CN110797531B - 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 - Google Patents
一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 Download PDFInfo
- Publication number
- CN110797531B CN110797531B CN201910964162.XA CN201910964162A CN110797531B CN 110797531 B CN110797531 B CN 110797531B CN 201910964162 A CN201910964162 A CN 201910964162A CN 110797531 B CN110797531 B CN 110797531B
- Authority
- CN
- China
- Prior art keywords
- microwave
- graphene
- iron phosphate
- lithium iron
- grafting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 61
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 47
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000002715 modification method Methods 0.000 title claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 35
- 239000010450 olivine Substances 0.000 claims abstract description 25
- 229910052609 olivine Inorganic materials 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 15
- 239000002002 slurry Substances 0.000 claims abstract description 15
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 12
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 239000002243 precursor Substances 0.000 claims description 80
- 238000005245 sintering Methods 0.000 claims description 33
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 20
- 238000000227 grinding Methods 0.000 claims description 18
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 18
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 18
- 239000008240 homogeneous mixture Substances 0.000 claims description 16
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 16
- 238000001238 wet grinding Methods 0.000 claims description 16
- 238000001291 vacuum drying Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 9
- 238000003756 stirring Methods 0.000 claims description 7
- 238000009210 therapy by ultrasound Methods 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000012298 atmosphere Substances 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 16
- 239000010405 anode material Substances 0.000 abstract description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 3
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 10
- 238000001035 drying Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- 239000011812 mixed powder Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及一种微波‑接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法,属于锂离子电池正极材料技术领域。微波‑接枝处理石墨烯的方法包括以下步骤:在低温度露点下,将石墨烯导电浆料和接枝液在60~120℃的油浴锅中按照体积比(1~20):(1~20)混合后,转移至微波下震荡混合1~120min,制得所需微波‑接枝处理的石墨烯。本发明通过将PVP、NMP对石墨烯导电浆料进行微波接枝处理,然后与LixFeyBzPO4的橄榄石型掺硼磷酸铁锂粉末混合制备改性材料,改善了橄榄石型掺硼磷酸铁锂的表面能,减少电池内阻,同时制得的材料呈现出纳米、微米型混合结构,从而使微波‑接枝处理石墨烯处理磷酸铁锂后的改性材料表现出优异的大倍率放电性能。
Description
