CN105375029A - 一种三元硅酸盐复合正极材料及其制备方法 - Google Patents

一种三元硅酸盐复合正极材料及其制备方法 Download PDF

Info

Publication number
CN105375029A
CN105375029A CN201510905957.5A CN201510905957A CN105375029A CN 105375029 A CN105375029 A CN 105375029A CN 201510905957 A CN201510905957 A CN 201510905957A CN 105375029 A CN105375029 A CN 105375029A
Authority
CN
China
Prior art keywords
ternary
positive pole
composite positive
ternary silicates
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510905957.5A
Other languages
English (en)
Other versions
CN105375029B (zh
Inventor
张露露
李振
杨学林
孙华斌
丁晓凯
周英贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201510905957.5A priority Critical patent/CN105375029B/zh
Publication of CN105375029A publication Critical patent/CN105375029A/zh
Application granted granted Critical
Publication of CN105375029B publication Critical patent/CN105375029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种三元硅酸盐复合正极材料,该正极材料为碳包覆的三元硅酸盐,具体结构式为:LixFeαM1βM2γSiO4/C,其中2.0≤x≤2.1,α+β+γ=1,且α≥0.2,β≥0.2,γ≥0.2,M1、M2为过渡金属元素。具体制备方法是将碳酸锂、草酸铁和两种含有不同过渡金属的M1、M2源置于容器中以无水乙醇为介质搅拌30~180min,再加入硅酸乙酯得到混合液;将混合液干燥得干物料;将干物料中加入碳源,以丙酮为介质,球磨,再在氮气或氩气气氛下,烧结,得到目标产物;将产物与乙炔黑、聚偏氟乙烯在N-甲基吡咯烷酮中搅拌涂布于铝箔上,经过干燥、冲膜和压膜制成三元硅酸盐复合正极材料极片。该方法成本低廉,无污染;合成过程有害气体排放少;材料电化学性能优异。

Description

一种三元硅酸盐复合正极材料及其制备方法
技术领域
本发明涉及三元硅酸盐复合正极材料及其制备方法,属于电化学电源领域。
背景技术
锂离子电池由于具有工作电压高、比能量大、自放电小、循环寿命长和环境友好等优点,已成为二十世纪后最为理想的能量存储装置。近年来,锂离子电池已广泛应用于便携式电子设备,如笔记本电脑、移动电话等电子产品方面,未来将进一步成为于电动汽车、国防工业等电源的有力竞争者。随着锂离子电池在不同领域的应用越来越广泛,各个领域对锂离子电池的性能也提出了不同的要求。
正极材料作为锂离子电池的重要组成部分,成本约占整个锂离子电池成本的30~40%。因此,有效降低正极材料的成本和提升其电化学性能对于拓展锂离子电池的应用领域及加速其发展有着十分重要的意义。目前,常见的正极材料包括:钴酸锂(LiCoO2)、三元材料(Li(Ni1/3Co1/3Mn1/3)O2)等。然而,这些过渡金属氧化物正极材料的毒性、安全性和高成本等缺点在一定程度上限制了它们在动力型锂离子电池领域中的应用。因此,多年来人们一直在研究过渡金属氧化物正极材料的替代材料。自1997年Padhi等首次报道了LiFePO4可用于锂离子电池正极材料以来,LiFePO4因具有无毒、安全性能好、价格便宜、寿命长等优点,而逐渐被国际上公认为是高能动力电池领域最具潜力的新型正极材料之一。但LiFePO4正极材料只能发生单电子转移反应,其理论容量仅为170mAhg-1。而Li2MSiO4(M=Fe,Co,Ni,Mn)正极材料中的两个Li离子在工作电压大于4.8V时可全部脱出,理论容量高达332mAhg-1。而且,与P-O键相比,Si-O键具有更强的结合力,所以Li2MSiO4将具有更优的循环稳定性和高温安全性。其中,Li2FeSiO4最具代表性,因为它有着比LiFePO4更广泛的原料来源。但是,与其它聚阴离子型正极材料一样,由于Li2FeSiO4自身结构带来的缺陷,导致其电子电导率和锂离子扩散系数低,仍需要改性才能应用。目前为止,提高Li2FeSiO4电导率和锂离子扩散系数的方法主要有以下三种:第一、对Li2FeSiO4中的Li位、Fe位和Si位进行离子掺杂,通过提高其本征电导率,来优化Li2FeSiO4材料的充放电性能;第二、在Li2FeSiO4材料表面进行碳包覆,通过增加粒子之间的电子传输速率,来改善材料的导电性;第三、合成纳米材料或多孔材料,通过缩短Li离子在颗粒内部的扩散路径或提高材料的比表面积,来提高材料的利用率,优化其电化学性能。
