CN111799098A - 一种多孔碳/金属氧化物复合材料及其制备方法和应用 - Google Patents

一种多孔碳/金属氧化物复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN111799098A
CN111799098A CN202010485626.1A CN202010485626A CN111799098A CN 111799098 A CN111799098 A CN 111799098A CN 202010485626 A CN202010485626 A CN 202010485626A CN 111799098 A CN111799098 A CN 111799098A
Authority
CN
China
Prior art keywords
porous carbon
composite material
metal oxide
preparation
oxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010485626.1A
Other languages
English (en)
Inventor
洪晓东
刘悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN202010485626.1A priority Critical patent/CN111799098A/zh
Publication of CN111799098A publication Critical patent/CN111799098A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属多孔碳基复合材料制备技术领域,公开了一种多孔碳/金属氧化物复合材料及其制备方法和应用,采用两步法,先以稻壳作为前躯体制备多孔碳,加入金属盐进行复合,再对复合产物进行热处理,得到的多孔碳/金属氧化物复合材料中的金属氧化物纳米颗粒成功均匀分散在多孔碳的孔隙中,避免了使用水热法制备多孔碳/金属氧化物时采用的炭化稻壳在水中分散性差的问题。同时,在多孔碳中引入金属氧化物后制备的复合材料在超级电容器中具有更高的比电容,该复合材料还可用于制备锂硫电池。作为锂硫电池正极硫载体,可发挥多孔碳和金属氧化物纳米颗粒的双重固硫作用,显著提高锂硫电池的比容量和循环稳定性。

Description

一种多孔碳/金属氧化物复合材料及其制备方法和应用
技术领域
本发明属于多孔碳基复合材料制备技术领域,具体涉及一种多孔碳/金属氧化物复合材料及其制备方法和应用。
背景技术
随着新能源及器件领域的快速发展,碳基电极材料的开发已成为新能源材料领域的研究热点。相比于碳纳米管和石墨烯来说,多孔碳的前躯体材料来源广泛、制备简单、成本低廉。与酚醛树脂、沥青等合成材料相比,天然的生物质材料,例如棉纤维、花生壳、柳絮、草籽、橘子皮、小麦粉、稻壳等都可以作为碳源,经过碳化和化学活化后可以制备出高比表面积、孔隙分布宽的各种级别的多孔碳。然而现有的多孔碳大都是双电层特征电极材料,其循环稳定性虽好,但采用这类电极材料制得的超级电容器的比电容较低,使得超级电容器的综合性能受限。此外,作为锂硫电池硫载体时,单纯的多孔碳只能作为物理屏障来限制可溶性多硫化物的扩散,这种多孔碳的单一物理限硫作用较弱,并不能起到有效的固硫作用,会导致锂硫电池的比容量低、循环稳定性差。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种多孔碳/金属氧化物复合材料及其制备方法和应用。
为了克服上述技术问题,本发明采用的技术方案如下
一种多孔碳/金属氧化物复合材料的制备方法,包括以下步骤:
(1)制备多孔碳:取稻壳进行除杂、烘干,置于惰性气氛中炭化,再经研磨过筛、碱洗、过滤,将所得固体物质进行烘干,得到多孔碳;
(2)制备多孔碳/金属氧化物复合材料:取金属盐溶液,加入步骤(1)的多孔碳,搅拌、烘干,置于惰性气氛中进行热处理,经研磨过筛,得所述多孔碳/金属氧化物复合材料。
作为上述方案的进一步改进,所述除杂的工艺为:对稻壳进行水洗和醇洗。
作为上述方案的进一步改进,所述碱洗中的碱为氢氧化钠或氢氧化钾,所述碱洗中的碱的浓度为0.5~8.0mg mL-1
作为上述方案的进一步改进,所述炭化的温度为700~1000℃,所述炭化的时长为2~4h。
作为上述方案的进一步改进,所述热处理的温度为500~700℃,所述热处理的时长为2~4h。
作为上述方案的进一步改进,所述金属盐溶液中的阳离子为过渡金属阳离子。
作为上述方案的进一步改进,所述过渡金属阳离子选自钴离子、镍离子、铁离子、锌离子和锰离子中的至少一种。
作为上述方案的进一步改进,所述金属盐溶液中的阴离子为含氧阴离子,优选为醋酸根。
一种多孔碳/金属氧化物复合材料,是根据如上任一项所述的制备方法制得。
将如上所述的多孔碳/金属氧化物复合材料可应用于制备超级电容器或锂硫电池。
本发明的有益效果是:本发明提供了一种多孔碳/金属氧化物复合材料及其制备方法和应用,采用两步法,先以稻壳作为前躯体制备多孔碳,加入金属盐进行复合,再对复合产物进行热处理,得到的多孔碳/金属氧化物复合材料中的金属氧化物纳米颗粒成功均匀分散在多孔碳的孔隙中,避免了使用水热法制备多孔碳/金属氧化物时采用的炭化稻壳在水中分散性差的问题。同时,本发明在多孔碳中引入金属氧化物赝电容材料,得到的多孔碳/金属氧化物复合材料在超级电容器中具有更高的比电容。该复合材料还可用于制备锂硫电池,作为锂硫电池正极硫载体,可发挥多孔碳和金属氧化物纳米颗粒的双重固硫作用,显著提高锂硫电池的比容量和循环稳定性。
附图说明
图1是本发明实施例1中稻壳的照片;
图2是本发明实施例1中的稻壳在经高温炭化后的稻壳照片;
图3是本发明实施例1中制得的多孔碳的照片(a)和扫描电镜图(b);
图4是本发明实施例1所得的多孔碳/Co3O4复合材料的扫描电镜图;
其中,采用的扫描电镜设备型号为日本电子公司的JSM7500F。
具体实施方式
下面结合实施例对本发明进行具体描述,以便于所属技术领域的人员对本发明的理解。有必要在此特别指出的是,实施例只是用于对本发明做进一步说明,不能理解为对本发明保护范围的限制,所属领域技术熟练人员,根据上述发明内容对本发明所作出的非本质性的改进和调整,应仍属于本发明的保护范围。同时,下述所提及的原料未详细说明的,均为市售产品;未详细提及的工艺步骤或提取方法为均为本领域技术人员所知晓的工艺步骤或提取方法。
实施例1
称取100g稻壳,如图1所示,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于900℃下炭化3h,取出经炭化的稻壳(其照片如图2所示),研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末,其形貌如图3中的(b)所示,图3中,(a)为多孔碳粉末的照片,(b)为采用扫描电镜观察的微观形貌,从图3中的(b)可以看出多孔碳的大孔结构,经过碱洗的碳化稻壳在去除了SiO2后,进而产生了大孔道结构。取10g上述多孔碳粉末,加入至浓度为5mg mL-1的醋酸钴溶液中,充分搅拌、于70℃的鼓风干燥箱中烘干,得到固体粉末,在600℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理2h,冷却后取出,经研磨过筛,即得多孔碳/Co3O4复合材料。
将所得多孔碳/Co3O4复合材料进行扫描电镜,其微观结构如图4所示,其中,(a)为多孔碳/Co3O4复合材料在低倍率(a)下的扫描电镜图;(b为多孔碳/Co3O4复合材料在高倍率(b)下的扫描电镜图,从图4中的(a)可以看到多孔碳的大孔道中分散着大量的纳米颗粒,经过倍数放大后图4中的(b)可以观察到金属氧化物颗粒分散在孔道结构的沟槽中,该结果进一步证实了多孔碳/Co3O4复合材料的成功制备。
实施例2
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于1000℃炭化2.5h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末。取10g上述多孔碳粉末,加入至浓度为2mg mL-1的醋酸镍溶液中,充分搅拌、于70℃的鼓风干燥箱中烘干,得到固体粉末,在550℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理3h,冷却后取出,经研磨过筛,即得多孔碳/NiO复合材料。
实施例3
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于1000℃炭化4h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末。取10g上述多孔碳粉末,加入至浓度为6mg mL-1的醋酸锰溶液中,充分搅拌、于70℃的鼓风干燥箱中烘干,得到固体粉末,在500℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理2.5h,冷却后取出,经研磨过筛,即得多孔碳/MnO2复合材料。
实施例4
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于900℃炭化3h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末。取10g上述多孔碳粉末,加入至浓度为2mg mL-1的醋酸镍和2mg mL-1的醋酸钴混合溶液中,充分搅拌、于70℃的鼓风干燥箱中烘干,得到固体粉末,在600℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理2h,冷却后取出,经研磨过筛,即得多孔碳/NiO/Co3O4复合材料。
