WO2020179978A1 - 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법 - Google Patents

이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법 Download PDF

Info

Publication number
WO2020179978A1
WO2020179978A1 PCT/KR2019/010051 KR2019010051W WO2020179978A1 WO 2020179978 A1 WO2020179978 A1 WO 2020179978A1 KR 2019010051 W KR2019010051 W KR 2019010051W WO 2020179978 A1 WO2020179978 A1 WO 2020179978A1
Authority
WO
WIPO (PCT)
Prior art keywords
boron nitride
bnnss
separator
hexagonal boron
nitride nanosheets
Prior art date
Application number
PCT/KR2019/010051
Other languages
English (en)
French (fr)
Inventor
이영우
손정인
장아랑
홍승현
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Priority claimed from KR1020190097181A external-priority patent/KR102248310B1/ko
Publication of WO2020179978A1 publication Critical patent/WO2020179978A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a secondary battery using BNNS as a separator, a fuel cell, and a method of manufacturing a separator including BNNS.
  • a secondary battery converts chemical energy into electrical energy to supply power to an external circuit, and when discharged, it receives external power and converts electrical energy into chemical energy to store electricity, and is generally called a storage battery. .
  • Mainly used secondary batteries are automotive lead-acid accumulators, Walkman's nickel cadmium batteries (NiCd), nickel hydride batteries (NiMH), mobile phones and smartphones lithium-ion batteries (Li-ion), and lithium-ion polymers.
  • Battery Li-ion polymer
  • LiFePO 4 lithium iron phosphate battery
  • Lead-acid batteries are mainly used in automobile batteries.
  • Nickel cadmium batteries once occupied the mainstream of rechargeable batteries that can be encountered in everyday life, but now they are almost dead in AA and AAA sizes that can be replaced by batteries due to environmental issues caused by heavy metals due to their low capacity. It is only used in wireless phones.
  • the lithium-ion battery is a field of rechargeable batteries that is particularly developing with the development of technology and the use of a material that boasts a high energy density called lithium.
  • lithium ion batteries are actively used, but the stability is very poor compared to other batteries.
  • the positive electrode active material is reduced by receiving electrons, and is used for the positive electrode of a secondary battery to play a key role in charging and discharging the battery.
  • a high voltage positive electrode active material is required.
  • the anode active material is a material that accepts ions from the anode, and carbon materials such as graphite are most commonly used.
  • Electrolytes are a medium that allows ions to move between the anode and cathode.
  • the electrolyte is a material with high ionic conductivity so that ions can be transported well.
  • the separator physically blocks the anode and cathode from mixing with each other.
  • commercially available separators include synthetic resins such as polyethylene and polypropylene.
  • a fuel cell is a chemical cell that directly converts chemical energy into electrical energy through an electrochemical reaction between hydrogen and oxygen.
  • Hydrogen may be directly supplied to the fuel cell, or hydrogen may be supplied using other materials. Further, pure oxygen may be used, or oxygen contained in air may be used.
  • the problem to be solved by the present invention is to provide a secondary battery and a fuel cell having excellent performance by improving the high temperature stability and physical stability of the separator.
  • the problem to be solved by the present invention is to provide a method of manufacturing a separator having physical and thermal stability.
  • the separator for a secondary battery or a fuel cell according to an embodiment of the present invention contains BNNSs (Hexagonal boron nitride nanosheets) in an amount of 99 to 100 wt% with respect to the total weight.
  • BNNSs Hexagonal boron nitride nanosheets
  • a secondary battery includes: a positive electrode including a positive electrode active material portion to receive and reduce electrons and a current collector supporting the positive electrode active material portion; A negative electrode including a negative electrode active material portion emitting electrons while being oxidized; And an electrolyte part which is a passage through which ions are moved between the positive electrode and the negative electrode. And a separator in which at least some are BNNSs (Hexagonal boron nitride nanosheets).
  • Hexagonal boron nitride nanosheets (BNNSs) of the secondary battery may include a hexagonal structure in which nitrogen (N) and boron (B) are alternately arranged, and the hexagonal structure may include a passage through which ions can pass. .
  • a separator in which at least a portion of the secondary battery is hexagonal boron nitride nanosheets includes: first hexagonal boron nitride nanosheets (BNNSs); Including second Hexagonal boron nitride nanosheets (BNNSs) disposed on one surface of the first Hexagonal boron nitride nanosheets (BNNSs), and between the first Hexagonal boron nitride nanosheets (BNNSs) and the second Hexagonal boron nitride nanosheets (BNNSs) It may include a passage through which ions can pass.
  • a fuel cell includes a fuel supply unit for supplying fuel; An air supply unit supplying an oxidizing agent; An electrolyte membrane-electrode assembly for generating electricity by using the fuel and the oxidizing agent; And a separator in which at least some are BNNSs (Hexagonal boron nitride nanosheets).
  • BNNSs Hexagonal boron nitride nanosheets
  • Hexagonal boron nitride nanosheets (BNNSs) of the fuel cell may include a hexagonal structure in which nitrogen (N) and boron (B) are alternately arranged, and the hexagonal structure may include a passage through which ions can pass. .
  • a separator in which at least a part of the fuel cell is BNNSs includes: first BNNSs (Hexagonal boron nitride nanosheets); Including second Hexagonal boron nitride nanosheets (BNNSs) disposed on one surface of the first Hexagonal boron nitride nanosheets (BNNSs), and between the first Hexagonal boron nitride nanosheets (BNNSs) and the second Hexagonal boron nitride nanosheets (BNNSs) It may include a passage through which ions can pass.
  • a method of manufacturing a separator for a secondary cell or a fuel cell includes: a first step of forming a dispersion obtained by dispersing h-BN powder in an aqueous solution containing a solute including a hydrophilic group; A second step of stirring the dispersion to form a stirring liquid; A third step of forming a first ultrasonic decomposition solution containing BN (hereinafter referred to as a BN-hydrophilic group) containing a hydrophilic group by first ultrasonically decomposing the stirred solution with ultrasonic waves; A fourth step of filtering the first ultrasonic decomposition solution to obtain the BN-hydrophilic group; A fifth step of washing and drying the BN-hydrophilic group with deionized water to form a dried BN-hydrophilic group; A sixth step of thermally expanding the dried BN-hydrophilic group to form a thermally expanded BN-hydrophilic group; A seventh step of forming a second ultrasonic decom
  • the hydrophilic group is a hydroxyl group (OH -) may be, BN- hydrophilic group in the first stage to the second stage 73 may be a BN-OH.
  • the aqueous solution containing the solute including the hydrophilic group may be 3M (molar concentration) or more.
  • the stirring may be stirring at 75 ⁇ 80 °C for 72 hours or more.
  • washing with deionized water may be such that the pH of the BN-hydrophilic group is 6.5 to 7.5.
  • the thermal expansion may be performed under a reducing gas or an inert gas condition.
  • a secondary battery or fuel cell according to an embodiment of the present invention may have excellent physical stability and heat stability, and may also have excellent Coulomb efficiency.
  • a method of manufacturing a separator for a secondary battery or a fuel cell provides a separator including Hexagonal boron nitride nanosheets (BNNSs), thereby improving battery performance.
  • BNNSs Hexagonal boron nitride nanosheets
  • 1 is a film manufactured in the form of a film to use BNNSs as a separator
  • Figure 2 shows the growth process of dendrite of a lithium secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a lithium secondary battery using a polyethylene separator,
  • BNNSs Hexagonal boron nitride nanosheets
  • BNNSs Hexagonal boron nitride nanosheets
  • FIG. 4 shows an enlarged image of a part of FIG. 3,
  • FIG. 5 is a graph comparing the boron nitride peeling rate according to the presence or absence of ultrasonic decomposition treatment in the process of manufacturing a separator according to an embodiment of the present invention
  • FIG. 7 shows the shrinkage rate of the BNNSs (Hexagonal boron nitride nanosheets) membrane and the polyethylene membrane according to temperature.
  • FIG. 8 shows Coulomb efficiency at room temperature and 80° C. of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a secondary battery using a polyethylene separator,
  • BNNSs Hexagonal boron nitride nanosheets
  • FIG. 10 shows the Coulomb efficiency of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a secondary battery using a polyethylene separator.
  • BNNSs Hexagonal boron nitride nanosheets
  • FIG. 11 shows the capacity retention of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a secondary battery using a polyethylene separator,
  • BNNSs Hexagonal boron nitride nanosheets
  • the separator for a secondary battery or a fuel cell according to an embodiment of the present invention contains BNNSs (Hexagonal boron nitride nanosheets) in a ratio of 99wt% to 100wt%, and preferably 99.9wt% to 100wt% with respect to the total weight. .
  • BNNSs Hexagonal boron nitride nanosheets
  • shrinkage may occur at a high temperature of 100°C or higher, and when the BNNSs is 99wt% to 100wt%, shrinkage does not occur even at high temperatures, and stability may be provided.
  • the separator for a secondary cell or a fuel cell may be a free standing type hexagonal boron nitride nanosheet.
  • the separator for a secondary battery or a fuel cell may be a free standing boron nitride nanosheet that does not include a separate support or a polymer membrane.
  • the boron nitride nanosheet may be a 1 to 10 layer boron nitride nanosheet, preferably a mono-layer boron nitride nanosheet.
  • the secondary battery separator may have a thickness of 0.1 nm to 10 ⁇ m, and preferably may have a thickness of 0.4 to 1 nm. Through this, the output of the secondary battery can be improved.
  • the separator for a secondary cell or a fuel cell has excellent mechanical properties and heat resistance, so that the life and safety of the secondary cell or fuel cell may be improved.
  • a secondary battery includes: a positive electrode including a positive electrode active material portion to receive and reduce electrons and a current collector supporting the positive electrode active material portion; A negative electrode including a negative electrode active material portion emitting electrons while being oxidized; And an electrolyte part which is a passage through which ions are moved between the positive electrode and the negative electrode. And at least a portion may include a separation membrane of BNNSs (Hexagonal boron nitride nanosheets).
  • the positive electrode active material is reduced by receiving electrons, and is used for a positive electrode of a secondary battery to play a key role in charging and discharging a battery.
  • a high voltage positive electrode active material is required.
  • the negative electrode active material is a material that accepts ions from the positive electrode, and may be graphite or lithium metal.
  • the electrolyte is a medium that allows ions to move between the positive electrode and the negative electrode.
  • the electrolyte is a material with high ionic conductivity so that ions can be transported well.
  • the electrolyte may be an aqueous electrolyte, a non-aqueous electrolyte, an inorganic electrolyte, an organic electrolyte, or the like, and there is no particular limitation on the kind of the electrolyte.
  • the separator may prevent direct physical contact between the anode and the cathode and serve as a transport path for ions.
  • the BNNSs (Hexagonal boron nitride nanosheets) are hexagonal boron nitride nanosheets.
  • the BNNSs may include a hexagonal structure in which nitrogen (N) and boron (B) are alternately arranged, and the hexagonal structure may include a passage through which ions can pass.
  • the hexagonal structure may be generated by gathering three nitrogen (N) and three boron (B).
  • a separator in which at least a portion of the secondary battery is hexagonal boron nitride nanosheets includes: first hexagonal boron nitride nanosheets (BNNSs); Including second Hexagonal boron nitride nanosheets (BNNSs) disposed on one surface of the first Hexagonal boron nitride nanosheets (BNNSs), and between the first Hexagonal boron nitride nanosheets (BNNSs) and the second Hexagonal boron nitride nanosheets (BNNSs) It may include a passage through which ions can pass.
  • a secondary battery using a separator including Hexagonal boron nitride nanosheets may have excellent high temperature stability and electrical insulation.
  • It may be a secondary battery including a; disposed between the negative electrode and the positive electrode, at least a portion of the separator of BNNSs (Hexagonal boron nitride nanosheets).
  • BNNSs Hexagonal boron nitride nanosheets
  • the secondary battery according to an embodiment of the present invention can suppress the growth of the lithium metal of the negative electrode in the form of dendrite by the separator, at least partially of BNNSs (Hexagonal boron nitride nanosheets), thereby improving the life characteristics and safety of the battery. I can make it.
  • BNNSs Hexagonal boron nitride nanosheets
  • the separator when a polyolefin-based separator such as polyethylene is used in a secondary battery using a conventional lithium metal as a negative electrode, the separator is damaged by lithium metal growing in the form of dendrite. It is difficult to use because there is a problem of high explosion risk and a problem of deteriorating life characteristics due to consumption of lithium, but the secondary battery according to the embodiment of the present invention solves the above problem by including a boron nitride nanosheet as a separator. It may be a secondary battery.
  • the separator may be a separator in which hexagonal boron nitride nanosheets are disposed in the form of a free-standing film without a separate support.
  • a fuel cell according to an embodiment of the present invention includes a fuel supply unit for supplying fuel
  • An air supply unit supplying an oxidizing agent;
  • An electrolyte membrane-electrode assembly for generating electricity by using the fuel and the oxidizing agent;
  • a separator in which at least some are BNNSs (Hexagonal boron nitride nanosheets).
  • the separator of the fuel cell may provide a passage for supplying the fuel and the oxidizing agent to the electrolyte membrane-electrode assembly.
  • the BNNSs (Hexagonal boron nitride nanosheets) are hexagonal boron nitride nanosheets.
  • the BNNSs may include a hexagonal structure in which nitrogen (N) and boron (B) are alternately arranged, and the hexagonal structure may include a passage through which ions can pass.
  • the hexagonal structure may be generated by gathering three nitrogen (N) and three boron (B).
  • a separator in which at least a part of the fuel cell is BNNSs includes: first BNNSs (Hexagonal boron nitride nanosheets); Including second Hexagonal boron nitride nanosheets (BNNSs) disposed on one surface of the first Hexagonal boron nitride nanosheets (BNNSs), and between the first Hexagonal boron nitride nanosheets (BNNSs) and the second Hexagonal boron nitride nanosheets (BNNSs) It may include a passage through which ions can pass.
  • a fuel cell using a separator including hexagonal boron nitride nanosheets may have excellent high temperature stability and electrical insulation.
  • 1 is a film prepared in the form of a film to use BNNSs as a separator.
  • BNNSs manufactured in a film form may be applied as a separator without using a separate support or a base film as shown in FIG. 1.
  • a film using the BNNSs (Hexagonal boron nitride nanosheets) as a separator may exhibit physically excellent rigidity that is not damaged even at a 180 degree bent angle.
  • FIG. 2 shows the growth process of dendrite of a lithium secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a lithium secondary battery using a polyethylene separator.
  • BNNSs Hexagonal boron nitride nanosheets
  • non-uniform Li dendrites may grow, and a lithium secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator may grow uniform Li dendrites.
  • BNNSs Hexagonal boron nitride nanosheets
  • the dendrites may be those in which metal is deposited to form a dendritic skeleton.
  • the secondary battery according to the embodiment of the present invention by uniformly forming dendrites, it is possible to improve cycling stability of the secondary battery as well as excellent thermal stability and mechanical stability.
  • the secondary battery using BNNSs (Hexagonal boron nitride nanosheets) according to an embodiment of the present invention as a separator can suppress the formation of non-uniform dendrites and is stable under high temperature conditions, it can have excellent Coulomb efficiency even under high temperature conditions.
  • a method of manufacturing a separator for a secondary cell or a fuel cell includes: a first step of forming a dispersion obtained by dispersing h-BN powder in an aqueous solution containing a solute including a hydrophilic group; A second step of stirring the dispersion to form a stirring liquid; A third step of forming a first ultrasonic decomposition solution containing BN (hereinafter referred to as a BN-hydrophilic group) containing a hydrophilic group by first ultrasonically decomposing the stirred solution with ultrasonic waves; A fourth step of filtering the first ultrasonic decomposition solution to obtain the BN-hydrophilic group; A fifth step of washing and drying the BN-hydrophilic group with deionized water to form a dried BN-hydrophilic group; A sixth step of thermally expanding the dried BN-hydrophilic group to form a thermally expanded BN-hydrophilic group; A seventh step of forming a second ultrasonic decom
  • the h-BN powder may have a hexagonal crystal structure.
  • the h-BN powder may be referred to as “white graphite” because the hexagonal crystal structure is similar to graphite.
  • the h-BN powder is a chemically inert material, and may be an electrically insulator.
  • the h-BN powder is an excellent thermally conductive material and may have excellent heat dissipation power.
  • the h-BN powder may have excellent heat stability, it may be used at 1000°C in air, 1400°C in vacuum, and 1800°C in gas inert atmosphere.
  • BNNSs Long boron nitride nanosheets
  • the h-BN powder may include multi-layer hexagonal boron nitride (h-BN).
  • the h-BN powder may include hexagonal boron nitride (h-BN) in a bulk form, and the hexagonal boron nitride (h-BN) in a bulk form is obtained by Van der Waals force. It may be a multilayer hexagonal boron nitride (h-BN) of a combined layered structure.
  • the method of manufacturing a secondary battery separator including a boron nitride nanosheet according to an embodiment of the present invention is a top-down hexagonal system in which a bulk boron nitride is peeled to form a two-dimensional nanosheet. It may be a method of manufacturing a boron nitride nanosheet.
  • the h-BN powder may be a particle having a diameter of micro-sized, preferably a particle having an average diameter of 5 to 10 ⁇ m.
  • the hydrophilic group is a hydroxyl group (OH -) may be, BN- hydrophilic group in the first stage to the second stage 73 is BN May be -OH
  • Non-limiting examples of the aqueous solution containing the hydrophilic group may be NaOH aqueous solution, KOH aqueous solution, LiOH aqueous solution, Ca(OH) 2 aqueous solution, Ba(OH) 2 aqueous solution, and the like.
  • the aqueous solution containing a solute containing a hydrophilic group may be a solution having a concentration of 1 to 20M, preferably a solution having a concentration of 3M or more, and more preferably a solution having a concentration of 5M or more. It may be used, more preferably a solution having a concentration of 3M to 10M may be used, and more preferably a solution having a concentration of more than 5M and less than 10M may be used.
  • the concentration is less than 3M, the OH group concentration is low and the number of OH attached to the hexagonal boron nitride is insufficient, and this may cause a problem that thermal expansion is not properly performed in the subsequent thermal expansion step, and the concentration is 10M. If it is exceeded, there may be a problem in that manufacturing efficiency is deteriorated, such as a large number of OH groups remaining without being attached to the hexagonal boron nitride, and the subsequent washing process takes a long time.
  • the stirring may be stirring at a temperature of less than 100° C., preferably stirring at a temperature of 50 to 90° C., more preferably stirring at 75 to 80° C. for 72 hours or more It can be.
  • the stirring may be mechanical stirring, but is not limited thereto.
  • the first ultrasonic decomposition may remove the stirred liquid from the liquid state by applying ultrasonic waves to the stirring liquid.
  • the ultrasonic decomposition may be performed using an ultrasonic cleaner, an ultrasonic crusher, or a probe sonicator.
  • the ultrasonic decomposition allows the h-BN powder to become a thin BN layer, and a hydrophilic group is introduced into the edge of the thin BN layer, thereby forming a BN-hydrophilic group.
  • the h-BN powder can be uniformly dispersed in an aqueous solution containing a solute containing the hydrophilic group, and OH groups are formed at the edges of the multi-layered hexagonal boron nitride, thereby increasing the peeling efficiency due to thermal expansion. Can be improved.
  • h-BN powder containing the multi-layer hexagonal boron nitride is added to an aqueous solution containing a solute containing a hydrophilic group and dispersed to have an OH group. It may be a step of forming a multi-layered hexagonal boron nitride (h-BN).
  • the fourth step may be performed after cooling the first ultrasonic decomposition solution at room temperature.
  • a filter paper may be used for the filtration, and the filter paper may be a porous material of cellulose fibers.
  • the residue remaining on the filter paper may contain the BN-hydrophilic group.
  • the deionized water is water from which ions have been removed by an ion exchange resin, and may be referred to as ultrapure water.
  • the washing with deionized water may be repeated until the pH of the BN-hydrophilic group approaches neutral.
  • the neutral may have a pH of 6.5 to 7.5.
  • the drying may be performed for about 6 hours at about 60° C. using a vacuum oven.