目前,大多数研究致力多种方法对Li2FeSiO4材料进行改性,如CN102723488A通过对Li2FeSiO4进行单一钒离子掺杂和碳包覆相结合的方式实现对材料的改性;如CN102088074A指出在Li2FeSiO4中限定其中一种掺杂元素(锰),之后再引入另一种或者多种离子(含量0.001~0.2)进行掺杂和碳包覆。
考虑到Li2FeSiO4的合成需要经过长达数小时甚至二三十小时的高温煅烧,这就极易导致锂的挥发损失,加剧产物中各元素的非化学计量程度和阳离子混排。本发明,加入了适宜过量的锂源来弥补锂在煅烧过程中的损失;同时,还在Li2FeSiO4中同时引入两种掺杂元素,且两种金属离子含量均大于20at.%,利用两种或多种过渡金属离子对铁位掺杂,并结合碳包覆对材料进行改性,以实现对材料电化学性能的提升。
发明内容
本发明的目的在于提供一种锂过量的碳包覆三元硅酸盐LixFeαM1βM2γSiO4/C(其中2.0≤x≤2.1,α+β+γ=1,且α≥0.2,β≥0.2,γ≥0.2)正极材料,M1、M2为过渡金属元素,在三元硅酸盐正极材料LixFeαM1βM2γSiO4/C中的铁位掺杂M1、M2。
三元硅酸盐正极材料LixFeαM1βM2γSiO4/C的原料包括碳酸锂、草酸铁、M1、M2、硅酸乙酯。其中,Li、Fe、M1、M2、Si的摩尔比为2.0~2.1:0.2~0.6:0.2~0.6:0.2~0.6:0.9~1.1,碳源添加量为物料总质量的10~20%。所述的锂源、铁源、M1源、M2源和硅源的纯度均大于99%。
进一步优选为Li、Fe、M1、M2、Si的摩尔比为2.02~2.06:0.25~0.5:0.25~0.5:0.25~0.5:1;碳源添加量为物料总质量的11~15%。
进一步优选为Li、Fe、M1、M2、Si的摩尔比为2.04:1/3:1/3:1/3:1,碳源添加量为物料总质量的12.3%。
所述碳源包括葡萄糖、蔗糖、抗坏血酸、柠檬酸、碳纳米管中的任意一种。
所述的M1、M2包括以氧化物、乙酸盐、碳酸盐、草酸盐、柠檬酸盐、硝酸盐形式存在的钴源、镍源、锰源中的任意一种。所述的三元硅酸盐正极材料的结构式为:Li2.04Fe1/3Mn1/3Co1/3SiO4/C。
本发明的另一目的在于提供一种以简单回流辅助固相法对硅酸盐系列正极材料进行金属离子掺杂和碳包覆共改性的方法,这种制备方法能够有效提高材料的导电性能、充放电比容量和循环寿命。
三元硅酸盐复合正极材料的制备方法,包括如下步骤:
(1)将碳酸锂、草酸铁和两种含有不同过渡金属的M1、M2源置于容器中,以无水乙醇为介质搅拌30~180min,得到混合液1;
(2)在混合液1中加入硅酸乙酯继续搅拌30~180min,得到混合液2;
(3)将混合液2在50~100℃下回流5-30h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;
(4)将干物料继续在真空烘箱中80~120℃干燥8~16h,然后冷却到室温;
(5)在上述干燥后的物料中加入碳源,以丙酮为介质,球磨1~12h后,干燥得到粉末状物料;
(6)将粉末状物料在氮气或氩气气氛下,500~700℃进行烧结,得到目标产物;
(7)将产物与乙炔黑、聚偏氟乙烯(PVDF)按质量比为70~80:10~18:8~12在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成三元硅酸盐复合正极材料极片。
步骤(5)所述碳源是葡萄糖、蔗糖、抗坏血酸、柠檬酸、碳纳米管中的任意一种。
为达到上述另一目的,一种固相法制备硅酸盐复合正极材料的方法,包括以下制备步骤:将锂源、铁源、两种不同的过渡金属源置于容器中以无水乙醇为介质搅拌30min,得到混合液1;在混合液1中加入硅源搅拌30min,得到锂源、铁源、两种不同的过渡金属源和硅源的混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为20%的蔗糖,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料在惰性气氛下650℃进行烧结,得到目标产物;将产物与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成三元硅酸盐复合正极材料极片。
作为具体化,M1、M2为Co、Ni和Mn等;M1、M2源包括以下一种或多种化合物:含有M1、M2的氧化物、乙酸盐、碳酸盐、草酸盐、柠檬酸盐和硝酸盐。碳源是葡萄糖、蔗糖、抗坏血酸、柠檬酸、碳纳米管和乙炔黑中的一种或几种。
本发明所述的三元硅酸盐复合正极材料有以下优势:
(1)相比于按化学计量比加入锂源,加入适宜过量的锂源可弥补锂在高温煅烧过程中的损失,降低了产物中各元素的非化学计量程度,并避免了阳离子混排现象;(2)相比其它单一阳离子掺杂,两种过渡金属离子的共掺杂,能更有效地提硅酸铁锂的本征电导率;(3)碳包覆不仅可以在活性物质表面形成保护层,阻止Li2FeSiO4中Fe2+在电解液中的溶解,还能增加粒子之间的电子传输速率,提高三元硅酸盐复合正极材料的电导率,降低其电荷转移电阻,从而改善材料的电化学性能。
本发明制备的高性能三元硅酸盐复合正极材料的方法具有以下几个显著特点:
(1)成本低廉,无污染;
(2)合成过程有害气体排放少;
(3)材料电化学性能优异。
附图说明
图1为实施例3中材料的扫描电子显微镜照片。
图2为实施例3中材料的电化学性能曲线。
具体实施方式
下面通过实施例和比较例的描述,进一步阐述本发明的实质性特点和优势。为描述方便,首先对比较例加以叙述,然后再描述实施例,与之比较,显示出本发明的效果。以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
比较例1
制备样品需要的药品和摩尔比满足以下关系:LiCH3COO·2H2O:FeC2O4·2H2O:Mn(CH3COO)2·4H2O:Ni(CH3COO)2·4H2O:(C2H5)4SiO4=2.0:1/3:1/3:1/3:1。将FeC2O4·2H2O、Mn(CH3COO)2·4H2O和Ni(CH3COO)2·4H2O以摩尔比为1:1:1置于容器中,以无水乙醇为介质搅拌30min,得到混合液1;将LiCH3COO·2H2O加入到混合液1,搅拌30min;再加入(C2H5)4SiO4继续搅拌30min,得到混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为15%的蔗糖,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料转移至管式炉中,在惰性气氛下650℃进行烧结,得到目标材料Li2Fe1/3Mn1/3Ni1/3SiO4/C;将目标材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极,聚丙烯膜为隔膜,1MLiPF6/(EC+DMC)(1:1)为电解液组装成电池进行恒流充放电测试,电压范围在1.5~4.8V之间。复合材料的碳含量为11.7%,材料0.1C首次放电电容量和第二圈放电容量分别为117.3mAhg-1和109.5mAhg-1
实施例1
制备样品需要的药品和摩尔比满足一下关系:LiCH3COO·2H2O:FeC2O4·2H2O:Mn(CH3COO)2·4H2O:Ni(CH3COO)2·4H2O:(C2H5)4SiO4=2.04:1/3:1/3:1/3:1。将FeC2O4·2H2O、Mn(CH3COO)2·4H2O和Ni(CH3COO)2·4H2O以摩尔比为1:1:1置于容器中,以无水乙醇为介质搅拌30min,得到混合液1;将LiCH3COO·2H2O加入到混合液1,搅拌30min;再加入(C2H5)4SiO4继续搅拌30min,得到混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为15%的蔗糖,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料在惰性气氛下650℃进行烧结,得到目标材料Li2.04Fe1/3Mn1/3Ni1/3SiO4/C;将目标材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极,聚丙烯膜为隔膜,1MLiPF6/(EC+DMC)(1:1)为电解液组装成电池进行恒流充放电测试,电压范围在1.5~4.8V之间。复合材料的碳含量为11.68%,材料在0.1C下的首次放电比容量和第二圈放电比容量分别为127.1mAhg-1和115.4mAhg-1
实施例2