技术领域
本发明涉及一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法,属于锂离子电池正极材料技术领域。
背景技术
作为一种新型导电碳材料,石墨烯拥有二维超薄结构、较大比表面积、超高电导率以及较高热力学稳定性等优点,使其在能源领域的应用受到广泛关注。磷酸铁锂正极材料具有高比容量、安全、生产成本低等优点,已成为广泛应用的锂离子电池正极材料。然而,磷酸铁锂材料较低的电导率限制了其在动力锂电池领域的应用。因此,提高磷酸铁锂的电子电导率改善磷酸铁锂的倍率性能成为研究的重点。本发明将PVP、NMP对石墨烯导电浆料进行微波接枝处理,然后与LixFeyBzPO4的橄榄石型掺硼磷酸铁锂粉末混合制备改性材料,在NMP溶剂中,非离子型高分子化合物PVP中的羰基与石墨烯导电浆料表面的基团成键,改善结合力,同时改善橄榄石型掺硼磷酸铁锂的表面能,减少电池内阻,从而提升改性材料的大倍率放电性能。
发明内容
本发明的目的是解决上述现有技术的不足,提供一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法,改善橄榄石型掺硼磷酸铁锂材料的表面能,减少电池内阻,从而提升改性材料的大倍率放电性能。
本发明是通过以下技术方案实现的:
一种微波-接枝处理石墨烯的方法,包括以下步骤:在低温度露点下,将石墨烯导电浆料和接枝液在60~120℃的油浴锅中按照体积比(1~20):(1~20)混合后,转移至微波下震荡混合1~120min,制得所需微波-接枝处理的石墨烯。
作为本发明的进一步改进,所述的接枝液制备方法为:将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:(1~10)mL混合,于微波下每超声处理5~20min,搅拌1~5min,总微波处理时间为60~120min,加入N-甲基吡咯烷酮,使接枝液浓度为0.05~0.5mg/mL。
作为本发明的进一步改进,所述的接枝液中聚乙烯吡咯烷酮的分子量为0.8~22万。
一种利用上述方法制备的微波-接枝处理石墨烯提高磷酸铁锂大倍率放电性能的改性方法,包括以下步骤:
(1)将组成为LixFeyBzPO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:(1~12)混合,获得均质混合物;
(2)向均质混合物中加入其总质量10~100倍质量的湿磨介质,在湿磨设备中湿磨混合2h~10h,制得前驱物1;
(3)将前驱物1采用真空干燥的方法制得前驱物2;
(4)将前驱物2进行研磨后,置于高纯度惰性气体气氛中,采用分段烧结的方式,先在350~500℃烧结2~6h,再在650~800℃烧结12~20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂;
其中,x、y和z同时满足以下关系式:1.01≤x≤1.09,0.92≤y≤1.00,0.035≤z≤0.055。
作为本发明的进一步改进,步骤(2)所述的湿磨介质为无水乙醇或N-甲基吡咯烷酮。
作为本发明的进一步改进,步骤(2)所述的湿磨设备包括行星式球磨机、超能球磨机或湿磨机。
作为本发明的进一步改进,步骤(3)所述的真空干燥温度为60~150℃,真空干燥时间为6~24h。
本发明的有益效果在于:
本发明通过将PVP、NMP对石墨烯导电浆料进行微波接枝处理,然后与LixFeyBzPO4的橄榄石型掺硼磷酸铁锂粉末混合制备改性材料,在NMP溶剂中,非离子型高分子化合物PVP中的羰基与石墨烯导电浆料表面的基团成键,改善结合力,同时改善橄榄石型掺硼磷酸铁锂的表面能,减少电池内阻,同时制得的材料呈现出纳米、微米型混合结构,从而使微波-接枝处理石墨烯处理磷酸铁锂后的改性材料表现出优异的大倍率放电性能。
附图说明
图1是本发明实施例1-3的微波-接枝处理石墨烯改性掺硼磷酸铁锂材料制备扣式电池未循环样的阻抗图。
图2是本发明对比例1-3的微波-接枝处理石墨烯(对比例3)或未处理石墨烯(对比例1-2)改性掺硼磷酸铁锂材料制备扣式电池未循环样的阻抗图。
图3是本发明实施例1的微波-接枝处理石墨烯及对比例1未处理石墨烯改性掺硼磷酸铁锂材料制备扣式电池在200C倍率电流下第1循环的放电曲线图。
具体实施方式
为更好理解本发明,下面结合实施例及附图对本发明作进一步描述,以下实施例仅是对本发明进行说明而非对其加以限定。
实施例1
(1)将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:2mL混合,于微波下每超声处理10min,搅拌1min,总微波处理时间为60min,加入N-甲基吡咯烷酮,制得浓度为0.2mg/mL接枝液。
(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在80℃的油浴锅中按照体积比1:1混合后,转移至微波下震荡混合60min,制得所需微波-接枝处理的石墨烯。
(3)将组成为Li1.05Fe0.96B0.045PO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:5混合,获得均质混合物。向均质混合物中加入其总质量30倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合5h,制得前驱物1。将前驱物1采用120℃真空干燥箱中干燥12h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在400℃烧结4h,再在730℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为58000。
对比例1
将组成为Li1.05Fe0.96B0.045PO4的橄榄石型掺硼磷酸铁锂粉末与未处理石墨烯按照质量比3:5混合,获得混合粉体。向混合粉体中加入粉末总质量的30倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合5h,制得前驱物1。将前驱物1采用120℃真空干燥箱中干燥12h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在400℃烧结4h,再在730℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为58000。