实施例5
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于1000℃炭化4h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末。取10g上述多孔碳粉末,加入至浓度为3mg mL-1的醋酸锌溶液中,充分搅拌、过滤、于70℃的鼓风干燥箱中烘干,得到固体粉末,在600℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理2h,冷却后取出,经研磨过筛,即得多孔碳/ZnO复合材料。
实施例6
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于850℃炭化3h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳粉末。取10g上述多孔碳粉末,加入至浓度为2mg mL-1的醋酸镍和3mg mL-1的醋酸锌混合溶液中,充分搅拌、于70℃的鼓风干燥箱中烘干,得到固体粉末,在600℃下将该固体粉末置于管式炉中,并在氮气气氛中热处理2h,冷却后取出,经研磨过筛,即得多孔碳/NiO/ZnO复合材料。
对比例1
称取100g稻壳,经过水洗、乙醇洗除去杂质,于鼓风干燥箱中烘干后再置于管式炉中,在氮气气氛中于900℃炭化3h,取出经炭化的稻壳,研磨过筛,在1M NaOH溶液中充分浸泡和搅拌,以除去稻壳中的SiO2,再经过滤和烘干,得到多孔碳。
实施例7
将实施例1所得的多孔碳/Co3O4复合材料和对比例1所得的多孔碳分别涂成极片并作为超级电容器的工作电极,采用三电极法分别测试其比电容,所得检测结果如下表1所示。
表1实施例1-6制备的多孔碳/金属氧化物复合材料和对比例1的多孔碳在超级电容器和锂硫电池中的性能检测结果
Figure BDA0002518947440000051
将实施例1所得的多孔碳/Co3O4复合材料粉末和对比例1所得的多孔碳粉末分别与硫按照质量比为2:3进行融硫,制成淤浆后分别涂成极片,并作为锂硫电池的正极,分别采用充放电测试仪测试其比容量和电池循环性能,所得检测结果见如下表1所示。
从表1可以看出,与对比例1中多孔碳制备的超级电容器和锂硫电池相比,实施例1中复合Co3O4后所得的多孔碳/Co3O4复合材料较有更优异的电化学性能。多孔碳/Co3O4用于三电极超级电容器后,其首次电容远高于多孔碳,且在经循环1000后,其比电容没有出现大幅下降,循环稳定性良好;同时,多孔碳/Co3O4复合材料在锂硫电池中也表现出更高的首次放电比容量。在循环100次后,其容量保持率为91.3%,明显高于多孔碳(对比例1)的75.4%。因此,多孔碳复合Co3O4后具有更优异的电池循环稳定性。
同时,实施例2-5中的多孔碳分别复合了不同类型的金属氧化物,实施例4和实施例6复合了两种金属氧化物,这些含金属氧化物的复合材料无论是在三电极超级电容器还是锂硫电池中均表现出比纯多孔碳(对比例1)更高的比电容、比容量和容量保持率。因此,表1的结果进一步证实了向多孔碳中引入金属氧化物后可提高多孔碳的比电容和容量保持率,所制备的多孔碳/金属氧化物复合材料在超级电容器中具有更优异的综合性能。此外,上述复合材料作为锂硫电池的硫载体时,多孔碳中的金属氧化物粒子与极性多硫化物阴离子之间会产生化学吸附作用,复合材料可发挥出多孔碳的物理限硫和金属氧化物的化学固硫作用,最终使锂硫电池具有更高的比容量和循环稳定性,其综合性能明显优于多孔碳制备的锂硫电池。
对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下还可以做出若干简单推演或替换,而不必经过创造性的劳动。因此,本领域技术人员根据本发明的揭示,对本发明做出的简单改进都应该在本发明的保护范围之内。上述实施例为本发明的优选实施例,凡与本发明类似的工艺及所作的等效变化,均应属于本发明的保护范畴。

Claims (10)

1.一种多孔碳/金属氧化物复合材料的制备方法,其特征在于,包括以下步骤:
(1)制备多孔碳:取稻壳进行除杂、烘干,置于惰性气氛中炭化,再经研磨过筛、碱洗、过滤,将所得固体物质进行烘干,得到多孔碳;
(2)制备多孔碳/金属氧化物复合材料:取金属盐溶液,加入步骤(1)的多孔碳,搅拌、烘干,置于惰性气氛中进行热处理,经研磨过筛,得到所述多孔碳/金属氧化物复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述除杂的工艺为:对稻壳进行水洗和醇洗。
3.根据权利要求1所述的制备方法,其特征在于,所述碱洗的过程中采用的碱为氢氧化钠或氢氧化钾,所述碱的浓度为0.5~8.0mg mL-1
4.根据权利要求1所述的制备方法,其特征在于,所述炭化的温度为700~1000℃,所述炭化的时长为2~4h。
5.根据权利要求1所述的制备方法,其特征在于,所述热处理的温度为500~700℃,所述热处理的时长为2~4h。
6.根据权利要求1所述的制备方法,其特征在于,所述金属盐溶液中的阳离子为过渡金属阳离子。
7.根据权利要求6所述的制备方法,其特征在于,所述过渡金属阳离子选自钴离子、镍离子、铁离子、锌离子和锰离子中的至少一种。
8.根据权利要求1所述的制备方法,其特征在于,所述金属盐溶液中的阴离子为含氧阴离子,优选醋酸根。
9.一种多孔碳/金属氧化物复合材料,其特征在于,是根据权利要求1-8任一项所述制备方法制得。
10.一种多孔碳/金属氧化物复合材料的应用,其特征在于,将权利要求9所述的多孔碳/金属氧化物复合材料应用于制备超级电容器或锂硫电池。
CN202010485626.1A 2020-06-01 2020-06-01 一种多孔碳/金属氧化物复合材料及其制备方法和应用 Pending CN111799098A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010485626.1A CN111799098A (zh) 2020-06-01 2020-06-01 一种多孔碳/金属氧化物复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010485626.1A CN111799098A (zh) 2020-06-01 2020-06-01 一种多孔碳/金属氧化物复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111799098A true CN111799098A (zh) 2020-10-20

Family

ID=72806679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010485626.1A Pending CN111799098A (zh) 2020-06-01 2020-06-01 一种多孔碳/金属氧化物复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111799098A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951614A (zh) * 2021-02-26 2021-06-11 海南师范大学 一种四氧化三钴@网状生物质碳复合材料及其制备方法和应用
CN115312328A (zh) * 2022-08-10 2022-11-08 桂林电子科技大学 一种SDS处理的山竹果壳基多孔碳负载Ni-Co-O纳米粒子材料及其制备方法和应用
CN116230417A (zh) * 2023-03-17 2023-06-06 天津得瑞丰凯新材料科技有限公司 一种用于超级电容器的纳米多孔碳的制备方法
CN116453877A (zh) * 2023-06-06 2023-07-18 深圳市智越盛电子科技有限公司 一种超级电容器电极材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038816A (zh) * 2007-04-20 2007-09-19 哈尔滨工程大学 一种多孔碳/纳米金属氧化物复合材料的制备方法
CN101780952A (zh) * 2010-03-26 2010-07-21 上海交通大学 负载功能氧化物多孔炭的制备方法
CN107413329A (zh) * 2017-05-12 2017-12-01 中国第汽车股份有限公司 一种负载金属氧化物的活性炭制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038816A (zh) * 2007-04-20 2007-09-19 哈尔滨工程大学 一种多孔碳/纳米金属氧化物复合材料的制备方法
CN101780952A (zh) * 2010-03-26 2010-07-21 上海交通大学 负载功能氧化物多孔炭的制备方法
CN107413329A (zh) * 2017-05-12 2017-12-01 中国第汽车股份有限公司 一种负载金属氧化物的活性炭制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BINCY LATHAKUMARY VIJAYAN: ""Facile fabrication of thin metal oxide films on porous carbon for high density charge storage"", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
朱洪法: "《精细化工产品配方与制造》", 31 July 1995, 金盾出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112951614A (zh) * 2021-02-26 2021-06-11 海南师范大学 一种四氧化三钴@网状生物质碳复合材料及其制备方法和应用
CN112951614B (zh) * 2021-02-26 2022-06-28 海南师范大学 一种四氧化三钴@网状生物质碳复合材料及其制备方法和应用
CN115312328A (zh) * 2022-08-10 2022-11-08 桂林电子科技大学 一种SDS处理的山竹果壳基多孔碳负载Ni-Co-O纳米粒子材料及其制备方法和应用
CN115312328B (zh) * 2022-08-10 2023-07-07 桂林电子科技大学 一种SDS处理的山竹果壳基多孔碳负载Ni-Co-O纳米粒子材料及其制备方法和应用
CN116230417A (zh) * 2023-03-17 2023-06-06 天津得瑞丰凯新材料科技有限公司 一种用于超级电容器的纳米多孔碳的制备方法
CN116230417B (zh) * 2023-03-17 2024-05-03 天津得瑞丰凯新材料科技有限公司 一种用于超级电容器的纳米多孔碳的制备方法
CN116453877A (zh) * 2023-06-06 2023-07-18 深圳市智越盛电子科技有限公司 一种超级电容器电极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN111799098A (zh) 一种多孔碳/金属氧化物复合材料及其制备方法和应用
WO2022121136A1 (zh) 一种高倍率锂离子电池人造石墨负极材料及其制备方法
Sun et al. Solvothermal synthesis of ternary Cu2O-CuO-RGO composites as anode materials for high performance lithium-ion batteries
CN108059144B (zh) 一种生物质废料甘蔗渣制备的硬碳及其制备方法和应用
CN114956037B (zh) 一种钠离子电池负极用碳材料及其制备方法以及钠离子电池负极极片和钠离子电池
CN108448080A (zh) 一种石墨烯包覆硅/金属复合负极材料及其制备方法
CN111342010B (zh) 双层碳包覆结构的硅碳复合材料及其制备方法和应用
CN111146424B (zh) 一种金属硫化物/碳复合材料及其制备方法及其应用
CN112803001B (zh) 包覆剂、快充石墨及其制备方法和应用、电池
CN108682833B (zh) 一种磷酸铁锂基改性正极材料制备方法
CN112830472A (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
CN112290021B (zh) 一种锂离子电池用碳纳米管导电剂的制备方法
CN103832997A (zh) 石墨烯/炭黑复合材料及制备方法和应用
CN112086642B (zh) 一种石墨化碳包覆的高比表面积多孔碳球及其制备方法和应用
CN109665523A (zh) 一种石墨烯复合石油焦基活性炭的制备方法及超级电容器
CN113594450B (zh) 一种锂离子电池用煤基人造石墨负极材料的制备方法
CN112320784B (zh) 一种硫掺杂铁-氮-碳超级电容器电极材料及其制备方法和应用
CN115775885A (zh) 一种硅氧负极材料及其制备方法和应用
CN115897067A (zh) 锑基分级孔碳纤维负极材料及其制备方法和应用
CN111952569B (zh) 一种用于锂离子电池的氧化硅基负极材料及其制备方法
KR102523157B1 (ko) 커피박을 이용한 금속-탄소 복합체 제조방법
CN112713277B (zh) 一种硬炭材料及其制备方法和应用、锂离子电池
CN111276683B (zh) 一种富含铝羟基的二氧化硅硫正极及其制备方法
KR101321523B1 (ko) NaOH의 화학적 활성화에 의한 커패시터 전극용 활성탄 및 이를 이용한 커패시터
CN114162814A (zh) 一种石墨的改性方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201020

RJ01 Rejection of invention patent application after publication