制备样品需要的药品和摩尔比满足以下关系:LiCH3COO·2H2O:FeC2O4·2H2O:Mn(CH3COO)2·4H2O:Ni(CH3COO)2·4H2O:(C2H5)4SiO4=2.04:1/3:1/3:1/3:1。将FeC2O4·2H2O、Mn(CH3COO)2·4H2O和Ni(CH3COO)2·4H2O以摩尔比为1:1:1置于容器中,以无水乙醇为介质搅拌30min,得到混合液1;将LiCH3COO·2H2O加入到混合液1,搅拌30min;再加入(C2H5)4SiO4继续搅拌30min,得到混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为10%的抗坏血酸,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料转移至管式炉中,在惰性气氛下650℃进行烧结,得到目标材料Li2.04Fe1/3Mn1/3Ni1/3SiO4/C;将目标材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极,聚丙烯膜为隔膜,1MLiPF6/(EC+DMC)(1:1)为电解液组装成电池进行恒流充放电测试,电压范围在1.5~4.8V之间。复合材料碳含量为14.8%,材料0.1C首次放电电容量和第二圈放电容量分别为144.1mAhg-1和132.6mAhg-1
实施例3
制备样品需要的药品和摩尔比满足一下关系:LiCH3COO·2H2O:FeC2O4·2H2O:Mn(CH3COO)2·4H2O:Co(CH3COO)2·4H2O:(C2H5)4SiO4=2.04:1/3:1/3:1/3:1。将FeC2O4·2H2O、Mn(CH3COO)2·4H2O和Co(CH3COO)2·4H2O以摩尔比为1:1:1置于容器中,以无水乙醇为介质搅拌30min,得到混合液1;将LiCH3COO·2H2O加入到混合液1,搅拌30min;再加入(C2H5)4SiO4继续搅拌30min,得到混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为12.3%的蔗糖,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料转移至管式炉中,在惰性气氛下650℃进行烧结,得到目标材料Li2.04Fe1/3Mn1/3Co1/3SiO4/C;将目标材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极,聚丙烯膜为隔膜,1MLiPF6/(EC+DMC)(1:1)为电解液组装成电池进行恒流充放电测试,电压范围在1.5~4.8V之间。复合材料碳含量为14.83%,材料0.1C首次放电电容量和第二圈放电容量分别为210mAhg-1和206mAhg-1
实施例4
制备样品需要的药品和摩尔比满足一下关系:LiCH3COO·2H2O:FeC2O4·2H2O:Ni(CH3COO)2·4H2O:Co(CH3COO)2·4H2O:(C2H5)4SiO4=2.04:1/3:1/3:1/3:1。将FeC2O4·2H2O、Ni(CH3COO)2·4H2O和Co(CH3COO)2·4H2O以摩尔比为1:1:1置于容器中,以无水乙醇为介质搅拌30min,得到混合液1;将LiCH3COO·2H2O加入到混合液1,搅拌30min;再加入(C2H5)4SiO4继续搅拌30min,得到混合液2;将混合液2在80℃下恒温24h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;将物料置于真空烘箱100℃干燥12h,冷却到室温;在上述干燥后的物料中加入质量分数为18%的碳纳米管,以丙酮为介质,球磨6h,干燥得到粉末状物料;粉末状物料转移至管式炉中,在惰性气氛下650℃进行烧结,得到目标材料Li2.04Fe1/3Ni1/3Co1/3SiO4/C;将目标材料与乙炔黑、聚偏氟乙烯(PVDF)按质量比为75:15:10在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成工作电极。以金属锂箔为对电极,聚丙烯膜为隔膜,1MLiPF6/(EC+DMC)(1:1)为电解液组装成电池进行恒流充放电测试,电压范围在1.5~4.8V之间。复合材料碳含量为14.9%,材料0.1C首次放电电容量和第二圈放电容量分别为128.1mAhg-1和113.4mAhg-1
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

1.一种三元硅酸盐复合正极材料,其特征在于,该正极材料为碳包覆的三元硅酸盐,具体结构式为:LixFeαM1βM2γSiO4/C,其中2.0≤x≤2.1,α+β+γ=1,且α≥0.2,β≥0.2,γ≥0.2,M1、M2为过渡金属元素。
2.权利要求1所述的三元硅酸盐复合正极材料,其特征在于,三元硅酸盐正极材料LixFeαM1βM2γSiO4/C的原料包括碳酸锂、草酸铁、M1、M2、硅酸乙酯,其中,Li、Fe、M1、M2、Si的摩尔比为2.0~2.1:0.2~0.6:0.2~0.6:0.2~0.6:0.9~1.1,碳源添加量为物料总质量的10~20%。
3.权利要求2所述的三元硅酸盐复合正极材料,其特征在于,Li、Fe、M1、M2、Si的摩尔比为2.02~2.06:0.25~0.5:0.25~0.5:0.25~0.5:1,碳源添加量为物料总质量的11~15%。
4.权利要求3所述的三元硅酸盐复合正极材料,其特征在于,Li、Fe、掺杂原子M1和M2的摩尔比2.04:1/3:1/3:1/3,碳源添加量为物料总质量的12.3%。
5.权利要求2-4所述的三元硅酸盐复合正极材料,其特征在于,包括以下步骤:所述碳源包括葡萄糖、蔗糖、抗坏血酸、柠檬酸、碳纳米管中的任意一种。
6.权利要求1-4任一项所述的三元硅酸盐复合正极材料,其特征在于,所述的M1、M2包括以氧化物、乙酸盐、碳酸盐、草酸盐、柠檬酸盐、硝酸盐形式存在的钴源、镍源、锰源中的任意一种。
7.权利要求6所述的三元硅酸盐复合正极材料,其特征在于,在三元硅酸盐正极材料LixFeαM1βM2γSiO4/C中的铁位掺杂M1、M2。
8.权利要求7所述的三元硅酸盐复合正极材料,其特征在于,所述的三元硅酸盐正极材料的结构式为:Li2.04Fe1/3Mn1/3Co1/3SiO4/C。
9.权利要求1-8任一项所述的三元硅酸盐复合正极材料的制备方法,其特征在于,包括如下步骤:
(1)将碳酸锂、草酸铁和两种含有不同过渡金属的M1、M2源置于容器中以无水乙醇为介质搅拌30~180min,得到混合液1;
(2)在混合液1中加入硅酸乙酯继续搅拌30~180min,得到混合液2;
(3)将混合液2在50~100℃下回流5~30h后,置于红外灯下烘烤,并搅拌至溶剂完全挥发,得到干物料;
(4)将干物料继续在真空烘箱中80~120℃干燥8~16h,然后冷却到室温;
(5)在上述干燥后的物料中加入碳源,以丙酮为介质,球磨1~12h后,干燥得到粉末状物料;
(6)将粉末状物料在氮气或氩气气氛下,500~700℃进行烧结,得到目标产物;
(7)将产物与乙炔黑、聚偏氟乙烯(PVDF)按质量比为70~80:10~18:8~12在N-甲基吡咯烷酮(NMP)介质中搅拌成浆料,涂布于铝箔上,经过干燥、冲膜和压膜制成三元硅酸盐复合正极材料极片。
10.权利要求9所述的所述的三元硅酸盐复合正极材料的制备方法,其特征在于,步骤(5)所述碳源是葡萄糖、蔗糖、抗坏血酸、柠檬酸、碳纳米管中的任意一种。
CN201510905957.5A 2015-12-09 2015-12-09 一种三元硅酸盐复合正极材料及其制备方法 Active CN105375029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510905957.5A CN105375029B (zh) 2015-12-09 2015-12-09 一种三元硅酸盐复合正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510905957.5A CN105375029B (zh) 2015-12-09 2015-12-09 一种三元硅酸盐复合正极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105375029A true CN105375029A (zh) 2016-03-02
CN105375029B CN105375029B (zh) 2016-10-12

Family

ID=55376993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510905957.5A Active CN105375029B (zh) 2015-12-09 2015-12-09 一种三元硅酸盐复合正极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105375029B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602046A (zh) * 2017-02-23 2017-04-26 中国科学院宁波材料技术与工程研究所 一种锂离子电池硅酸盐正极材料及其制备和应用
CN109616700A (zh) * 2018-11-29 2019-04-12 溧阳天目先导电池材料科技有限公司 一种改性预锂化材料及其制备方法和锂电池
CN111682204A (zh) * 2020-06-19 2020-09-18 西安交通大学苏州研究院 一种稀土元素掺杂型硅酸盐正极材料、其制备方法及应用
CN114122337A (zh) * 2020-08-28 2022-03-01 深圳市比亚迪锂电池有限公司 一种正极材料及其制备方法、锂离子电池正极、锂离子电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088074A (zh) * 2009-12-02 2011-06-08 深圳市贝特瑞新能源材料股份有限公司 一种复合硅酸盐正极材料及其制备方法