实施例2
(1)将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:1mL混合,于微波下每超声处理5min,搅拌2min,总微波处理时间为90min,加入N-甲基吡咯烷酮,制得浓度为0.5mg/mL接枝液。
(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在60℃的油浴锅中按照体积比1:20混合后,转移至微波下震荡混合120min,制得所需微波-接枝处理的石墨烯。
(3)将组成为Li1.01FeB0.035PO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:12混合,获得均质混合物。向均质混合物中加入其总质量10倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合2h,制得前驱物1。将前驱物1采用60℃真空干燥箱中干燥24h,制得前驱物2。将前驱物2进行研磨后,置于高纯氩气氛的管式烧结炉中,采用分段烧结的方式,先在350℃烧结6h,再在650℃烧结20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为10000。
对比例2
将组成为Li1.01FeB0.035PO4的橄榄石型掺硼磷酸铁锂粉末与未处理石墨烯按照质量比3:12混合,获得混合粉体。向混合粉体中加入粉末总质量的10倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合2h,制得前驱物1。将前驱物1采用60℃真空干燥箱中干燥24h,制得前驱物2。将前驱物2进行研磨后,置于高纯氩气氛的管式烧结炉中,采用分段烧结的方式,先在350℃烧结6h,再在650℃烧结20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为10000。
实施例3
(1)将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:8mL混合,于微波下每超声处理20min,搅拌1min,总微波处理时间为60min,加入N-甲基吡咯烷酮,制得浓度为0.5mg/mL接枝液。
(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在100℃的油浴锅中按照体积比5:1混合后,转移至微波下震荡混合90min,制得所需微波-接枝处理的石墨烯。
(3)将组成为Li1.09Fe0.92B0.055PO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:10混合,获得均质混合物。向均质混合物中加入其总质量100倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合8h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥8h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在450℃烧结3h,再在780℃烧结12h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为58000。
对比例3
(1)将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:8mL混合,于微波下每超声处理20min,搅拌1min,总微波处理时间为60min,加入N-甲基吡咯烷酮,制得浓度为0.5mg/mL接枝液。
(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在100℃的油浴锅中按照体积比5:1混合后,转移至微波下震荡混合90min,制得所需微波-接枝处理的石墨烯。
(3)将组成为Li1.09Fe0.92B0.055PO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:10混合,获得均质混合物。向均质混合物中加入其总质量的100倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合8h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥8h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,在780℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为58000。
实施例4
(1)将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:10mL混合,于微波下每超声处理20min,搅拌5min,总微波处理时间为120min,加入N-甲基吡咯烷酮,制得浓度为0.05mg/mL接枝液。
(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在120℃的油浴锅中按照体积比20:1混合后,转移至微波下震荡混合1min,制得所需微波-接枝处理的石墨烯。
(3)将组成为Li1.09Fe0.92B0.055PO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:1混合,获得均质混合物。向均质混合物中加入其总质量100倍质量的N-甲基吡咯烷酮,在超能球磨机中湿磨混合10h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥6h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在500℃烧结2h,再在800℃烧结12h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。
所述的聚乙烯吡咯烷酮的分子量为220000。
从图1和图2中可以看出采用本发明微波-接枝处理石墨烯对磷酸铁锂大倍率放电性能的改性方法,实施例1相较于实施例2、3具有较低的电荷传递阻抗,表明实施例1为最佳实施例;实施例1、2相较于对比例1、2均具有较低的电荷传递阻抗,表明通过微波-接枝处理石墨烯对磷酸铁锂材料的改性降低了电池内阻;实施例3相较于对比例3具有较低的电荷传递阻抗,表明采用分段烧结的方式可以显著降低电池内阻;以最佳实施例1做大倍率放电测试,图3表明在200C倍率电流下实施例1放电平台相较于对比例1更稳定。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照最佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,上述的具体实施方式仅仅是示意性的,而不是限制性的。凡是本领域技术人员在本发明的基础上所作出的显而意见的改进或变更均属于本发明保护范围。
Claims (6)
1.一种微波-接枝处理石墨烯的方法,其特征在于,包括以下步骤:在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在60~120℃的油浴锅中按照体积比(1~20):(1~20)混合后,转移至微波下震荡混合1~120min,制得所需微波-接枝处理的石墨烯;
所述的接枝液制备方法为:将一定质量的聚乙烯吡咯烷酮与一定体积的N-甲基吡咯烷酮按照1mg:(1~10)mL混合,于微波下每超声处理5~20min,搅拌1~5min,总微波处理时间为60~120min,加入N-甲基吡咯烷酮,使接枝液浓度为0.05 ~0.5mg/mL。
2.根据权利要求1所述的一种微波-接枝处理石墨烯的方法,其特征在于:所述的接枝液中聚乙烯吡咯烷酮的分子量为0.8 ~22万。
3.一种利用权利要求1~2任一项所述的方法制备的微波-接枝处理石墨烯提高磷酸铁锂大倍率放电性能的改性方法,其特征在于,包括以下步骤:
(1)将组成为LixFeyBzPO4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:(1~12)混合,获得均质混合物;
(2)向均质混合物中加入其总质量10~100倍质量的湿磨介质,在湿磨设备中湿磨混合2h~10h,制得前驱物1;
(3)将前驱物1采用真空干燥的方法制得前驱物2;
(4)将前驱物2进行研磨后,置于高纯度惰性气体气氛中,采用分段烧结的方式,先在350~500℃烧结2~6h,再在650~800℃烧结12~20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂;
其中,x、y和z同时满足以下关系式:1.01≤x≤1.09,0.92≤y≤1.00,0.035≤z≤0.055。
4.根据权利要求3所述的提高磷酸铁锂大倍率放电性能的改性方法,其特征在于:步骤(2)所述的湿磨介质为无水乙醇或N-甲基吡咯烷酮。
5.根据权利要求3所述的提高磷酸铁锂大倍率放电性能的改性方法,其特征在于:步骤(2)所述的湿磨设备包括超能球磨机或湿磨机。
6.根据权利要求3所述的提高磷酸铁锂大倍率放电性能的改性方法,其特征在于:步骤(3)所述的真空干燥温度为60~150℃,真空干燥时间为6~24h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910964162.XA CN110797531B (zh) | 2019-10-11 | 2019-10-11 | 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910964162.XA CN110797531B (zh) | 2019-10-11 | 2019-10-11 | 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110797531A CN110797531A (zh) | 2020-02-14 |
CN110797531B true CN110797531B (zh) | 2022-04-12 |
Family
ID=69438961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910964162.XA Active CN110797531B (zh) | 2019-10-11 | 2019-10-11 | 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110797531B (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101831130A (zh) * | 2010-04-09 | 2010-09-15 | 上海交通大学 | 实现石墨烯表面接枝聚乙烯吡咯烷酮的方法 |
CN104291330A (zh) * | 2014-09-28 | 2015-01-21 | 上海第二工业大学 | 一种改性功能化石墨烯纳米材料的制备方法 |
CN106252635A (zh) * | 2016-09-30 | 2016-12-21 | 合肥国轩高科动力能源有限公司 | 一种石墨烯包覆的磷酸铁锂正极材料及制备方法 |
KR101767393B1 (ko) * | 2017-02-09 | 2017-08-11 | 한국지질자원연구원 | 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지 |
KR20180040703A (ko) * | 2015-08-24 | 2018-04-20 | 나노텍 인스트러먼츠, 인코포레이티드 | 초고 체적 에너지 밀도를 갖는 충전식 리튬 전지 및 요구되는 제조 방법 |
CN108511700A (zh) * | 2018-01-23 | 2018-09-07 | 四川大学 | 多金属掺杂磷酸铁锂/碳复合材料及制备方法 |
CN109148866A (zh) * | 2018-09-10 | 2019-01-04 | 澳洋集团有限公司 | 一种石墨烯掺杂合金锂电池负极材料的制备方法 |
CN109671952A (zh) * | 2018-12-21 | 2019-04-23 | 福建翔丰华新能源材料有限公司 | 一种锂电池用微晶石墨烯基复合导电浆料及其制备方法 |
-
2019
- 2019-10-11 CN CN201910964162.XA patent/CN110797531B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101831130A (zh) * | 2010-04-09 | 2010-09-15 | 上海交通大学 | 实现石墨烯表面接枝聚乙烯吡咯烷酮的方法 |
CN104291330A (zh) * | 2014-09-28 | 2015-01-21 | 上海第二工业大学 | 一种改性功能化石墨烯纳米材料的制备方法 |
KR20180040703A (ko) * | 2015-08-24 | 2018-04-20 | 나노텍 인스트러먼츠, 인코포레이티드 | 초고 체적 에너지 밀도를 갖는 충전식 리튬 전지 및 요구되는 제조 방법 |
CN106252635A (zh) * | 2016-09-30 | 2016-12-21 | 合肥国轩高科动力能源有限公司 | 一种石墨烯包覆的磷酸铁锂正极材料及制备方法 |
KR101767393B1 (ko) * | 2017-02-09 | 2017-08-11 | 한국지질자원연구원 | 실리콘-탄소-그래핀 복합체 제조방법, 이에 따라 제조되는 복합체 및 이를 적용한 이차전지 |
CN108511700A (zh) * | 2018-01-23 | 2018-09-07 | 四川大学 | 多金属掺杂磷酸铁锂/碳复合材料及制备方法 |
CN109148866A (zh) * | 2018-09-10 | 2019-01-04 | 澳洋集团有限公司 | 一种石墨烯掺杂合金锂电池负极材料的制备方法 |
CN109671952A (zh) * | 2018-12-21 | 2019-04-23 | 福建翔丰华新能源材料有限公司 | 一种锂电池用微晶石墨烯基复合导电浆料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
B掺杂对LiFeP1-xBxO4-δ/C电化学性能的影响;刘花等;《西华师范大学学报(自然科学版)》;20130726;第34卷(第2期);第146-152页 * |
Capacity and charge-transport enhancement of LFP/RGO by doping with alpha-MnO2 in a microwave-assisted synthesis;Rossouw, Claire A. 等;《APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING》;20171114;第123卷(第12期);第769(1-8)页 * |
微波辐射接枝改性氧化石墨烯的研究;孙希静等;《四川师范大学学报(自然科学版)》;20160726;第39卷(第2期);摘要、实验步骤 * |
Also Published As
Publication number | Publication date |
---|---|
CN110797531A (zh) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107994225B (zh) | 一种多孔硅碳复合负极材料及其制备方法、锂离子电池 | |
CN110504430A (zh) | 一种锂离子电池硅碳负极材料及其制备方法 | |
CN113871604A (zh) | 含硅矿物基多孔硅碳复合负极材料及其制备方法 | |
CN110335993B (zh) | 一种锂离子电池用的球形纳米多孔硅/氧化硅/碳复合材料及其制备方法 | |
CN113745465B (zh) | 一种硅碳复合材料的制备方法 | |
CN102157736A (zh) | 一次锂电池二硫化铁/碳复合正极材料及其制备方法和应用 | |
CN111799098A (zh) | 一种多孔碳/金属氧化物复合材料及其制备方法和应用 | |
CN112018366A (zh) | 一种锂离子电池石墨负极材料及其制备方法 | |
CN113072051A (zh) | 一种磷酸盐体系正极材料的后处理方法 | |
CN113611854B (zh) | 一种普鲁士蓝衍生核壳立方体材料及制备方法和应用 | |
CN114551880A (zh) | 一种碳覆多孔Cr-Cu合金/磷酸铁锂正极及其制备方法 | |
CN108565409B (zh) | 磷酸铁锂复合材料及制备方法 | |
CN110797531B (zh) | 一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法 | |
CN105375029A (zh) | 一种三元硅酸盐复合正极材料及其制备方法 | |
CN105895884B (zh) | 一种利用二硫化钼对储氢合金进行表面改性的方法及其应用 | |
CN116706013A (zh) | 复合负极材料、其制备方法及锂离子电池 | |
CN116666589A (zh) | 具有核壳结构的纳米硅碳复合物负极材料及其制备方法和应用 | |
CN116404131A (zh) | 一种纳米均质结构的硅碳负极材料及其制备方法和应用 | |
CN113410436B (zh) | 一种高倍率高镍复合正极片的制备方法及其应用 | |
CN111816879B (zh) | 一种锂离子电池负极粘结剂、浆料及其负极材料 | |
CN112225251B (zh) | 壳层限域五氧化二铌纳米晶的空心炭球、制备方法和应用 | |
CN114938686A (zh) | 一种钴酸锂层状正极材料及其制备方法和应用 | |
CN109888262B (zh) | 一种双层包覆石墨复合材料及其制备方法和应用 | |
CN112186158A (zh) | 一种正极复合材料及其制备方法和应用 | |
CN114162814A (zh) | 一种石墨的改性方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |