방법 및 장치
KR101634723B1 (ko) * 2015-12-30 2016-06-30 한국지질자원연구원 실리콘 슬러지로부터 실리콘-카본-그래핀 복합체의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, HYE GYEONG ET AL.: "Ultra-high-purity Silicon Manufacturing from Silicon Sludge", THE KOREAN SOCIETY OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 18, no. 1, 2014 *
PARK, JE SIK ET AL.: "Recovery of Silicon from Silicon Sludge by Electrolysis", JOURNAL OF THE KOREAN INSTITUTE OF RESOURCES RECYCLING, vol. 21, no. 5, 2012, pages 31 - 37 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301215A (zh) * 2018-09-30 2019-02-01 陕西煤业化工技术研究院有限责任公司 一种高容量硅碳负极活性材料及其制备方法及其应用
CN109301215B (zh) * 2018-09-30 2021-04-13 陕西煤业化工技术研究院有限责任公司 一种高容量硅碳负极活性材料及其制备方法及其应用
US20210242450A1 (en) * 2020-02-05 2021-08-05 Korea Institute Of Geoscience And Mineral Resources Silicon-carbon-graphene composite and manufacturing method thereof, and lithium ion secondary battery using the same

Also Published As

Publication number Publication date
CN108417782A (zh) 2018-08-17
US11362326B2 (en) 2022-06-14
US20190355985A1 (en) 2019-11-21
CN108417782B (zh) 2021-03-02
KR101767393B1 (ko) 2017-08-11

Similar Documents

Publication Publication Date Title
WO2018147508A1 (ko) 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지
WO2017074081A1 (ko) Siox-플러렌 복합체, 이의 제조방법, 제조장치 및 용도
WO2015156446A1 (ko) 그래핀-금속나노입자복합체, 상기 복합체를 포함하는 탄소나노섬유복합체 및 상기 탄소나노입자복합체를 포함하는 이차전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2014104842A1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
WO2017074084A1 (ko) Siox의 포집장치 및 포집방법
WO2014126413A1 (ko) 나트륨 이차전지용 음극활물질, 이를 이용한 전극의 제조방법 및 이를 포함하는 나트륨 이차전지
KR101813893B1 (ko) 구겨진 형상의 실리콘-탄소나노튜브-그래핀 복합체 제조방법, 이에 따라 제조된 복합체 및 복합체를 포함하는 이차전지
WO2020130443A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
WO2014069902A1 (ko) 다공성 복합체 및 이의 제조방법
WO2010041907A2 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery comprising the same
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2019177355A1 (ko) 세리아-탄소-황 복합체, 이의 제조방법, 이를 포함하는 양극 및 리튬-황 전지
WO2021261697A1 (ko) 양극 스크랩을 이용한 활물질 재사용 방법
WO2022045559A1 (ko) 활물질 회수 장치 및 이를 이용한 활물질 재사용 방법
WO2017209556A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이를 포함하는 리튬이차전지
WO2023210866A1 (ko) 리튬이온이차전지용 실리콘 음극재
WO2023210867A1 (ko) 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재
WO2022131695A1 (ko) 리튬 이온 이차전지용 음극재, 이의 제조방법 및 이를 포함하는 리튬 이온 이차전지
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2024039227A1 (ko) 리튬이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬이차전지용 양극
WO2023210869A1 (ko) 산화붕소가 적용된 리튬이온이차전지용 실리콘 음극재 제조방법
WO2020179978A1 (ko) 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2024154864A1 (ko) 커피박 조성물 및 이를 포함하는 이차전지용 음극재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896171

Country of ref document: EP

Kind code of ref document: A1