  • the thermal expansion may be a phenomenon in which the volume of the object increases as the kinetic energy of the particles constituting the object increases when the object receives heat, so that particle motion becomes active.
  • the thermal expansion may be performed under reducing gas or inert gas conditions, but preferably may be performed under reducing gas conditions.
  • the thermal expansion may be preferably performed by performing heat treatment at a temperature of 300 to 500° C. and in a reducing atmosphere.
  • the vigorous reduction reaction between the hydrophilic group present in the BN-hydrophilic group and the reducing gas or inert gas may induce thermal expansion while increasing the interlayer spacing of the BN-hydrophilic group.
  • the violent reduction reaction between the reducing gas or the inert gas and the hydrophilic group can break the deterioration of the BN-hydrophilic group due to the Van der Waals force or lower the bonding force, thereby widening the interlayer gap and causing thermal expansion.
  • the reducing gas may be H 2 , NH 3 , CH 4 , C 2 H 4 , C 2 H 2 , and the inert gas may be Ar,N 2 .
  • the degree of thermal expansion of the multi-layered hexagonal boron nitride (h-BN) at a temperature of 300 to 500°C is insufficient. There may be a problem that is not separated by.
  • the heat treatment is performed at a temperature of less than 300°C, the degree of thermal expansion of the multi-layered hexagonal boron nitride (h-BN) is insufficient, and a problem may occur that it is not separated into a single layer in the second ultrasonic treatment step In the case of heat treatment at a temperature exceeding 500° C., manufacturing efficiency may be deteriorated, such as an increase in manufacturing cost by manufacturing at a high temperature without any further manufacturing advantage.
  • h-BN multi-layered hexagonal boron nitride
  • the second ultrasonic decomposition in the seventh step may be performed after adding the thermally expanded BN-hydrophilic group to an organic solvent, and the organic solvent may be isopropyl alcohol.
  • the second ultrasonic decomposition may be performed using a probe sonication method.
  • the second ultrasonic decomposition may peel off the thermally expanded BN-hydrophilic group to form Hexagonal boron nitride nanosheets (BNNSs).
  • BNNSs Hexagonal boron nitride nanosheets
  • one to ten layers of hexagonal boron nitride nanosheets can be prepared from multi-layer hexagonal boron nitride nanosheets, and preferably a bi-layer hexagonal boron nitride nanosheet can be prepared. And, more preferably, it is possible to prepare a mono-layer hexagonal boron nitride nanosheet.
  • the second ultrasonic decomposition solution is centrifuged to collect the supernatant fraction by filtration and dry to obtain BNNSs (Hexagonal boron nitride nanosheets).
  • the Hexagonal boron nitride nanosheets may be free standing boron nitride nanosheets.
  • the eighth step may be performed by vacuum filtration to recover the boron nitride nanosheets.
  • the vacuum filtration method may be a recovery method for manufacturing a free standing hexagonal boron nitride nanosheet with a large area.
  • the method of manufacturing a separator for a secondary battery or a fuel cell according to an exemplary embodiment of the present invention has high reproducibility and can manufacture free standing boron nitride nanosheets over a large area.
  • the method of manufacturing a separator for a secondary battery or a fuel cell according to an embodiment of the present invention may further include transferring the recovered hexagonal boron nitride nanosheets (BNNSs) onto a support or a polymer.
  • BNNSs hexagonal boron nitride nanosheets
  • the secondary battery separator prepared by the above manufacturing method can be used as a heat-resistant separator for a lithium ion secondary battery.
  • the tube furnace was flushed with argon for 10 minutes and then heated to 400°C. High purity H 2 gas was continuously introduced into the tube furnace. The dried BN-OH powder was then quickly transferred into an optical furnace. BN-OH was placed in the tube furnace for 90 seconds.
  • the thermally expanded BN-OH was dispersed in an isopropyl alcohol solvent. After that, ultrasonic waves were applied for 10 hours with an ultrasonic crusher. Then, centrifugation was performed at 5000 rpm for 30 minutes. After the supernatant fraction was filtered with cellulose fiber filter paper, the filtrate was dried in a vacuum oven at 80° C. for 8 hours to obtain a separator using BNNSs (Hexagonal boron nitride nanosheets).
  • BNNSs Hexagonal boron nitride nanosheets
  • a separator was obtained in the same manner as in Example 1, except that the concentration of the NaOH solution was changed to 5M in Step 1 of Example 1.
  • a separator was obtained in the same manner as in Example 1, except that the concentration of the NaOH solution was changed to 4M in Step 1 of Example 1.
  • step 1 of Example 1 a separation membrane was obtained by performing the same method as in Example 1, except that the concentration of the NaOH solution was changed to 3M.
  • step 1 of Example 1 a separation membrane was obtained by performing the same method as in Example 1, except that the concentration of the NaOH solution was changed to 2M.
  • a separator was obtained in the same manner as in Example 1, except that the concentration of the NaOH solution was changed to 1M in Step 1 of Example 1.
  • a polyethylene separator was prepared.
  • a separator was obtained in the same manner as in Example 1, except that ultrasonic treatment was not performed after stirring in Step 1 of Example 1.
  • FIG. 3 is a photograph of a separation membrane using Hexagonal boron nitride nanosheets (BNNSs) according to Example 1 with a transmission electron microscope (TEM), and FIG. 4 shows an enlarged image of a part of FIG. 3.
  • BNNSs Hexagonal boron nitride nanosheets
  • TEM transmission electron microscope
  • a separator using BNNSs (Hexagonal boron nitride nanosheets) of a secondary battery according to an embodiment of the present invention has a thin nanosheet structure and a honeycomb structure in which a hexagonal shape is densely packed.
  • a bright area may be nitrogen (N), a portion adjacent to three bright areas may be boron (B), and a dark area may be a hole.
  • the hole may serve as a passage through which ions move between the anode and the cathode of the separator.
  • the peeling rate of the separators prepared according to Example 1 and Comparative Example 7 was measured to determine the peeling rate according to the presence or absence of ultrasonic decomposition treatment. And the results are shown in FIG. 5.
  • the concentration of the aqueous solution is varied.
  • the peeling rates of the separators prepared according to Examples 1 to 6 were measured, and the results are shown in FIG. 6.
  • FIG. 7 shows the shrinkage rate of the BNNSs (Hexagonal boron nitride nanosheets) membrane and the polyethylene membrane according to temperature.
  • the shrinkage of the vertical axis of the graph may be defined as a value obtained by dividing the undamaged area of the separator by the initial area of the separator.
  • the polyethylene separator is damaged at about 100° C. or higher and starts to shrink, and at about 200° C., about 50% or more may be damaged.
  • the shrinkage rate of a BNNSs (Hexagonal boron nitride nanosheets) separator may have a very small value even at high temperatures. That is, it can be shown that a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator has excellent high temperature stability.
  • the separator manufactured according to the embodiment of the present invention has remarkably excellent heat resistance compared to the polyethylene separator.
  • the BNNSs separator prepared according to Example 1 or the polyethylene separator of Comparative Example 1 was used, a Cu plate in an EC (Ethylene carbonate) / DEC (diethyl carbonate) solution was used as a working electrode, and a Li foil was used as a counter electrode. And 1.0M LiPF 6 were each used as an electrolyte to prepare a Li secondary battery.
  • the total capacity of Li was set at a rate of 0.5 mA cm -2 and 1.0 mAh cm -2 on the Cu working electrode. Li stripping was cycled at the same rate of 0.5 mA cm -2 with a cutoff potential of 2.0 V. After 10 plating and stripping cycles, the Li secondary battery was measured at 80° C. and 120° C. for 1 hour, and when the separators of Example 1 and Comparative Example 1 were used, the coulomb efficiency of the secondary battery was measured.
  • a secondary battery using hexagonal boron nitride nanosheets (BNNSs) according to an embodiment of the present invention as a separator may maintain a high Coulomb efficiency of about 85%.
  • a secondary battery using a polyethylene separator has a Coulomb efficiency of about 90% before heat treatment at 80°C, but the Coulomb efficiency after heat treatment at 80°C may drop to about 50%.
  • a secondary battery using hexagonal boron nitride nanosheets (BNNSs) according to an embodiment of the present invention as a separator can maintain a high Coulomb efficiency close to about 80%.
  • the polyethylene separator may lose its function after heat treatment at 120°C.
  • FIG. 10 shows the Coulomb efficiency of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a secondary battery using a polyethylene separator.
  • BNNSs Hexagonal boron nitride nanosheets
  • a secondary battery using Hexagonal boron nitride nanosheets (BNNSs) as a separator can maintain excellent reversible efficiency for 600 cycles.
  • BNNSs Hexagonal boron nitride nanosheets
  • FIG. 11 shows the capacity retention of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator and a secondary battery using a polyethylene separator.
  • BNNSs Hexagonal boron nitride nanosheets
  • the capacity retention rate of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) according to an embodiment of the present invention as a separator is superior to that of a secondary battery using a polyethylene separator.
  • the excellent capacity retention rate of the secondary battery according to the embodiment of the present invention may be because the secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator suppresses non-uniform dendrite growth and induces uniform dendrite growth. .
  • BNNSs Hexagonal boron nitride nanosheets
  • FIG. 12 shows the growth pattern of dendrites of a secondary battery using BNNSs (Hexagonal boron nitride nanosheets) as a separator.
  • 13 shows the growth pattern of dendrites of a secondary battery using a polyethylene separator.
  • the secondary battery according to the embodiment of the present invention uses BNNSs (Hexagonal boron nitride nanosheets) as a separator to suppress the generation of dendrites.
  • BNNSs Hexagonal boron nitride nanosheets
  • a secondary battery using a polyethylene separator may form non-uniform dendrites.
  • the secondary battery separator manufactured according to the exemplary embodiment of the present invention is used as a separator for a secondary battery using lithium metal as a negative electrode, the formation of Li dendrite can be suppressed, thereby improving the life and safety of the battery.
  • a secondary battery or fuel cell according to an embodiment of the present invention may have excellent physical stability and heat stability, and may also have excellent Coulomb efficiency.
  • a method of manufacturing a separator for a secondary battery or a fuel cell provides a separator including Hexagonal boron nitride nanosheets (BNNSs), thereby improving battery performance.
  • BNNSs Hexagonal boron nitride nanosheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Cell Separators (AREA)

Abstract

본 발명은 이차전지에 관한 것으로 본 발명의 실시 예를 따르는 이차전지는, 전자를 받아 환원되는 양극활물질부 및 상기 양극활물질부를 지지하는 집전체를 포함하는 양극; 산화되면서 전자를 방출하는 음극활물질부를 포함하는 음극; 및 상기 양극과 상기 음극 사이에 이온이 이동되는 이동통로인 전해질부; 및 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함하는 것이다.

Description

이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
본 발명은 BNNS를 분리막으로 하는 이차전지, 연료전지 및 BNNS를 포함하는 분리막의 제조방법에 관한 것이다.
이차전지는 화학적 에너지를 전기적 에너지로 변환시켜 외부의 회로에 전원을 공급하기도 하고, 방전되었을 때 외부의 전원을 공급받아 전기적 에너지를 화학적 에너지로 바꾸어 전기를 저장할 수 있는 전지로서, 일반적으로 축전지라고 부른다.
주로 쓰이는 이차전지는 자동차의 납 축전지(lead-acid accumulator), 워크맨의 니켈 카드뮴 전지(NiCd), 니켈 수소 전지(NiMH), 휴대전화, 스마트폰의 리튬이온 전지(Li-ion), 리튬이온 폴리머 전지(Li-ion polymer), 리튬 인산철 전지(LiFePO 4) 등이 있다.
납 축전지의 경우에는 주로 자동차 배터리에 사용되고 있다.
니켈 카드뮴 전지는 일상생활에서 접할 수 있는 2차 전지의 주류를 차지한 적이 있었으나 지금은 저용량에 중금속에 의한 환경문제 때문에 건전지가 대체할 수 있는 AA, AAA 사이즈 급에서는 거의 사장된 상태이며 UPS나 일부 실내 무선전화기에나 쓰이는 정도다.
리튬이온 전지는 기술의 발달과 리튬이라는 높은 에너지 밀도를 자랑하는 소재의 활용으로 특히 발달하고 있는 충전지 분야이다. 기존의 NiCd나 NiMH보다 큰 전류를 필요로 하는 휴대기기의 경우 리튬 이온 전지가 적극적으로 사용되고 있으나, 안정성은 다른 전지에 비해 매우 떨어진다.
오늘날 계속 증가하는 전기 에너지에 대한 요구를 충족시키기 위해서 양극, 음극, 전해질, 분리막의 합리적 선택 및 설계는 우수한 에너지 동력을 얻기 위해 매우 중요하다.
양극활물질은 전자를 받아 환원되고, 이차전지의 양극에 사용되어 전지의 충전 및 방전에 핵심적인 역할을 하는 소재이다. 고에너지밀도 이차전지를 구현하기 위해서는 고전압 양극활물질이 요구된다.
음극활물질은 양극에서 나오는 이온을 받아들이는 소재로 흑연 등의 탄소 물질을 가장 많이 사용한다.
전해질은 양극과 음극 사이에서 이온이 이동할 수 있도록 하는 매개체이다. 전해질은 이온을 잘 이동시킬 수 있도록 이온 전도도가 높은 물질이 주로 사용된다.
분리막은 양극과 음극이 서로 섞이지 않도록 물리적으로 차단하는 역할을 한다. 현재 상용화된 분리막으로는 폴리에틸렌, 폴리프로필렌과 같은 합성수지가 있다.
연료전지는 수소와 산소의 전기화학 반응에 의해 화학에너지를 직접 전기에너지로 변화시키는 화학전지이다. 연료전지에는 수소를 직접 연료전지에 공급하거나, 다른 물질을 이용하여 수소를 공급할 수도 있다. 또한, 순수한 산소를 이용할 수도 있고, 공기에 포함된 산소를 이용할 수도 있다.
본 발명이 해결하고자 하는 과제는 분리막의 고온 안정성 및 물리적 안정성을 향상시킴으로써, 우수한 성능을 갖는 이차전지 및 연료전지를 제공하기 위한 것이다.
또한, 본 발명이 해결하고자 하는 과제는 물리적, 열적 안정성을 구비한 분리막의 제조방법을 제공하기 위한 것이다.
본 발명의 실시예를 따르는 이차전지용 또는 연료전지용 분리막은 전체 중량에 대하여 BNNSs(Hexagonal boron nitride nanosheets)를 99 내지 100wt%의 비율로 포함하는 것이다.
본 발명의 실시예를 따르는 이차전지는, 전자를 받아 환원되는 양극활물질부 및 상기 양극활물질부를 지지하는 집전체를 포함하는 양극; 산화되면서 전자를 방출하는 음극활물질부를 포함하는 음극; 및 상기 양극과 상기 음극 사이에 이온이 이동되는 이동통로인 전해질부; 및 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함한다.
상기 이차전지의 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함할 수 있고, 상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 이차전지의 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은, 제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고, 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함할 수 있다.
본 발명의 실시예를 따르는 연료전지는, 연료를 공급하는 연료공급부; 산화제를 공급하는 공기공급부; 상기 연료 및 상기 산화제를 이용하여 전기를 발생하는 전해질막-전극 접합체; 및 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함한다.
상기 연료전지의 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함할 수 있고, 상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 연료전지의 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은, 제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고, 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함할 수 있다.
본 발명의 실시예를 따르는 이차전지용 또는 연료전지용 분리막의 제조방법은, h-BN 분말을 친수성기를 포함한 용질을 포함하는 수용액에 분산시킨 분산액을 형성하는 제 1 단계; 상기 분산액을 교반하여 교반액을 형성하는 제 2 단계; 상기 교반액을 초음파로 제1차 초음파 분해하여, 친수성기를 포함한 BN(이하 BN-친수성기라고 함)을 포함하는 제1차 초음파 분해액을 형성하는 제 3 단계; 상기 제1차 초음파 분해액을 여과하여 상기 BN-친수성기를 수득하는 제 4 단계; 상기 BN-친수성기를 탈 이온수로 세척 및 건조시켜 건조된 BN-친수성기를 형성하는 제 5 단계; 상기 건조된 BN-친수성기를 열 팽창시켜 열 팽창된 BN-친수성기를 형성하는 제 6 단계; 상기 열 팽창된 BN-친수성기를 초음파로 제2차 초음파 분해하여, 제2차 초음파 분해액을 형성하는 제 7 단계; 및 상기 제2차 초음파 분해액에서 BNNS를 수득하는 제 8 단계를 포함한다.
상기 제 1 단계에서, 상기 친수성기는 하이드록시기(OH -)일 수 있고, 상기 제 3 단계 내지 상기 제 7 단계에서 BN-친수성기는 BN-OH 일 수 있다.
상기 제 1 단계에서, 상기 친수성기를 포함한 용질을 포함하는 수용액은 3M(몰농도) 이상일 수 있다.
상기 제 2 단계에서, 상기 교반은 75~80℃에서 72시간 이상 교반하는 것일 수 있다.
상기 제 5 단계에서 상기 탈 이온수로 세척은 상기 BN-친수성기의 pH가 6.5 내지 7.5가 되도록 하는 것 일 수 있다.
상기 제 6 단계에서 상기 열 팽창은 환원성 기체 또는 비활성 기체 조건하에서 수행되는 것 일수 있다.
본 발명의 실시 예를 따르는 이차 전지 또는 연료전지는, 물리적인 안정성, 열에대한 안정성이 우수할 수 있고, 또한 쿨롱 효율이 우수할 수 있다.
본 발명의 실시 예를 따르는 이차 전지용 또는 연료전지용 분리막의 제조 방법은 BNNSs(Hexagonal boron nitride nanosheets)를 포함하는 분리막을 제공함으로써, 전지의 성능을 향상시킬 수 있다.
도 1은 BNNSs를 분리막으로 사용하기 위해 필름형태로 제조한 것이고,
도 2는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 리튬 이차전지와 폴리에틸렌 분리막을 사용한 리튬 이차전지의 덴드라이트의 성장 과정을 나타내는 것이고,
도 3은 투과 전자 현미경(TEM)으로 촬영한 BNNSs(Hexagonal boron nitride nanosheets)의 이미지를 나타내는 것이고,
도 4는 상기 도 3의 일부를 확대한 이미지를 나타내는 것이고,
도 5는 본 발명의 실시예에 따른 분리막 제조과정에서, 초음파 분해처리 유무에 따른 질화붕소 박리율을 비교한 그래프이고,
도 6은 NAOH 수용액의 농도에 따른 h-BN의 박리율을 나타내는 것이고,
도 7은 BNNSs(Hexagonal boron nitride nanosheets) 분리막과 폴리에틸렌 분리막의 온도에 따른 수축률을 나타내는 것이다.
도 8은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용하는 이차전지의 실온과 80℃에서 쿨롱 효율을 나타내는 것이고,
도 9는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용하는 이차전지의 실온과 120℃에서 쿨롱 효율을 나타내는 것이고,
도 10은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용한 이차전지의 쿨롱 효율을 나타내는 것이다.
도 11은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지와 폴리에틸렌 분리막을 사용한 이차전지의 용량유지율(Capacity retention)을 나타내는 것이고,
도 12 및 도 13은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지와 폴리에틸렌 분리막을 사용한 이차전지의 덴드라이트의 성장 형태를 나타내는 것이다.
본 발명의 실시예를 따르는 이차전지용 또는 연료전지용 분리막은 전체 중량에 대하여 BNNSs(Hexagonal boron nitride nanosheets)를 99wt% 내지 100wt%의 비율로 포함하는 것이고, 바람직하게는 99.9wt% 내지 100wt% 일 수 있다.
상기 분리막에서 BNNSs가 99wt% 미만인 경우에는 100℃ 이상의 고온에서 수축이 일어날 수 있고, BNNSs가 99wt% 내지 100wt% 인 경우에는 고온에서도 수축이 일어나지 않고, 안정성을 구비할 수 있다.
상기 이차전지용 또는 연료전지용 분리막은 프리스탠딩(free standing) 형태의 육방정계 질화붕소 나노시트일 수 있다.
본 발명의 실시예에 따른 이차전지용 또는 연료전지용 분리막은 별도의 지지체 또는 고분자막을 포함하지 않는 프리스탠딩(free standing) 형태의 질화붕소 나노시트일 수 있다.
이때, 상기 질화붕소 나노시트는 1층 내지 10층의 질화붕소 나노시트일 수 있고, 바람직하게는 단층(mono-layer) 질화붕소 나노시트일 수 있다.
또한, 이때 상기 이차전지 분리막은 0.1 nm 내지 10 μm의 두께를 가질 수 있고, 바람직하게는 0.4 내지 1nm의 두께를 가질 수 있다. 이를 통해 이차전지의 출력을 향상시킬 수 있다.
또한, 상기 이차전지용 또는 연료전지용 분리막은 우수한 기계적 특성 및 내열성을 가져 이차전지 또는 연료전지의 수명 및 안전성을 향상시킬 수 있다.
본 발명의 실시예를 따르는 이차전지는, 전자를 받아 환원되는 양극활물질부 및 상기 양극활물질부를 지지하는 집전체를 포함하는 양극; 산화되면서 전자를 방출하는 음극활물질부를 포함하는 음극; 및 상기 양극과 상기 음극 사이에 이온이 이동되는 이동통로인 전해질부; 및 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함할 수 있다.
상기 양극활물질은 전자를 받아 환원되고, 이차전지의 양극에 사용되어 전지의 충전 및 방전에 핵심적인 역할을 하는 소재이다. 고에너지밀도 이차전지를 구현하기 위해서는 고전압 양극활물질이 요구된다.
상기 음극활물질은 양극에서 나오는 이온을 받아들이는 소재로 흑연 또는 리튬 금속일 수 있다.
상기 전해질은 양극과 음극 사이에서 이온이 이동할 수 있도록 하는 매개체이다. 전해질은 이온을 잘 이동시킬 수 있도록 이온 전도도가 높은 물질이 주로 사용된다.
상기 전해질은 수계 전해질, 비수계 전해질, 무기 전해질, 유기 전해질 등 일 수 있고, 상기 전해질의 종류에는 특별한 제한이 없다.
상기 분리막은 양극과 음극 사이의 직접적인 물리적 접촉을 방지 및 이온의 수송 통로로서 역할을 할 수 있다.
상기 BNNSs(Hexagonal boron nitride nanosheets)는 육각형 질화 붕소 나노 시트이다.
상기 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함할 수 있고, 상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 육각형 구조는 질소(N) 3개와 붕소(B) 3개가 모여서 생성 될 수 있다.
상기 이차전지의 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은, 제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고, 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 BNNSs(Hexagonal boron nitride nanosheets)를 포함하는 분리막을 사용한 이차전지는 고온 안정성 및 전기 절연성이 우수할 수 있다.
또한, 본 발명의 실시예에 따르는 이차전지는
리튬 금속을 포함하는 음극;
양극;
전해질; 및
상기 음극 및 양극 사이에 배치되며, 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막;을 포함하는 이차전지일 수 있다.
본 발명의 실시예에 따른 이차전지는 상기 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막에 의해 상기 음극의 리튬 금속이 덴드라이트 형태로 성장하는 것을 억제할 수 있어 전지의 수명 특성 및 안전성을 향상시킬 수 있다.
즉, 도 2에 나타낸 바와 같이 종래의 리튬 금속을 음극으로 사용하는 이차전지에서 폴리에틸렌 등 폴레올레핀계 분리막(Pristine separator)을 사용한 경우, 덴드라이트 형태로 성장하는 리튬 금속에 의해 분리막이 손상되어 전지의 폭발 위험성이 높은 문제 및 리튬이 소모되어 수명 특성이 저하되는 문제가 있어 사용하기 어려운 문제를 갖고 있으나, 본 발명의 실시예에 따른 이차전지는 질화붕소 나노시트를 분리막으로 포함함으로써 상기 문제를 해결한 이차전지일 수 있다.
상기 분리막은 별도의 지지체 없이 육방정계 질화붕소 나노시트가 프리스탠딩 필름(free-standing film) 형태로 배치된 분리막일 수 있다.
본 발명의 실시예를 따르는 연료전지는, 연료를 공급하는 연료공급부;
산화제를 공급하는 공기공급부; 상기 연료 및 상기 산화제를 이용하여 전기를 발생하는 전해질막-전극 접합체; 및 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함한다.
상기 연료전지의 분리막은 전해질막-전극 접합체에 상기 연료 및 상기 산화제를 공급하는 통로를 제공할 수 있다.
상기 BNNSs(Hexagonal boron nitride nanosheets)는 육각형 질화 붕소 나노 시트이다.
상기 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함할 수 있고, 상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 육각형 구조는 질소(N) 3개와 붕소(B) 3개가 모여서 생성 될 수 있다.
상기 연료전지의 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은, 제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고, 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함할 수 있다.
상기 BNNSs(Hexagonal boron nitride nanosheets)를 포함하는 분리막을 사용한 연료전지는 고온 안정성 및 전기 절연성이 우수할 수 있다.
도 1은 BNNSs를 분리막으로 사용하기 위해 필름형태로 제조한 것이다.
도 1을 참조하면, 본 발명의 실시 예에서, 도 1과 같이 별도의 지지체나 베이스 필름을 사용하지 않고, 필름 형태로 제작된 BNNSs를 분리막으로 적용할 수 있다.
도 1을 참조하면, 상기 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 필름은 180도의 굽은 각도에서도 손상되지 않는 물리적으로 우수한 강성을 나타낼 수 있다.
도 2는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 리튬 이차전지와 폴리에틸렌 분리막을 사용한 리튬 이차전지의 덴드라이트의 성장 과정을 나타내는 것이다.
도 2를 참조하면, 폴리에틸렌 분리막을 사용한 리튬 이차전지는 불균일한 Li 덴드라이트가 성장할 수 있고, BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 리튬 이차전지는 균일한 Li 덴드라이트가 성장할 수 있다.
상기 덴드라이트란, 금속이 퇴적되어 수지상의 골격을 형상하는 것일 수 있다.
상기 본 발명의 실시예를 따르는 이차전지는, 덴드라이트를 균일하게 형성함으로써, 이차전지의 사이클링 안정성을 향상시킬 수 있을 뿐 아니라 우수한 열적 안정성 및 기계적 안정성을 향상시킬 수 있다.
본 발명의 실시예를 따르는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지가 불균일한 덴드라이트의 형성을 억제할 수 있고 고온 조건에서 안정하기 때문에, 고온 조건에서도 우수한 쿨롱 효율을 가질 수 있다.
본 발명의 실시예를 따르는 이차전지용 또는 연료전지용 분리막의 제조방법은, h-BN 분말을 친수성기를 포함한 용질을 포함하는 수용액에 분산시킨 분산액을 형성하는 제 1 단계; 상기 분산액을 교반하여 교반액을 형성하는 제 2 단계; 상기 교반액을 초음파로 제1차 초음파 분해하여, 친수성기를 포함한 BN(이하 BN-친수성기라고 함)을 포함하는 제1차 초음파 분해액을 형성하는 제 3 단계; 상기 제1차 초음파 분해액을 여과하여 상기 BN-친수성기를 수득하는 제 4 단계; 상기 BN-친수성기를 탈 이온수로 세척 및 건조시켜 건조된 BN-친수성기를 형성하는 제 5 단계; 상기 건조된 BN-친수성기를 열 팽창시켜 열 팽창된 BN-친수성기를 형성하는 제 6 단계; 상기 열 팽창된 BN-친수성기를 초음파로 제2차 초음파 분해하여, 제2차 초음파 분해액을 형성하는 제 7 단계; 및 상기 제2차 초음파 분해액에서 BNNS를 수득하는 제 8 단계를 포함한다.
상기 h-BN 분말은 육각형 크리스탈 구조를 가질 수 있다.
상기 h-BN 분말은 상기 육각형 크리스탈 구조가 그라파이드와 유사하여 일명 “하얀색 흑연”이라고 불릴 수 있다.
상기 h-BN 분말은 화학적 비활성 물질이고, 전기적으로 절연체일 수 있다.
상기 h-BN 분말은 우수한 열 전도성 물질로서, 우수한 열 분산력을 가질 수 있다.
상기 h-BN 분말은 열에 우수한 안정성을 가질 수 있기 때문에, 공기 중에서는 1000℃, 진공에서는 1400℃, 가스 불활성 분위기에서는 1800℃에서도 사용될 수 있다.
상기 h-BN 분말은 계층화되어 있기 때문에, h-BN 층을 박리함으로써 BNNSs(Hexagonal boron nitride nanosheets)를 얻을 수 있다.
즉, 상기 h-BN 분말은 다층(Multi-layer)의 육방정계 질화붕소(h-BN)를 포함할 수 있다.
상기 h-BN 분말은 벌크(bulk)형태의 육방정계 질화붕소(h-BN)를 포함할 수 있고, 상기 벌크(bulk)형태의 육방정계 질화붕소(h-BN)는 반데르발스 힘에 의해 결합된 층상구조의 다층 육방정계 질화붕소(h-BN)일 수 있다.
본 발명의 실시예에 따른 질화붕소 나노시트를 포함하는 이차전지 분리막의 제조방법은 벌크 상태의 질화붕소를 박리하여 2차원의 나노시트 형태로 제조하는 탑-다운(Top-down)방식의 육방정계 질화붕소 나노시트의 제조방법일 수 있다.
상기 h-BN 분말은 마이크로 크기의 지름을 갖는 입자로, 바람직하게는 평균지름이 5 내지 10 μm인 입자일 수 있다.
상기 제 1 단계에서, 상기 친수성기를 포함한 용질을 포함하는 수용액는 알칼리 용액일 수 있고, 상기 친수성기는 하이드록시기(OH -)일 수 있고, 상기 제 3 단계 내지 상기 제 7 단계에서 BN-친수성기는 BN-OH 일 수 있다.
상기 친수성기를 포함하는 수용액의 비 제한적인 예는 NaOH 수용액, KOH 수용액, LiOH 수용액, Ca(OH) 2 수용액, Ba(OH) 2 수용액 등일 수 있다.
상기 제 1 단계에서 상기 친수성기를 포함한 용질을 포함하는 수용액은 1 내지 20M의 농도의 용액이 사용될 수 있고, 바람직하게는 3M 이상의 농도의 용액이 사용될 수 있고, 더욱 바람직하게는 5M이상의 농도의 용액이 사용될 수 있고, 더욱 바람직하게는 3M 내지 10M의 농도의 용액이 사용될 수 있고, 더욱 바람직하게는 5M 초과 및 10M 이하 농도의 용액의 사용될 수 있다.
3M(몰농도) 이상인 경우 h-BN의 초음파 분해에 의한 박리가 효과적으로 일어날 수 있고, 5M(몰농도) 초과하는 경우 h-BN의 대부분이 초음파 분해에 의해 박리 될 수 있다.
또한, 상기 농도가 3M 이하인 경우 OH기 농도가 낮아 육방정계 질화붕소에 부착되는 OH의 수가 미비한 문제, 이로 인해 이후 열팽창 단계에서 열팽창이 제대로 이루어지지 않는 문제가 발생될 수 있고, 상기 농도가 10M을 초과하는 경우, 육방정계 질화붕소에 부착되지 않고 잔존하는 OH기가 많아, 이후 세척과정이 오래걸리는 등 제조 효율이 저하되는 문제가 발생될 수 있다.
상기 제 2 단계에서, 상기 교반은 100 ℃ 미만의 온도에서 교반하는 것일 수 있고, 바람직하게는 50 내지 90 ℃의 온도에서 교반하는 것일 수 있고, 더욱 바람직하게는 75~80℃에서 72시간 이상 교반하는 것 일 수 있다.
상기 교반은 기계적으로 교반일 수 있으나 이에 제한된 것은 아니다.
상기 제 3 단계에서 제1차 초음파 분해는 상기 교반액에 초음파를 가함으로 상기 교반액을 액체상태에서 박리 시킬 수 있다.
상기 초음파 분해는 초음파 세척기, 초음파 파쇄기, 탐침 초음파기(probe sonicator)등을 이용할 수 있다.
상기 초음파 분해는 h-BN 분말이 얇은 BN 층이 되도록 하고, 상기 얇은 BN 층의 가장자리 부분에는 친수성기가 도입되도록 함으로써, BN-친수성기를 형성시킬 수 있다.
상기 초음파 교반을 통해 상기 친수성기를 포함하는 용질을 포함하는 수용액상에 상기 h-BN 분말을 균일하게 분산시킬 수 있고, 상기 다층의 육방정계 질화붕소의 가장자리에 OH기를 형성함으로써 열팽창에 의한 박리 효율을 향상시킬 수 있다.
상기 제 1 단계 내지 제 3 단계는 상기 다층(Multi-layer)의 육방정계 질화붕소(h-BN)를 포함하는 h-BN 분말을 친수성기를 포함하는 용질을 포함하는 수용액에 넣고 분산시켜 OH기를 갖는 다층의 육방정계 질화붕소(h-BN)를 형성하는 단계일 수 있다.
상기 제 4 단계는 상기 제1차 초음파 분해액을 실온에서 냉각시킨 후에 수행할 수 있다.
상기 제 4 단계에서 상기 여과는 여과지를 사용할 수 있고, 상기 여과지는 셀룰로오스 섬유의 다공성의 재질일 수 있다.
상기 여과지에 잔류하는 잔류물은 상기 BN-친수성기가 포함될 수 있다.
상기 제 5 단계에서 탈 이온수는 이온 교환 수지로 이온을 제거한 물로서 일명 초순수 라고도 불릴 수 있다.
상기 제 5 단계에서 상기 탈 이온수로 세척은 상기 BN-친수성기의 pH가 중성에 근접할 때까지 반복적으로 할 수 있다. 상기 중성이란 pH가 6.5 내지 7.5일 수 있다.
상기 건조는 진공 오븐을 이용하여 약 60℃ 조건에서 약 6시간 수행할 수 있다.
상기 제 6 단계에서 상기 열팽창은 물체가 열을 받으면 물체를 이루는 입자들의 운동에너지가 증가하여 입자운동이 활발해짐으로써 물체의 부피가 커지는 현상일 수 있다.
상기 제 6 단계에서 상기 열 팽창은 환원성 기체 또는 비활성 기체 조건하에서 수행되는 것 일수 있으나 바람직하게는 환원성 기체 조건하에서 수행되는 것일 수 있다.
상기 제 6 단계에서 상기 열 팽창은 300 내지 500℃의 온도 및 환원 분위기에서 열처리하는 방법으로 수행하는 것이 바람직할 수 있다.
상기 환원성 기체 또는 비활성 기체 조건하에서, BN-친수성기에 존재하는 친수성기와 환원성 기체 또는 비활성 기체의 격렬한 환원 반응은 BN-친수성기의 층간 간격을 증가시키면서 열팽창을 유도할 수 있다. 구체적으로 환원성 기체 또는 비활성 기체와 친수성기 사이의 격렬한 환원 반응이 BN-친수성기의 층간의 반데르발스 힘에 의한 결하을 끊거나 결합력을 낮춰 층간 간격을 넓힐 수 있고 열팽창을 일으킬 수 있다.
상기 환원성 기체는 H 2, NH 3, CH 4, C 2H 4, C 2H 2 일수 있고, 상기 비활성 기체는 Ar,N 2 일수 있다.
만약, 상기 환워성 기체 또는 불활성 기체가가 공급되지 않을 경우, 300 내지 500℃의 온도에서 다층의 육방정계 질화붕소(h-BN)가 열팽창되는 정도가 미비해, 이후 제 2 차 초음파 처리 단계에서 단층으로 분리되지 않는 문제가 발생될 수 있다.
또한, 만약, 300℃ 미만의 온도에서 열처리할 경우, 다층의 육방정계 질화붕소(h-BN)가 열팽창되는 정도가 미비해, 이후 제 2 차 초음파 처리 단계에서 단층으로 분리되지 않는 문제가 발생될 수 있고, 500℃를 초과하는 온도에서 열처리할 경우, 더이상 제조상 이점없이 높은 온도에서 제조함으로써 제조비가 상승하는 등 제조효율이 저하되는 문제가 발생될 수 있다.
상기 제 7 단계의 상기 제 2 차 초음파 분해는 상기 열팽창 된 BN-친수성기를 유기용매에 첨가한 후 수행할 수 있고, 상기 유기용매는 이소프로필알코올일 수 있다.
상기 제 2 차 초음파 분해는 탐침 초음파 분해(probe sonication) 방식을 이용할 수 도 있다.
상기 제 2 차 초음파 분해는, 상기 열 팽창된 BN-친수성기를 박리하여 BNNSs(Hexagonal boron nitride nanosheets)를 형성시킬 수 있다.
상기 제 7 단계는 다층의 육방정계 질화붕소로부터 1층 내지 10층의 육방정계 질화붕소 나노시트를 제조할 수 있고 바람직하게는 2중층(bi-layer)의 육방정계 질화붕소 나노시트를 제조할 수 있고, 더욱 바람직하게는 단층(Mono-layer)의 육방정계 질화붕소 나노시트를 제조할 수 있다.
상기 제 8 단계에서, 상기 제 2 차 초음파 분해액을 원심분리하여 상등액 분획을 여과하여 수집하고 건조하여 BNNSs(Hexagonal boron nitride nanosheets)를 수득할 수 있다.
상기 BNNSs(Hexagonal boron nitride nanosheets)는 프리스탠딩(free standing) 형태의 질화붕소 나노시트일 수 있다.
상기 제 8 단계는 감압여과(vacuum filtration)하여 질화붕소 나노시트를 회수하는 방법으로 수행할 수 있다.
상기 감압여과방식은 프리스탠딩(free standing) 형태의 육방정계 질화붕소 나노시트를 대면적으로 제조하기 위한 회수 방법일 수 있다.
본 발명의 실시예에 따른 이차전지용 또는 연료전지용 분리막 제조방법은 높은 재생산성을 가지며, 프리스탠딩(free standing) 형태의 질화붕소 나노시트를 대면적으로 제조할 수 있다.
본 발명의 실시예에 따른 이차전지용 또는 연료전지용 분리막 제조방법은 회수한 BNNSs(Hexagonal boron nitride nanosheets)를 지지체 또는 고분자상에 전사시키는 단계를 더 포함할 수 있다.
이를 통해, 지지체 또는 고분자 분리막의 기계적 강도 및 열안전성을 향상시킬 수 있어, 상기 제조방법으로 제조한 이차전지 분리막은 리튬 이온 이차전지의 내열 분리막으로 사용할 수 있다.
이하, 실시 예 및 실험 예를 통해 본 발명을 상세하게 설명한다.
단, 하기 실시 예 및 실험 예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시 예에 의해 한정되는 것은 아니다.
<실시예 1>
① h-BN 에서 BN-OH를 형성
5 μm 크기의 h-BN 분말 2g을 둥근 플라스크 내에 10M(몰농도)의 NAOH 수용액에 분산시켰다. 그 후, 상기 둥근 플라스크를 수조에 옮겨 80℃에서 환류 하에 72시간 기계로 교반을 한 후, 초음파 세척기로 초음파 분해하고, 실온에서 냉각시켰다. 둥근 플라스크내의 용액을 셀룰로오스 섬유의 여과지로 여과하였다. 여과한 잔류물의 산도가 pH 7 이 되도록 하기 위해서, 잔류물을 DI-Water로 반복하여 세척하여 생성물 BN-OH를 얻었다. 생성물 BN-OH를 진공 오븐에서 60℃로 8시간 동안 건조 시켰다.
② BN-OH의 열팽창
관형로를 아르곤으로 10분간 플러싱 한 후, 400℃로 가열하였다. 고순도 H 2 가스를 연속적으로 관형로에 도입하였다. 이어서 건조된 BN-OH 분말을 광형로 내로 신속하게 옮겼다. BN-OH를 90초 동안 관형로에 두었다.
③BNNSs(Hexagonal boron nitride nanosheets)의 수득
상기 열팽창 된 BN-OH를 이소프로필알코올 용매에 분산시켰다. 그 후, 초음파 파쇄기로 10시간 동안 초음파를 가하였다. 그런 다음 5000rpm 에서 30분간 원심 분리하였다. 상등액 분획을 셀룰로오스 섬유의 여과지로 여과한 후, 여과물을 진공 오븐에서 80℃에서 8시간 동안 건조하여 BNNSs(Hexagonal boron nitride nanosheets)를 사용한 분리막을 수득 하였다.
<실시예 2>
상기 실시예 1의 단계 1에서 NaOH 용액의 농도를 5M로 달리하는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
<실시예 3>
상기 실시예 1의 단계 1에서 NaOH 용액의 농도를 4M로 달리하는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
<실시예 4>
상기 실시예 1의 단계 1에서 NaOH 용액의 농도를 3M로 달리하는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
<실시예 5>
상기 실시예 1의 단계 1에서 NaOH 용액의 농도를 2M로 달리하는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
<실시예 6>
상기 실시예 1의 단계 1에서 NaOH 용액의 농도를 1M로 달리하는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
<비교예 1>
폴리에틸렌 분리막을 준비하였다.
<비교예 2>
상기 실시예 1의 단계 1에서 교반 후 초음파 처리를 하지 않는 것을 제외하고 실시예 1과 동일한 방법을 수행하여 분리막을 수득 하였다.
실험예 1: 실시예 1에서 형성된 BNNSs(Hexagonal boron nitride nanosheets) 분리막의 구조 분석
도 3은 실시예 1에 의한 BNNSs(Hexagonal boron nitride nanosheets)를 사용한 분리막을 투과전자현미경(transmission electron microscope, TEM)으로 촬영한 것이고, 도 4는 상기 도 3의 일부를 확대한 이미지를 나타내는 것이다.
도 3을 참조하면, 본 발명의 실시예를 따르는 이차전지의 BNNSs(Hexagonal boron nitride nanosheets)를 사용한 분리막은, 얇은 나노 시트 구조이고, 육각형 모양이 조밀하게 밀집한 벌집 모양 구조이다.
도 4를 참조하면, 밝은 부분의 영역은 질소(N)이고, 밝은 부분의 영역 3개가 인접한 부분은 붕소(B)이고, 어두운 부분의 영역은 구멍일 수 있다.
상기 구멍은 상기 분리막의 양극과 음극 사이에서 이온이 이동하는 이동통로로서 역할을 할 수 있다.
실험예 2: BN-OH 제조시 초음파 분해 유무에 따른 박리율 평가
본 발명의 실시예에 따른 이차전지용 또는 연료전지용 분리막의 제조방법의 제조조건 중, 초음파 분해처리 유무에 따른 박리율을 확인하기 위해 실시예 1 및 비교예 7에 의해 제조된 분리막의 박리율을 측정하였으며, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 실시예 1의 초음파 분해를 수행한 경우, 박리율이 0.7 내지 1.0으로 높은 비율로 박리되는 반면, 초음파 분해를 수행하지 않은 비교예 2의 경우 약 0.3으로, 보다 낮은 비율로 박리되는 것을 알 수 있다.
이를 통해, 교반 후 초음파 분해를 수행할 경우, 보다 높은 효율로 질화붕소 나노시트가 박리됨을 알 수 있다.
실험예 3: NAOH 수용액의 농도에 따른 h-BN의 박리율 실험
본 발명의 실시예에 따른 이차전지용 또는 연료전지용 분리막의 제조방법의 제조조건 중, 친수성기를 포함하는 용질을 포함하는 수용액의 농도에 따른 질화붕소의 박리정도를 평가하기 위해 상기 수용액의 농도를 달리한 실시예 1 내지 6에 의해 제조된 분리막의 박리율을 측정하였으며, 그 결과를 도 6에 나타내었다.
박리(exfoliation)율은 "1"에 가까울 수록 단층의 질화붕소 나노시트(mono layer)의 형태로 분리된 것으로 볼 수 있고, "0"에 가까울수록 벌크(bulk)상태로 박리되지 않은 상태인 것으로 볼 수 있다.
도 6에 나타난 바와 같이, 알칼리 용액의 농도가 높을 수록 박리율이 커지는 것을 알 수 있으며, 특히, 2M 대비 3M의 알칼리 용액에서 보다 높은 박리율이 나타나는 것을 알 수 있으며, 5M을 초과하는 경우 박리율이 1로, 층상구조의 질화붕소가 대부분 질화붕소 나노시트로 박리된 것을 알 수 있다.
실험예 3: 실시예 1에서 형성된 BNNSs(Hexagonal boron nitride nanosheets)를 사용한 분리막 및 비교예 1의 분리막의 온도에 따른 수축률(shrinkage)분석
도 7은 BNNSs(Hexagonal boron nitride nanosheets) 분리막과 폴리에틸렌 분리막의 온도에 따른 수축률을 나타내는 것이다.
도 7에서, 그래프 세로축의 수축률(shrinkage)은 분리막의 손상되지 않은 면적을 분리막의 최초 면적으로 나눈 값으로 정의 될 수 있다.
도 7을 참조하면, 폴리에틸렌 분리막은 약 100℃ 이상에서는 손상되어 수축을 시작하고, 약 200℃에서 약 50% 이상 손상될 수 있다. 반면에, BNNSs(Hexagonal boron nitride nanosheets) 분리막의 수축률은 고온에서도 매우 작은 값을 가질 수 있다. 즉, BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지는 우수한 고온 안정성을 구비함을 나타낼 수 있다.
이를 통해, 본 발명의 실시예에 따라 제조된 분리막은 폴리에틸렌 분리막 대비 현저히 우수한 내열성을 갖는 것을 알 수 있다.
실험예 4: 실시예 1 및 비교예 1을 따르는 이차전지의 쿨롱 효율 실험
<BNNSs를 분리막 및 폴리에틸렌 분리막을 사용한 Li 이차전지의 제조 >
실시예 1에 의해 제조된 BNNSs 분리막 또는 비교예 1의 폴리에틸렌 분리막을 사용하고, EC(Ethylene carbonate)/DEC (diethyl carbonate) 용액 중의 Cu 플레이트를 작용 전극으로 사용하고, Li 호일을 상대전극으로 사용하고, 1.0M LiPF 6 를 전해질로서 각각 사용하여 Li 이차전지를 제조하였다.
Li의 총 용량은 0.5 mA cm -2의 속도로 설정되었고, Cu 작용전극상에 1.0 mAh cm -2로 설정되었다. Li 스트리핑을 0.5 mA cm -2의 동일한 속도로 2.0 V의 컷오프 전위로 순환시켰다. 10회 도금 및 스트리핑 사이클 후 Li 이차전지를 1시간 동안 80 ℃와 120℃에서, 실시예 1 및 비교예 1의 분리막을 사용한 경우 이차전지의 쿨롱 효율을 측정 하였다.
도 8은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용하는 이차전지의 실온과 80℃에서 쿨롱 효율을 나타내는 것이다.
도 8을 참조하면, 본 발명의 실시예를 따르는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지는 약 85%의 높은 쿨롱 효율을 유지할 수 있다. 반면에, 폴리에틸렌 분리막을 사용하는 이차전지는 80℃ 열처리 전에 쿨롱 효율은 약 90% 이지만, 80℃의 열처리 후의 쿨롱 효율은 약 50%로 떨어질 수 있다.
도 9는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용하는 이차전지의 실온과 125℃에서 쿨롱 효율을 나타내는 것이다.
도 9를 참조하면, 125℃의 열처리 후에는, 본 발명의 실시예를 따르는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지는 약 80%에 가까운 높은 쿨롱 효율을 유지할 수 있다. 반면에, 폴리에틸렌 분리막을 사용한 이차전지는 120℃의 열처리 후에는 폴리에틸렌 분리막이 기능을 상실할 수 있다.
도 10은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용하는 이차전지와 폴리에틸렌 분리막을 사용한 이차전지의 쿨롱 효율을 나타내는 것이다.
도 10을 참조하면, BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지는 600싸이클동안 우수한 가역적 효율을 유지할 수 있다. 반면에, 폴리에틸렌 분리막을 사용한 이차전지는 200싸이클 후 가역적 효율이 급격히 떨어지는 것을 알 수 있으며, 이는 불균일한 덴드라이트를 형성시키기 때문인 것으로 볼 수 있다.
실험예 5: 실시예 1 및 비교예 1을 따르는 이차전지의 용량유지율 실험
도 11은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지와 폴리에틸렌 분리막을 사용한 이차전지의 용량유지율(Capacity retention)을 나타내는 것이다.
도 11을 참조하면, 본 발명의 실시예를 따르는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지의 용량유지율은 폴리에틸렌 분리막을 사용한 이차전지의 용량유지율 보다 우수하다.
상기 본 발명의 실시예를 따르는 이차전지의 용량유지율이 우수한 것은 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지는 불균일한 덴드라이트 성장을 억제하고, 균일한 덴드라이트 성장을 유도하기 때문일 수 있다.
실험예 6: 실시예 1 및 비교예 1을 따르는 이차전지의 덴드라이트 실험
도 12는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용한 이차전지의 덴드라이트의 성장 형태를 나타내는 것이다. 도 13은 폴리에틸렌 분리막을 사용한 이차전지의 덴드라이트의 성장 형태를 나타내는 것이다.
도 12 및 13을 참조하면, 본 발명의 실시예를 따르는 이차전지는 BNNSs(Hexagonal boron nitride nanosheets)를 분리막으로 사용함으로써, 덴드라이트 생성을 억제하는 것을 알 수 있다. 그러나 폴리에틸렌 분리막을 사용한 이차전지는 불균일한 덴드라이트를 형성할 수 있다.
즉, 본 발명의 실시예에 따라 제조된 이차전지 분리막은 리튬 금속을 음극으로 사용하는 이차전지의 분리막으로 사용할 경우 Li 덴드라이트 형성을 억제하여 전지의 수명 및 안전성을 향상시킬 수 있다.
실험예 7: 본 발명의 분리막의 두께 측정
본 발명의 실시예에 따라 제조된 이차전지용 또는 연료전지용 분리막의 두께를 측정하기 위해 원자힘 현미경(atomic force microscopy , AFM)을 이용하여 실시예 1에 의해 제조된 질화붕소 나노시트 분리막의 두께를 측정하였다.
측정 결과, 0.48 nm 두께 및 0.9 nm가 형성됨을 알 수 있으며, 이는 단층(mono-layer) 및 이중층(bi-layer)의 질화붕소 나노시트의 두께로, 단층 및 이중층(bi layer)의 질화붕소 나노시트 분리막이 형성된 것을 알 수 있다.
본 발명의 실시 예를 따르는 이차 전지 또는 연료전지는, 물리적인 안정성, 열에대한 안정성이 우수할 수 있고, 또한 쿨롱 효율이 우수할 수 있다.
본 발명의 실시 예를 따르는 이차 전지용 또는 연료전지용 분리막의 제조 방법은 BNNSs(Hexagonal boron nitride nanosheets)를 포함하는 분리막을 제공함으로써, 전지의 성능을 향상시킬 수 있다.

Claims (13)

  1. 전체 중량에 대하여 BNNSs(Hexagonal boron nitride nanosheets)를 99 내지 100wt%의 비율로 포함하는 이차전지용 또는 연료전지용 분리막.
  2. 전자를 받아 환원되는 양극활물질부 및 상기 양극활물질부를 지지하는 집전체를 포함하는 양극;
    산화되면서 전자를 방출하는 음극활물질부를 포함하는 음극; 및
    상기 양극과 상기 음극 사이에 이온이 이동되는 이동통로인 전해질부; 및
    적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함하는,
    이차전지.
  3. 제 2 항에 있어서,
    상기 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함하고,
    상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함하는,
    이차전지.
  4. 제 2 항에 있어서,
    상기 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은,
    제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고,
    상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함하는 것인,
    이차전지.
  5. 연료를 공급하는 연료공급부;
    산화제를 공급하는 공기공급부;
    상기 연료 및 상기 산화제를 이용하여 전기를 발생하는 전해질막-전극 접합체; 및
    적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막을 포함하는,
    연료전지.
  6. 제 5 항에 있어서,
    상기 BNNSs(Hexagonal boron nitride nanosheets)는 질소(N)와 붕소(B)가 교번하여 배치된 육각형 구조를 포함하고,
    상기 육각형 구조는 이온이 통과할 수 있는 통로를 포함하는,
    연료전지.
  7. 제 5 항에 있어서,
    상기 적어도 일부가 BNNSs(Hexagonal boron nitride nanosheets)인 분리막은,
    제 1 BNNSs(Hexagonal boron nitride nanosheets) 및; 상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)의 일면에 배치된 제 2 BNNSs(Hexagonal boron nitride nanosheets)를 포함하고,
    상기 제 1 BNNSs(Hexagonal boron nitride nanosheets)와 상기 제 2 BNNSs(Hexagonal boron nitride nanosheets)사이에서 이온이 통과할 수 있는 통로를 포함하는 것인,
    연료전지.
  8. h-BN 분말을 친수성기를 포함한 용질을 포함하는 수용액에 분산시킨 분산액을 형성하는 제 1 단계;
    상기 분산액을 교반하여 교반액을 형성하는 제 2 단계;
    상기 교반액을 초음파로 제1차 초음파 분해하여, 친수성기를 포함한 BN(이하 BN-친수성기 라고 함)을 포함하는 제1차 초음파 분해액을 형성하는 제 3 단계;
    상기 제1차 초음파 분해액을 여과하여 상기 BN-친수성기를 수득하는 제 4 단계;
    상기 BN-친수성기를 탈 이온수로 세척 및 건조시켜 건조된 BN-친수성기를 형성하는 제 5 단계;
    상기 건조된 BN-친수성기를 열 팽창시켜 열 팽창된 BN-친수성기를 형성하는 제 6 단계;
    상기 열 팽창된 BN-친수성기를 초음파로 제2차 초음파 분해하여, 제2차 초음파 분해액을 형성하는 제 7 단계; 및
    상기 제2차 초음파 분해액에서 BNNS를 수득하는 제 8 단계를 포함하는,
    이차전지용 또는 연료전지용 분리막 제조방법.
  9. 제 8 항에 있어서,
    상기 제 1 단계에서, 상기 친수성기는 하이드록시기(OH -)이고,
    상기 제 3 단계 내지 상기 제 7 단계에서 BN-친수성기는 BN-OH 인 것인
    이차전지용 또는 연료전지용 분리막 제조방법.
  10. 제 8 항에 있어서,
    상기 제 1 단계에서, 상기 친수성기를 포함한 용질을 포함하는 수용액은 3M(몰농도) 이상인 것인
    이차전지용 또는 연료전지용 분리막 제조방법.
  11. 제 8 항에 있어서,
    상기 제 2 단계에서, 상기 교반은 75 내지 80℃에서 72시간 이상 교반하는 것인
    이차전지용 또는 연료전지용 분리막 제조방법.
  12. 제 8 항에 있어서,
    상기 제 5 단계에서 상기 탈 이온수로 세척은
    상기 BN-친수성기의 pH가 6.5 내지 7.5가 되도록 하는 것인
    이차전지용 또는 연료전지용 분리막 제조방법.
  13. 제 8 항에 있어서,
    상기 제 6 단계에서 상기 열 팽창은 환원성기체 또는 비활성기체 조건하에서 수행되는 것인
    이차전지용 또는 연료전지용 분리막 제조방법.
PCT/KR2019/010051 2019-03-07 2019-08-09 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법 WO2020179978A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190026297 2019-03-07
KR10-2019-0026297 2019-03-07
KR1020190097181A KR102248310B1 (ko) 2019-03-07 2019-08-09 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
KR10-2019-0097181 2019-08-09

Publications (1)

Publication Number Publication Date
WO2020179978A1 true WO2020179978A1 (ko) 2020-09-10

Family

ID=72338686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010051 WO2020179978A1 (ko) 2019-03-07 2019-08-09 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법

Country Status (1)

Country Link
WO (1) WO2020179978A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421093A (zh) * 2020-10-13 2022-04-29 湖南大学 一种柔性氮化硼纳米管无机隔膜及其制备和在锂二次电池中的应用
CN115224440A (zh) * 2022-08-15 2022-10-21 广东比沃新能源有限公司 一种用于锂离子电池超薄高性能复合隔膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279201A1 (en) * 2007-05-28 2010-11-04 Arash Mofakhami Proton exchange membrane and cell comprising such a membrane
KR20160084600A (ko) * 2015-01-06 2016-07-14 주식회사 엘지화학 혼합 음극 활물질을 포함하는 리튬 이차전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279201A1 (en) * 2007-05-28 2010-11-04 Arash Mofakhami Proton exchange membrane and cell comprising such a membrane
KR20160084600A (ko) * 2015-01-06 2016-07-14 주식회사 엘지화학 혼합 음극 활물질을 포함하는 리튬 이차전지

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ALBERT S NAZAROV; VIKTOR N DEMIN; EKATERINA D GRAYFER; ALEXANDER I BULAVCHENKO; AIDA T ARYMBAEVA; HYEON-JIN SHIN; JAE-YOUNG CHOI; : "Functionalization and Dispersion of Hexagonal Boron Nitride (h-BN) Nanosheets Treated with Inorganic Reagents", CHEMISTRY AN ASIAN JOURNAL, vol. 7, no. 3, 11 January 2012 (2012-01-11), pages 554 - 560, XP055643148, ISSN: 1861-4728, DOI: 10.1002/asia.201100710 *
FUSHEN LU, WANG FEI, GAO WENHUA, HUANG XIAOCHUN, ZHANG XIN, LI YULIANG: "Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation", MATERIAL EXPRESS, vol. 3, no. 2, 30 June 2013 (2013-06-30), pages 144 - 150, XP055735692, ISSN: 2158-5849, DOI: 10.1166/mex.2013.1110 *
LIN YI , WILLIAMS TIFFANY V., XU TIAN-BING, CAO WEI, ELSAYED-ALI HANI E., CONNELL JOHN W: "Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication-Assisted Hydrolysis: Critical Role of Water", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 115, no. 6, 20 January 2011 (2011-01-20), pages 2679 - 2685, XP055735695, ISSN: 1932-7447, DOI: 10.1021/jp110985w *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114421093A (zh) * 2020-10-13 2022-04-29 湖南大学 一种柔性氮化硼纳米管无机隔膜及其制备和在锂二次电池中的应用
CN114421093B (zh) * 2020-10-13 2023-02-24 湖南大学 一种柔性氮化硼纳米管无机隔膜及其制备和在锂二次电池中的应用
CN115224440A (zh) * 2022-08-15 2022-10-21 广东比沃新能源有限公司 一种用于锂离子电池超薄高性能复合隔膜及其制备方法

Similar Documents

Publication Publication Date Title
WO2019039856A1 (ko) 다공성 실리콘-탄소 복합체의 제조방법, 상기 제조방법에 의해 제조된 다공성 실리콘-탄소 복합체를 포함하는 이차전지 음극 및 상기 이차전지 음극을 포함하는 이차전지
WO2015065047A1 (ko) 음극 활물질 및 이의 제조 방법
WO2020040586A1 (ko) 실리콘계 복합체, 이를 포함하는 음극, 및 리튬 이차전지
WO2016052934A1 (ko) 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2018131899A1 (ko) 미세 패턴을 갖는 리튬 금속층 및 그 보호층으로 이루어진 이차전지용 음극 및 이의 제조방법
WO2019168352A1 (ko) 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2021040386A1 (ko) 리튬 이차전지 및 이의 제조 방법
WO2020179978A1 (ko) 이차전지, 연료전지 및 이차전지용 또는 연료전지용 분리막 및 분리막의 제조방법
WO2022164244A1 (ko) 음극 및 이를 포함하는 이차전지
WO2018034553A1 (ko) 실리콘 플레이크를 포함하는 음극재 및 실리콘 플레이크의 제조방법
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2021172857A1 (ko) 이차전지의 제조방법
WO2020231088A1 (ko) 음극의 제조방법
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021251663A1 (ko) 음극 및 이를 포함하는 이차전지
WO2021060811A1 (ko) 이차전지의 제조방법
WO2021020805A1 (ko) 복합 음극 활물질, 이의 제조방법, 이를 포함하는 음극, 및 이차전지
WO2021194260A1 (ko) 음극의 제조방법
WO2022265259A1 (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
WO2021194205A1 (ko) 음극의 제조방법
WO2022010211A1 (ko) 전고체전지 및 이의 제조방법
WO2019066403A2 (ko) 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/12/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19918386

Country of ref document: EP

Kind code of ref document: A1