CN103311573A (zh) * 2012-03-08 2013-09-18 通用汽车环球科技运作有限责任公司 具有硅基阳极和硅酸盐基阴极的锂电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088074A (zh) * 2009-12-02 2011-06-08 深圳市贝特瑞新能源材料股份有限公司 一种复合硅酸盐正极材料及其制备方法
CN103311573A (zh) * 2012-03-08 2013-09-18 通用汽车环球科技运作有限责任公司 具有硅基阳极和硅酸盐基阴极的锂电池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106602046A (zh) * 2017-02-23 2017-04-26 中国科学院宁波材料技术与工程研究所 一种锂离子电池硅酸盐正极材料及其制备和应用
CN106602046B (zh) * 2017-02-23 2020-01-17 中国科学院宁波材料技术与工程研究所 一种锂离子电池硅酸盐正极材料及其制备和应用
CN109616700A (zh) * 2018-11-29 2019-04-12 溧阳天目先导电池材料科技有限公司 一种改性预锂化材料及其制备方法和锂电池
CN111682204A (zh) * 2020-06-19 2020-09-18 西安交通大学苏州研究院 一种稀土元素掺杂型硅酸盐正极材料、其制备方法及应用
CN114122337A (zh) * 2020-08-28 2022-03-01 深圳市比亚迪锂电池有限公司 一种正极材料及其制备方法、锂离子电池正极、锂离子电池

Also Published As

Publication number Publication date
CN105375029B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN102522530B (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
WO2016201979A1 (zh) 一种硅碳复合负极材料的制备方法
CN102244233B (zh) 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN101752562B (zh) 一种复合掺杂改性锂离子电池正极材料及其制备方法
CN103050694B (zh) 一种正极活性材料及其制备方法、电池
CN103928668B (zh) 一种锂离子电池及其正极材料的制备方法
CN112885985B (zh) 一种正极极片及其制备方法、电化学储能装置及电化学储能装置的预金属化方法
CN105702954A (zh) 一种正极材料LiMn1-xFexPO4/C及其制备方法
CN104393291B (zh) 一种掺杂、包覆共改性的磷酸钒锂正极材料及其制备方法
CN103000874A (zh) 一种碳包覆三元正极材料的制备方法
CN103618065B (zh) 磷酸铁锂材料及其制备方法
CN105375029B (zh) 一种三元硅酸盐复合正极材料及其制备方法
CN105355923A (zh) 表面包覆锂离子电池正极材料及其制备方法
CN103594708A (zh) 一种变价铁基复合正极材料及其制备方法
CN116581274A (zh) 一种钠离子电池正极材料及其制备方法和应用
CN102157727A (zh) 一种锂离子电池负极材料纳米MnO的制备方法
CN102169991A (zh) 一种具有核壳结构的锂电池正极材料及其制备方法和应用
CN105810901A (zh) 一种Ti3+/Ti4+混合价态的掺杂铁元素的锂离子电池钛酸锂负极材料及其制备方法
CN100527482C (zh) 锂离子电池用磷酸亚铁锂-碳复合正极材料的制备方法
CN107834054B (zh) 一种锂离子电池用镍锰酸锂-石墨烯复合材料的制备方法
CN102983333A (zh) 一种锂离子电池正极磷酸钒锂/碳复合材料的新型制备方法
CN102364728B (zh) 一种锂离子电池正极材料及其制备方法
CN114792788A (zh) 一种钠离子全电池及其制备方法
CN105591091B (zh) 一种钠离子二次电池负极活性物质及其制备方法和应用
CN107834043A (zh) 锂硫电池正极材料及制备方法、锂硫电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant