WO2018147051A1 - 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物 - Google Patents

固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物 Download PDF

Info

Publication number
WO2018147051A1
WO2018147051A1 PCT/JP2018/001660 JP2018001660W WO2018147051A1 WO 2018147051 A1 WO2018147051 A1 WO 2018147051A1 JP 2018001660 W JP2018001660 W JP 2018001660W WO 2018147051 A1 WO2018147051 A1 WO 2018147051A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solid electrolyte
polymer
formula
binder
Prior art date
Application number
PCT/JP2018/001660
Other languages
English (en)
French (fr)
Inventor
雅臣 牧野
智則 三村
陽 串田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018567343A priority Critical patent/JP6840776B2/ja
Priority to CN201880010010.XA priority patent/CN110249468B/zh
Priority to KR1020197019201A priority patent/KR102244412B1/ko
Priority to EP18751228.0A priority patent/EP3582316B1/en
Publication of WO2018147051A1 publication Critical patent/WO2018147051A1/ja
Priority to US16/520,483 priority patent/US11417908B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/34Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte composition, a solid electrolyte-containing sheet and a production method thereof, an all-solid secondary battery and a production method thereof, and a polymer, a non-aqueous solvent dispersion thereof, and a diol compound.
  • An all-solid-state secondary battery such as an all-solid-state lithium ion secondary battery includes a negative electrode, a positive electrode, and an inorganic solid electrolyte (SE) sandwiched between the negative electrode and the positive electrode.
  • This is a storage battery that can be charged and discharged by reciprocating (for example, lithium ions). Since the all solid state secondary battery uses an inorganic solid electrolyte, no organic electrolyte is required. As a result, the all-solid-state secondary battery can be manufactured by sequentially laminating the electrode layer forming the negative electrode or the positive electrode and the solid electrolyte layer forming the inorganic solid electrolyte. Further, according to this method, each layer can be formed with a large area. Thereby, it is possible to realize high output or high capacity of the all solid state secondary battery.
  • Patent Document 1 describes fluororubber (VDF-HFP).
  • Patent Document 2 describes a binder composition containing a polymer having a specific structural unit and a specific functional group, and a liquid medium.
  • Patent Document 3 describes a polymer having a hard segment and a soft segment.
  • JP 2016-25025 A International Publication No. 2012/073678 Japanese Patent Laying-Open No. 2015-88480
  • the present inventors proceeded with investigation from the viewpoint of industrial production of an all-solid secondary battery using such a solid electrolyte layer.
  • a characteristic (scratch resistance) that hardly causes defects such as scratches or cracks on the surface of the electrode layer or the solid electrolyte layer is required.
  • the sheet is wound around the core during or after the manufacturing process, for example, with a high curvature, and the active material or the inorganic solid electrolyte does not easily fall off from the electrode layer or the solid electrolyte layer (flexibility) is also required.
  • the above characteristics are important when the sheet is produced by the roll-to-roll method in consideration of productivity.
  • the binder forms a coating on the active material or the inorganic solid electrolyte as the amount of use increases, and the ionic conductivity decreases. I will let you.
  • the said characteristic and ionic conductivity have a trade-off relationship about the usage-amount.
  • the fluororubber or binder composition described in Patent Document 1 or 2 is used, there is no sufficient improvement effect.
  • the polymer described in patent document 3 shows the improvement effect to some extent, it is not yet satisfactory.
  • the present invention is a solid electrolyte composition capable of imparting a high level of bending resistance, scratch resistance and ionic conductivity to a solid electrolyte-containing sheet by using it for the production of a solid electrolyte-containing sheet constituting an all-solid secondary battery. It is an issue to provide.
  • An object of the present invention is to provide a polymer suitable for use in the above-described solid electrolyte composition, a non-aqueous solvent dispersion thereof, and a diol compound suitable for synthesizing the polymer. Moreover, this invention makes it a subject to provide the solid electrolyte containing sheet
  • R 1 represents a hydrogen atom, an alkyl group or an aryl group.
  • L a1 and L b1 each independently represent a single bond or an alkylene group.
  • L 11 represents a divalent organic group.
  • A represents a group selected from the following functional group group.
  • L a2 and L b2 each independently represent an alkylene group having 2 or more carbon atoms.
  • L 12 represents a divalent organic group.
  • A represents a group selected from the following functional group group. ⁇ Functional group group> Carboxylic acid group, sulfonic acid group, phosphoric acid group, cyano group, hydrocarbon ring group in which three or more rings are condensed
  • the partial structure -L 11 -A in the formula (1) or the partial structure -L 12 -A in the formula (2) is represented by any of the following formulas (3) to (7) ⁇
  • R 21 to R 26 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • L 2 represents an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, an arylene group having 6 to 16 carbon atoms, or a combination thereof.
  • a 2 represents a carboxylic acid group.
  • n, m and l are each independently an integer of 0 to 2.
  • X represents —O—, —S— or —N (R 2 ) —
  • R 2 represents a hydrogen atom, an alkyl group or an aryl group. * Shows the coupling
  • Binder (B) is a hard segment having at least one bond selected from a urethane bond, a urea bond, an amide bond and an imide bond, and a polyalkylene ether chain, a polyester chain having a number average molecular weight of 300 or more,
  • ⁇ 6> The solid electrolyte composition according to any one of ⁇ 1> to ⁇ 5>, wherein the binder (B) has a hydrocarbon polymer segment.
  • R 1 represents a hydrogen atom, an alkyl group or an aryl group.
  • L a1 and L b1 each independently represent a single bond or an alkylene group.
  • L 11 represents a divalent organic group.
  • A represents a group selected from the following functional group group.
  • L a2 and L b2 each independently represent an alkylene group having 2 or more carbon atoms.
  • L 12 represents a divalent organic group.
  • A represents a group selected from the following functional group group. ⁇ Functional group group> Carboxylic acid group, sulfonic acid group, phosphoric acid group, cyano group, hydrocarbon ring group in which three or more rings are condensed
  • a method for producing a solid electrolyte-containing sheet according to ⁇ 12> above A step of applying a solid electrolyte composition containing an inorganic solid electrolyte (A), a binder (B), and a dispersion medium (C) on a substrate; and a step of drying the applied solid electrolyte composition.
  • a method for producing a solid electrolyte-containing sheet A method for producing a solid electrolyte-containing sheet.
  • An all-solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, At least one of the positive electrode active material layer, the negative electrode active material layer, and the solid electrolyte layer has an inorganic solid electrolyte (A) and a binder (B And a binder (B) having at least one selected from the constituent represented by the following formula (1) and the constituent represented by the following formula (2).
  • R 1 represents a hydrogen atom, an alkyl group or an aryl group.
  • L a1 and L b1 each independently represent a single bond or an alkylene group.
  • L 11 represents a divalent organic group.
  • A represents a group selected from the following functional group group.
  • L a2 and L b2 each independently represent an alkylene group having 2 or more carbon atoms.
  • L 12 represents a divalent organic group.
  • A represents a group selected from the following functional group group. ⁇ Functional group group> Carboxylic acid group, sulfonic acid group, phosphoric acid group, cyano group, hydrocarbon ring group in which three or more rings are condensed
  • ⁇ 16> a polymer having at least one bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond,
  • the polymer which has at least 1 type of structural component chosen from the structural component represented by following formula (1), and the structural component represented by following formula (2).
  • R 1 represents a hydrogen atom, an alkyl group or an aryl group.
  • L a1 and L b1 each independently represent a single bond or an alkylene group.
  • -L 11 -A represents a partial structure represented by any of the following formulas (3) to (7).
  • L a2 and L b2 each independently represent an alkylene group having 2 or more carbon atoms.
  • R 21 to R 26 each independently represents a hydrogen atom, an alkyl group or an aryl group.
  • L 2 represents an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, an arylene group having 6 to 16 carbon atoms, or a combination thereof.
  • a 2 represents a carboxylic acid group.
  • n, m and l are each independently an integer of 0 to 2.
  • X represents —O—, —S— or —N (R 2 ) —, and R 2 represents a hydrogen atom, an alkyl group or an aryl group. * Shows the coupling
  • the diol compound for a polymer according to ⁇ 16> represented by the following formula (1M).
  • R M represents a methyl group or an ethyl group.
  • X M represents a methylene group or a carbonyl group, and Y M represents a single bond or a carbonyl group. However, X M and Y M are not both be a carbonyl group.
  • L M is an alkylene group or an arylene group having 6 to 16 carbon atoms having 1 to 18 carbon atoms.
  • the present invention can provide a solid electrolyte composition capable of imparting flex resistance, scratch resistance and ionic conductivity to a solid electrolyte-containing sheet at a high level.
  • the present invention can provide a polymer suitable for use in the above-described solid electrolyte composition, a non-aqueous solvent dispersion thereof, and a diol compound suitable for synthesizing the polymer.
  • this invention can provide the solid electrolyte containing sheet
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid state secondary battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a test specimen for measuring ionic conductivity produced in the example.
  • FIG. 3 is a longitudinal sectional view schematically showing an all solid state secondary battery (coin battery) produced in the example.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • acryl or “(meth) acryl” is simply described, it means acrylic and / or methacryl.
  • acryloyl or “(meth) acryloyl” simply means acryloyl and / or methacryloyl.
  • the indication of a compound is used to mean that the compound itself, its salt, and its ion are included.
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be measured as polystyrene-equivalent molecular weight by Gel Permeation Chromatography (GPC) unless otherwise specified.
  • GPC apparatus “HLC-8220” (trade name, manufactured by Tosoh Corporation) was used, G3000HXL + G2000HXL (both trade names, manufactured by Tosoh Corporation) were used as columns, differential refraction at a measurement temperature of 23 ° C. and a flow rate of 1 mL / min. It shall be detected by a meter (RI detector).
  • the eluent can be selected from THF (tetrahydrofuran), chloroform, NMP (N-methyl-2-pyrrolidone), and m-cresol / chloroform mixed solution (manufactured by Shonan Wako Pure Chemical Industries, Ltd.). When the measurement sample is dissolved, THF is used.
  • the solid electrolyte composition of the present invention contains an inorganic solid electrolyte (A) having conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and a binder (B).
  • the inorganic solid electrolyte (A) and the binder (B) may be free (dispersed) from each other, but usually, the functional group in the binder (B) and the like.
  • the inorganic solid electrolyte (A) interacts, and the binder (B) and the inorganic solid electrolyte (A) are in close contact with each other.
  • the inorganic solid electrolyte (A) and the binder (B) are in close contact.
  • the binder (B) is in close contact with the active material, the conductive auxiliary agent and the like in addition to the inorganic solid electrolyte (A).
  • the functional group of the binder (B) depends on the type of interaction with the inorganic solid electrolyte (A) or the like (chemically or physically).
  • the solid electrolyte composition of the present invention causes the inorganic solid electrolyte (A) and the like and the binder (B) to be in close contact with each other (integrated) by interaction, and achieves the expected effects described below. I think that I play. Hereinafter, preferred embodiments will be described.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of moving ions inside. Since it does not contain organic substances as the main ion conductive material, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organics typified by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI), etc. It is clearly distinguished from the electrolyte salt). In addition, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • organic solid electrolytes polymer electrolytes typified by polyethylene oxide (PEO), etc.
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • an electrolyte solution or an inorganic electrolyte salt such as LiPF 6 , LiBF 4 , LiFSI, LiCl, etc.
  • the inorganic solid electrolyte is not particularly limited as long as it has conductivity of ions of metals belonging to Group 1 or Group 2 of the periodic table, and generally does not have electron conductivity.
  • the inorganic solid electrolyte has ionic conductivity of a metal belonging to Group 1 or Group 2 of the Periodic Table.
  • the inorganic solid electrolyte preferably has an ionic conductivity of lithium ions.
  • a solid electrolyte material applied to this type of product can be appropriately selected and used.
  • Typical examples of inorganic solid electrolytes include (i) sulfide-based inorganic solid electrolytes and (ii) oxide-based inorganic solid electrolytes.
  • a sulfide-based inorganic solid electrolyte is preferably used.
  • the sulfide-based inorganic solid electrolyte preferably contains a sulfur atom (S), has ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and has electronic insulating properties. .
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S, and P as elements and has lithium ion conductivity. However, depending on the purpose or the case, other than Li, S, and P may be used. An element may be included.
  • the sulfide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Examples of the sulfide-based inorganic solid electrolyte include a lithium ion conductive inorganic solid electrolyte that satisfies the composition represented by the following formula (I).
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al, and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 indicate the composition ratio of each element, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • a1 is preferably 1 to 9, and more preferably 1.5 to 7.5.
  • b1 is preferably 0 to 3.
  • d1 is preferably 2.5 to 10, and more preferably 3.0 to 8.5.
  • e1 is preferably from 0 to 5, and more preferably from 0 to 3.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass) or crystallized (glass ceramic), or only a part may be crystallized.
  • glass glass
  • glass ceramic glass ceramic
  • Li—PS system glass containing Li, P, and S or Li—PS system glass ceramics containing Li, P, and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), simple phosphorus, simple sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, LiI, LiBr, LiCl) and a sulfide of an element represented by M (for example, SiS 2 , SnS, GeS 2 ) can be produced by reaction of at least two raw materials.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • simple phosphorus simple sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • a sulfide of an element represented by M for example, SiS 2 , SnS, GeS 2
  • the ratio of Li 2 S to P 2 S 5 in the Li—PS system glass and Li—PS system glass ceramics is a molar ratio of Li 2 S: P 2 S 5 , preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. Although there is no particular upper limit, it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S—P 2 S 5 Li 2 S—P 2 S 5 —LiCl, Li 2 S—P 2 S 5 —H 2 S, Li 2 S—P 2 S 5 —H 2 S—LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 O—P 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 O—P 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 S—P 2 S 5 —P 2 O 5 , Li 2 S—P 2 S 5 —SiS 2 , Li 2 S—P 2 S 5 —SiS 2- LiCl, Li 2 S—P 2 S 5 —SnS, Li 2 S—P 2 S 5 —Al 2 S 3 , Li 2 S—G
  • Examples of a method for synthesizing a sulfide-based inorganic solid electrolyte material using such a raw material composition include an amorphization method.
  • Examples of the amorphization method include a mechanical milling method, a solution method, and a melt quench method. This is because processing at room temperature is possible, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte is preferably a compound containing an oxygen atom (O), having ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having electronic insulation properties. .
  • the oxide-based inorganic solid electrolyte preferably has an ionic conductivity of 1 ⁇ 10 ⁇ 6 S / cm or more, more preferably 5 ⁇ 10 ⁇ 6 S / cm or more, and 1 ⁇ 10 ⁇ 5 S. / Cm or more is particularly preferable.
  • the upper limit is not particularly limited, but it is practical that it is 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li xc B yc M cc zc Onc (M cc is C, S, Al, Si, Ga, Ge, In, Sn are at least one element, xc satisfies 0 ⁇ xc ⁇ 5, yc satisfies 0 ⁇ yc ⁇ 1, and zc satisfies 0 ⁇ zc ⁇ met 1, nc satisfies 0 ⁇ nc ⁇ 6.), Li xd ( l, Ga) yd (Ti, Ge) zd Si ad P md O nd ( provided that, 1 ⁇ xd ⁇ 3,0 ⁇ yd ⁇ 1,0 ⁇ zd ⁇ 2,0 ⁇ ad ⁇ 1,1 ⁇ md
  • a phosphorus compound containing Li, P and O is also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON obtained by replacing a part of oxygen of lithium phosphate with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the inorganic solid electrolyte is preferably a particle.
  • the volume average particle diameter of the particulate inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. As an upper limit, it is preferable that it is 100 micrometers or less, and it is more preferable that it is 50 micrometers or less.
  • the measurement of the average particle diameter of an inorganic solid electrolyte particle is performed in the following procedures.
  • the inorganic solid electrolyte particles are diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of a substance unstable to water).
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • a laser diffraction / scattering particle size distribution analyzer LA-920 manufactured by HORIBA
  • data acquisition was performed 50 times using a measurement quartz cell at a temperature of 25 ° C. Get the diameter.
  • JISZ8828 2013 “Particle Size Analysis—Dynamic Light Scattering Method” is referred to as necessary. Five samples are prepared for each level, and the average value is adopted.
  • the inorganic solid electrolyte may be used singly or in combination of two or more.
  • the content of the solid component in the solid electrolyte composition of the inorganic solid electrolyte is 100% by mass of the solid component when considering reduction of the interface resistance when used in an all-solid secondary battery and maintenance of the reduced interface resistance. Is preferably 5% by mass or more, more preferably 10% by mass or more, and particularly preferably 20% by mass or more. As an upper limit, it is preferable that it is 99.9 mass% or less from the same viewpoint, It is more preferable that it is 99.5 mass% or less, It is especially preferable that it is 99 mass% or less.
  • the total content of the active material and the inorganic solid electrolyte is preferably in the above range as the content of the inorganic solid electrolyte in the solid electrolyte composition.
  • the solid component refers to a component that does not disappear by volatilization or evaporation when dried at 170 ° C. for 6 hours in a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium described below.
  • the solid electrolyte composition of the present invention contains (B) a binder.
  • the (B) binder used for this invention consists of a polymer which has at least 1 type of structural component chosen from the structural component represented by following formula (1), and the structural component represented by following formula (2).
  • the constituent component of the binder is represented by at least one constituent component represented by the following formula (1), at least one constituent component represented by the following formula (2), or the following formula (1). Any combination of at least one of the constituent components and at least one of the constituent components represented by the following formula (2) may be used.
  • the constituent components represented by the formulas of the binder are each preferably 1 to 5 types.
  • the binder should just have the said structural component in the molecular structure of a polymer, and may have it in any in a principal chain or a branched chain. From the viewpoint of binding properties with an active material or an inorganic solid electrolyte (also referred to as inorganic particles), it is preferable that the above-mentioned constituent components are contained in the main chain of the polymer.
  • the “main chain” means a linear molecular chain in which all molecular chains other than the main chain among all the molecular chains in the polymer can be regarded as a pendant with respect to the main chain.
  • the longest chain among the molecular chains constituting the polymer is the main chain.
  • the functional group which the polymer terminal has is not included in the main chain.
  • the binder is a polycondensation polymer or a polyaddition polymer
  • the above component is contained as one component that forms a repeating unit.
  • R 1 represents a hydrogen atom, an alkyl group or an aryl group.
  • the alkyl group that can be adopted as R 1 may be a linear alkyl group, a branched alkyl group, or a cyclic alkyl group, preferably a linear alkyl group or a branched alkyl group, and more preferably a linear alkyl group.
  • the number of carbon atoms of the alkyl group is not particularly limited, and is, for example, preferably 1-20, more preferably 1-12, and still more preferably 1-6.
  • the aryl group that can be adopted as R 1 is not particularly limited, and may be a monocyclic aryl group or a condensed ring aryl group, and may be an aryl group composed of a hydrocarbon ring or a heterocycle. It may be an aryl group.
  • An aryl group composed of a monocyclic hydrocarbon ring, that is, a phenyl group is preferable.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably 6 to 18, more preferably 6 to 12, and still more preferably 6 to 10.
  • R 1 is preferably a hydrogen atom or an alkyl group, and more preferably an alkyl group.
  • L a1 and L b1 each represent a single bond or an alkylene group.
  • the alkylene group that can be adopted as L a1 and L b1 may be a linear alkylene group, a branched alkylene group or a cyclic alkylene group, preferably a linear alkylene group or a branched alkylene group, and more preferably a linear alkylene group.
  • the number of carbon atoms of the alkylene group is not particularly limited, and is, for example, preferably 1-18, more preferably 1-12, and still more preferably 1-6.
  • the total number of carbon atoms of L a1 and L b1 is appropriately set so as to be preferably within the above range, depending on the aspect incorporated in the (B) binder.
  • the total carbon number of L a1 and L b1 is preferably 1 to 6, more preferably 1 to 4, and still more preferably 1 or 2.
  • the alkylene group that can be adopted as L a1 and L b1 is preferably a linear alkylene group having no substituent. That is, it is preferable that the minimum number of carbon atoms that can bond the oxygen atom in each formula and the carbon atom to which L 11 is bonded in the shortest time is the same as the above carbon number.
  • L a1 and L b1 are each selected from a single bond and an alkylene group, and the combination thereof is not particularly limited.
  • one of L a1 and L b1 is preferably selected from a single bond and an alkylene group, and the other of L a1 and L b1 is selected from an alkylene group.
  • one of L a1 and L b1 is selected from a single bond, methylene and ethylene, and the other of L a1 and L b1 is selected from methylene and ethylene.
  • L a1 and L b1 may be the same group or different groups.
  • L 11 represents a divalent organic group.
  • the alkylene group, the alkenylene group, the arylene group, —O—, —S—, —N (R 2 ) —, —C ( ⁇ O) —, or a combination thereof is particularly preferred.
  • Particularly preferred is a group in which “A 2 ” is removed from the partial structures represented by formulas (3) to (7) described later.
  • the alkylene group forming a divalent organic group is a cyclic alkylene group (for example, a cycloalkylidene group (cyclopropylidene, cyclopentylidene, cyclohexylidene, etc.)) in addition to a linear alkylene group and a branched alkylene group.
  • a straight chain alkylene group or a combination of a branched alkylene group and a cyclic alkylene group is also included.
  • the cyclic alkylene group preferably has 3 or more carbon atoms.
  • the cyclic alkylene group may have an unsaturated bond in the ring.
  • the alkenylene group that forms a divalent organic group includes at least one carbon atom that forms a carbon-carbon unsaturated bond, in addition to a group in which two carbon atoms that form a carbon-carbon unsaturated bond form a bond. Includes groups where one becomes a bond. Examples of such a group include an alkylene group to which a carboxy group is bonded in exemplified compounds b-29 and b-30 described later.
  • the arylene group forming the divalent organic group is not particularly limited, and examples thereof include a group formed by removing one hydrogen atom from an aryl group that can be taken as R 1 .
  • heteroarylene group which forms a bivalent organic group
  • 5-membered ring or 6-membered ring which has at least any one of an oxygen atom, a sulfur atom, and a nitrogen atom as a ring structural atom.
  • the heteroarylene group is preferred.
  • the heteroarylene group may be condensed, and a benzene ring is preferable as the condensed ring.
  • the heteroaryl ring forming the heteroarylene group includes an aromatic ring.
  • R 2 represents a hydrogen atom, an alkyl group (preferably having 1 to 8 carbon atoms) or an aryl group (preferably having 6 to 12 carbon atoms).
  • A represents a group selected from the following functional group group.
  • a functional group selected from the following functional group group has a chemical or physical interaction with the surface of the inorganic solid electrolyte in the solid electrolyte composition, the active material coexisting if desired, or the conductive aid. This interaction is not particularly limited, but for example, due to a hydrogen bond, due to an acid-base ionic bond, due to a covalent bond, due to an ⁇ - ⁇ interaction due to an aromatic ring, or due to a hydrophobic-hydrophobic interaction And the like.
  • the chemical structure of the functional group may or may not change.
  • the functional group is not changed and the structure is maintained as it is.
  • the active hydrogen such as a carboxylic acid group is usually released as an anion (the functional group is changed) and bonded to the solid electrolyte.
  • This interaction contributes to the (B) binder adsorbing to the particles such as the above-described inorganic solid electrolyte during or during the preparation of the solid electrolyte composition.
  • the functional group A By binding these functional groups away from the main chain of the binder (B), that is, via the linking group (spacer) L 11 or L 12 , the molecular mobility of the functional group A increases, The contact frequency is improved, and the interaction formed is considered to be strong.
  • the functional group A also interacts with the surface of the current collector.
  • ⁇ Functional group group Carboxylic acid group (—COOH), sulfonic acid group (sulfo group: —SO 3 H), phosphoric acid group (phospho group: —OPO (OH) 2 etc.), cyano group, hydrocarbon ring in which three or more rings are condensed
  • the group carboxylic acid group, sulfonic acid group and phosphoric acid group may each be a salt or ester.
  • the salt include sodium salt and calcium salt.
  • the ester include alkyl esters and aryl esters. In the case of an ester, the number of carbon atoms is preferably 1 to 24, more preferably 1 to 12, and particularly preferably 1 to 6.
  • the hydrocarbon ring group in which three or more rings are condensed is not particularly limited as long as the hydrocarbon ring is a ring group in which three or more rings are condensed.
  • the condensed hydrocarbon ring include a saturated aliphatic hydrocarbon ring, an unsaturated aliphatic hydrocarbon ring, and an aromatic hydrocarbon ring (benzene ring).
  • the hydrocarbon ring is preferably a 5-membered ring or a 6-membered ring.
  • the hydrocarbon ring group in which three or more rings are condensed is a ring group in which three or more rings are condensed including at least one aromatic hydrocarbon ring, or a saturated aliphatic hydrocarbon ring or an unsaturated aliphatic hydrocarbon ring.
  • condensed ring groups are preferred.
  • the number of condensed rings is not particularly limited, but is preferably 3 to 8 rings, more preferably 3 to 5 rings.
  • the ring group condensed with three or more rings including at least one aromatic hydrocarbon ring is not particularly limited, and examples thereof include anthracene, phenanthracene, pyrene, tetracene, tetraphen, chrysene, triphenylene, pentacene, pentaphen, and perylene.
  • ring group in which three or more saturated aliphatic hydrocarbon rings or unsaturated aliphatic hydrocarbon rings are condensed is not particularly limited, and examples thereof include a ring group made of a compound having a steroid skeleton.
  • Examples of the compound having a steroid skeleton include cholesterol, ergosterol, testosterone, estradiol, aldosterol, aldosterone, hydrocortisone, stigmasterol, thymosterol, lanosterol, 7-dehydrodesmosterol, 7-dehydrocholesterol, colanic acid, and chole
  • Examples include cyclic groups composed of compounds of acid, lithocholic acid, deoxycholic acid, sodium deoxycholic acid, lithium deoxycholic acid, hyodeoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid, dehydrocholic acid, hokecholic acid or hyocholic acid.
  • the hydrocarbon ring group condensed with three or more rings is more preferably a ring group or a pyrenyl group made of a compound having a cholesterol ring structure.
  • the functional group is appropriately selected from the above, but in terms of binding properties with the active material, when the solid electrolyte composition contains a positive electrode active material, a carboxylic acid group, a sulfonic acid group, and phosphoric acid Group or cyano group is preferable, and when the solid electrolyte composition contains a negative electrode active material, a hydrocarbon ring group in which three or more rings are condensed is preferable.
  • a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group is preferable, and a carboxylic acid group is more preferable because it exhibits high binding properties regardless of the active material.
  • the functional group interacts with the above-described inorganic particles and functions to adsorb these particles and the binder (B).
  • L a2 and L b2 each represent an alkylene group having 2 or more carbon atoms.
  • the alkylene group that can be taken as L a2 and L b2 is synonymous with the alkylene group that can be taken as L a1 and L b1 except that the number of carbon atoms is 2 or more, and the preferred range is also the same.
  • the total number of carbon atoms of L a2 and L b2 is preferably 4 to 12, more preferably 4 to 8, and still more preferably 4.
  • the alkylene group that can be adopted as L a2 and L b2 is preferably a linear alkylene group having no substituent.
  • the combination of alkylene groups that can be employed as L a2 and L b2 is not particularly limited, and may be the same group or different groups.
  • the alkylene group that can be taken as L a2 and L b2 is preferably a combination in which both are ethylene.
  • L 12 represents a divalent organic group.
  • the divalent organic group that can be taken as L 12 is synonymous with the above-mentioned divalent organic group that can be taken as L 11 , and the preferred ones are also the same.
  • examples of the divalent organic group may take as L 12, and the nitrogen atom in the formula (2), the number of atoms connecting the functional group A in shortest is preferably 2 or more.
  • alkylene group when taking an alkylene group as L 12, alkylene group preferably has a carbon number of 2 or more.
  • A represents a group selected from the above functional group group, and is synonymous with A in the above formula (1), and preferred ones are also the same.
  • the partial structure in the formula (1) -L 11 -A or the partial structure in the formula (2)- L 12 -A is preferably a partial structure represented by any of the following formulas (3) to (7).
  • R 21 to R 26 each represents a hydrogen atom, an alkyl group or an aryl group.
  • R 21 to R 26 are preferably a hydrogen atom or an alkyl group (particularly an alkyl group having 1 to 4 carbon atoms), more preferably a hydrogen atom.
  • L 2 represents an alkylene group having 1 to 18 carbon atoms, an alkenylene group having 2 to 20 carbon atoms, an arylene group having 6 to 16 carbon atoms, or a combination thereof.
  • the alkylene group, alkenylene group, and arylene group that can be taken as L 2 are the same as the alkylene group, alkenylene group, and arylene group that can be taken as L 11 , respectively, and the preferred ones are also the same.
  • the alkylene group and alkenylene group that can be taken as L 2 in the formulas (3) to (7) can each contain a heteroatom or a group containing a heteroatom in the carbon chain.
  • 11 is different from the alkylene group and alkenylene group which can be taken as 11 .
  • a hetero atom in the hetero atom and the group containing a hetero atom An oxygen atom, a sulfur atom, or a nitrogen atom is mentioned.
  • the group containing a heteroatom is not particularly limited as long as it is a group having at least one of these heteroatoms.
  • R 2 is as described above.
  • a 2 represents a carboxylic acid group.
  • n, m and l are each an integer of 0 to 2.
  • n is preferably 1.
  • m is preferably 0.
  • l is preferably 0 or 1.
  • X represents —O—, —S— or —N (R 2 ) —.
  • X in the formula (3) is preferably —O—.
  • X in the formula (5) is preferably —O— or —S—, more preferably —S—.
  • X in the formula (6) is preferably —O—.
  • R 2 represents a hydrogen atom, an alkyl group or an aryl group, and is as described above.
  • * represents a bond part between the carbon atom to which L 11 is bonded in the above formula (1) or the nitrogen atom to which L 12 is bonded in the above formula (2).
  • the structural component represented by the formula (1) and the structural component represented by the formula (2) are as the precursor diol compounds (compounds in which hydrogen atoms are bonded to the bonds in each formula) as follows: Shown in In this invention, the structural component represented by Formula (1) and the structural component represented by Formula (2) are not limited to the structural component derived from the following exemplary compound.
  • the (B) binder is not particularly limited as long as it contains at least one of the above-described constituent components.
  • the (B) binder has the above-described constituent components and at least one of a urethane bond, a urea bond, an amide bond, and an imide bond.
  • the type of bond possessed by the binder is preferably 1-5.
  • the above-mentioned bonds are not particularly limited as long as they are contained in the main chain of the polymer, and an aspect contained in the repeating units and / or different repeating units are bonded to each other as a bond that binds the constituent components forming the repeating units. Any of the embodiments included as a bond is possible. However, the above bond is not contained in the main chain of the hydrocarbon polymer segment described later.
  • the binder more preferably has a hard segment and a soft segment.
  • a hard segment refers to a rigid group such as an aromatic group, heteroaromatic group, or aliphatic alicyclic group, or intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction in the main chain in the segment. It refers to a segment having a connecting portion that enables it, and is generally a segment having rigidity and strong cohesion and having a fiber form.
  • a segment that is a linear or branched aliphatic hydrocarbon group that satisfies the following molecular weight, even if it does not have a rigid group as described above, is also classified as a hard segment.
  • a compound that forms such a hard segment is referred to as a short-chain compound (for example, a short-chain diol).
  • the hard segment refers to those having a molecular structure of less than 300 when attention is paid to the molecular weight of the compound having a partial structure forming the hard segment.
  • the hard segment is not particularly limited as long as it has the above-described characteristics, but preferably has at least one bond selected from a urethane bond, a urea bond, an amide bond, and an imide bond.
  • the hard segment is more preferably a segment (group) selected from the following group I.
  • * represents a bonding part.
  • R H1 and R H2 are each independently an alkylene group (the number of carbon atoms is preferably 1-18, more preferably 2-18, and still more preferably 4-13).
  • An arylene group (the number of carbon atoms is preferably 6 to 16, more preferably 6 to 10), or a combination thereof.
  • RN represents a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and still more preferably 1 to 3).
  • R H3 represents an aromatic or aliphatic tetravalent linking group.
  • R H3 is preferably a linking group represented by any one of the following formulas (i) to (iii).
  • X 1 represents a single bond or a divalent linking group.
  • the divalent linking group is preferably an alkylene group having 1 to 6 carbon atoms (eg, methylene, ethylene, propylene). As propylene, 1,3-hexafluoro-2,2-propanediyl is preferred.
  • L represents —CH 2 ⁇ CH 2 — or —CH 2 —.
  • R X and R Y each independently represent a hydrogen atom or a substituent.
  • * represents a bonding site with a carbonyl group.
  • R X and R Y examples include an alkyl group (having preferably 1 to 12, preferably 1 to 6, more preferably 1 to 3 carbon atoms) or an aryl group (having 6 to 6 carbon atoms). 22 is preferable, 6 to 14 is more preferable, and 6 to 10 is still more preferable.
  • the soft segment refers to a segment having a long chain linear group or a long chain branching group in the main chain, and is generally a soft and stretchable segment.
  • the soft segment is not particularly limited as long as it has the above-mentioned characteristics, but is a chain having a number average molecular weight of 300 or more, and a polyalkylene oxide chain (also called a polyalkylene ether chain, a polyethylene oxide chain, a polypropylene oxide chain) It is preferable to contain at least one of a polycarbonate chain, a polyester chain, and a silicone chain.
  • the soft segment is more preferably a group selected from the following group II. In the following formula, * represents a binding site.
  • R 21 represents a hydrogen atom or an alkyl group (the carbon number is preferably 1 to 12, more preferably 1 to 6, and further preferably 1 to 3).
  • R 22 represents a substituent having a number average molecular weight of 300 or more and 200,000 or less containing a polyalkylene oxide chain (a polyethylene oxide chain or a polypropylene oxide chain is preferred), a polycarbonate chain, a polyester chain or a silicone chain.
  • the number average molecular weight is preferably 500 or more, more preferably 700 or more, and still more preferably 1,000 or more. As an upper limit, 100,000 or less is preferable and 10,000 or less is more preferable.
  • R 22 preferably has an alkyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6) at the terminal.
  • alkyl group may have an ether group (—O—), a thioether group (—S—), a carbonyl group (> C ⁇ O), or an imino group (> NR N ).
  • RN is as described above.
  • R 22 may have the following heteroatom-containing group or carbon-carbon unsaturated group.
  • heteroatom-containing group examples include alcoholic hydroxyl groups (hydroxyalkyl groups: preferably having 1 to 6 carbon atoms, more preferably 1 to 3), phenolic hydroxyl groups (hydroxyphenyl groups), mercapto groups, carboxy groups, It is preferably at least one of a sulfo group, a sulfonamide group, a phosphoric acid group, a cyano group, an amino group, a zwitterion-containing group, a metal hydroxide group, and a metal alkoxide group.
  • the amino group is represented by —N (R N ) 2 , where R N is as described above.
  • the zwitterion-containing group specifically has a betaine structure (the number of carbon atoms is preferably 1-12, more preferably 1-6), and the cation moiety includes quaternary ammonium, sulfonium, phosphonium, Examples of the anion moiety include carboxylate and sulfonate.
  • the metal hydroxide is specifically a hydroxyl silyl group or a hydroxyl titanyl group.
  • the metal alkoxide includes an alkoxysilyl group (the number of carbon atoms is preferably 1-12, more preferably 1-6), and an alkoxy titanyl group (the number of carbon atoms is preferably 1-12, preferably 1-6).
  • a trimethoxysilyl group More preferred is a trimethoxysilyl group, a methyldimethoxysilyl group, a triethoxysilyl group, a methyldiethoxysilyl group, or a trimethoxytitanyl group.
  • the carbon-carbon unsaturated group include a carbon-carbon double bond or a carbon carbon-element triple bond.
  • Specific examples of the group containing a carbon-carbon double bond include an acryl group, a methacryl group, a vinyl group, an allyl group, and a maleimide group.
  • Specific examples of the carbon-carbon triple bond include an ethynyl group and a propargyl group.
  • R 23 is a linking group having a number average molecular weight of 300 to 200,000, which contains a polyalkylene oxide chain (preferably a polyethylene oxide chain or a polypropylene oxide chain), a polycarbonate chain, a polyester chain, or a silicone chain.
  • the number average molecular weight is preferably 500 or more, more preferably 700 or more, and still more preferably 1,000 or more. As an upper limit, 100,000 or less is preferable and 10,000 or less is more preferable.
  • R 23 preferably has an alkyl group (having 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms) at the terminal.
  • alkyl group may have an ether group (—O—), a thioether group (—S—), a carbonyl group (> C ⁇ O), or an imino group (> NR N ).
  • RN is as described above.
  • R 23 may have the above-described heteroatom-containing group or carbon-carbon unsaturated group.
  • the number average molecular weight of R 22 and R 23 can be determined as a number average molecular weight in terms of polystyrene in GPC for monomers prior to incorporation into the polymer.
  • the combination of the hard segment and the soft segment that the binder has is not particularly limited, and at least one hard segment having a urethane bond, urea bond, amide bond or imide bond, the above polyalkylene ether chain, and polyester A combination with at least one kind of soft segment having a chain, a polycarbonate chain or a silicone chain can be mentioned.
  • the binder also preferably has a hydrocarbon polymer segment in the main chain.
  • the hydrocarbon polymer segment means a segment composed of a hydrocarbon oligomer or polymer composed of carbon atoms and hydrogen atoms (hereinafter also referred to as hydrocarbon polymer), strictly speaking, composed of carbon atoms and hydrogen atoms. It means a structure in which at least two atoms (for example, hydrogen atoms) or groups (for example, methyl groups) are removed from the polymer.
  • the functional group for bonding with the hard or soft segment or the like that may be present at the polymer terminal is not included in the hydrocarbon polymer segment.
  • the hydrocarbon polymer is a polymer having a structure in which at least two repeating units are linked.
  • the hydrocarbon polymer is preferably composed of at least 50 carbon atoms.
  • This hydrocarbon polymer segment is included in both the hard segment and the soft segment depending on the (number average) molecular weight, etc., but in the present invention, it is a segment composed of an oligomer or a polymer. To each segment.
  • the number average molecular weight of the hydrocarbon polymer segment is preferably 1,000 or more and less than 1,000,000, preferably 1,000 or more and 100,000 from the viewpoint of improving the particle dispersibility of the (B) binder and obtaining fine particles. Is more preferable, and more preferably 1,000 or more and less than 10,000.
  • the hydrocarbon polymer may have a carbon-carbon unsaturated bond, and may have an aliphatic ring and / or an aromatic ring structure. That is, the hydrocarbon polymer may be a hydrocarbon polymer composed of hydrocarbons selected from aliphatic hydrocarbons and aromatic hydrocarbons. In view of the effect of steric repulsion when it is flexible and present as polymer particles, a hydrocarbon polymer composed of an aliphatic hydrocarbon is preferred.
  • the hydrocarbon polymer preferably does not have a ring structure in the main chain, and more preferably is a linear or branched aliphatic hydrocarbon oligomer or polymer.
  • the hydrocarbon polymer is preferably an elastomer, and specific examples thereof include a diene elastomer having a double bond in the main chain and a non-diene elastomer having no double bond in the main chain.
  • the diene elastomer include styrene-butadiene rubber (SBR), styrene-ethylene-butadiene rubber (SEBR), butyl rubber (IIR), butadiene rubber (BR), isoprene rubber (IR), and ethylene-propylene-diene rubber.
  • SBR styrene-butadiene rubber
  • SEBR styrene-ethylene-butadiene rubber
  • IIR butyl rubber
  • BR butadiene rubber
  • IR isoprene rubber
  • ethylene-propylene-diene rubber ethylene-propylene-diene rubber
  • non-diene elastomer examples include olefin elastomers such as ethylene-propylene rubber and styrene-ethylene-butylene rubber, and hydrogen reduction elastomers of the diene elastomer.
  • the hydrocarbon polymer preferably has a functional group for bonding with the above-described segment or the like at the polymer terminal, and more preferably has a functional group capable of polycondensation.
  • the functional group capable of polycondensation or polyaddition include a hydroxy group, a carboxy group, an amino group, a sulfanyl group, and an acid anhydride, and among them, a hydroxy group is preferable.
  • hydrocarbon polymer having a functional group capable of polycondensation at the polymer terminal are, for example, trade names, NISSO-PB series (manufactured by Nippon Soda Co., Ltd.), clay sole series (manufactured by Sakai Industry Co., Ltd.), PolyVEST-HT series (manufactured by Evonik Co., Ltd.), poly-bd series (manufactured by Idemitsu Kosan Co., Ltd.), poly-ip series (manufactured by Idemitsu Kosan Co., Ltd.), EPOL (manufactured by Idemitsu Kosan Co., Ltd.) and polytail Series (Mitsubishi Chemical Co., Ltd.) and the like are preferably used.
  • the content of the soft segment in the binder is preferably 10% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more with respect to the total mass of the polymer. As an upper limit, 90 mass% or less is preferable, 80 mass% or less is more preferable, and 70 mass% or less is still more preferable.
  • the content of the soft segment in the binder is preferably 1 mol% or more, more preferably 2 mol% or more, still more preferably 5 mol% or more with respect to the total number of moles of the polymer. As an upper limit, 50 mol% or less is preferable, 30 mol% or less is more preferable, and 20 mol% or less is still more preferable.
  • the content of the hard segment in the binder is preferably 5% by mass or more, more preferably 10% by mass or more, and still more preferably 15% by mass or more with respect to the total mass of the polymer. As an upper limit, 60 mass% or less is preferable, 50 mass% or less is more preferable, and 40 mass% or less is still more preferable.
  • the content of the hard segment in the binder is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more with respect to the total number of moles of the polymer. As an upper limit, 99 mol% or less is preferable, 90 mol% or less is more preferable, and 80 mol% or less is still more preferable.
  • the content of the hydrocarbon polymer segment in the binder is preferably 0% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and 20% by mass with respect to the total mass of the polymer.
  • the above is particularly preferable.
  • 80 mass% or less is preferable, 50 mass% or less is more preferable, 40 mass% or less is further more preferable, and 30 mass% or less is especially preferable.
  • the content of the hydrocarbon polymer segment in the binder is preferably 0 mol% or more, more preferably 0.05 mol% or more, still more preferably 0.1 mol% or more, based on the total number of moles of the polymer. 0.2 mol% or more is particularly preferable.
  • 10 mol% or less is more preferable, 5 mol% or less is still more preferable, and 3 mol% or less is especially preferable.
  • the mechanical properties of the polymer satisfying the scratch resistance and the bending resistance in the present invention are given, and further, in the solid electrolyte composition, in the solid electrolyte-containing sheet, in the all-solid battery. The effect that uniform dispersibility of the binder is obtained is obtained, which is preferable.
  • the content of the component represented by the above formula (1) or (2) is preferably 1% by mass or more with respect to the total mass of the polymer in terms of the effects of the present invention. 2 mass% or more is more preferable, and 3 mass% or more is still more preferable. As an upper limit, 30 mass% or less is preferable, 20 mass% or less is more preferable, and 10 mass% or less is still more preferable.
  • the content of the component represented by the above formula (1) or formula (2) is 5 mol% or more with respect to the total number of moles of the polymer in terms of the effect of the present invention. Preferably, 10 mol% or more is more preferable, and 15 mol% or more is more preferable.
  • the binder when the constituent represented by the above formula (1) or formula (2) corresponds to a hard segment, the content of the constituent represented by the above formula (1) or formula (2) is The total mass of all hard segments is preferably 5% by mass or more, more preferably 7% by mass or more, and further preferably 10% by mass or more. As an upper limit, 50 mass% or less is preferable, 40 mass% or less is more preferable, and 30 mass% or less is still more preferable.
  • the content of the structural component represented by the formula (1) or the formula (2) is the total mole of the hard segment.
  • the number is preferably 7 mol% or more, more preferably 13 mol% or more, and still more preferably 20 mol% or more.
  • 70 mol% or less is preferable, 60 mol% or less is more preferable, and 50 mol% or less is still more preferable.
  • the binder (B) includes a constituent represented by the above formula (1) or a constituent represented by the above formula (2), and is selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond.
  • the binder (B) having at least one kind of bond (hereinafter referred to as the polymer of the present invention) is preferred.
  • the constituents represented by the above formulas contained in the polymer of the present invention may be at least one, and the partial structure -L 11 -A and the partial structure -L 12 -A in each constituent are: Each is preferably a partial structure represented by any of the above formulas (3) to (7).
  • it is preferable that at least one kind of bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond is included in the above-described hard segment or soft segment, respectively.
  • the binder (B) also preferably has an adsorptive functional group.
  • the adsorptive functional group may be present in the polymer main chain other than the constituent components represented by the formulas (1) and (2).
  • the adsorptive functional group can interact with inorganic particles such as an inorganic solid electrolyte, an active material, and a conductive additive to enhance the binding property. Examples of such functional groups include “hetero atom-containing groups” possessed by the “third component” described in paragraph [0059] of JP-A-2015-88480.
  • the (B) binder used in the present invention preferably has a functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
  • a crosslinkable functional group capable of forming a crosslinked structure by a radical polymerization reaction, a cationic polymerization reaction or an anionic polymerization reaction (hereinafter also referred to as a crosslinkable functional group).
  • the binder (B) used in the present invention can produce a structure that is crosslinked within or between polymer particles, and can improve strength.
  • the crosslinkable functional group is preferably a group having a carbon-carbon unsaturated bond and / or a cyclic ether group.
  • the group having a carbon-carbon unsaturated bond may be any group that can form a crosslinked structure by a radical polymerization reaction.
  • Specific examples of the group having a carbon-carbon unsaturated bond include an alkenyl group (having 2 to 12 carbon atoms, more preferably 2 to 8 carbon atoms), an alkynyl group (preferably having 2 to 12 carbon atoms, 2 to 8 are more preferable), acryloyl group and methacryloyl group are preferable, and vinyl group, allyl group, ethynyl group, propargyl group, acryloyl group, methacryloyl group and 2-trifluoromethylpropenoyl group are more preferable. .
  • the cyclic ether group can form a crosslinked structure by a cationic polymerization reaction, and specifically, an epoxy group and an oxetanyl group are preferably exemplified. That is, the (B) binder used in the present invention preferably has at least one functional group selected from the following functional group group (I).
  • ⁇ Functional group group (I)> The group having a carbon-carbon unsaturated bond, the epoxy group, and the oxetanyl group
  • the above-mentioned groups are preferable, and among them, a vinyl group, an ethynyl group, an acryloyl group, a methacryloyl group -A trifluoromethylpropenoyl group is preferred.
  • a binder has the said crosslinkable functional group other than a hydrocarbon polymer segment, and it is more preferable to have in a hard segment or a soft segment.
  • the hydrocarbon polymer has a carbon-carbon unsaturated bond (for example, polybutadiene and polyisoprene)
  • the crosslinkable functional group composed of carbon atoms and hydrogen atoms for example, vinyl group and propenyl group
  • the content of the crosslinkable functional group in the binder is not particularly limited, but the ratio of the repeating unit having the crosslinkable functional group in the (B) all repeating units constituting the binder is: 1 to 50 mol% is preferable, and 5 to 20 mol% is more preferable.
  • a polymerization initiator (radical, cation or anionic polymerization initiator) corresponding to each crosslinkable functional group is contained in the solid electrolyte composition of the present invention, and polymerization of these is performed. You may make it react by an initiator and may make it react by the oxidation reduction reaction at the time of a battery drive.
  • the radical polymerization initiator may be either a thermal radical polymerization initiator that is cleaved by heat to generate an initiation radical, or a photo radical polymerization initiator that generates an initiation radical by light, electron beam, or radiation.
  • a commonly used polymerization initiator can be used without any particular limitation.
  • the binder (B) can be synthesized, for example, by condensation polymerization or polyaddition by arbitrarily combining the following compounds.
  • a compound that leads to these constituents is used.
  • a diol compound represented by the following formula (1M) which will be described later, is preferably exemplified as a compound that leads to the constituent component represented by the above formula (1).
  • the compound used for the synthesis of the binder has, for example, a polymer having an amide bond, a polymer having an imide bond, or a urethane bond described in paragraphs [0067] to [0100] of JP-A-2015-88480. It is described in the section of the polymer and the polymer having a urea bond, and these can be suitably used.
  • a polymer having a urethane bond is obtained by polyaddition of a diisocyanate compound and a diol compound.
  • the diisocyanate compound include compounds described in paragraphs [0073] to [0084] of JP-A-2015-88480, and include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI).
  • diol compound examples include compounds described in paragraphs [0094] to [0099] of JP-A-2015-88480, such as alkylene glycol, alcohol compound or aromatic phenol compound, oligomer diol, polyester diol compound, polycarbonate diol.
  • Silicone diols are preferable, and ethylene glycol, 1,4-butanediol, 1,3-propanediol, dimethylolpropionic acid, dimethylolbutanoic acid, polyethylene glycol, polypropylene glycol, polytetraethylene glycol or polycarbonate diol are more preferable.
  • a constituent component made of a diisocyanate compound functions as a hard segment and a constituent component made of a diol compound functions as a soft segment.
  • monoalcohol or monoamine can be used as a polymerization terminator.
  • a polymerization terminator is introduced into the terminal site of the main chain.
  • polyalkylene glycol monoalkyl ether polyethylene glycol monoalkyl ether or polypropylene monoalkyl ether is preferable
  • polycarbonate diol monoalkyl ether polycarbonate diol monoalkyl ether
  • polyester diol monoalkyl ether polyester monoalcohol, etc.
  • a polymer having a urea bond can be obtained by condensation polymerization of a diisocyanate compound and a diamine compound.
  • the diisocyanate compound include the above-described diisocyanate compounds.
  • the diamine compound include compounds described in paragraph [0068] of JP-A-2015-88480, such as 1,4-butanediamine, 1,3-propanediamine, ethylenediamine, 1,4-cyclohexanediamine, or isophorone. Diamine is preferred.
  • a polymer having an amide bond can be obtained by condensation polymerization of a diamine compound and a dicarboxylic acid compound or a dicarboxylic acid chloride compound, or ring-opening polymerization of lactam.
  • the diamine compound is as described above.
  • Examples of the dicarboxylic acid compound or dicarboxylic acid chloride compound include the compounds described in paragraph [0069] of JP-A-2015-88480, and those corresponding to terephthalic acid or isophthalic acid, or acid chlorides of these carboxylic acids. preferable.
  • a polymer having an imide bond can be obtained by addition polymerization of tetracarboxylic dianhydride and a diamine compound.
  • tetracarboxylic dianhydride examples include compounds described in paragraph [0086] of JP-A-2015-88480, and 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene- 1,2-dicarboxylic anhydride (THFDAA), 1,2,4,5-cyclohexanetetracarboxylic dianhydride (CHDAA), 4,4 '-(2,2-hexafluoroisopropylidene) diphthalic dianhydride A thing (6FDAA) etc. are preferable.
  • the diamine compound used for the polymer having an imide bond examples include those described in JP-A-2015-88480 [0087] to [0090].
  • the polymer having an ester bond is obtained by condensation of a dicarboxylic acid compound or dicarboxylic acid chloride compound and a diol compound.
  • a dicarboxylic acid compound or dicarboxylic acid chloride compound and a diol compound.
  • Specific examples of the dicarboxylic acid or dicarboxylic acid chloride and the diol compound are as described above.
  • the diol compound represented by the following formula (1M) will be described.
  • the constituent component represented by the above formula (1) can be incorporated into the main chain of the obtained polymer. That is, this diol compound is a polymer having at least one bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond, and is suitable for synthesizing a polymer having the above-described constituent components.
  • this diol compound is a polymer having at least one bond selected from a urethane bond, a urea bond, an amide bond, an imide bond and an ester bond, and is suitable for synthesizing a polymer having the above-described constituent components.
  • its use is not particularly limited.
  • the partial structure -L 11 -A in the formula (1) is represented by any one of the above formulas (3), (5), (6) and (7) A compound capable of forming a constituent component.
  • R M represents a methyl group or an ethyl group.
  • X M represents a methylene group or a carbonyl group
  • Y M represents a single bond or a carbonyl group.
  • X M and Y M are not both be a carbonyl group.
  • L M is an alkylene group or an arylene group having 6 to 16 carbon atoms having 1 to 18 carbon atoms. Alkylene and arylene groups may take as L M has the same meaning as L 2 in Formula (3), it is preferable also the same.
  • the diol compound represented by the above formula (1M) is exemplified as a specific example of the component represented by the above formula (1), but the present invention is not limited thereto.
  • the component represented by the above formula (1) and the diol compound leading to the component represented by the above formula (2) and the diol compound represented by the above formula (1M) are synthesized by a usual synthesis method. It can.
  • a general synthesis method a hydroxy group in a polyhydric alcohol compound is protected as necessary, and then a nucleophilic residue (hydroxy group, carboxy group, amino group or thiol group) is converted to a halogen compound, acid
  • a method of forming a linking group by nucleophilic substitution reaction or nucleophilic addition reaction to a halogen compound, ester compound or acid anhydride, linking a thiol compound having two hydroxy groups by radical addition or anion addition A method for forming a group is mentioned.
  • a compound, partial structure or group for which substitution or no substitution is not specified means that the compound, partial structure or group may have an appropriate substituent.
  • substituent, linking group and the like include an alkyl group, an alkylene group, an alkenyl group, an alkenylene group, an alkynyl group and / or an alkynylene group, these may be cyclic or linear, and may be linear or branched. It may be substituted or unsubstituted.
  • the bonding mode of each segment is not particularly limited.
  • a random polymer or block copolymer condensation polymerization type or polyaddition type segmented polymer of the above-described components, an optional hard segment, an optional soft segment, and an optional hydrocarbon polymer segment.
  • the segmented polymer is preferable.
  • the above-mentioned binder (B) can be represented by, for example, a formula showing a polymer structure synthesized in Examples described later.
  • the molecular structure of the binder is not particularly limited, and can have various structures such as a linear polymer (linear polymer), a graft polymer, a dendrimer, a star polymer, and a particulate polymer.
  • a linear polymer or a branch polymer is preferable, and a linear polymer is more preferable.
  • the linear polymer includes not only a polymer having no completely branched structure but also a substantially linear polymer having a short molecular chain in addition to the main chain.
  • the degree of having a short molecular chain may be in a range that does not impair the effects of the present invention, and examples thereof include a range in which particles can be formed by the phase inversion emulsification method described below.
  • Linear polymers differ from graft polymers in that they do not have a graft chain in addition to the main chain.
  • the shape of (B) binder used for this invention is not specifically limited, In a solid electrolyte composition, a solid electrolyte containing sheet, or an all-solid-state secondary battery, it may be a particulate form or an indefinite shape.
  • (B) the binder being insoluble particles with respect to the dispersion medium, the viewpoint of dispersion stability of the solid electrolyte composition and the viewpoint of obtaining an all-solid secondary battery having high ion conductivity.
  • “(B) the binder is an insoluble particle in the dispersion medium” means that the average particle diameter does not decrease by 5% or more even when added to the dispersion medium at 30 ° C. and allowed to stand for 24 hours.
  • the binder (B) in the solid electrolyte composition is preferably in the form of particles in order to suppress a decrease in interparticle ion conductivity of the inorganic solid electrolyte and the like, and the average particle diameter is preferably 10 to 1000 nm, and 100 More preferably, ⁇ 500 nm.
  • the average particle diameter of the (B) binder particles used in the present invention is based on the measurement conditions and definitions described below unless otherwise specified.
  • the binder particles are diluted with a solvent (dispersion medium used for preparation of the solid electrolyte composition. For example, octane), and 1% by mass of the dispersion is diluted in a 20 mL sample bottle.
  • the diluted dispersion sample is irradiated with 1 kHz ultrasonic waves for 10 minutes and used immediately after that.
  • the measurement from the produced all-solid-state secondary battery is performed, for example, after disassembling the battery and peeling off the electrode, then measuring the electrode material according to the method for measuring the average particle diameter of the polymer particles, This can be done by eliminating the measured value of the average particle diameter of the particles other than the polymer particles that have been measured.
  • the mass average molecular weight of the binder is preferably from 5,000 to less than 5,000,000, more preferably from 5,000 to less than 500,000, and even more preferably from 5,000 to less than 50,000.
  • the binder may be used in a solid state, or may be used in the state of a polymer particle dispersion or a polymer solution.
  • the content of the binder in the solid electrolyte composition is 0.1 to 20 parts by mass with respect to 100% by mass of the solid component in terms of compatibility with the inorganic particles and ion conductivity. Is preferably 0.2 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass.
  • the solid electrolyte composition of the present invention preferably contains a dispersion medium in order to disperse the solid components.
  • the dispersion medium only needs to disperse each of the above components, and examples thereof include various organic solvents. Specific examples of the dispersion medium include the following.
  • alcohol compound solvent examples include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-butanol, ethylene glycol, propylene glycol, glycerin, 1,6-hexanediol, 1,3-butanediol, and 1,4-butane. Diols are mentioned.
  • ether compound solvents examples include alkylene glycol alkyl ethers (ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • alkylene glycol alkyl ethers ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol, polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol.
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N -Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • amino compound solvents examples include triethylamine and tributylamine.
  • ketone compound solvent examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, and dibutyl ketone.
  • ester compound solvent examples include methyl acetate, ethyl acetate, propyl acetate, butyl acetate, pentyl acetate, hexyl acetate, methyl propionate, ethyl propionate, propyl propionate, butyl propionate, methyl butyrate, ethyl butyrate, butyric acid.
  • ester compound solvent examples include propyl, butyl butyrate, pentyl butyrate, methyl valerate, ethyl valerate, propyl valerate, butyl valerate, methyl caproate, ethyl caproate, propyl caproate and butyl caproate.
  • aromatic compound solvent examples include benzene, toluene, ethylbenzene, xylene, and mesitylene.
  • aliphatic compound solvent examples include hexane, heptane, cyclohexane, methylcyclohexane, ethylcyclohexane, octane, nonane, decane, pentane, cyclopentane, decalin, and cyclooctane.
  • nitrile compound solvent examples include acetonitrile, propyronitrile, and butyronitrile.
  • the dispersion medium preferably has a boiling point of 50 ° C. or higher, more preferably 70 ° C. or higher, at normal pressure (1 atm).
  • the upper limit is preferably 250 ° C. or lower, and more preferably 220 ° C. or lower.
  • the said dispersion medium may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the (C) dispersion medium used in the present invention may be used in any combination, but (B) preferably does not dissolve the binder particles.
  • the (C) dispersion medium used in the present invention is preferably an ether compound solvent or a hydrocarbon solvent.
  • the solid electrolyte composition of the present invention may contain a particulate (B) binder, carbonization.
  • a hydrogen solvent is more preferable.
  • the hydrocarbon solvents toluene or xylene is preferable as the aromatic compound solvent, and heptane, octane, cyclohexane or cyclooctane is preferable as the aliphatic compound solvent.
  • the content of the dispersion medium in the solid electrolyte composition is not particularly limited and may be 0% by mass or more.
  • the content thereof is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the content of the hydrocarbon solvent in the dispersion medium is preferably 50% by mass or more, and preferably 70% by mass because the solid electrolyte composition of the present invention can contain a particulate (B) binder. % Or more is more preferable, and 90 mass% or more is still more preferable.
  • the upper limit is not particularly limited, but is preferably 100% by mass.
  • the solid electrolyte composition of the present invention may contain an active material capable of inserting and releasing ions of metal elements belonging to Group 1 or Group 2 of the Periodic Table.
  • the active material include a positive electrode active material and a negative electrode active material, and a transition metal oxide that is a positive electrode active material or a metal oxide that is a negative electrode active material is preferable.
  • a solid electrolyte composition containing an active material (a positive electrode active material and a negative electrode active material) may be referred to as an electrode composition (a positive electrode composition and a negative electrode composition).
  • the positive electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element that can be complexed with Li, such as sulfur, or a complex of sulfur and metal.
  • the positive electrode active material it is preferable to use a transition metal oxide, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu, and V). More preferred.
  • this transition metal oxide includes an element M b (an element of the first (Ia) group of the metal periodic table other than lithium, an element of the second (IIa) group, Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P, or B) may be mixed.
  • the mixing amount is preferably 0 ⁇ 30 mol% relative to the amount of the transition metal element M a (100mol%). Those synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2 are more preferable.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD And lithium-containing transition metal halogenated phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0. 05 O 2 (nickel cobalt lithium aluminum oxide [NCA]), LiNi 1/3 Co 1/3 Mn 1/3 O 2 (nickel manganese lithium cobalt oxide [NMC]) and LiNi 0.5 Mn 0.5 O 2 ( Lithium manganese nickelate).
  • transition metal oxides having (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 is mentioned.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphate salts such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4, and the like. And monoclinic Nasicon type vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (vanadium lithium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F Cobalt fluorophosphates such as
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4, and Li 2 CoSiO 4 .
  • a transition metal oxide having a (MA) layered rock salt structure is preferable, and LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably particulate.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited.
  • the thickness can be 0.1 to 50 ⁇ m.
  • an ordinary pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after being washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent.
  • the volume average particle diameter (sphere-converted average particle diameter) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (weight per unit area) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the positive electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass at 100% by mass. Preferably, it is 55 to 80% by mass.
  • the negative electrode active material that may be contained in the solid electrolyte composition of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and is a carbonaceous material, metal oxide such as tin oxide, silicon oxide, metal composite oxide, lithium alloy such as lithium simple substance and lithium aluminum alloy, and , Metals such as Sn, Si, Al, and In that can form an alloy with lithium.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of reliability.
  • the metal composite oxide is preferably capable of inserting and extracting lithium.
  • the material is not particularly limited, but preferably contains titanium and / or lithium as a constituent component from the viewpoint of high current density charge / discharge characteristics.
  • the carbonaceous material used as the negative electrode active material is a material substantially made of carbon.
  • various synthetics such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite), PAN (polyacrylonitrile) resin or furfuryl alcohol resin, etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor-grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber, and activated carbon fiber.
  • Other examples include mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenite which is a reaction product of a metal element and a group 16 element of the periodic table is also preferably used. It is done.
  • amorphous as used herein means an X-ray diffraction method using CuK ⁇ rays, which has a broad scattering band having a peak in the region of 20 ° to 40 ° in terms of 2 ⁇ , and is a crystalline diffraction line. You may have.
  • an amorphous oxide of a metalloid element and a chalcogenide are more preferable.
  • Ga, Si, Sn, Ge, Pb, Sb and Bi are used alone or in combination of two or more thereof, and chalcogenides are particularly preferable.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferred. Moreover, these may be a complex oxide with lithium oxide, for example, Li 2 SnO 2 .
  • the negative electrode active material contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics due to small volume fluctuations during the insertion and release of lithium ions, and the deterioration of the electrodes is suppressed, and the lithium ion secondary This is preferable in that the battery life can be improved.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can occlude more Li ions than a carbon negative electrode (such as graphite and acetylene black). That is, the amount of occlusion of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery driving time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • an ordinary pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling air flow type jet mill or a sieve is preferably used.
  • pulverizing wet pulverization in the presence of water or an organic solvent such as methanol can be performed as necessary.
  • classification is preferably performed.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used as necessary. Classification can be used both dry and wet.
  • the average particle diameter of the negative electrode active material particles can be measured by the same method as the above-described method for measuring the volume average particle diameter of the positive electrode active material.
  • the chemical formula of the compound obtained by the above firing method can be calculated from an inductively coupled plasma (ICP) emission spectroscopic analysis method as a measurement method, and from a mass difference between powders before and after firing as a simple method.
  • ICP inductively coupled plasma
  • the said negative electrode active material may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the mass (mg) (weight per unit area) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. This can be determined as appropriate according to the designed battery capacity.
  • the content of the negative electrode active material in the solid electrolyte composition is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass with a solid content of 100% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be coated with another metal oxide.
  • the surface coating agent include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si, or Li. Specific examples include spinel titanate, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, and the like. Specifically, Li 4 Ti 5 O 12 , Li 2 Ti 2 O 5 , LiTaO 3.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with actinic rays or an active gas (plasma or the like) before and after the surface coating.
  • the solid electrolyte composition of the present invention may contain a conductive additive.
  • a conductive support agent What is known as a general conductive support agent can be used.
  • graphites such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube, which are electron conductive materials
  • Carbon fiber such as graphene, carbonaceous material such as graphene or fullerene, metal powder such as copper and nickel, metal fiber may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives are used.
  • the present invention when a negative electrode active material and a conductive additive are used in combination, Li is not inserted and released when the battery is charged / discharged, and the one that does not function as the negative electrode active material is used as the conductive aid. Therefore, among the conductive assistants, those that can function as the negative electrode active material in the negative electrode active material layer when the battery is charged and discharged are classified as negative electrode active materials, not conductive assistants. Whether or not the battery functions as a negative electrode active material when the battery is charged / discharged is not unambiguous and is determined by a combination with the negative electrode active material.
  • the content of the conductive assistant is preferably 0 to 5% by mass, and more preferably 0.5 to 3% by mass with respect to 100 parts by mass of the solid content in the solid electrolyte composition.
  • the solid electrolyte composition of the present invention may contain a lithium salt.
  • the lithium salt is not particularly limited, and for example, lithium salts described in paragraphs 0082 to 0085 of JP-A-2015-088486 are preferable.
  • the content of the lithium salt is preferably 0 parts by mass or more and more preferably 2 parts by mass or more with respect to 100 parts by mass of the solid content in the solid electrolyte composition. As an upper limit, 20 mass parts or less are preferable, and 10 mass parts or less are more preferable.
  • the solid electrolyte composition of the present invention may contain a commonly used binder in addition to the above-mentioned (B) binder within a range not impairing the effects of the present invention.
  • commonly used binders include organic polymers.
  • binders made of the resins described below are preferably used.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin examples include various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of these monomers (preferably a copolymer of acrylic acid and methyl acrylate). It is done. Further, a copolymer (copolymer) with other vinyl monomers is also preferably used.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin. These may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the solid electrolyte composition of the present invention may contain a dispersant. Even when the concentration of either the electrode active material or the inorganic solid electrolyte is high by adding a dispersant, even when the particle diameter is fine and the surface area is increased, the aggregation is suppressed, and a uniform active material layer and solid An electrolyte layer can be formed.
  • a dispersant those usually used for all-solid secondary batteries can be appropriately selected and used. In general, compounds intended for particle adsorption and steric repulsion and / or electrostatic repulsion are preferably used.
  • the solid electrolyte composition of the present invention is obtained by mixing (A) an inorganic solid electrolyte and (B) a binder, and, if necessary, (C) a dispersion medium or other components, for example, using various mixers.
  • it can be prepared as a slurry in which (A) an inorganic solid electrolyte and (B) a binder, and (C) a dispersion medium and other components are dispersed in a dispersion medium as necessary.
  • the slurry of the solid electrolyte composition can be prepared using various mixers.
  • the mixing apparatus is not particularly limited, and examples thereof include a ball mill, a bead mill, a planetary mixer, a blade mixer, a roll mill, a kneader, and a disk mill.
  • the mixing conditions are not particularly limited. For example, when a ball mill is used, the mixing is preferably performed at 150 to 700 rpm (rotation per minute) for 1 to 24 hours.
  • a ball mill when preparing a solid electrolyte composition that does not contain a dispersion medium, it may be added and mixed at the same time as the dispersion step (A) of the inorganic solid electrolyte, or may be added and mixed separately.
  • the (B) binder may be added and mixed simultaneously with the dispersion step of the component (A) inorganic solid electrolyte and / or active material or dispersant, or may be added and mixed separately.
  • the form of the (B) binder when added to and / or mixed with the solid electrolyte composition of the present invention may be (B) the binder itself, (B) a solution of the binder, (B) It may be a binder dispersion (polymer non-aqueous solvent dispersion).
  • a binder dispersion is preferable from the viewpoint of suppressing decomposition of the inorganic solid electrolyte and interspersing the active material and the inorganic solid electrolyte with particle surfaces to ensure ionic conductivity.
  • the non-aqueous solvent dispersion of the polymer of the present invention is a dispersion in which (B) binder particles are dispersed in a non-aqueous solvent. Can do.
  • a known method can be selected as the phase inversion emulsification method.
  • the non-aqueous solvent means a solvent other than water, and a dispersion medium capable of preparing (B) binder particles by a phase inversion emulsification method is preferable.
  • Specific examples include the above-described (C) dispersion medium, and hydrocarbon solvents (the above-mentioned aromatic compound solvents and aliphatic compound solvents), ether solvents, and ketone solvents are preferable.
  • the nonaqueous solvent dispersion of the polymer of the present invention may contain water as long as the (B) binder is dispersed as particles, but the water content is 100 ppm or less, more preferably 50 ppm or less. preferable.
  • the non-aqueous solvent dispersion of the polymer of the present invention can be suitably used for an all-solid-state secondary battery because it can take a form that does not contain a solvent capable of decomposing an inorganic solid electrolyte and lowering ionic conductivity.
  • the non-aqueous solvent dispersion of the polymer of the present invention can be added and mixed with the solid electrolyte composition of the present invention, a complicated process is not required, and a process for removing water remaining in the solvent is not necessary. It is unnecessary.
  • the non-aqueous solvent dispersion of the polymer according to the present invention can adopt a form that does not use an emulsifier, when the emulsifier is not used, when it is dried, it is as high as when the polymer solution is dried. Adhesive.
  • the non-aqueous solvent dispersion of the polymer according to the present invention can be applied not only to the use in all-solid-state secondary batteries but also to, for example, adhesives and pressure-sensitive adhesives, and exhibits excellent effects.
  • the content of the binder (B) in the non-aqueous solvent dispersion of the polymer is not particularly limited. For example, 0.1 to 50% by mass is preferable in 100% by mass of the non-aqueous solvent dispersion, and 1 to 30% by mass. More preferred.
  • the solid electrolyte-containing sheet of the present invention has a layer containing (A) an inorganic solid electrolyte having conductivity of metal ions belonging to Group 1 or Group 2 of the periodic table, and (B) a binder.
  • This (B) binder is synonymous with the (B) binder in the solid electrolyte composition of this invention unless there is particular notice.
  • the solid electrolyte-containing sheet of the present invention in particular, the solid electrolyte-containing sheet of the present invention produced using the solid electrolyte composition of the present invention contains (B) a binder, it has flexibility, scratch resistance and ion conduction. Excellent in degree.
  • the all-solid-state secondary battery incorporating the solid electrolyte-containing sheet of the present invention has a high ionic conductivity and can be considered to suppress the occurrence of a short circuit.
  • a solid electrolyte-containing sheet can be produced with high productivity such as a roll-to-roll method, and defects in the solid electrolyte layer or the electrolyte layer are hardly generated, and an active material or an inorganic solid electrolyte from the electrode layer or the solid electrolyte layer. Is hard to fall off. Furthermore, when an all-solid secondary battery is manufactured using this solid electrolyte-containing sheet, the above-mentioned production suitability is excellent, and the manufacturing yield of the all-solid-state secondary battery can be improved.
  • the reason why the solid electrolyte-containing sheet of the present invention can be imparted with a high level of bending resistance, scratch resistance and ionic conductivity is not yet clear, but is considered as follows.
  • the binder used for the solid electrolyte-containing sheet has the above-described constituent components. This component is present at a position where the functional group A is separated from the main chain of the binder as represented by the above formulas. Therefore, it is considered that the molecular mobility of the functional group A increases during the preparation of the solid electrolyte composition or during the preparation, and the contact probability with the inorganic particles increases. Thereby, even if it reduces content of a binder in a solid electrolyte composition, the functional group A and an inorganic particle adhere
  • the solid electrolyte-containing sheet of the present invention can be suitably used for an all-solid-state secondary battery, and includes various modes depending on the application.
  • a sheet preferably used for a solid electrolyte layer also referred to as a solid electrolyte-containing sheet for an all-solid secondary battery or a solid electrolyte-containing sheet
  • a sheet preferably used for an electrode or a laminate of an electrode and a solid electrolyte layer an all-solid-state secondary battery.
  • Secondary battery electrode sheet and the like.
  • these various sheets may be collectively referred to as an all-solid secondary battery sheet.
  • the all-solid-state secondary battery sheet may be a sheet having a solid electrolyte layer or an active material layer (electrode layer), or a sheet in which a solid electrolyte layer or an active material layer (electrode layer) is formed on a substrate. Further, it may be a sheet which does not have a substrate and is formed from a solid electrolyte layer or an active material layer (electrode layer).
  • the sheet in an embodiment having a solid electrolyte layer or an active material layer (electrode layer) on the substrate will be described in detail.
  • the all-solid-state secondary battery sheet may have other layers as long as it has a base material and a solid electrolyte layer or an active material layer.
  • a secondary battery electrode sheet It is classified as a secondary battery electrode sheet.
  • other layers include a protective layer, a current collector, and a coat layer (current collector, solid electrolyte layer, active material layer) and the like.
  • the solid electrolyte-containing sheet for an all-solid-state secondary battery include a sheet having a solid electrolyte layer and, if necessary, a protective layer in this order on a substrate.
  • the substrate is not particularly limited as long as it can support the solid electrolyte layer, and examples thereof include materials described in the current collector, sheet bodies (plate bodies) such as organic materials and inorganic materials, and the like.
  • the organic material include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, and cellulose.
  • the inorganic material include glass and ceramic.
  • Each of the solid electrolyte layer and the active material layer in the solid electrolyte-containing sheet is preferably the same as that in the solid content of the solid electrolyte composition, unless otherwise specified, with respect to the component species to be contained and the content ratio thereof. is there.
  • the layer thickness of the solid electrolyte layer of the all-solid-state secondary battery sheet is the same as the layer thickness of the solid electrolyte layer described in the all-solid-state secondary battery of the present invention.
  • This sheet comprises a solid electrolyte composition of the present invention, preferably a solid electrolyte composition containing (A) an inorganic solid electrolyte, (B) a binder, and (C) a dispersion medium on a substrate (other layers). It may be obtained by forming a solid electrolyte layer on a base material by coating (drying). Details will be described later.
  • the solid electrolyte composition of the present invention can be prepared by the above-described method.
  • An electrode sheet for an all-solid-state secondary battery of the present invention is a sheet for forming an active material layer of an all-solid-state secondary battery, and is on a metal foil as a current collector.
  • the electrode sheet having an active material layer is usually a sheet having a current collector and an active material layer, but an embodiment having a current collector, an active material layer, and a solid electrolyte layer in this order, and a current collector, an active material layer, and a solid electrolyte The aspect which has a layer and an active material layer in this order is also included.
  • each layer constituting the electrode sheet are the same as the configuration and layer thickness of each layer described in the all-solid-state secondary battery of the present invention described later.
  • the electrode sheet is obtained by forming (coating and drying) the solid electrolyte composition containing the active material of the present invention on a metal foil to form an active material layer on the metal foil. Details will be described later.
  • the all solid state secondary battery of the present invention has a positive electrode, a negative electrode facing the positive electrode, and a solid electrolyte layer between the positive electrode and the negative electrode.
  • the positive electrode has a positive electrode active material layer on a positive electrode current collector.
  • the negative electrode has a negative electrode active material layer on a negative electrode current collector.
  • At least one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer is preferably formed using the solid electrolyte composition of the present invention, and (A) an inorganic solid electrolyte and (B) a binder. It is preferable to contain.
  • the active material layer and / or the solid electrolyte layer formed using the solid electrolyte composition is preferably in the solid content of the solid electrolyte composition unless otherwise specified with respect to the component types and the content ratio thereof. Is the same.
  • a preferred embodiment of the present invention will be described with reference to FIG. 1, but the present invention is not limited to this.
  • FIG. 1 is a cross-sectional view schematically showing an all solid state secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid-state secondary battery 10 of this embodiment has a negative electrode current collector 1, a negative electrode active material layer 2, a solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode current collector 5 in this order as viewed from the negative electrode side. .
  • Each layer is in contact with each other and has a laminated structure. By adopting such a structure, at the time of charging, electrons (e ⁇ ) are supplied to the negative electrode side, and lithium ions (Li + ) are accumulated therein.
  • the solid electrolyte composition of the present invention can be preferably used as a molding material for the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the solid electrolyte-containing sheet of the present invention is suitable as the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer.
  • the all solid state secondary battery having the layer configuration of FIG. 1 may be referred to as an all solid state secondary battery sheet.
  • a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
  • a positive electrode active material layer (hereinafter also referred to as a positive electrode layer) and a negative electrode active material layer (hereinafter also referred to as a negative electrode layer) may be collectively referred to as an electrode layer or an active material layer.
  • One or both of the positive electrode active material and the negative electrode active material may be simply referred to as an active material or an electrode active material.
  • any one of a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer is produced using the solid electrolyte composition of the present invention. That is, when the solid electrolyte layer 3 is produced using the solid electrolyte composition of the present invention, the solid electrolyte layer 3 includes (A) an inorganic solid electrolyte and (B) a binder.
  • the solid electrolyte layer usually does not contain a positive electrode active material and / or a negative electrode active material.
  • the positive electrode active material layer 4 and / or the negative electrode active material layer 2 are produced using the solid electrolyte composition of the present invention containing an active material
  • the positive electrode active material layer 4 and the negative electrode active material layer 2 are respectively And a positive electrode active material or a negative electrode active material, and further includes (A) an inorganic solid electrolyte and (B) a binder.
  • the active material layer contains an inorganic solid electrolyte, the ionic conductivity can be improved.
  • the (A) inorganic solid electrolyte and (B) binder contained in the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 may be the same or different from each other.
  • the solid electrolyte composition in which any one of the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery contains (A) an inorganic solid electrolyte and (B) a binder. This is a layer containing (A) an inorganic solid electrolyte and (B) a binder.
  • the negative electrode active material layer, the positive electrode active material layer, and the solid electrolyte layer in the all-solid-state secondary battery are all made of a solid electrolyte composition containing (A) an inorganic solid electrolyte and (B) a binder. It is one of the preferred embodiments.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. Considering general battery dimensions, the thickness of each layer is preferably 10 to 1,000 ⁇ m, more preferably 20 ⁇ m or more and less than 500 ⁇ m. In the all solid state secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electronic conductors. In the present invention, either or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • Materials for forming the positive electrode current collector include aluminum, aluminum alloy, stainless steel, nickel, titanium, etc., as well as the surface of aluminum or stainless steel treated with carbon, nickel, titanium, or silver (forming a thin film) Among them, aluminum and aluminum alloys are more preferable.
  • the material for forming the negative electrode current collector is treated with carbon, nickel, titanium, or silver on the surface of aluminum, copper, copper alloy, or stainless steel. What was made to do is preferable, and aluminum, copper, a copper alloy, and stainless steel are more preferable.
  • the current collector is usually in the form of a film sheet, but a net, a punched one, a lath, a porous body, a foam, a fiber group molded body, or the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m.
  • the current collector surface is roughened by surface treatment.
  • a functional layer or member or the like is appropriately interposed or disposed between or outside the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector. May be.
  • Each layer may be composed of a single layer or a plurality of layers.
  • the basic structure of the all-solid-state secondary battery can be manufactured by arranging each of the above layers. Depending on the application, it may be used as an all-solid secondary battery as it is, but in order to obtain a dry battery, it is further sealed in a suitable housing.
  • the housing may be metallic or made of resin (plastic). When using a metallic thing, the thing made from an aluminum alloy and stainless steel can be mentioned, for example.
  • the metallic housing is preferably divided into a positive-side housing and a negative-side housing, and electrically connected to the positive current collector and the negative current collector, respectively.
  • the casing on the positive electrode side and the casing on the negative electrode side are preferably joined and integrated through a gasket for preventing a short circuit.
  • the solid electrolyte-containing sheet of the present invention is formed into a film (coating and drying) on the base material (which may contain another layer) the solid electrolyte composition of the present invention (preferably containing (C) a dispersion medium). ) And forming a solid electrolyte layer on the substrate.
  • the base material which may contain another layer
  • the solid electrolyte composition of the present invention preferably containing (C) a dispersion medium).
  • a solid electrolyte layer on the substrate.
  • a solid electrolyte-containing sheet having (A) an inorganic solid electrolyte and (B) a binder (containing a solid electrolyte layer) on the substrate can be produced.
  • a base material can be peeled from the produced solid electrolyte containing sheet, and the solid electrolyte containing sheet which consists of a solid electrolyte layer can also be produced.
  • the method as described in manufacture of the following all-solid-state secondary battery can be used.
  • the solid electrolyte-containing sheet may contain the (C) dispersion medium within a range that does not affect the battery performance. Specifically, you may contain 1 ppm or more and 10000 ppm or less in the total mass.
  • the content ratio of the (C) dispersion medium in the solid electrolyte-containing sheet of the present invention can be measured by the following method.
  • the solid electrolyte-containing sheet is punched out with a 20 mm square and immersed in deuterated tetrahydrofuran in a glass bottle.
  • the obtained eluate is filtered through a syringe filter, and quantitative operation is performed by 1 H-NMR.
  • the correlation between the 1 H-NMR peak area and the amount of solvent is determined by preparing a calibration curve.
  • Manufacture of all-solid-state secondary battery and electrode sheet for all-solid-state secondary battery can be performed by a conventional method. Specifically, the all-solid-state secondary battery and the electrode sheet for the all-solid-state secondary battery can be manufactured by forming each of the above layers using the solid electrolyte composition of the present invention. This will be described in detail below.
  • the all-solid-state secondary battery of the present invention includes a step of applying the solid electrolyte composition of the present invention on a base material (for example, a metal foil to be a current collector) to form a coating film (film formation) ( Can be manufactured by a method.
  • a solid electrolyte composition containing a positive electrode active material is applied as a positive electrode material (positive electrode composition) on a metal foil that is a positive electrode current collector to form a positive electrode active material layer, and an all-solid secondary A positive electrode sheet for a battery is prepared.
  • a solid electrolyte composition for forming a solid electrolyte layer is applied on the positive electrode active material layer to form a solid electrolyte layer.
  • a solid electrolyte composition containing a negative electrode active material is applied as a negative electrode material (negative electrode composition) on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer is obtained by stacking a negative electrode current collector (metal foil) on the negative electrode active material layer. Can do. If necessary, this can be enclosed in a housing to obtain a desired all-solid secondary battery.
  • each layer is reversed, and a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to manufacture an all-solid secondary battery.
  • Another method includes the following method. That is, a positive electrode sheet for an all-solid secondary battery is produced as described above. Further, a negative electrode active material layer is formed by applying a solid electrolyte composition containing a negative electrode active material as a negative electrode material (negative electrode composition) on a metal foil as a negative electrode current collector, and forming an all-solid secondary A negative electrode sheet for a battery is prepared. Next, a solid electrolyte layer is formed on one of the active material layers of these sheets as described above. Furthermore, the other of the positive electrode sheet for an all solid secondary battery and the negative electrode sheet for an all solid secondary battery is laminated on the solid electrolyte layer so that the solid electrolyte layer and the active material layer are in contact with each other.
  • Another method includes the following method. That is, as described above, a positive electrode sheet for an all-solid secondary battery and a negative electrode sheet for an all-solid secondary battery are produced. Separately from this, a solid electrolyte composition is applied onto a substrate to produce a solid electrolyte-containing sheet for an all-solid secondary battery comprising a solid electrolyte layer. Furthermore, it laminates
  • An all-solid-state secondary battery can also be manufactured by a combination of the above forming methods. For example, as described above, a positive electrode sheet for an all-solid secondary battery, a negative electrode sheet for an all-solid secondary battery, and a solid electrolyte-containing sheet for an all-solid secondary battery are produced. Then, after laminating the solid electrolyte layer peeled off from the base material on the negative electrode sheet for an all solid secondary battery, an all solid secondary battery can be produced by pasting the positive electrode sheet for the all solid secondary battery. it can. In this method, the solid electrolyte layer can be laminated on the positive electrode sheet for an all-solid secondary battery, and bonded to the negative electrode sheet for an all-solid secondary battery.
  • the method for applying the solid electrolyte composition is not particularly limited, and can be appropriately selected. Examples thereof include coating (preferably wet coating), spray coating, spin coating coating, dip coating, slit coating, stripe coating, and bar coating coating. At this time, the solid electrolyte composition may be dried after being applied, or may be dried after being applied in multiple layers.
  • the drying temperature is not particularly limited.
  • the lower limit is preferably 30 ° C or higher, more preferably 60 ° C or higher, and still more preferably 80 ° C or higher.
  • the upper limit is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, and further preferably 200 ° C. or lower.
  • (C) a dispersion medium By heating in such a temperature range, (C) a dispersion medium can be removed and it can be set as a solid state. Moreover, it is preferable because the temperature is not excessively raised and each member of the all-solid-state secondary battery is not damaged. Thereby, in the all-solid-state secondary battery, excellent overall performance can be exhibited and good binding properties can be obtained.
  • each layer or all-solid secondary battery After producing the applied solid electrolyte composition or all-solid-state secondary battery. Moreover, it is also preferable to pressurize in the state which laminated
  • An example of the pressurizing method is a hydraulic cylinder press.
  • the applied pressure is not particularly limited and is generally preferably in the range of 50 to 1500 MPa. Moreover, you may heat the apply
  • the heating temperature is not particularly limited, and is generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is previously dried, or may be performed in a state where the solvent or the dispersion medium remains.
  • Each composition may be applied at the same time or may be simultaneously and / or sequentially subjected to a coating and drying press. You may laminate
  • the atmosphere during pressurization is not particularly limited and may be any of the following: air, dry air (dew point -20 ° C. or less), and inert gas (for example, argon gas, helium gas, nitrogen gas).
  • the pressing time may be a high pressure in a short time (for example, within several hours), or a medium pressure may be applied for a long time (1 day or more).
  • a restraining tool screw tightening pressure or the like
  • the pressing pressure may be uniform or different with respect to the pressed part such as the sheet surface.
  • the pressing pressure can be changed according to the area or film thickness of the pressed part. Also, the same part can be changed stepwise with different pressures.
  • the press surface may be smooth or roughened.
  • the all solid state secondary battery manufactured as described above is preferably initialized after manufacture or before use.
  • the initialization is not particularly limited, and can be performed, for example, by performing initial charging / discharging in a state where the press pressure is increased, and then releasing the pressure until the general use pressure of the all-solid secondary battery is reached.
  • the all solid state secondary battery of the present invention can be applied to various uses. Although there is no particular limitation on the application mode, for example, when installed in an electronic device, a notebook computer, a pen input personal computer, a mobile personal computer, an electronic book player, a mobile phone, a cordless phone, a pager, a handy terminal, a mobile fax machine, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, minidisc, electric shaver, transceiver, electronic notebook, calculator, portable tape recorder, radio, backup power supply, memory card, etc.
  • Others for consumer use include automobiles (electric cars, etc.), electric vehicles, motors, lighting equipment, toys, game equipment, road conditioners, watches, strobes, cameras, medical equipment (pacemakers, hearing aids, shoulder massagers, etc.) . Furthermore, it can be used for various military use and space use. Moreover, it can also combine with a solar cell.
  • An all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are all solid. In other words, it is distinguished from an electrolyte type secondary battery using a carbonate-based solvent as an electrolyte.
  • this invention presupposes an inorganic all-solid-state secondary battery.
  • the all-solid-state secondary battery includes an organic (polymer) all-solid-state secondary battery using a polymer compound such as polyethylene oxide as an electrolyte, and an inorganic all-solid-state using the above-described Li—PS system glass, LLT, LLZ, or the like. It is divided into secondary batteries.
  • an organic compound to an inorganic all-solid secondary battery is not hindered, and the organic compound can be applied as a positive electrode active material, a negative electrode active material, a binder or additive of an inorganic solid electrolyte.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) using the above-described polymer compound as an ion conductive medium, and the inorganic compound serves as an ion conductive medium. Specific examples include the above-described Li—PS glass, LLT, or LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • electrolyte a material that is added to the electrolytic solution or the solid electrolyte layer and serves as a source of ions that release cations (Li ions) is sometimes called an electrolyte.
  • electrolyte salt When distinguishing from the electrolyte as the above ion transport material, this is called “electrolyte salt” or “supporting electrolyte”.
  • electrolyte salt An example of the electrolyte salt is LiTFSI.
  • composition means a mixture in which two or more components are uniformly mixed. However, as long as the uniformity is substantially maintained, aggregation or uneven distribution may partially occur within a range in which a desired effect is achieved.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • precursor (I) shown below as 114 g of a transparent liquid (yield 78%).
  • 50 g of precursor (I) and 32.5 g of succinic anhydride were added to a 200 mL two-necked flask, 27.2 g of pyridine was further added, and the resulting mixture was heated and stirred at 100 ° C. for 2 hours.
  • the obtained reaction solution was diluted with ethyl acetate, washed 5 times with 300 mL of water, and the organic layer was dried over sodium sulfate and concentrated to obtain a precursor (II) shown below as 64.2 g of a pale yellow liquid.
  • a precursor (II) shown below as 64.2 g of a pale yellow liquid.
  • a 100 mL two-necked flask was charged with 10 g of precursor (II) and 30 mL of a THF / water mixture (1 vol / 1 vol), and the precursor (II) was dispersed in the mixture. To this was added 0.5 g of pyridinium-p-toluenesulfonic acid, and the mixture was heated and stirred at 60 ° C. for 2 hours.
  • ⁇ Synthesis Example 1-2 Synthesis of diol compound (b-9)> A diol compound (b-9) was obtained in the same manner as in Synthesis Example 1 except that cis-1,2-cyclohexanedicarboxylic anhydride was used in place of succinic anhydride in Synthesis Example 1. The diol compound (b-9) was identified and confirmed by the following NMR data.
  • the diol compound (b-36) was identified and confirmed by the following NMR data.
  • 1 H-NMR 300 MHz, DMSO-d 6 ): 1.3-1.6 (m, 6H), 2.29 (t, 2H), 2.4-2.7 (m, 4H), 3. 67 (m, 2H), 3.95 (m, 1H), 4.9-5.7 (brs, 2H), 12.2 (brs, 1H)
  • ⁇ Synthesis Example 1-6 Synthesis of Diol Compound (b-40)> 50 g of the precursor (I) was dissolved in 100 mL of THF in a 200 mL two-necked flask. To this, 12.1 g of a 60% sodium hydride oil dispersion was added and heated and stirred at 60 ° C. for 2 hours, and then 55 g of t-butyl bromoacetate was added and stirring was continued for another 24 hours. The resulting reaction solution was added to 1N aqueous hydrochloric acid and stirred at room temperature for 6 hours. The mixture was extracted with ethyl acetate, and the organic layer was dried over sodium sulfate and concentrated.
  • the reaction solution was concentrated and recrystallized from isopropyl alcohol to obtain 136 g of the following precursor (III) as a white solid (yield 78%).
  • 136 g of the obtained precursor (III) was added to a three-necked flask and dissolved in 500 mL of tetrahydrofuran.
  • 110 g of potassium carbonate and 178 g of t-butyl bromoacetate were added and heated under reflux for 6 hours.
  • the reaction solution was concentrated and extracted with ethyl acetate.
  • the organic layer was washed with water, dried over sodium sulfate and concentrated to obtain 152 g of the following precursor (IV).
  • ⁇ Synthesis Example 2-2 Synthesis of polyurethane polymer (B-3)>
  • m-xylylene diisocyanate (XDI) is used as the diisocyanate compound instead of diphenylmethane diisocyanate
  • 1,3-propane is used as the diol compound instead of the diol compound (b-2).
  • polyurethane (B-3) was obtained.
  • H12MDI 4,4′-methylenebis (cyclohexyl isocyanate)
  • H12MDI 4,4′-methylenebis (cyclohexyl isocyanate)
  • 0.055 g of bismuth catalyst (trade name: Neostan U-600, manufactured by Nitto Kasei Co., Ltd.) was added and stirred at 75 ° C. for 2 hours, and then hydrogenated polyisoprene diol (EPOL: trade name, manufactured by Idemitsu Kosan Co., Ltd.) 8 .4 g of a 20 mL THF solution was added, and the mixture was further heated and stirred for 2 hours.
  • EPOL hydrogenated polyisoprene diol
  • the resulting polymer solution was diluted with 50 mL of THF, and 100 mL of octane was added dropwise over 30 minutes to emulsify the polymer.
  • the obtained emulsion was heated to 100 ° C., and methyl ethyl ketone and THF were distilled off to adjust the concentration, whereby a 10% by mass octane dispersion (B-19L) of polyurethane polymer (B-19) was obtained.
  • the average particle size of the polyurethane polymer (B-19) in this dispersion was 250 nm.
  • Table 1 the components composed of the respective compounds are classified into hard segments, soft segments and hydrocarbon polymers based on the above-mentioned definitions, and are listed in Table 1.
  • “Mole%” in Table 1 indicates the content (mol%) of each component in the polymer.
  • “-” in “compound of each segment” means that each compound is not used, and “-” in the “mol%” column means 0 mol%.
  • “Mw” in Table 1 represents the mass average molecular weight (value measured by the above method) of each synthesized polyurethane polymer. The same applies to the synthesis of the binder (B) (Tables 2 to 5).
  • the obtained polyurethane polymer is represented by the following formula (P-1).
  • “residue” means a compound other than the —OH group and —NCO group, which is a reactive group at the end of the compound among the compounds used in the synthesis of the polyurethane polymer (see Table 1).
  • MDI 4,4′-diphenylmethane diisocyanate
  • XDI p-xylylene diisocyanate
  • TDI 2,4-tolylene diisocyanate
  • IPDI isophorone diisocyanate
  • CHMDI 1,3-di (isocyanatomethyl) cyclohexane
  • H12MDI 4,4′-methylenebis ( (Cyclohexyl isocyanate)
  • HDI hexamethylene diisocyanate
  • 14BG 1,4-butanediol 13PG: 1,3-propanediol
  • EG ethylene glycol
  • DMPA dimethylolpropionic acid
  • DMBA dimethylolbutanoic acid
  • S-1 polyethylene glycol (PEG 600, number average molecular weight 600)
  • S-2 Polytetraethylene glycol (PTEG1000, number average molecular weight 1000)
  • S-3 Polyester polyol (Kuraray polyol
  • polyester polymers used in the examples were synthesized as follows.
  • the obtained polyester polymer is represented by the formula (P-2) described later.
  • ⁇ Synthesis Example 3-1 Synthesis of polyester polymer (B-31)> In a 200 mL three-necked flask, 0.31 g of ethylene glycol (EG), 2.5 g of the diol compound (b-12) synthesized above, 5.0 g of polyethylene glycol 600 (S-1), and polybutadiene diol ( 4.2 g of H-1, polybd R-45HT (trade name) was added and dissolved in 100 mL of THF. This was cooled to 5 ° C. in an ice bath. Thereto, 20 mL of a THF solution of 5.1 g of terephthalic acid dichloride (TPC) was dropped over 30 minutes.
  • TPC terephthalic acid dichloride
  • polyester polymers (B-25) to (B-30)> The polyester polymer (B-31) was synthesized in the same manner as the polyester polymer (B-31) except that the compounds shown in Table 2 were used in the proportions (molar ratio) shown in Table 2 as acid chlorides, diol compounds and / or hydrocarbon polymers. In the same manner as in the synthesis method of -31), polyester polymers (B-25) to (B-30) were synthesized.
  • the obtained polyester polymer is represented by the following formula (P-2).
  • “residue” means a compound other than —COCl group and —OH group, which is a reactive group at the end of the compound among the compounds used in the synthesis of the polyester polymer (see Table 2).
  • TPC terephthalic acid dichloride
  • IPC isophthalic acid dichloride
  • the obtained polyamide polymer is represented by the following formula (P-3).
  • “residue” refers to a —OH group, —COCl group and —— which are reactive groups at the end of the compound among the compounds used in the synthesis of the polyamide polymer (see Table 3). This refers to a partial structure other than the NH 2 group.
  • the resulting polyurea polymer is represented by the following formula (P-4).
  • the “residue” refers to the —OH group, —NH 2 group and the reactive group at the end of the compound among the compounds used in the synthesis of the polyurea polymer (see Table 4).
  • the obtained polyimide polymer is represented by the following formula (P-5).
  • “residue” means an acid anhydride group, —OH group, which is a reactive group at the end of the compound among the compounds used in the synthesis of the polyimide polymer (see Table 5), and A partial structure other than —NH 2 group.
  • 6FDAA 4,4 ′-(2,2-hexafluoroisopropylidene) diphthalic anhydride
  • THFDAA 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid
  • Anhydrous PDAA pyromellitic anhydride
  • CHDAA 1,2,4,5-cyclohexanetetracarboxylic dianhydride
  • 6FPA 2,2-bis (4-aminophenyl) hexafluoropropane
  • DPEA 4,4′-diamino Diphenyl ether
  • Example 1 ⁇ Preparation example of solid electrolyte composition> 180 zirconia beads having a diameter of 5 mm were put into a 45 mL container (manufactured by Fritsch) made of zirconia, and 4.85 g of LPS synthesized as described above, 0.15 g (solid content mass) of binder (B) shown in Table 6, 17.0 g of the dispersion medium shown in FIG. Thereafter, this container was set on a planetary ball mill P-7 manufactured by Fritsch, and mixed for 2 hours at a temperature of 25 ° C. and a rotation speed of 300 rpm. S-1 to S-17 and CS-1 to CS-4 were prepared, respectively. Here, no. S-1 to S-17 are examples of the present invention. CS-1 to CS-4 are comparative examples.
  • LPS The number of the Li—PS—based glass binder (B) synthesized above indicates the number of each polymer synthesized above.
  • BC-1 Fluoropolymer: PVdF-HFP (KYNAR FLEX2800-20: trade name, manufactured by Arkema)
  • BC-2 Hydrocarbon polymer: SBR (styrene butadiene rubber, product code 182907, manufactured by Aldrich)
  • BC-3 Acrylic polymer (polymethyl methacrylate-polymethacrylic acid copolymer (50/50 mol%), product code 376914, manufactured by Aldrich)
  • BC-4 Urethane polymer (addition polymer of diphenylmethane diisocyanate (50 mol%), 1,4-butanediol (30 mol%) and 2,2-dimethylolbutanoic acid (20 mol%), the above synthesis example (Synthesized in the same manner as in in
  • the sheet for an all-solid-state secondary battery was cut into a 10 cm ⁇ 20 cm rectangle.
  • the surface portion of the cut sheet is applied to a 10 mm ⁇ aluminum foil with a load of 1.0 g, and using a continuous load type scratch strength tester “TYPE: 18 / 18L” (manufactured by Shinto Kagaku Co., Ltd.), 5 cm each way.
  • a total of 20 reciprocations were rubbed.
  • the surface of the rubbed sheet is observed with an optical microscope for inspection “Eclipse Ci” (trade name, manufactured by Nikon Corp.) to check for chipping, cracking or cracking of the solid electrolyte layer, and peeling of the solid electrolyte layer from the aluminum foil.
  • the presence or absence was evaluated according to the following criteria. In this test, the evaluation standard “C” or higher is acceptable.
  • E The area of the defect part is the total area to be observed Over 90%
  • the area of the defect portion is the area (projected area) converted to the surface area of the solid electrolyte layer.
  • the area of the defect portion was 0% to 10% or less of the total area to be observed.
  • C The area of the defect portion was the observation target.
  • D The area of the defect part is more than 30% and 90% or less of the total area to be observed E: The area of the defect part is the total area to be observed Over 90%
  • the solid electrolyte-containing sheets c11 to c14 do not have a high balance of scratch resistance, flex resistance and ionic conductivity.
  • Solid electrolyte-containing sheet No. 1 prepared from the composition. It can be seen that all of Nos. 101 to 117 have high levels of scratch resistance, flex resistance and ionic conductivity.
  • Example 2 an electrode sheet for an all-solid-state secondary battery was produced and its performance was evaluated.
  • ⁇ Preparation of composition for electrode layer> Into a 45 mL zirconia container (manufactured by Fritsch), 180 pieces of zirconia beads having a diameter of 5 mm are charged, 2.0 g of LPS synthesized in Example 1, 0.1 g of binder (B), and 22 g of octane as a dispersion medium are charged. did. Thereafter, the container was set on a planetary ball mill P-7 manufactured by Fritsch, and stirred at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • an electrode composition P-1 was obtained.
  • the electrode active material, the binder (B) and / or the dispersion medium, and the amount used thereof were changed as shown in Table 8 except that the electrode composition P- In the same manner as in the preparation of No. 1, electrode compositions P-2 to P-17 and CP-1 to CP-4 were respectively prepared.
  • Electrode sheet for all-solid-state secondary battery Each electrode layer composition obtained above was applied onto a stainless steel foil (current collector) having a thickness of 20 ⁇ m by the above-mentioned Baker type applicator and heated at 80 ° C. for 2 hours to dry each electrode composition. . Thereafter, using a heat press, the electrode layer composition dried to a predetermined density was pressurized (600 MPa, 1 minute) while being heated (120 ° C.). Thus, electrode sheet No. for all-solid-state secondary battery which has an electrode active material layer. P-1 to P-17 and CP-1 to CP-4 were prepared. The film thickness of the electrode active material layer was 100 ⁇ m.
  • LPS The number of the Li—PS—based glass binder (B) synthesized above indicates the number of each polymer synthesized above.
  • NCA LiNi 0.85 Co 0.10 Al 0.05 O 2 nickel cobalt lithium aluminum oxide
  • NMC LiNi 1/3 Co 1/3 Mn 1/3 O 2 nickel manganese lithium cobaltate
  • the solid electrolyte-containing sheet or the electrode sheet for an all-solid secondary battery produced using the solid electrolyte composition of the present invention is high when used for an all-solid secondary battery. It turns out that the outstanding characteristic that an ion conductivity and also the generation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質と、特定の構成成分を有するバインダーとを含有する固体電解質組成物、これを用いた固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、特定の構成成分を有するポリマーと、その非水溶媒分散物、及びジオール化合物。

Description

固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物
 本発明は、固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物に関する。
 全固体リチウムイオン二次電池等の全固体二次電池は、負極と、正極と、負極及び正極の間に挟まれた無機固体電解質(SE:Solid Electrolite)とを有し、両電極間にイオン(例えばリチウムイオン)を往復移動させることにより、充放電を可能とした蓄電池である。上記の全固体二次電池は、無機固体電解質を用いるため、有機電解液が不要となる。その結果、全固体二次電池の製造は、負極又は正極を形成する電極層と無機固体電解質を形成する固体電解質層とを順に積層して行うことができる。また、この方法によれば、各層を大面積化して、成形加工することができる。これにより、全固体二次電池の高出力化ないしは高容量化を実現することができる。
 上述の優位性を持つ全固体二次電池について、更に電極層となる電極シート又は固体電解質層となる固体電解質含有シートの面からの改良が検討されている。
 例えば、無機固体電解質等とバインダーとを含有する固体電解質組成物を用いることにより、バインダーと無機固体電解質等との密着性(結着性)を向上させる方法が提案されている。このようなバインダーとして、特許文献1にはフッ素ゴム(VDF-HFP)が記載されている。特許文献2には、特定の構造単位及び特定の官能基を有する重合体と、液状媒体とを含有するバインダー組成物が記載されている。また、特許文献3にはハードセグメントとソフトセグメントとを有するポリマーが記載されている。
特開2016-25025号公報 国際公開第2012/073678号 特開2015-88480号公報
 本発明者らはこのような固体電解質層を用いる全固体二次電池の工業的製造の見地から検討を進めた。その結果、上述した方法により、全固体二次電池の生産適性を上げ、歩留まりを向上させるためには、上述の密着性だけではなく、固体電解質層の強靭性も重要であることが分かってきた。
 各シートは、通常、製造後に一時的に保管される。そのため、電極層又は固体電解質層がシート裏面に接触しても、電極層又は固体電解質層の表面に傷ないしはヒビ等の欠陥が生じにくい特性(耐傷性)が求められる。また、製造工程中又は製造後にシートを巻芯に、例えば高い曲率で巻き取ることもあり、電極層又は固体電解質層から活物質又は無機固体電解質が脱落しにくい特性(耐屈曲性)も求められる。特に、生産性を考慮して、シートをロール トゥ ロール法で生産する場合、上記特性は重要となる。
 しかし、上記バインダーを用いる技術において、上記特性の向上を目的としてバインダーの使用量を増大させると、使用量の増大に伴って活物質又は無機固体電解質に対しバインダーが被膜化してイオン伝導度を低下させることになる。このように、バインダーを用いる場合、その使用量について、上記特性とイオン伝導度とはトレードオフの関係にある。特許文献1又は2に記載されたフッ素ゴム又はバインダー組成物を用いても十分な改善効果はない。また、特許文献3に記載されたポリマーは、ある程度の改善効果を示すものの、まだ満足できるものではない。
 本発明は、全固体二次電池を構成する固体電解質含有シートの作製に用いることにより、固体電解質含有シートに、耐屈曲性及び耐傷性とイオン伝導度とを高い水準で付与できる固体電解質組成物を提供することを課題とする。本発明は、上述の固体電解質組成物に用いるのに好適な、ポリマーと、その非水溶媒分散物、及びこのポリマーを合成するのに好適なジオール化合物とを提供することを課題とする。
 また、本発明は、上述の固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池、並びに、これらの製造方法を提供することを課題とする。
 本発明者らが鋭意検討した結果、活物質若しくは無機固体電解質と、バインダーとして後述する構成成分を有するポリマーとを組み合わせることにより、上記の工業的な製造において生産性の改善が可能となったばかりでなく、得られる固体電解質含有シートに、高いイオン伝導度を維持したまま、優れた耐屈曲性及び耐傷性を付与できることを見出した。また、この固体電解質含有シートを用いることにより、イオン伝導度が高く、更には短絡の発生を抑制できる全固体二次電池を実現できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(ポリマー)(B)とを含有する固体電解質組成物であって、
 バインダー(B)が、下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する固体電解質組成物。
Figure JPOXMLDOC01-appb-C000008
 式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
 式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
<官能基群>
 カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
<2>La1及びLb1の一方が、単結合、メチレン基又はエチレン基であり、かつLa1及びLb1の他方がメチレン基又はエチレン基である<1>に記載の固体電解質組成物。
<3>La2及びLb2が、いずれも、エチレン基である<1>に記載の固体電解質組成物。
<4>式(1)中の部分構造-L11-A、又は、式(2)中の部分構造-L12-Aが下記式(3)~(7)のいずれかで表される<1>~<3>のいずれか1つに記載の固体電解質組成物。
Figure JPOXMLDOC01-appb-C000009
 式(3)~(7)中、R21~R26は各々独立に水素原子、アルキル基又はアリール基を示す。Lは、炭素数1~18のアルキレン基、炭素数2~20のアルケニレン基若しくは炭素数6~16のアリーレン基、又は、これらの組み合わせを示す。Aはカルボン酸基を示す。n、m及びlは各々独立に0~2の整数である。Xは-O-、-S-又は-N(R)-を示し、Rは水素原子、アルキル基又はアリール基を示す。*は、式(1)中のC原子又は式(2)のN原子との結合部を示す。
<5>バインダー(B)が、ウレタン結合、ウレア結合、アミド結合及びイミド結合から選ばれた少なくとも1種の結合を有するハードセグメントと、数平均分子量300以上の、ポリアルキレンエーテル鎖、ポリエステル鎖、ポリカーボネート鎖及びシリコーン鎖から選ばれた少なくとも1種の鎖を有するソフトセグメントとを有する<1>~<4>のいずれか1つに記載の固体電解質組成物。
<6>バインダー(B)が、炭化水素ポリマーセグメントを有する<1>~<5>のいずれか1つに記載の固体電解質組成物。
<7>バインダー(B)が、平均粒子径10~1000nmの粒子状ポリマーである<1>~<6>のいずれか1つに記載の固体電解質組成物。
<8>分散媒(C)を含有する<1>~<7>のいずれか1つに記載の固体電解質組成物。
<9>活物質(D)を含有する<1>~<8>のいずれか1つに記載の固体電解質組成物。
<10>導電助剤(E)を含有する<1>~<9>のいずれか1つに記載の固体電解質組成物。
<11>無機固体電解質(A)が、硫化物系無機固体電解質である<1>~<10>のいずれか1つに記載の固体電解質組成物。
<12>周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質含有シートであって、
 バインダー(B)が、下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する固体電解質含有シート。
Figure JPOXMLDOC01-appb-C000010
 式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
 式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
<官能基群>
 カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
<13>上記<12>に記載の固体電解質含有シートの製造方法であって、
 無機固体電解質(A)と、バインダー(B)と、分散媒(C)とを含有する固体電解質組成物を基材上に塗布する工程と、塗布した固体電解質組成物を乾燥する工程とを含む固体電解質含有シートの製造方法。
<14>正極活物質層、負極活物質層及び固体電解質層を具備する全固体二次電池であって、
 正極活物質層、負極活物質層及び固体電解質層の少なくとも1つの層が、周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)とバインダー(B)とを含有し、バインダー(B)が下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する全固体二次電池。
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
 式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
<官能基群>
 カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
<15>上記<13>に記載の固体電解質含有シートの製造方法を介して、全固体二次電池を製造する、全固体二次電池の製造方法。
<16>ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれた少なくとも1種の結合を有するポリマーであって、
 下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種の構成成分を有するポリマー。
Figure JPOXMLDOC01-appb-C000012
 式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。-L11-Aは下記式(3)~(7)のいずれかで表される部分構造を示す。
 式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。-L12-Aは下記式(3)~(7)のいずれかで表される部分構造を示す。
Figure JPOXMLDOC01-appb-C000013
 式(3)~(7)中、R21~R26は各々独立に水素原子、アルキル基又はアリール基を示す。Lは炭素数1~18のアルキレン基、炭素数2~20のアルケニレン基若しくは炭素数6~16のアリーレン基、又は、これらの組み合わせを示す。Aはカルボン酸基を示す。n、m及びlは各々独立に0~2の整数である。Xは-O-、-S-又は-N(R)-を示し、Rは水素原子、アルキル基又はアリール基を示す。*は、式(1)中のC原子又は式(2)のN原子との結合部を示す。
<17>上記<16>に記載のポリマーの非水溶媒分散物。
<18>下記式(1M)で表わされる、<16>に記載のポリマー用のジオール化合物。
Figure JPOXMLDOC01-appb-C000014
 式(1M)中、Rはメチル基又はエチル基を示す。
 Xはメチレン基又はカルボニル基を示し、Yは単結合又はカルボニル基を示す。ただし、X及びYがともにカルボニル基となることはない。
 Lは炭素数1~18のアルキレン基又は炭素数6~16のアリーレン基である。
 本発明は、固体電解質含有シートに、耐屈曲性及び耐傷性とイオン伝導度とを高い水準で付与できる固体電解質組成物を提供できる。本発明は、上述の固体電解質組成物に用いるのに好適な、ポリマーと、その非水溶媒分散物、及びこのポリマーを合成するのに好適なジオール化合物とを提供できる。
 また、本発明は、上述の固体電解質組成物を用いた固体電解質含有シート及び全固体二次電池、並びに、これらの製造方法を提供できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 図2は実施例で作製したイオン伝導度測定用試験体を模式的に示す縦断面図である。 図3は実施例で作製した全固体二次電池(コイン電池)を模式的に示す縦断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、単に「アクリル」又は「(メタ)アクリル」と記載するときは、アクリル及び/又はメタアクリルを意味する。また、単に「アクリロイル」又は「(メタ)アクリロイル」と記載するときは、アクリロイル及び/又はメタアクリロイルを意味する。
 本明細書において、化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、この化合物そのものの他、その塩、そのイオンを含む意味に用いる。
 本明細書において、質量平均分子量(Mw)及び数平均分子量(Mn)は、特段の断りがない限り、ゲル浸透クロマトグラフィー(Gel Permeation Chromatography:GPC)によってポリスチレン換算の分子量として計測することができる。このとき、GPC装置「HLC-8220」(商品名、東ソー社製)を用い、カラムとしてG3000HXL+G2000HXL(いずれも商品名、東ソー社製)を用い、測定温度23℃で流量1mL/minで、示差屈折計(RI検出器)により検出することとする。溶離液としては、THF(テトラヒドロフラン)、クロロホルム、NMP(N-メチル-2-ピロリドン)、及び、m-クレゾール/クロロホルム混合液(湘南和光純薬社製)から選定することができる。測定試料が溶解する場合、THFを用いることとする。
[固体電解質組成物]
 本発明の固体電解質組成物は、周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する。
 後述するように、固体電解質組成物中において、無機固体電解質(A)とバインダー(B)とは、互いに遊離(分散)していてもよいが、通常、バインダー(B)中の官能基等と無機固体電解質(A)とが相互作用して、バインダー(B)と無機固体電解質(A)とが密着している。特に後述する本発明の固体電解質含有シート及び本発明の全固体二次電池を形成する固体電解質層等においては、無機固体電解質(A)とバインダー(B)とは密着している。全固体二次電池用電極シート及び活性物層ではバインダー(B)は無機固体電解質(A)の他にも活物質、導電助剤等とも密着していることが好ましい。
 バインダー(B)が無機固体電解質(A)等に密着しているとき、バインダー(B)の官能基は、無機固体電解質(A)等との相互作用の種類によって、(化学的ないしは物理的に)変化することなくそのままで存在していてもよく、また、変化していてもよい。官能基が化学的ないしは物理的に変化したものとしては、例えば活性水素が離脱したアニオン、活性水素が他のカチオンと交換した塩等が挙げられる。無機固体電解質(A)等とバインダー(B)とが密着するための相互作用等については後述する。
 本発明の固体電解質組成物は、上述のように、相互作用により無機固体電解質(A)等とバインダー(B)とが密着して(一体的になって)、後述する所期の作用効果を奏すると、考えられる。
 以下に、好ましい実施形態について説明する。
<(A)無機固体電解質>
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンが解離若しくは遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第一族又は第二族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第一族又は第二族に属する金属のイオン伝導性を有する。本発明の全固体二次電池が全固体リチウムイオン二次電池である場合、無機固体電解質はリチウムイオンのイオン伝導度を有することが好ましい。
 上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。
((i)硫化物系無機固体電解質)
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第一族又は第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
 硫化物系無機固体電解質として、例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
   La1b1c1d1e1 式(I)
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
((ii)酸化物系無機固体電解質)
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第一族又は第二族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に限定されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 また、Li、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 無機固体電解質は粒子であることが好ましい。粒子状の無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 無機固体電解質の固体電解質組成物中の固形成分における含有量は、全固体二次電池に用いたときの界面抵抗の低減と、低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、固体電解質組成物が後述する活物質を含有する場合、固体電解質組成物中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 本明細書において、固形成分(固形分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒以外の成分を指す。
<(B)バインダー>
 本発明の固体電解質組成物は、(B)バインダーを含有する。
 本発明に用いる(B)バインダーは、下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種の構成成分を有するポリマーからなる。このバインダーが有する構成成分は、下記式(1)で表される構成成分の少なくとも1種、下記式(2)で表される構成成分の少なくとも1種、又は、下記式(1)で表される構成成分の少なくとも1種と下記式(2)で表される構成成分の少なくとも1種との組み合わせのいずれであってもよい。バインダーが有する各式で表される構成成分は、それぞれ、1~5種が好ましい。
 (B)バインダーは、上記構成成分をポリマーの分子構造中に有していればよく、主鎖中又は分岐鎖中のいずれに有していてもよい。活物質又は無機固体電解質(これらを合わせて無機粒子ともいう)との結着性の点で、上記構成成分をポリマーの主鎖中に含有していることが好ましい。
 本明細書において、「主鎖」とは、ポリマーにおける全ての分子鎖のうち、主鎖以外の全ての分子鎖が、主鎖に対するペンダントとみなし得る線状分子鎖を意味する。典型的には、ポリマーを構成する分子鎖のうち最長鎖が主鎖である。ただし、ポリマー末端が有する官能基は主鎖に含まない。
 (B)バインダーが縮重合ポリマー又は重付加ポリマーである場合、上記構成成分は、繰り返し単位を形成する1つの構成成分として含有される。
Figure JPOXMLDOC01-appb-C000015
(式(1)で表される構成成分)
 式(1)中、Rは水素原子、アルキル基又はアリール基を示す。
 Rとして採りうるアルキル基は、直鎖アルキル基、分岐アルキル基又は環状アルキル基のいずれでもよく、直鎖アルキル基又は分岐アルキル基が好ましく、直鎖アルキル基がより好ましい。アルキル基の炭素数は、特に限定されず、例えば、1~20であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましい。
 Rとして採りうるアリール基は、特に限定されず、単環のアリール基であっても縮合環のアリール基であってもよく、また炭化水素環からなるアリール基であってもヘテロ環からなるアリール基であってもよい。好ましくは、単環の炭化水素環からなるアリール基、すなわちフェニル基である。アリール基の炭素数は、特に限定されないが、6~18が好ましく、6~12がより好ましく、6~10が更に好ましい。
 Rとしては、水素原子又はアルキル基が好ましく、アルキル基がより好ましい。
 式(1)中、La1及びLb1は、それぞれ、単結合又はアルキレン基を示す。
 La1及びLb1として採りうるアルキレン基は、直鎖アルキレン基、分岐アルキレン基又は環状アルキレン基のいずれでもよく、直鎖アルキレン基又は分岐アルキレン基が好ましく、直鎖アルキレン基がより好ましい。
 アルキレン基の炭素数は、特に限定されず、例えば、1~18であることが好ましく、1~12であることがより好ましく、1~6であることが更に好ましい。La1及びLb1の合計炭素数は、(B)バインダーに組み込まれる態様に応じて、好ましくは上記範囲内となるように、適宜に設定される。例えば、式(1)で表される構成成分をハードセグメントとして有する場合、La1及びLb1の合計炭素数は、後述するハードセグメントに適合するように設定される。この場合、La1及びLb1の合計炭素数は、1~6であることが好ましく、1~4であることがより好ましく、1又は2であることが更に好ましい。
 La1及びLb1として採りうるアルキレン基は、置換基を有しない直鎖アルキレン基が好ましい。すなわち、各式中の酸素原子と、L11が結合する炭素原子とを最短で結合する最小炭素数が上記炭素数と同じであることが好ましい。
 La1及びLb1は、それぞれ、単結合及びアルキレン基の中から選択され、その組み合わせは特に限定されない。合成容易性の点で、好ましくは、La1及びLb1の一方が単結合及びアルキレン基の中から選択され、La1及びLb1の他方がアルキレン基から選択される。より好ましくは、La1及びLb1の一方が、単結合、メチレン及びエチレンの中から選択され、La1及びLb1の他方がメチレン及びエチレンの中から選択される。
 La1及びLb1は、互いに同じ基であっても異なる基であってもよい。
 式(1)中、L11は2価の有機基を示す。2価の有機基としては、特に限定されないが、アルキレン基(炭素数は1~18がより好ましく、1~10が更に好ましい。)、アルケニレン基(炭素数は2~20が好ましく、2~18がより好ましく、2~10が更に好ましい。)、アリーレン基(炭素数は6~16がより好ましく、6~14が更に好ましい。)、ヘテロアリーレン基(炭素数は2~20が好ましい。)、-O-、-S-、-N(R)-若しくは-C(=O)-、又は、これらを組み合わせた基が好ましい。
 より好ましくは、上記アルキレン基、上記アルケニレン基、上記アリーレン基、-O-、-S-、-N(R)-若しくは-C(=O)-、又は、これらを組み合わせた基である。特に好ましくは、後述する式(3)~(7)で表される部分構造のうち「A」を除去した基である。
 2価の有機基を形成する上記アルキレン基は、直鎖アルキレン基及び分岐鎖アルキレン基に加えて、環状アルキレン基(例えば、シクロアルキリデン基(シクロプロピリデン、シクロペンチリデン、シクロヘキシリデン等))、更には、直鎖アルキレン基又は分岐鎖アルキレン基と環状アルキレン基とを組み合わせた基も包含する。ただし、環状アルキレン基の炭素数は3以上が好ましい。また、環状アルキレン基は、環内に不飽和結合を有していてもよい。
 2価の有機基を形成する上記アルケニレン基は、炭素-炭素不飽和結合を形成する炭素原子の2つが結合部となる基の他に、炭素-炭素不飽和結合を形成する炭素原子の少なくとも1つが結合部となる基を包含する。このような基としては、例えば、後述する例示化合物b-29及びb-30において、カルボキシ基が結合するアルキレン基が挙げられる。
 2価の有機基を形成する上記アレーレン基としては、特に限定されず、Rとして採りうるアリール基から水素原子を1つ除去してなる基が挙げられる。
 2価の有機基を形成する上記ヘテロアレーレン基としては、特に限定されないが、環構成原子として、酸素原子、硫黄原子及び窒素原子のいずれか1つを少なくとも有する、5員環又は6員環のヘテロアリーレン基が好ましい。ヘテロアレーレン基は、縮環していてもよく、縮環する環としては、ベンゼン環が好ましい。ヘテロアリーレン基を形成するヘテロアリール環には芳香族環を含む。
 上記Rは、水素原子、アルキル基(炭素数は1~8が好ましい。)又はアリール基(炭素数は6~12が好ましい。)を示す。
 式(1)中、Aは下記官能基群から選ばれる基を示す。
 下記官能基群から選ばれる官能基は、固体電解質組成物中の無機固体電解質、所望により共存する活物質又は導電助剤の表面と化学的又は物理的な相互作用をする。この相互作用は、特に限定されないが、例えば、水素結合によるもの、酸-塩基によるイオン結合によるもの、共有結合によるもの、芳香環によるπ-π相互作用によるもの、又は、疎水-疎水相互作用によるもの等が挙げられる。官能基が相互作用する場合、上述のように、官能基の化学構造は変化しても変化しなくてもよい。例えば、上記π-π相互作用等においては、通常、官能基は変化せず、そのままの構造を維持する。一方、共有結合等による相互作用においては、通常、カルボン酸基等の活性水素が離脱したアニオンとなって(官能基が変化して)固体電解質と結合する。この相互作用により、固体電解質組成物の調製時又は調製中に、(B)バインダーが上述の無機固体電解質等の粒子と吸着することに、寄与する。これらの官能基がバインダー(B)の主鎖から離れて、すなわち連結基(スペーサー)L11又はL12を介して、結合することで、官能基Aの分子運動性が高まり、粒子界面との接触頻度が向上し、形成される相互作用も強大なものとなると考えられる。上記官能基Aは集電体の表面とも相互作用する。
<官能基群>
 カルボン酸基(-COOH)、スルホン酸基(スルホ基:-SOH)、リン酸基(ホスホ基:-OPO(OH)等)、シアノ基、3環以上が縮環した炭化水素環基
 カルボン酸基、スルホン酸基及びリン酸基は、それぞれ、その塩でもよく、エステルでもよい。塩としては、例えば、ナトリウム塩、カルシウム塩等が挙げられる。エステルとしてはアルキルエステル、アリールエステル等が挙げられる。エステルの場合、炭素数1~24が好ましく、1~12がより好ましく、1~6が特に好ましい。
 3環以上が縮環した炭化水素環基は、炭化水素環が3環以上縮環した環基であれば特に限定されない。縮環する炭化水素環としては、飽和脂肪族炭化水素環、不飽和脂肪族炭化水素環及び芳香族炭化水素環(ベンゼン環)が挙げられる。炭化水素環は5員環又は6員環が好ましい。
 3環以上が縮環した炭化水素環基は、少なくとも1つの芳香族炭化水素環を含む3環以上が縮環した環基、又は、飽和脂肪族炭化水素環若しくは不飽和脂肪族炭化水素環が3環以上縮環した環基が好ましい。
 縮環する環数は、特に限定されないが、3~8環が好ましく、3~5環がより好ましい。
 少なくとも1つの芳香族炭化水素環を含む3環以上縮環した環基としては、特に限定されないが、例えば、アントラセン、フェナントラセン、ピレン、テトラセン、テトラフェン、クリセン、トリフェニレン、ペンタセン、ペンタフェン、ペリレン、ピレン、ベンゾ[a]ピレン、コロネン、アンタントレン、コランヌレン、オバレン、グラフェン、シクロパラフェニレン、ポリパラフェニレン又はシクロフェンからなる環基が挙げられる。
 飽和脂肪族炭化水素環若しくは不飽和脂肪族炭化水素環が3環以上縮環した環基としては、特に限定されないが、例えば、ステロイド骨格を有する化合物からなる環基が挙げられる。ステロイド骨格を有する化合物としては、例えば、コレステロール、エルゴステロール、テストステロン、エストラジオール、エルドステロール、アルドステロン、ヒドロコルチゾン、スチグマステロール、チモステロール、ラノステロール、7-デヒドロデスモステロール、7-デヒドロコレステロール、コラン酸、コール酸、リトコール酸、デオキシコール酸、デオキシコール酸ナトリウム、デオキシコール酸リチウム、ヒオデオキシコール酸、ケノデオキシコール酸、ウルソデオキシコール酸、デヒドロコール酸、ホケコール酸又はヒオコール酸の化合物からなる環基が挙げられる。
 3環以上が縮環した炭化水素環基としては、上記の中でも、コレステロール環構造を有する化合物からなる環基又はピレニル基がより好ましい。
 官能基としては、上記の中から適宜に選択されるが、活物質との結着性の点で、固体電解質組成物が正極活物質を含有する場合、カルボン酸基、スルホン酸基、リン酸基又はシアノ基が好ましく、固体電解質組成物が負極活物質を含有する場合、3環以上が縮環した炭化水素環基が好ましい。
 官能基としては、活物質にかかわらず高い結着性を示す点で、カルボン酸基、スルホン酸基又はリン酸基が好ましく、カルボン酸基がより好ましい。
 官能基は、上述の無機粒子と相互作用して、これらの粒子とバインダー(B)とを吸着させる機能を奏する。
(式(2)で表される構成成分)
 式(2)中、La2及びLb2は、それぞれ、炭素数2以上のアルキレン基を示す。
 La2及びLb2として採りうるアルキレン基は、炭素数が2以上であること以外は、La1及びLb1として採りうるアルキレン基と同義であり、好ましい範囲も同じである。ただし、La2及びLb2の合計炭素数は、4~12であることが好ましく、4~8であることがより好ましく、4であることが更に好ましい。La2及びLb2として採りうるアルキレン基は、置換基を有しない直鎖アルキレン基であることが好ましい。
 La2及びLb2として採りうるアルキレン基の組み合わせは、特に限定されず、互いに同じ基であっても異なる基であってもよい。La2及びLb2として採りうるアルキレン基は、ともにエチレンである組み合わせが好ましい。
 式(2)中、L12は2価の有機基を示す。L12として採りうる2価の有機基としては、L11として採りうる上述の2価の有機基と同義であり、好ましいものも同じである。ただし、L12として採りうる2価の有機基としては、式(2)中の窒素原子と、官能基Aとを最短で結合する原子数が2以上であることが好ましい。例えば、L12としてアルキレン基を採る場合、アルキレン基は炭素数が2以上であるものが好ましい。
 式(2)中、Aは上記官能基群から選ばれる基を示し、上記式(1)中のAと同義であり、好ましいものも同じである。
 上記式(1)で表される構成成分及び下記式(2)で表される構成成分において、式(1)中の部分構造-L11-A、又は、式(2)中の部分構造-L12-Aは、下記式(3)~(7)のいずれかで表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(3)~(7)中、R21~R26は、それぞれ、水素原子、アルキル基又はアリール基を示す。
 R21~R26は水素原子又はアルキル基(特に、炭素数1~4のアルキル基)が好ましく、水素原子がより好ましい。
 式(3)~(7)中、Lは、炭素数1~18のアルキレン基、炭素数2~20のアルケニレン基、炭素数6~16のアリーレン基、又は、これらの組み合わせを示す。Lとして採りうる、アルキレン基、アルケニレン基及びアリーレン基は、それぞれ、L11として採りうる、アルキレン基、アルケニレン基及びアリーレン基と同義であり、好ましいものも同じである。
 ただし、式(3)~式(7)中のLとして採りうるアルキレン基及びアルケニレン基は、それぞれ、炭素鎖内に、ヘテロ原子又はヘテロ原子を含む基を含んでいてもよい点で、L11として採りうるアルキレン基及びアルケニレン基と相違する。ヘテロ原子、及び、ヘテロ原子を含む基におけるヘテロ原子としては、特に限定されないが、酸素原子、硫黄原子又は窒素原子が挙げられる。ヘテロ原子を含む基としては、これらのヘテロ原子を少なくとも1つ有する基であれば特に限定されず、例えば、-N(R)-、-C(=O)-、-C(=O)-O-、又は-C(=O)N(R)-が挙げられる。Rは上記の通りである。
 式(3)~(7)中、Aはカルボン酸基を示す。
 式(3)~(5)中、n、m及びlは、それぞれ、0~2の整数である。
 nは、1が好ましい。mは、0が好ましい。lは、0又は1が好ましい。
 式(3)~(6)中、Xは、-O-、-S-又は-N(R)-を示す。
 式(3)中のXは-O-が好ましい。式(5)中のXは-O-又は-S-が好ましく、-S-がより好ましい。式(6)中のXは-O-が好ましい。
 Rは、水素原子、アルキル基又はアリール基を示し、上記の通りである。
 式(3)~(7)中、*は、上記式(1)中の、L11が結合する炭素原子、又は、上記式(2)の、L12が結合する窒素原子との結合部を示す。
 式(1)で表される構成成分及び式(2)で表される構成成分の具体例を、その前駆体であるジオール化合物(各式における結合手に水素原子が結合した化合物)として、以下に示す。本発明において、式(1)で表される構成成分及び式(2)で表される構成成分は、下記の例示化合物由来の構成成分に限定されない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記(B)バインダーは、上述の構成成分を少なくとも1種含有するものであれば特に限定されない。好ましくは、(B)バインダーは、上述の構成成分と、ウレタン結合、ウレア結合、アミド結合及びイミド結合の少なくとも1種の結合とを有する。バインダーが有する結合の種類は1~5種が好ましい。
 上記の結合は、ポリマーの主鎖中に含まれる限り特に制限されるものでなく、繰り返し単位を形成する構成成分を結合する結合として繰り返し単位中に含まれる態様及び/又は異なる繰り返し単位同士を結合する結合として含まれる態様のいずれでもよい。ただし、上記の結合は、後述する炭化水素ポリマーセグメントの主鎖中に含まれることはない。
 (B)バインダーは、より好ましくは、ハードセグメントと、ソフトセグメントとを有する。
(ハードセグメント)
 ハードセグメントとは、セグメント中の主鎖に、芳香族基若しくは複素芳香族基、若しくは脂肪族脂環式基といった剛直な基、又は、分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする結合部を有するセグメントをいい、一般的に剛直性を備え凝集力が強くかつ繊維形態を有するセグメントである。また、上述のような剛直な基等を有していなくても、直鎖状若しくは分岐状の脂肪族炭化水素基であって下記の分子量を満たすセグメントもハードセグメントに分類する。このようなハードセグメントを形成する化合物を短鎖化合物(例えば短鎖ジオール)という。ハードセグメントは、それを形成する部分構造を持つ化合物の分子量に着目すると、300未満のものをいう。
 ハードセグメントとしては、上述の特性を有するものであれば、特に限定されないが、ウレタン結合、ウレア結合、アミド結合及びイミド結合から選ばれる少なくとも1種の結合を有することが好ましい。
 ハードセグメントは下記I群から選ばれるセグメント(基)が更に好ましい。下記式において、*は結合部を表す。
Figure JPOXMLDOC01-appb-C000023
 式(I-1)及び(I-2)中、RH1及びRH2は各々独立にアルキレン基(炭素数は、1~18が好ましく、2~18がより好ましく、4~13が更に好ましい)、アリーレン基(炭素数は、6~16が好ましく、6~10がより好ましい)、又はその組み合わせを表す。なお、式(I-2)が酸素原子又はイミノ基(>NR)に連結していくことで、ウレタン基又はウレア基になる。Rは水素原子又はアルキル基(炭素数は、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)を表す。
 式(I-3)中、RH3は芳香族若しくは脂肪族の4価の連結基を表す。RH3は下記の式(i)~(iix)のいずれかで表される連結基が好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(i)~(iix)中、Xは単結合又は2価の連結基を表す。2価の連結基としては、炭素数1~6のアルキレン基(例えば、メチレン、エチレン、プロピレン)が好ましい。プロピレンとしては、1,3-ヘキサフルオロ-2,2-プロパンジイルが好ましい。Lは-CH=CH-又は-CH-を表す。R及びRは各々独立に、水素原子又は置換基を表す。下記式において、*はカルボニル基との結合部位を表す。
 R及びRとして採りうる置換基としては、アルキル基(炭素数は、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)又はアリール基(炭素数は、6~22が好ましく、6~14がより好ましく、6~10が更に好ましい)が挙げられる。
(ソフトセグメント)
 ソフトセグメントは、主鎖に長鎖直線状基又は長鎖分岐基を有するセグメントをいい、一般的に、柔らかく、伸縮性を有するセグメントである。ソフトセグメントは、上述の特性を有するものであれば、特に限定されないが、数平均分子量が300以上の鎖であって、ポリアルキレンオキシド鎖(ポリアルキレンエーテル鎖ともいい、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖及びシリコーン鎖の少なくともいずれかの鎖を含有することが好ましい。ソフトセグメントは下記II群から選ばれる基がより好ましい。下記式において、*は結合部位を表す。
Figure JPOXMLDOC01-appb-C000025
 式(II-1)~(II-5)中、R21は水素原子又はアルキル基(炭素数は、1~12が好ましく、1~6がより好ましく、1~3が更に好ましい)を表す。
 R22は、ポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖又はシリコーン鎖を含有する数平均分子量300以上200,000以下の置換基を表す。数平均分子量は、500以上が好ましく、700以上がより好ましく、1,000以上が更に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。
 R22は、末端にアルキル基(炭素数は、1~12が好ましく、1~6がより好ましい)を有することが好ましい。また、アルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR)を有していてもよい。Rは上述の通りである。
 また、R22は下記ヘテロ原子含有基、又は炭素-炭素不飽和基を有していてもよい。
 へテロ原子含有基としては、アルコール性水酸基(ヒドロキシアルキル基:炭素数は、1~6が好ましく、1~3がより好ましい。)、フェノール性水酸基(ヒドロキシフェニル基)、メルカプト基、カルボキシ基、スルホ基、スルホンアミド基、リン酸基、シアノ基、アミノ基、双性イオン含有基、金属ヒドロキシド基及び金属アルコキシド基の少なくともいずれかであることが好ましい。ここで、アミノ基は-N(Rで表され、Rは上述の通りである。双性イオン含有基は、具体的には、ベタイン構造(炭素数は、1~12が好ましく、1~6がより好ましい。)であり、カチオン部分は4級アンモニウム、スルホニウム、ホスホニウムが挙げられ、アニオン部はカルボキシレート、スルホネートが挙げられる。金属ヒドロキシドは、具体的には、ヒドロキシルシリル基、ヒドロキシルチタニル基である。金属アルコキシドは、具体的には、アルコキシシリル基(炭素数は、1~12が好ましく、1~6がより好ましい。)、アルコキシチタニル基(炭素数は、1~12が好ましく、1~6がより好ましい。)が好ましく、より具体的には、トリメトキシシリル基、メチルジメトキシシリル基、トリエトキシシリル基、メチルジエトキシシリル基、トリメトキシチタニル基である。
 炭素-炭素不飽和基として、炭素-炭素二重結合又は炭素炭-素三重結合が挙げられる。炭素-炭素二重結合を含む基として、具体的には、アクリル基、メタクリル基、ビニル基、アリル基、マレイミド基等が挙げられる。炭素-炭素三重結合として、具体的には、エチニル基、プロパルギル基等が挙げられる。
 R23は、ポリアルキレンオキシド鎖(ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖が好ましい)、ポリカーボネート鎖、ポリエステル鎖又はシリコーン鎖を含有する数平均分子量300以上200,000以下の連結基である。数平均分子量は、500以上が好ましく、700以上がより好ましく、1,000以上が更に好ましい。上限としては、100,000以下が好ましく、10,000以下がより好ましい。
 R23は、末端にアルキル基(炭素数は、1~12が好ましく、1~6がより好ましい)を有することが好ましい。また、アルキル基中に、エーテル基(-O-)、チオエーテル基(-S-)、カルボニル基(>C=O)、イミノ基(>NR)を有していてもよい。Rは上述の通りである。また、R23は上述のヘテロ原子含有基又は炭素-炭素不飽和基を有していてもよい。
 なお、R22及びR23の数平均分子量は、ポリマーに組み込む前のモノマーについてGPCにおけるポリスチレン換算の数平均分子量として求めることができる。
 (B)バインダーが有するハードセグメントとソフトセグメントとの組み合わせは、特に限定されず、ウレタン結合、ウレア結合、アミド結合又はイミド結合を有するハードセグメントの少なくとも1種と、上記のポリアルキレンエーテル鎖、ポリエステル鎖、ポリカーボネート鎖又はシリコーン鎖を有するソフトセグメントの少なくとも1種との組み合わせが挙げられる。
(炭化水素ポリマーセグメント)
 (B)バインダーは、炭化水素ポリマーセグメントを主鎖に有することも好ましい。
 炭化水素ポリマーセグメントとは、炭素原子及び水素原子から構成される炭化水素のオリゴマー又はポリマー(以下、炭化水素ポリマーとも称す。)からなるセグメントを意味し、厳密には、炭素原子及び水素原子から構成されるポリマーの少なくとも2つの原子(例えば、水素原子)又は基(例えば、メチル基)が脱離した構造を意味する。
 炭化水素ポリマーセグメントにおいて、ポリマー末端に有し得る、上記ハード又はソフトセグメント等との結合のための官能基は、炭化水素ポリマーセグメントには含まれないものとする。
 炭化水素ポリマーは、少なくとも2個以上の繰り返し単位が連なった構造を有するポリマーである。また、炭化水素ポリマーは、少なくとも50個以上の炭素原子から構成されることが好ましい。
 この炭化水素ポリマーセグメントは、その(数平均)分子量等によっては、ハードセグメントにもソフトセグメントにも包含されるものであるが、本発明においては、オリゴマー又はポリマーからなるセグメントである点で、上記の各セグメントと区別される。
 炭化水素ポリマーセグメントの数平均分子量は、(B)バインダーの粒子分散性を向上させ、微細な粒子を得る点から、1,000以上1,000,000未満が好ましく、1,000以上100,000未満がより好ましく、1,000以上10,000未満が更に好ましい。
 炭化水素ポリマーとしては、炭素-炭素不飽和結合を有していてもよく、脂肪族環及び/又は芳香族環の環構造を有していてもよい。すなわち、炭化水素ポリマーは、脂肪族炭化水素及び芳香族炭化水素から選択される炭化水素で構成される炭化水素ポリマーであればよい。柔軟性を有し、かつポリマー粒子として存在する場合の立体反発の効果を示す点からは、脂肪族炭化水素で構成される炭化水素ポリマーが好ましい。この炭化水素ポリマーは、その主鎖中に環構造を有しないことが好ましく、直鎖又は分岐鎖の脂肪族炭化水素のオリゴマー又はポリマーであるものがより好ましい。
 上記炭化水素ポリマーは、エラストマーであることが好ましく、具体的には、主鎖に二重結合を有するジエン系エラストマー、及び、主鎖に二重結合を有しない非ジエン系エラストマーが挙げられる。ジエン系エラストマーとしては、例えば、スチレン-ブタジエンゴム(SBR)、スチレン-エチレン-ブタジエンゴム(SEBR)、ブチルゴム(IIR)、ブタジエンゴム(BR)、イソプレンゴム(IR)及びエチレン-プロピレン-ジエンゴム等が挙げられる。非ジエン系エラストマーとしては、エチレン-プロピレンゴム及びスチレン-エチレン-ブチレンゴム等のオレフィン系エラストマー、並びに、上記ジエン系エラストマーの水素還元エラストマーが挙げられる。
 (B)バインダーを合成する点から、炭化水素ポリマーは、ポリマー末端に上述のセグメント等との結合のための官能基を有することが好ましく、縮重合可能な官能基を有することがより好ましい。縮重合又は重付加可能な官能基としては、ヒドロキシ基、カルボキシ基、アミノ基、スルファニル基及び酸無水物等が挙げられ、中でもヒドロキシ基が好ましい。
 ポリマー末端に縮重合可能な官能基を有する炭化水素ポリマーとしては、例えば、いずれも商品名で、NISSO-PBシリーズ(日本曹達(株)製)、クレイソールシリーズ(巴工業(株)製)、PolyVEST-HTシリーズ(エボニック(株)製)、poly-bdシリーズ(出光興産(株)製)、poly-ipシリーズ(出光興産(株)製)、EPOL(出光興産(株)製)及びポリテールシリーズ(三菱化学(株)製)等が好適に用いられる。
 (B)バインダー中の、ソフトセグメントの含有量は、ポリマーの全質量に対しては、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上が更に好ましい。上限としては、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下が更に好ましい。
 (B)バインダー中の、ソフトセグメントの含有量は、ポリマーの全モル数に対しては、1mol%以上が好ましく、2mol%以上がより好ましく、5mol%以上が更に好ましい。上限としては、50mol%以下が好ましく、30mol%以下がより好ましく、20mol%以下が更に好ましい。
 (B)バインダー中の、ハードセグメントの含有量は、ポリマーの全質量に対しては、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上が更に好ましい。上限としては、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましい。
 (B)バインダー中の、ハードセグメントの含有量は、ポリマーの全モル数に対しては、50mol%以上が好ましく、60mol%以上がより好ましく、70mol%以上が更に好ましい。上限としては、99mol%以下が好ましく、90mol%以下がより好ましく、80mol%以下が更に好ましい。
 (B)バインダー中の、炭化水素ポリマーセグメントの含有量は、ポリマーの全質量に対して、0質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、20質量%以上が特に好ましい。上限としては、80質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下が更に好ましく、30質量%以下が特に好ましい。
 (B)バインダー中の、炭化水素ポリマーセグメントの含有量は、ポリマーの全モル数に対しては、0モル%以上が好ましく、0.05mol%以上がより好ましく、0.1mol%以上が更に好ましく、0.2mol%以上が特に好ましい。上限としては、10mol%以下がより好ましく、5mol%以下が更に好ましく、3mol%以下が特に好ましい。
 各セグメントを上記の範囲で調整することにより、本発明における耐傷性と耐屈曲性を満足するポリマーの力学物性を与え、更に固体電解質組成物中や固体電解質含有シート中、全固体電池中でのバインダーの均一分散性が得られるという効果が得られ、好ましい。
 (B)バインダーにおいて、上記式(1)又は式(2)で表される構成成分の含有量は、本発明の効果の点で、ポリマーの全質量に対しては、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上が更に好ましい。上限としては、30質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が更に好ましい。
 (B)バインダーにおいて、上記式(1)又は式(2)で表される構成成分の含有量は、本発明の効果の点で、ポリマーの全モル数に対しては、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。上限としては、50モル%以下が好ましく、40モル%以下がより好ましく、30モル%以下が更に好ましい。
 (B)バインダーにおいて、上記式(1)又は式(2)で表される構成成分がハードセグメントに相当する場合、上記式(1)又は式(2)で表される構成成分の含有量は、全ハードセグメントの全質量に対しては、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上が更に好ましい。上限としては、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下が更に好ましい。
 上記式(1)又は式(2)で表される構成成分がハードセグメントに相当する場合、上記式(1)又は式(2)で表される構成成分の含有量は、ハードセグメントの全モル数に対しては、7モル%以上が好ましく、13モル%以上がより好ましく、20モル%以上が更に好ましい。上限としては、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。
 バインダー(B)としては、上記式(1)で表される構成成分又は上記式(2)で表される構成成分を含み、かつウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれた少なくとも1種の結合を有するバインダー(B)(以下、本発明のポリマーと称する。)が好ましい。
 本発明のポリマーが含有する上記各式で表される構成成分は、少なくとも1種であればよく、各構成成分中の部分構造-L11-A、及び、部分構造-L12-Aは、それぞれ、上述の式(3)~(7)のいずれかで表される部分構造であることが好ましい。
 また、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれた少なくとも1種の結合は、それぞれ、上述のハードセグメント又はソフトセグメント中に含まれることが好ましい。
(吸着性官能基)
 バインダー(B)は、吸着性官能基を有することも好ましい。吸着性官能基は、式(1)及び式(2)で表される構成成分以外のポリマー主鎖に存在していてもよい。吸着性官能基は無機固体電解質、活物質、導電助剤等の無機粒子と相互作用して結着性を高めることができる。このような官能基としては、特開2015-88480号公報の段落[0059]に記載の「第三成分」が有する「ヘテロ原子含有基」が挙げられる。
(架橋性官能基)
 本発明に用いられる(B)バインダーは、ラジカル重合反応、カチオン重合反応又はアニオン重合反応により架橋構造を形成することが可能な官能基(以下、架橋性官能基とも称す。)を有することも好ましい。上記架橋性官能基同士が反応して結合を形成することにより、本発明に用いられる(B)バインダーは、ポリマー粒子内又はポリマー粒子間で架橋された構造を生じ、強度を向上することができる。
 上記架橋性官能基としては、炭素-炭素不飽和結合を有する基及び/又は環状エーテル基が好ましい。炭素-炭素不飽和結合を有する基は、ラジカル重合反応により架橋構造を形成することが可能な基であればよい。炭素-炭素不飽和結合を有する基としては、具体的には、アルケニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アルキニル基(炭素数は2~12が好ましく、2~8がより好ましい。)、アクリロイル基及びメタクリロイル基が好ましく挙げられ、ビニル基、アリル基、エチニル基、プロパルギル基、アクリロイル基、メタクリロイル基及び2-トリフルオロメチルプロペノイル基がより好ましく挙げられる。環状エーテル基は、カチオン重合反応により架橋構造を形成することが可能であり、具体的には、エポキシ基及びオキセタニル基が好ましく挙げられる。
 すなわち、本発明に用いられる(B)バインダーは、下記官能基群(I)から選択される官能基を少なくとも1つ有することが好ましい。
 <官能基群(I)>
炭素-炭素不飽和結合を有する基、エポキシ基及びオキセタニル基
 炭素-炭素不飽和結合を有する基としては、上記の基が好ましく挙げられ、中でも、ビニル基、エチニル基、アクリロイル基、メタクリロイル基又は2-トリフルオロメチルプロペノイル基が好ましい。
 (B)バインダーは、上記架橋性官能基を炭化水素ポリマーセグメント以外に有することが好ましく、ハードセグメント又はソフトセグメント中に有することがより好ましい。なお、炭化水素ポリマー中に炭素-炭素不飽和結合を有する場合(例えば、ポリブタジエン及びポリイソプレン)には、炭素原子及び水素原子から構成される架橋性官能基(例えば、ビニル基及びプロペニル基)は、炭化水素ポリマーセグメント中に存在し得る。
 (B)バインダー中における上記架橋性官能基の含有量は、特に制限されるものではないが、(B)バインダーを構成する全繰り返し単位中、上記架橋性官能基を有する繰り返し単位の割合は、1~50mol%が好ましく、5~20mol%がより好ましい。
 上記架橋性官能基同士の反応は、本発明の固体電解質組成物中に、各架橋性官能基に対応する重合開始剤(ラジカル、カチオン又はアニオン重合開始剤)を含有させておき、これらの重合開始剤により反応させてもよく、また、電池駆動時の酸化還元反応により反応させてもよい。なお、ラジカル重合開始剤は、熱によって開裂して開始ラジカルを発生する熱ラジカル重合開始剤、及び、光、電子線又は放射線で開始ラジカルを生成する光ラジカル重合開始剤のいずれでもよい。
 本発明の固体電解質組成物が含有してもよい重合開始剤としては、常用される重合開始剤を特に制限することなく用いることができる。
(バインダー(B)の合成方法)
 バインダー(B)の合成方法について、以下に説明する。
 バインダー(B)は、例えば下記化合物を任意に組み合わせて縮重合又は重付加させることで、合成することができる。このとき、上記式(1)で表される構成成分又は上記式(2)で表される構成成分を主鎖中に組み込むには、これら構成成分を導く化合物を用いる。例えば、上記式(1)で表される構成成分を導く化合物として、後述する下記式(1M)で表されるジオール化合物が好適に挙げられる。
 (B)バインダーの合成に用いられる化合物は、例えば、特開2015-88480号公報の段落[0067]~[0100]に記載の、アミド結合を有するポリマー、イミド結合を有するポリマー、ウレタン結合を有するポリマー及びウレア結合を有するポリマーの項で記載されており、これらを好適に用いることができる。
 ウレタン結合を有するポリマーは、ジイソシアネート化合物とジオール化合物との重付加によって、得られる。
 ジイソシアネート化合物については、特開2015-88480号公報の段落[0073]~[0084]に記載の化合物等が挙げられ、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(TDI)、p-キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、1,3-ジ(イソシアネートメチル)シクロヘキサン(CHMDI)又は4,4’-メチレンビス(シクロヘキシルイソシアネート(H12MDI)が好ましい。
 ジオール化合物については、特開2015-88480号公報の段落[0094]~[0099]に記載の化合物等が挙げられ、アルキレングリコール、アルコール化合物又は芳香族フェノール化合物、オリゴマージオール、ポリエステルジオール化合物、ポリカーボネートジオール、シリコーンジオールが好ましく、エチレングリコール、1,4-ブタンジオール、1,3-プロパンジオール、ジメチロールプロピオン酸、ジメチロールブタン酸、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラエチレングリコール又はポリカーボネートジオールがより好ましい。
 ウレタン結合を有するポリマーにおいては、ジイソシアネート化合物からなる構成成分がハードセグメントとして、ジオール化合物からなる構成成分がソフトセグメントとして機能することが好ましい。
 ウレタン結合を有するポリマーの場合、重合停止剤としてモノアルコール又はモノアミンを用いることができる。重合停止剤は主鎖の末端部位に導入される。ソフトセグメントを末端に導入する方法として、ポリアルキレングリコールモノアルキルエーテル(ポリエチレングリコールモノアルキルエーテル、ポリプロピレンモノアルキルエーテルが好ましい)、ポリカーボネートジオールモノアルキルエーテル、ポリエステルジオールモノアルキルエーテル、ポリエステルモノアルコールなどを用いることができる。
 ウレア結合を有するポリマーは、ジイソシアネート化合物とジアミン化合物との縮重合によって得られる。ジイソシアネート化合物は上述のジイソシアネート化合物が挙げられる。ジアミン化合物としては、特開2015-88480号公報の段落[0068]に記載の化合物等が挙げられ、1,4-ブタンジアミン、1,3-プロパンジアミン、エチレンジアミン、1,4-シクロヘキサンジアミン又はイソホロンジアミンが好ましい。
 アミド結合を有するポリマーは、ジアミン化合物とジカルボン酸化合物又はジカルボン酸クロリド化合物との縮重合、又は、ラクタムの開環重合によって、得られる。ジアミン化合物は前述の通りである。ジカルボン酸化合物又はジカルボン酸クロリド化合物としては、特開2015-88480号公報の段落[0069]に記載の化合物が挙げられ、テレフタル酸若しくはイソフタル酸、又は、これらカルボン酸の酸クロリドに対応したものが好ましい。
 イミド結合を有するポリマーは、テトラカルボン酸二無水物とジアミン化合物との付加重合によって、得られる。テトラカルボン酸二無水物としては、特開2015-88480号公報の段落[0086]に記載の化合物が挙げられ、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物(THFDAA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(CHDAA)、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDAA)等が好ましい。
 イミド結合を有するポリマーに用いるジアミン化合物は特開2015-88480号公報[0087]~[0090]に記載の化合物が挙げられる。
 エステル結合を有するポリマーは、ジカルボン酸化合物又はジカルボン酸クロリド化合物とジオール化合物との縮合により得られる。ジカルボン酸又はジカルボン酸クロリド及びジオール化合物の具体例は上述の通りである。
 下記式(1M)で表わされるジオール化合物について説明する。このジオール化合物を用いると、得られるポリマーの主鎖中に、上記式(1)で表される構成成分を組み込むことができる。すなわち、このジオール化合物は、ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれた少なくとも1種の結合を有するポリマーであって、上述の構成成分を有するポリマーを合成するのに好適に用いられるが、その用途は特に限定されない。
 下記式(1M)で表わされるジオール化合物は、式(1)中の部分構造-L11-Aが上記式(3)、(5)、(6)及び(7)のいずれかで表される構成成分を形成可能な化合物である。
Figure JPOXMLDOC01-appb-C000026
 式(1M)中、Rはメチル基又はエチル基を示す。
 Xは、メチレン基又はカルボニル基を示し、Yは単結合又はカルボニル基を示す。ただし、X及びYがともにカルボニル基となることはない。
 Lは、炭素数1~18のアルキレン基又は炭素数6~16のアリーレン基である。Lとして採りうるアルキレン基及びアリーレン基は、式(3)におけるLと同義であり、好ましいものも同じである。
 上記式(1M)で表されるジオール化合物は、上記式(1)で表される構成成分の具体例として例示されているが、本発明はこれらに限定されない。
 上記式(1)で表される構成成分及び上記式(2)で表される構成成分を導くジオール化合物、並びに、上記式(1M)で表されるジオール化合物は、通常の合成方法により、合成できる。例えば、その一般的な合成方法として、多価アルコール化合物中のヒドロキシ基を必要により保護してから、求核性残基(ヒドロキシ基、カルボキシ基、アミノ基又はチオール基)を、ハロゲン化合物、酸ハロゲン化合物、エステル化合物又は酸無水物に、求核置換反応又は求核付加反応させて連結基を形成する方法、2つのヒドロキシ基を有するチオール化合物を不飽和結合とラジカル付加又はアニオン付加させて連結基を形成する方法が挙げられる。また、エポキシド化合物に連結基を形成させた後にエポキシドを水で開環させてジオールを得る方法等が挙げられる。
 また、2価の有機基(式(1)中のL11及び式(2)中のL12)の形成方法としては、特開2008-268744の段落[0092]及び段落[0093]に記載の方法により、3級エステルを酸脱保護することなどでも、得られる。
 本明細書において、置換又は無置換を明記していない化合物、部分構造ないし基については、その化合物、部分構造ないし基に適宜の置換基を有していてもよい意味である。
 化合物、置換基及び連結基等がアルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基及び/又はアルキニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、置換されていても無置換でもよい。
 (B)バインダーは、上記式(1)又は(2)で表される構成成分を有していれば、各セグメントの結合様式は特に限定されない。例えば、上記構成成分と、所望によりハードセグメントと、所望によりソフトセグメントと、所望により炭化水素ポリマーセグメントとの、ランダム重合体又はブロック共重合体(縮重合型ないしは重付加型のセグメント化ポリマー)でもよい。後述の転相乳化法により(B)バインダーの粒子を形成する観点からは上記セグメント化ポリマーが好ましい。
 上述のバインダー(B)は、例えば、後述する実施例で合成したポリマー構造を示す式で表わすことができる。
 (B)バインダーの分子構造は、特に限定されず、線状ポリマー(直鎖状ポリマー)、グラフトポリマー、デンドリマー、星型ポリマー、粒子状ポリマー等の種々の構造を取ることができる。中でも、線状ポリマー又はブランチポリマーが好ましく、線状ポリマーがより好ましい。線状ポリマーであると、後述の転相乳化法によりポリマー粒子を形成しやすくなる。
 ここで、線状ポリマーとは、完全に分岐構造を有さないポリマーだけでなく、主鎖の他に短分子鎖を有する略直鎖状ポリマーを含む。短分子鎖を有する程度は、本発明の効果を損なわない範囲であればよく、例えば、後述の転相乳化法により粒子を形成することが可能な範囲が挙げられる。線状ポリマーは、主鎖の他にグラフト鎖を有しない点で、グラフトポリマーとは異なる。
 本発明に用いられる(B)バインダーの形状は特に限定されず、固体電解質組成物、固体電解質含有シート又は全固体二次電池中において、粒子状であっても不定形状であってもよい。
 本発明において、(B)バインダーが分散媒に対して不溶の粒子であることが、固体電解質組成物の分散安定性の観点、及び、高いイオン伝導性を有する全固体二次電池を得られる観点から好ましい。ここで、「(B)バインダーが分散媒に対して不溶の粒子である」とは、30℃の分散媒に添加し、24時間静置しても、平均粒子径が5%以上低下しないことを意味し、3%以上低下しないことが好ましく、1%以上低下しないことがより好ましい。
 なお、(B)バインダーの粒子が分散媒に全く溶解していない状態では、添加前に対する平均粒子径の上記変化量は0%である。
 また、固体電解質組成物中における(B)バインダーは、無機固体電解質等の粒子間イオン伝導性の低下抑制のため、粒子状であることが好ましく、平均粒子径は、10~1000nmが好ましく、100~500nmがより好ましい。
 本発明に用いられる(B)バインダー粒子の平均粒子径は、特に断らない限り、以下に記載の測定条件及び定義に基づくものとする。
 バインダー粒子を任意の溶媒(固体電解質組成物の調製に用いる分散媒。例えば、オクタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、得られた体積平均粒子径を平均粒子径とする。その他の詳細な条件等は必要によりJIS Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製して測定し、その平均値を採用する。
 なお、作製された全固体二次電池からの測定は、例えば、電池を分解し電極を剥がした後、その電極材料について上記ポリマー粒子の平均粒子径の測定方法に準じてその測定を行い、あらかじめ測定していたポリマー粒子以外の粒子の平均粒子径の測定値を排除することにより行うことができる。
 (B)バインダーの質量平均分子量は、5,000以上5,000,000未満が好ましく、5,000以上500,000未満がより好ましく、5,000以上50,000未満が更に好ましい。
 また、(B)バインダーは、固体の状態で使用してもよいし、ポリマー粒子分散液又はポリマー溶液の状態で用いてもよい。
 (B)バインダーの固体電解質組成物中の含有量は、無機粒子との結着性と、イオン伝導度の両立の点で、固形成分100質量%において、0.1~20質量部であることが好ましく、0.2~10質量部であることがより好ましく、0.5~5質量部であることが更に好ましい。
<(C)分散媒>
 本発明の固体電解質組成物は、固形成分を分散させるため分散媒を含有することが好ましい。
 分散媒体は、上記の各成分を分散させるものであればよく、例えば、各種の有機溶媒が挙げられる。分散媒の具体例としては下記のものが挙げられる。
 アルコール化合物溶媒としては、例えば、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-ブタノール、エチレングリコール、プロピレングリコール、グリセリン、1,6-ヘキサンジオール、1,3-ブタンジオール及び1,4-ブタンジオールが挙げられる。
 エーテル化合物溶媒としては、アルキレングリコールアルキルエーテル(エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、テトラヒドロフラン及びジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)が挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミド及びヘキサメチルホスホリックトリアミドが挙げられる。
 アミノ化合物溶媒としては、例えば、トリエチルアミン、及びトリブチルアミンが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン及びジブチルケトンが挙げられる。
 エステル系化合物溶媒としては、例えば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸ペンチル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、酪酸メチル、酪酸エチル、酪酸プロピル、酪酸ブチル、酪酸ペンチル、吉草酸メチル、吉草酸エチル、吉草酸プロピル、吉草酸ブチル、カプロン酸メチル、カプロン酸エチル、カプロン酸プロピル及びカプロン酸ブチルが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、エチルベンゼン、キシレン及びメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン、ノナン、デカン、ペンタン、シクロペンタン、デカリン及びシクロオクタンが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリル及びブチロニトリルが挙げられる。
 分散媒は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることが更に好ましい。
 上記分散媒は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明に用いられる(C)分散媒は、任意の組み合わせで用いてもよいが、(B)バインダーの粒子を溶解しないものが好ましい。
 具体的には、本発明に用いられる(C)分散媒は、エーテル化合物溶媒又は炭化水素溶媒が好ましく、本発明の固体電解質組成物が粒子状の(B)バインダーを含有し得る点から、炭化水素溶媒がより好ましい。
 炭化水素溶媒の中でも、芳香族化合物溶媒としてはトルエン又はキシレンが好ましく、脂肪族化合物溶媒としてはヘプタン、オクタン、シクロヘキサン又はシクロオクタンが好ましい。
 固体電解質組成物中の分散媒の含有量は、特に制限されず、0質量%以上であればよい。本発明の固体電解質組成物が分散媒を含有する場合、その含有量は、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 (C)分散媒中の炭化水素溶媒の含有量は、本発明の固体電解質組成物が粒子状の(B)バインダーを含有し得る点から、下限値は、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。上限値は、特に制限はないが100質量%であることが好ましい。
<(D)活物質>
 本発明の固体電解質組成物は、周期律表第一族又は第二族に属する金属元素のイオンの挿入放出が可能な活物質を含有してもよい。
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物、又は、負極活物質である金属酸化物が好ましい。
 本発明において、活物質(正極活物質及び負極活物質)を含有する固体電解質組成物を、電極用組成物(正極用組成物及び負極用組成物)ということがある。
(正極活物質)
 本発明の固体電解質組成物が含有してもよい正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、有機物、硫黄などのLiと複合化できる元素、又は、硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO、LMO、NCA又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量が更に好ましく、55~80質量%が特に好ましい。
(負極活物質)
 本発明の固体電解質組成物が含有してもよい負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、並びにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機又は分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル又は篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、固体電解質組成物中における含有量は、特に限定されず、固形分100質量%において、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta,W,Zr、Al,Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12,LiTi,LiTaO,LiNbO,LiAlO,LiZrO,LiWO,LiTiO,Li,LiPO,LiMoO,LiBO,LiBO,LiCO,LiSiO,SiO,TiO,ZrO,Al,B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
<(E)導電助剤>
 本発明の固体電解質組成物は、導電助剤を含有してもよい。導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。またこれらの内1種を用いてもよいし、2種以上を用いてもよい。
 本発明において、負極活物質と導電助剤とを併用する場合、電池を充放電した際にLiの挿入と放出が起きず、負極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に負極活物質層中において負極活物質として機能しうるものは、導電助剤ではなく負極活物質に分類する。電池を充放電した際に負極活物質として機能するか否かは、一義的ではなく、負極活物質との組み合わせにより決定される。
 導電助剤の含有量は、固体電解質組成物中の固形分100質量部に対して、0~5質量%が好ましく、0.5~3質量%がより好ましい。
<(F)リチウム塩>
 本発明の固体電解質組成物は、リチウム塩を含有してもよい。
 リチウム塩としては、特に制限はなく、例えば、特開2015-088486号公報の段落0082~0085記載のリチウム塩が好ましい。
 リチウム塩の含有量は、固体電解質組成物中の固形分100質量部に対して、0質量部以上が好ましく、2質量部以上がより好ましい。上限としては、20質量部以下が好ましく、10質量部以下がより好ましい。
<その他のバインダー>
 本発明の固体電解質組成物は、本発明の効果を損なわない範囲内で、上述の(B)バインダーの他に、通常用いられるバインダーを含有してもよい。
 通常用いられるバインダーとしては有機ポリマーが挙げられ、例えば、以下に述べる樹脂からなるバインダーが好ましく使用される。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、その他のビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
<分散剤>
 本発明の固体電解質組成物は、分散剤を含有してもよい。分散剤を添加することで電極活物質及び無機固体電解質のいずれかの濃度が高い場合においても、粒子径が細かく表面積が増大する場合においても、その凝集を抑制し、均一な活物質層及び固体電解質層を形成することができる。分散剤としては、全固体二次電池に通常使用されるものを適宜選定して用いることができる。一般的には粒子吸着と立体反発及び/又は静電反発を意図した化合物が好適に使用される。
<固体電解質組成物の調製>
 本発明の固体電解質組成物は、(A)無機固体電解質及び(B)バインダー、必要により、(C)分散媒又は他の成分を、例えば、各種の混合機を用いて、混合することにより、調製することができる。好ましくは、(A)無機固体電解質及び(B)バインダーと、必要により(C)分散媒、他の成分を分散媒に分散させたスラリーとして、調製できる。
 固体電解質組成物のスラリーは、各種の混合機を用いて調製できる。混合装置としては、特に限定されないが、例えば、ボールミル、ビーズミル、プラネタリミキサ―、ブレードミキサ―、ロールミル、ニーダー及びディスクミルが挙げられる。混合条件は特に制限されないが、例えば、ボールミルを用いた場合、150~700rpm(rotation per minute)で1時間~24時間混合することが好ましい。
 分散媒を含有しない固体電解質組成物を調製する場合には、上記の(A)無機固体電解質の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。なお、(B)バインダーは、(A)無機固体電解質及び/又は活物質若しくは分散剤等の成分の分散工程と同時に添加及び混合してもよく、別途添加及び混合してもよい。また、本発明の固体電解質組成物に添加及び/又は混合する際の(B)バインダーの形態は、(B)バインダーそのものであっても、(B)バインダーの溶液であっても、(B)バインダーの分散液(ポリマーの非水溶媒分散物)であってもよい。中でも、無機固体電解質の分解を抑制し、かつ、活物質と無機固体電解質の粒子表面に点在化してイオン伝導度を担保できる点からは、バインダーの分散液が好ましい。
[ポリマーの非水溶媒分散物]
 本発明のポリマーの非水溶媒分散物は、(B)バインダーの粒子が非水溶媒に分散された分散物であり、例えば転相乳化法による(B)バインダーの粒子の調製方法により調製することができる。転相乳化法は公知の方法を選択できる。
 本明細書中、非水溶媒とは、水以外の溶媒を意味し、転相乳化法により(B)バインダーの粒子を調製し得る分散媒が好ましい。具体的には、上述の(C)分散媒が挙げられ、炭化水素溶媒(上述の芳香族化合物溶媒及脂肪族化合物溶媒)、エーテル溶媒及びケトン溶媒が好ましい。なお、本発明のポリマーの非水溶媒分散物には、(B)バインダーが粒子として分散されている限り、水が含まれていてもよいが、含水量は100ppm以下、より好ましくは50ppm以下が好ましい。
 本発明のポリマーの非水溶媒分散物は、無機固体電解質を分解し、イオン伝導度を低下させ得る溶媒を含まない形態を取り得るため、全固体二次電池用として好適に用いることができる。例えば、本発明のポリマーの非水溶媒分散物は、本発明の固体電解質組成物に添加混合することができるため、煩雑な工程を必要とせず、また、溶媒に残存する水等の除去工程が不要である。
 また、本発明に係るポリマーの非水溶媒分散物は、乳化剤を使用しない形態を採用することが可能なため、乳化剤を使用しない場合には、乾燥するとポリマー溶液を乾燥した場合と同程度の高い接着性を有する。このため、本発明に係るポリマーの非水溶媒分散物は、全固体二次電池用途に限らず、例えば、接着剤及び粘着剤に適用することもでき、その優れた効果を発揮する。
 ポリマーの非水溶媒分散物におけるバインダー(B)の含有量は、特に限定されないが、例えば、非水溶媒分散物100質量%中、0.1~50質量%が好ましく、1~30質量%がより好ましい。
[固体電解質含有シート]
 本発明の固体電解質含有シートは、(A)周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質と、(B)バインダーとを含有する層を有する。この(B)バインダーは、特に断りがない限り、本発明の固体電解質組成物における(B)バインダーと同義である。
 本発明の固体電解質含有シート、特に、本発明の固体電解質組成物を用いて作製される本発明の固体電解質含有シートは、(B)バインダーを含有するため、耐屈曲性及び耐傷性とイオン伝導度とに優れる。この結果、本発明の固体電解質含有シートを組み込んだ全固体二次電池は、イオン伝導度が高く、短絡の発生を抑制できると考えられる。また、固体電解質含有シートを、ロール トゥ ロール法等の高い生産性で製造することができ、しかも固体電解質層ないしは電解質層に欠陥が生じにくく、電極層又は固体電解質層から活物質又は無機固体電解質が脱落しにくい。更に、この固体電解質含有シートを用いて全固体二次電池を製造すると、上述の生産適性に優れ、全固体二次電池の製造歩留まりを向上させることもできる。
 本発明の固体電解質含有シートに、耐屈曲性及び耐傷性とイオン伝導度とを高い水準で付与できる理由は、まだ定かではないが次のように考えられる。
 固体電解質含有シートに用いるバインダーは、上述の構成成分を有している。この構成成分は、上記各式で表されるように、バインダーの主鎖から官能基Aが離れた位置に存在している。そのため、固体電解質組成物の調製時又は調製中に、官能基Aの分子運動性が高まり、無機粒子との接触確率が上昇すると考えられる。これにより、固体電解質組成物中において、バインダーの含有量を低減しても、官能基Aと無機粒子とが効率良くしかも強固に密着する。更に、バインダーの含有量が少なくなっているので、無機粒子を過剰に被覆することなく、高いイオン伝導度を維持できると考えられる。
 本発明の固体電解質含有シートは、全固体二次電池に好適に用いることができ、その用途に応じて種々の態様を含む。例えば、固体電解質層に好ましく用いられるシート(全固体二次電池用固体電解質含有シート又は固体電解質含有シートともいう)、電極又は電極と固体電解質層との積層体に好ましく用いられるシート(全固体二次電池用電極シート)等が挙げられる。本発明において、これら各種のシートをまとめて全固体二次電池用シートということがある。
 全固体二次電池用シートは、固体電解質層又は活物質層(電極層)を有するシートであればよく、固体電解質層又は活物質層(電極層)が基材上に形成されているシートでも、基材を有さず、固体電解質層又は活物質層(電極層)から形成されているシートであってもよい。以降、基材上に固体電解質層又は活物質層(電極層)を有する態様のシートを例に、詳細に説明する。
 この全固体二次電池用シートは、基材と固体電解質層又は活物質層を有していれば、他の層を有してもよいが、活物質を含有するものは後述する全固体二次電池用電極シートに分類される。他の層としては、例えば、保護層、集電体、コート層(集電体、固体電解質層、活物質層)等が挙げられる。
 全固体二次電池用固体電解質含有シートとして、例えば、固体電解質層と、必要により保護層とを基材上に、この順で有するシートが挙げられる。
 基材としては、固体電解質層を支持できるものであれば特に限定されず、後記集電体で説明した材料、有機材料及び無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン及びセルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。
 固体電解質含有シートにおける、固体電解質層及び活物質層は、それぞれ、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、固体電解質組成物の固形分におけるものと同じである。
 全固体二次電池用シートの固体電解質層の層厚は、本発明の全固体二次電池において説明する固体電解質層の層厚と同じである。
 このシートは、本発明の固体電解質組成物、好ましくは、(A)無機固体電解質と、(B)バインダーと、(C)分散媒とを含有する固体電解質組成物を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。詳細は後述する。
 ここで、本発明の固体電解質組成物は、上記の方法によって、調製できる。
 本発明の全固体二次電池用電極シート(単に「電極シート」ともいう。)は、全固体二次電池の活物質層を形成するためのシートであって、集電体としての金属箔上に活物質層を有する電極シートである。この電極シートは、通常、集電体及び活物質層を有するシートであるが、集電体、活物質層及び固体電解質層をこの順に有する態様、並びに、集電体、活物質層、固体電解質層及び活物質層をこの順に有する態様も含まれる。
 電極シートを構成する各層の構成及び層厚は、後記の、本発明の全固体二次電池において説明した各層の構成及び層厚と同じである。
 電極シートは、本発明の、活物質を含有する固体電解質組成物を金属箔上に製膜(塗布乾燥)して、金属箔上に活物質層を形成することにより、得られる。詳細は後述する。
[全固体二次電池]
 本発明の全固体二次電池は、正極と、この正極に対向する負極と、正極及び負極の間の固体電解質層とを有する。正極は、正極集電体上に正極活物質層を有する。負極は、負極集電体上に負極活物質層を有する。
 負極活物質層、正極活物質層及び固体電解質層の少なくとも1つの層は、本発明の固体電解質組成物を用いて形成されることが好ましく、(A)無機固体電解質と(B)バインダーとを含有することが好ましい。
 固体電解質組成物を用いて形成された活物質層及び/又は固体電解質層は、好ましくは、含有する成分種及びその含有量比について、特段の断りをしない限り、固体電解質組成物の固形分におけるものと同じである。
 以下に、図1を参照して、本発明の好ましい実施形態について説明するが、本発明はこれに限定されない。
 図1は、本発明の好ましい実施形態に係る全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、作動部位6に電子が供給される。図示した例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の固体電解質組成物は、上記負極活物質層、正極活物質層、固体電解質層の成形材料として好ましく用いることができる。また、本発明の固体電解質含有シートは、上記負極活物質層、正極活物質層、固体電解質層として好適である。以下、図1の層構成を有する全固体二次電池を全固体二次電池シートと称することもある。
 本明細書において、正極活物質層(以下、正極層とも称す。)と負極活物質層(以下、負極層とも称す。)をあわせて電極層又は活物質層と称することがある。また、正極活物質及び負極活物質のいずれか、又は両方を合わせて、単に、活物質又は電極活物質と称することがある。
(正極活物質層、固体電解質層、負極活物質層)
 全固体二次電池10においては、正極活物質層、固体電解質層及び負極活物質層のいずれかが本発明の固体電解質組成物を用いて作製されている。
 すなわち、固体電解質層3が本発明の固体電解質組成物を用いて作製されている場合、固体電解質層3は、(A)無機固体電解質と(B)バインダーとを含む。固体電解質層は、通常、正極活物質及び/又は負極活物質を含まない。
 正極活物質層4及び/又は負極活物質層2が、活物質を含有する本発明の固体電解質組成物を用いて作製されている場合、正極活物質層4及び負極活物質層2は、それぞれ、正極活物質又は負極活物質を含み、更に、(A)無機固体電解質と(B)バインダーとを含む。活物質層が無機固体電解質を含有するとイオン伝導度を向上させることができる。
 正極活物質層4、固体電解質層3及び負極活物質層2が含有する(A)無機固体電解質及び(B)バインダーは、それぞれ、互いに同種であっても異種であってもよい。
 本発明においては、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層のいずれかの層が、(A)無機固体電解質と(B)バインダーとを含有する固体電解質組成物を用いて作製され、(A)無機固体電解質と(B)バインダーとを含有する層である。
 本発明において、全固体二次電池における負極活物質層、正極活物質層及び固体電解質層が、いずれも、(A)無機固体電解質と(B)バインダーとを含有する固体電解質組成物で作製されることが好ましい態様の1つである。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは、それぞれ、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることが更に好ましい。
(集電体(金属箔))
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル、チタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層若しくは部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
(筐体)
 上記の各層を配置して全固体二次電池の基本構造を作製することができる。用途によってはこのまま全固体二次電池として使用してもよいが、乾電池の形態とするためには更に適当な筐体に封入して用いる。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
[固体電解質含有シートの製造]
 本発明の固体電解質含有シートは、本発明の固体電解質組成物(好ましくは(C)分散媒を含有する。)を基材上(他の層を介していてもよい)に製膜(塗布乾燥)して、基材上に固体電解質層を形成することにより、得られる。
 こうして、(A)無機固体電解質と(B)バインダーとを(含有する固体電解質層を)基材上に有する固体電解質含有シートを作製することができる。また、作製した固体電解質含有シートから基材を剥がし、固体電解質層からなる固体電解質含有シートを作製することもできる。
 その他、塗布等の工程については、下記全固体二次電池の製造に記載の方法を使用することができる。
 固体電解質含有シートは、電池性能に影響を与えない範囲内で(C)分散媒を含有してもよい。具体的には、全質量中1ppm以上10000ppm以下含有してもよい。
 本発明の固体電解質含有シート中の(C)分散媒の含有割合は、以下の方法で測定することができる。
 固体電解質含有シートを20mm角で打ち抜き、ガラス瓶中で重テトラヒドロフランに浸漬させる。得られた溶出物をシリンジフィルターでろ過してH-NMRにより定量操作を行う。H-NMRピーク面積と溶媒の量の相関性は検量線を作成して求める。
[全固体二次電池及び全固体二次電池用電極シートの製造]
 全固体二次電池及び全固体二次電池用電極シートの製造は、常法によって行うことができる。具体的には、全固体二次電池及び全固体二次電池用電極シートは、本発明の固体電解質組成物等を用いて、上記の各層を形成することにより、製造できる。以下詳述する。
 本発明の全固体二次電池は、本発明の固体電解質組成物を、基材(例えば、集電体となる金属箔)上に塗布し、塗膜を形成(製膜)する工程を含む(介する)方法により、製造できる。
 例えば、正極集電体である金属箔上に、正極用材料(正極用組成物)として、正極活物質を含有する固体電解質組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、固体電解質層を形成するための固体電解質組成物を塗布して、固体電解質層を形成する。更に、固体電解質層の上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。
 別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シートを作製する。また、負極集電体である金属箔上に、負極用材料(負極用組成物)として、負極活物質を含有する固体電解質組成物を塗布して負極活物質層を形成し、全固体二次電池用負極シートを作製する。次いで、これらシートのいずれか一方の活物質層の上に、上記のようにして、固体電解質層を形成する。更に、固体電解質層の上に、全固体二次電池用正極シート及び全固体二次電池用負極シートの他方を、固体電解質層と活物質層とが接するように積層する。このようにして、全固体二次電池を製造することができる。
 また別の方法として、次の方法が挙げられる。すなわち、上記のようにして、全固体二次電池用正極シート及び全固体二次電池用負極シートを作製する。また、これとは別に、固体電解質組成物を基材上に塗布して、固体電解質層からなる全固体二次電池用固体電解質含有シートを作製する。更に、全固体二次電池用正極シート及び全固体二次電池用負極シートで、基材から剥がした固体電解質層を挟むように積層する。このようにして、全固体二次電池を製造することができる。
 上記の形成法の組み合わせによっても全固体二次電池を製造することができる。例えば、上記のようにして、全固体二次電池用正極シート、全固体二次電池用負極シート及び全固体二次電池用固体電解質含有シートをそれぞれ作製する。次いで、全固体二次電池用負極シート上に、基材から剥がした固体電解質層を積層した後に、上記全固体二次電池用正極シートと張り合わせることで全固体二次電池を製造することができる。この方法において、固体電解質層を全固体二次電池用正極シートに積層し、全固体二次電池用負極シートと張り合わせることもできる。
<各層の形成(成膜)>
 固体電解質組成物の塗布方法は、特に限定されず、適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布及びバーコート塗布が挙げられる。
 このとき、固体電解質組成物は、それぞれ塗布した後に乾燥処理を施してもよいし、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、(C)分散媒を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 塗布した固体電解質組成物、又は、全固体二次電池を作製した後に、各層又は全固体二次電池を加圧することが好ましい。また、各層を積層した状態で加圧することも好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。
 また、塗布した固体電解質組成物は、加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 各組成物は同時に塗布してもよいし、塗布乾燥プレスを同時及び/又は逐次行ってもよい。別々の基材に塗布した後に、転写により積層してもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 プレス時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。全固体二次電池用シート以外、例えば全固体二次電池の場合には、中程度の圧力をかけ続けるために、全固体二次電池の拘束具(ネジ締め圧等)を用いることもできる。
 プレス圧はシート面等の被圧部に対して均一であっても異なる圧であってもよい。
 プレス圧は被圧部の面積又は膜厚に応じて変化させることができる。また同一部位を段階的に異なる圧力で変えることもできる。
 プレス面は平滑であっても粗面化されていてもよい。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化は、特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより、行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池をいう。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。この中で、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLT若しくはLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダー若しくは添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLT若しくはLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集又は偏在が生じていてもよい。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
[硫化物系無機固体電解質:Li-P-S系ガラスの合成]
 硫化物系無機固体電解質として、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.HamGa,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7(商品名、フリッチュ社製)に容器をセットし、温度25℃で、回転数510rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス、LPSと表記することがある。)6.20gを得た。
[(B)バインダーの合成]
 まず、実施例で用いるバインダーの合成に用いる上記式(1M)で表されるジオール化合物をそれぞれ合成した。
<合成例1-1:ジオール化合物(b-2)の合成>
 ディーンスターク管を備えた2Lの3つ口フラスコにトリメチロールプロパン134gとアセトン1.3kgとを投入して室温で完溶させた。得られた溶液にピリジニウム-p-トルエンスルホン酸1.3gを加えて内温68℃で2時間加熱還流させた。この間に副生する水をディーンスターク管内に入れたモレミュラーシーブス3Aを用いて吸着させた。反応液を濃縮し、蒸留することで下記に示す前駆体(I)を114gの透明液体として得た(収率78%)。
 次いで、200mL2口フラスコに前駆体(I)を50gと無水コハク酸32.5gを投入し、更にピリジン27.2g加えて、得られた混合物を100℃で2時間加熱撹拌した。得られた反応液を酢酸エチルで希釈し、水300mLで5回洗浄し、有機層を硫酸ナトリウムで乾燥して濃縮することで、下記に示す前駆体(II)を64.2gの淡黄色液体として得た。
 100mL2口フラスコに前駆体(II)10gとTHF/水混合液(1vol/1vol)30mLを投入して、前駆体(II)を混合液に分散させた。これにピリジニウム-p-トルエンスルホン酸0.5g加えて60℃で2時間加熱撹拌した。反応終了後反応液は完溶し透明液体となった。得られた反応液に酢酸エチルを加えて有機物を抽出し、有機層を硫酸ナトリウムで乾燥して濃縮することで、ジオール化合物(b-2)を4.3gの白色固体として得た(収率43%)。
 ジオール化合物(b-2)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.79(t、J=6.0Hz、3H)、1.25(q、J=6.0Hz,2H)、2.20(m、4H)、3.26(s、4H)、3.86(s、2H)、4.3(brs、2H)、12.2(brs、1H)
Figure JPOXMLDOC01-appb-C000027
<合成例1-2:ジオール化合物(b-9)の合成>
 合成例1において、無水コハク酸に代えてcis-1,2-シクロヘキサンジカルボン酸無水物を用いたこと以外は、合成例1と同様にしてジオール化合物(b-9)を得た。
 ジオール化合物(b-9)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.79(t、J=6.0Hz、3H)、1.4-1.9(m、10H)、2.59(m、1H)、2.94(m、1H)、3.26(s、4H)、3.86(s、2H)、4.3(brs、2H)、12.2(brs、1H)
<合成例1-3:ジオール化合物(b-12)の合成>
合成例1において無水コハク酸に代えて無水グルタル酸を用いたこと以外は、合成例1と同様にしてジオール化合物(b-12)を得た。
 ジオール化合物(b-9)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.79(t、J=6.0Hz、3H)、1.25(q、J=6.0Hz,2H)、1.76(quintet,J=5.8Hz,2H)、2.25(t、J=5.8Hz、2H)、2.33(t、J=5.8Hz、2H)、3.26(s、4H)、3.86(s、2H)、4.3(brs、2H)12.2(brs、1H)
<合成例1-4:ジオール化合物(b-25)の合成>
 合成例1において無水コハク酸に代えて無水フタル酸を用いたこと以外は、合成例1と同様にしてジオール化合物(b-25)を得た。
 ジオール化合物(b-25)を下記NMRデータにより同定、確認した。
 H-NMR(300MHz、DMSO-d):0.79(t、J=6.0Hz、3H)、1.25(q、J=6.0Hz,2H)、3.26(s、4H)、4.01(s、2H)、4.3(brs、2H)、7.83(m、2H)、8.15(m、2H)、12.2(brs、1H)
<合成例1-5:ジオール化合物(b-36)の合成>
 500mLの3つ口フラスコに、チオグリセロール21.6gと、5-ヘキセン酸22.8gと、メチルエチルケトン200mLとを投入して、得られた混合物を窒素雰囲気下、80℃で加熱撹拌した。そこへアゾ系ラジカル重合開始剤:V-601(商品名、和光純薬社製)0.53g加えて、更に6時間80℃で加熱撹拌を行った。得られた反応液を濃縮して、ジオール化合物(b-36)を得た。
 ジオール化合物(b-36)を下記NMRデータにより同定、確認した。
 H-NMR(300MHz、DMSO-d):1.3-1.6(m、6H)、2.29(t、2H)、2.4-2.7(m、4H)、3.67(m、2H)、3.95(m、1H)、4.9-5.7(brs、2H)、12.2(brs、1H)
<合成例1-6:ジオール化合物(b-40)の合成>
 200mL2口フラスコに上記前駆体(I)50gをTHF100mLに溶解させた。これに、水素化ナトリウム60%オイル分散物を12.1g加えて60℃で2時間加熱撹拌し、次いで、ブロモ酢酸t-ブチルを55g加えて更に24時間加熱撹拌を続けた。得られた反応液を1N塩酸水に加え、室温で6時間撹拌した。酢酸エチルで抽出し有機層を硫酸ナトリウムで乾燥して濃縮した。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)で精製しジオール化合物(b-40)を30.5gの白色固体として得た(収率50%)。
 ジオール化合物(b-40)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.80(t、J=6.0Hz、3H)、1.28(q、J=6.0Hz,2H)、3.14(s、4H)、3.56(s、2H)、4.3(brs、2H)、4.41(s、2H)、12.9(brs、1H)
<合成例1-7:ジオール化合物(b-48)の合成>
 ディーンスターク管を備えた2Lの3つ口フラスコに、ジメチロールブタン酸148gとアセトン1.3kgとを投入して室温で完溶させた。得られた溶液にピリジニウム-p-トルエンスルホン酸1.3gを加えて内温68℃で2時間加熱還流させた。この間に副生する水をディーンスターク管内に入れたモレミュラーシーブス3Aを用いて吸着させた。反応液を濃縮しイソプロピルアルコールで再結晶することで下記前駆体(III)を136gの白色固体として得た(収率78%)。
 次いで、3つ口フラスコに得られた前駆体(III)136gを加えテトラヒドロフラン500mLに溶解した。これに炭酸カリウム110gとブロモ酢酸t-ブチル178gとを加えて6時間加熱還流を行った。反応液を濃縮し酢酸エチルで抽出して有機層を水で洗浄した後、硫酸ナトリウムで乾燥して濃縮して下記前駆体(IV)152gを得た。
 次に、得られた前駆体(IV)50gを1N塩酸水300mLに加え、室温で6時間撹拌した。酢酸エチルで抽出し有機層を硫酸ナトリウムで乾燥して濃縮した。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)で精製して、ジオール化合物(b-48)を17.9gの白色固体として得た(収率50%)。
 ジオール化合物(b-48)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.80(t、J=6.0Hz、3H)、1.28(q、J=6.0Hz,2H)、3.14(s、4H)、5.02(s、2H)、6.4(brs、2H)、12.9(brs、1H)
Figure JPOXMLDOC01-appb-C000028
<合成例1-8:ジオール化合物(b-57)の合成>
 3つ口フラスコにジエタノールアミン52gを加え、ピリジン100mLで希釈した。これに無水グルタル酸60gを加えて2時間80℃で加熱撹拌した。酢酸エチルで抽出し有機層を硫酸ナトリウムで乾燥して濃縮した。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/2)で精製しジオール化合物(b-57)を得た。
<合成例1-9:ジオール化合物(b-74)の合成>
 3つ口フラスコにチオグリセロール54gを加え、テトラヒドロフラン500mLで希釈した。これにビニルスルホン酸56gを加えて、窒素気流下、65℃で加熱撹拌した。そこへ、アゾ系ラジカル重合開始剤:V-601(商品名、和光純薬社製)1.2g加えて8時間加熱撹拌を続けた。得られた反応液を酢酸エチルで抽出し、硫酸マグネシウム飽和水溶液で洗浄した後、有機層を硫酸ナトリウムで乾燥して濃縮した。得られた粗体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=1/4)で精製しジオール化合物(b-74)を得た。
<合成例1-10:ジオール化合物(b-75)の合成>
 合成例1-9において、ビニルスルホン酸をビニルホスホン酸に代えたこと以外は合成例1-9と同様にして、ジオール化合物(b-75)を得た。
<合成例1-11:ジオール化合物(b-89)の合成>
 合成例1-6において、ブロモ酢酸t-ブチルの代わりに5-ブロモバレロニトリルを用いたこと以外は合成例1-6と同様にして、ジオール化合物(b-89)を得た。
 ジオール化合物(b-89)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.83(t、J=6.0Hz、3H)、1.64(q、J=6.0Hz,2H)、1.5-1.8(m、6H)、3.35(t、2H)、3.39(s、4H)、3.79(s、2H)、4.2(brs、2H)
<合成例1-12:ジオール化合物(b-95)の合成>
 合成例1-6において、ブロモ酢酸t-ブチルの代わりに3-ブロモプロパンスルホン酸を用いたこと以外は合成例1-6と同様にして、ジオール化合物(b-95)を得た。 ジオール化合物(b-95)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.83(t、J=6.0Hz、3H)、1.64(q、J=6.0Hz,2H)、1.90(quint、2H)、3.01(t、2H)、3.26(s、4H)、3.33(t、2H)、3.55(s、2H)、4.3(brs、2H)、8.5(brs、1H)
<合成例1-13:ジオール化合物(b-99)の合成>
 1000mL3口フラスコに上記前駆体(I)50gとピレンブタン酸83gとを加え、テトラヒドロフラン500mLに希釈した。そこへ、ピリジン50mLとジシクロヘキシルカルボジイミド62gを加えて室温で6時間撹拌した。反応液を濃縮し、塩化メチレン300mLを加え析出した固体をろ別して除去した。ろ液を水で洗浄した後、硫酸ナトリウムで乾燥し、濃縮して下記前駆体(V)の粗体を得た。これをジイソプロピルエーテルで再結晶して精製した。
 次いで、100mL2口フラスコに得られた前駆体(V)10gとTHF/水混合液(1vol/1vol)30mLを投入して、前駆体(V)を混合液に分散させた。これにピリジニウム-p-トルエンスルホン酸0.5g加えて60℃で2時間加熱撹拌した。反応終了後、反応液は完溶し透明液体となった。得られた反応液に酢酸エチルを加えて有機物を抽出し、有機層を硫酸ナトリウムで乾燥して濃縮することで、ジオール化合物(b-99)を5.9gの白色固体として得た(収率65%)。
 ジオール化合物(b-99)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):0.79(t、J=6.0Hz、3H)、1.25(q、J=6.0Hz,2H)、1.83(quintet、2H),2.32(t、2H)、3.07(t、2H)、3.26(s、4H)、3.86(s、2H)、4.3(brs、2H)、7.5-8.5(m、9H)
Figure JPOXMLDOC01-appb-C000029
<合成例1-12:ジオール化合物(b-31)の合成>
 500mL3口フラスコにチオグリセロール10.8gとブロモ酢酸t-ブチル19.5gとを加え、アセトン80mLに希釈した。そこへ、炭酸カリウム15.8gを加えて室温下で2時間撹拌した。酢酸エチル200mLを加え反応液を水で洗浄し有機層を硫酸マグネシウムで乾燥した。
 次いで、有機層にp-トルエンスルホン酸1水和物5gを投入して、60℃で2時間加熱撹拌した。得られた反応液を炭酸水素ナトリウム水溶液で抽出し、1N塩酸水に滴下してジオール化合物(b-31)を13.1gの白色固体として得た(収率81%)。
 ジオール化合物(b-31)を、下記NMRデータにより、同定、確認した。
 H-NMR(300MHz、DMSO-d):2.4-2.9(m、4H)、3.67(m、2H)、3.95(m、1H)、4.9-5.7(brs、2H)、12.2(brs、1H)
[ポリウレタンポリマーの合成]
 次に、合成した各ジオール化合物を用いて、実施例に用いるポリウレタンポリマーをそれぞれ合成した。
 得られたポリウレタンポリマーは後述する式(P-1)で表される。
<合成例2-1:ポリウレタンポリマー(B-1)の合成>
 200mLの3つ口フラスコに上記で合成したジオール化合物(b-2)2.3gを投入し、THF(テトラヒドロフラン)30mLに溶解した。この溶液に、ジフェニルメタンジイソシアネート(MDI)2.5gを加え、65℃で撹拌し、均一に溶解させた。そこへビスマス触媒(商品名:ネオスタンU-600、日東化成社製)0.025gを加えて、65℃で6時間撹拌した後、得られたポリマー溶液をメタノールに加えて沈殿させた。得られた固体を固液分離して、真空オーブンで、60℃の温度下で12時間乾燥させた。このようにしてポリウレタンポリマー(B-1)を得た。
<合成例2-2:ポリウレタンポリマー(B-3)の合成>
 ポリウレタンポリマー(B-1)の合成方法において、ジイソシアネート化合物としてジフェニルメタンジイソシアネートに代えてm-キシリレンジイソシアネート(XDI)を用い、かつジオール化合物としてジオール化合物(b-2)に代えて1,3-プロパンジオール(13PG)、ジオール化合物(b-12)及びポリエステルポリオールS-3(クラレポリオールP1010)を表1に示す割合(モル比)で用いた以外は、ポリウレタンポリマー(B-1)の合成方法と同様にして、ポリウレタン(B-3)を得た。
<合成例2-3~2-24:ポリウレタンポリマー(B-2)及び(B-4)~(B-24)の合成>
 ポリウレタンポリマー(B-1)の合成方法において、ジイソシアネート化合物及び/又はジオール化合物として表1に示す化合物を表1に示す割合(モル比)で用いたこと以外は、ポリウレタンポリマー(B-1)の合成方法と同様にして、ポリウレタンポリマー(B-2)及び(B-4)~(B-24)をそれぞれ合成した。
 なお、ポリマーB-8及びB-22の合成に用いたジイソシアネート化合物の割合(50/50)はモル比である。ポリマーB-47についても同じ。
<合成例2-25:ポリウレタンポリマー(B-19)の非水溶媒分散物(B-19L)の合成>
 300mLの3つ口フラスコに、1,4ブタンジオール0.9g、上記で合成したジオール化合物(b-12)6.7g、ポリカーボネートジオール(デュラノールG3452:商品名、旭化成ケミカルズ社製)20gを投入し、メチルエチルケトン50mLに溶解させた。これに4,4’-メチレンビス(シクロヘキシルイソシアネート)(H12MDI)12.5gを加えて75℃で加熱撹拌した。これにビスマス触媒(商品名:ネオスタンU-600、日東化成社製)を0.055g加え、75℃で2時間撹拌した後、水素添加ポリイソプレンジオール(EPOL:商品名、出光興産社製)8.4gのTHF20mL溶液を加えて、更に2時間加熱撹拌した。得られたポリマー溶液をTHF50mLで希釈し、オクタン100mLを30分かけて滴下し、ポリマーを乳化させた。得られた乳化液を100℃に加熱してメチルエチルケトンとTHFを溜去して濃度調整することで、ポリウレタンポリマー(B-19)の10質量%オクタン分散物(B-19L)を得た。この分散物中におけるポリウレタンポリマー(B-19)の平均粒子径は250nmであった。
<合成例2-26:ポリウレタンポリマー(B-24)の非水溶媒分散物(B-24L)の合成>
 非水溶媒分散物(B-19L)の合成において、ジオール化合物として表1に示す化合物を表1に示す割合(モル比)で用いたこと以外は、非水溶媒分散物(B-19L)の合成と同様にして、非水溶媒分散物(B-24L)を10質量%オクタン分散液として得た。この分散物中におけるポリウレタンポリマー(B-24)の平均粒子径は190nmであった。
 表1において、各化合物からなる構成成分を、上述の定義に基づき、ハードセグメント、ソフトセグメント及び炭化水素ポリマーに分類して、表1に記載した。表1に記載中の「モル%」はポリマー中の各構成成分の含有量(モル%)を示す。表1において、「各セグメントの化合物」中の「-」は各化合物を用いていないことを意味し、「モル%」欄中の「-」は0モル%であることを意味する。また、表1の「Mw」は、合成した各ポリウレタンポリマーの質量平均分子量(上記方法により測定した値)を示す。
 以下、バインダー(B)の合成(表2~表5)において同じである。
 得られたポリウレタンポリマーは下記式(P-1)で表される。
 下記式(P-1)において、「残基」とは、ポリウレタンポリマーの合成に用いた化合物(表1参照)のうち、化合物末端の反応性基である、-OH基及び-NCO基以外の部分構造をいう。また、a1、b1、c1、d1、e1及びf1はそれぞれ各構成成分のポリマー中の含有量(モル%)を示し、a1+b1+c1+d1+e1+f1=100モル%である。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-T000031
(表の注)
MDI:4,4’-ジフェニルメタンジイソシアネート
XDI:p-キシリレンジイソシアネート
TDI:2,4-トリレンジイソシアネート
IPDI:イソホロンジイソシアネート
CHMDI:1,3-ジ(イソシアネートメチル)シクロヘキサン
H12MDI:4,4’-メチレンビス(シクロヘキシルイソシアネート)
HDI:ヘキサメチレンジイソシアネート
14BG:1,4-ブタンジオール
13PG:1,3-プロパンジオール
EG:エチレングリコール
DMPA:ジメチロールプロピオン酸
DMBA:ジメチロールブタン酸
S-1:ポリエチレングリコール(PEG600、数平均分子量600)
S-2:ポリテトラエチレングリコール(PTEG1000、数平均分子量1000)
S-3:ポリエステルポリオール(クラレポリオールP1010、数平均分子量1000)
S-4:ポリカーボネートジオール(デュラノールT5650J、数平均分子量800)
S-5:ポリカーボネートジオール(デュラノールG3452、数平均分子量2000)
S-6:ポリカーボネートジオール(エタナコールUH100、数平均分子量1000)
S-7:両末端ヒドロキシ変性シリコーン(KF-6003、数平均分子量5000)
H-1:ポリブタジエンジオール(Polybd R-45HT、数平均分子量2800、出光興産(株)製)
H-2:ポリイソプレンジオール(Polyip、数平均分子量2800、出光興産(株)製)
H-3:水素添加ポリブタジエンジオール(NISSO-PB GI-2000、数平均分子量2100、出光興産(株)製)
H-4:水素添加ポリイソプレンジオール(EPOL 数平均分子量2500、出光興産(株)製)
[ポリエステルポリマーの合成]
 以下のようにして、実施例に用いるポリエステルポリマーをそれぞれ合成した。得られたポリエステルポリマーは後述する式(P-2)で表される。
<合成例3-1:ポリエステルポリマー(B-31)の合成>
 200mLの3つ口フラスコに、エチレングリコール(EG)0.31gと、上記で合成したジオール化合物(b-12)2.5gと、ポリエチレングリコール600(S-1)5.0gと、ポリブタジエンジオール(H-1、polybd R-45HT、商品名)4.2gとを投入し、THF100mLに溶解した。これを氷浴中で5℃に冷却した。そこへテレフタル酸ジクロリド(TPC)5.1gのTHF溶液20mLを30分間かけて滴下した。得られた混合物を室温に戻して更に2時間撹拌した。得られたポリマー溶液をメタノールに加えて、沈殿させた固体を固液分離して真空オーブンで、60℃の温度下で12時間乾燥させた。このようにしてポリエステルポリマー(B-31)を得た。
<合成例3-2~3-7:ポリエステルポリマー(B-25)~(B-30)の合成>
 ポリエステルポリマー(B-31)の合成方法において、酸クロリド、ジオール化合物及び/又は炭化水素ポリマーとして表2に示す化合物を表2に示す割合(モル比)で用いたこと以外は、ポリエステルポリマー(B-31)の合成方法と同様にして、ポリエステルポリマー(B-25)~(B-30)をそれぞれ合成した。
 得られたポリエステルポリマーは下記式(P-2)で表される。
 下記式(P-2)において、「残基」とは、ポリエステルポリマーの合成に用いた化合物(表2参照)のうち、化合物末端の反応性基である、-COCl基及び-OH基以外の部分構造をいう。また、a2、b2、c2、d2、e2及びf2はそれぞれ各構成成分のポリマー中の含有量(モル%)を示し、a2+b2+c2+d2+e2+f2=100モル%である。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-T000033
(表の注)
TPC:テレフタル酸ジクロリド
IPC:イソフタル酸ジクロリド
 上記以外の略号は表1の注を参照。
[ポリアミドポリマーの合成]
 以下のようにして、実施例に用いるポリアミドポリマーをそれぞれ合成した。得られたポリアミドポリマーは後述する式(P-3)で表される。
<合成例4-1~4-7:ポリアミドポリマー(B-32)~(B-38)の合成>
 ポリエステルポリマー(B-31)の合成方法において、表3に示すように、酸クロリド、及び/又は、ジオール化合物、ジアミン化合物及び炭化水素ポリマーを、それぞれ、表3に示す割合(モル比)で用いたこと以外は、ポリエステルポリマー(B-31)の合成方法と同様にして、ポリアミドポリマー(B-32)~(B-38)をそれぞれ合成した。
 得られたポリアミドポリマーは下記式(P-3)で表される。
 下記式(P-3)において、「残基」とは、ポリアミドポリマーの合成に用いた化合物(表3参照)のうち、化合物末端の反応性基である、-OH基、-COCl基及び-NH基以外の部分構造をいう。また、a3、b3、d3、e3及びf3はそれぞれ各構成成分のポリマー中の含有量(モル%)を示し、a3+b3+d3+e3+f3=100モル%である。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-T000035
(表の注)
14BDA:1,4-ブタンジアミン
13PDA:1,3-プロパンジアミン
EDA:エチレンジアミン
CHDA:1,4-シクロヘキサンジアミン
IPDA:イソホロンジアミン
S-8:末端ジアミンポリエチレンプロピレングリコール(ジェファーミンED600、数平均分子量600、ハンツマン社製)
S-9:末端ジアミンポリエチレンプロピレングリコール(ジェファーミンED900、数平均分子量900、ハンツマン社製)
S-10:末端ジアミンポリエチレンプロピレングリコール(ジェファーミンED2003、数平均分子量2000、ハンツマン社製)
S-11:末端ジアミンポリプロピレングリコール(数平均分子量400、アルドリッチ社製)
S-12:末端ジアミンシリコーン(KF-8008、数平均分子量11000、信越化学社製)
 上記以外の略号は表1及び表2の注を参照。
[ポリウレアポリマーの合成]
 以下のようにして、実施例に用いるポリウレアポリマーをそれぞれ合成した。得られたポリウレアポリマーは後述する式(P-4)で表される。
<合成例5-1~5-11:ポリウレアポリマー(B-39)~(B-49)の合成>
 ポリウレタンポリマー(B-1)の合成方法において、ジイソシアネート化合物及びジオール化合物に代えて、表4に示す、ジイソシアネート化合物、ジオール化合物、ジアミン化合物及び炭化水素ポリマーを、それぞれ、表4に示す割合(モル比)で用いたこと以外は、ポリウレタンポリマー(B-1)の合成方法と同様にして、ポリウレアポリマー(B-39)~(B-49)をそれぞれ合成した。
 得られたポリウレアポリマーは下記式(P-4)で表される。
 下記式(P-4)において、「残基」とは、ポリウレアポリマーの合成に用いた化合物(表4参照)のうち、化合物末端の反応性基である、-OH基、-NH基及び-NCO基以外の部分構造をいう。また、a4、b4、d4、e4及びf4はそれぞれ各構成成分のポリマー中の含有量(モル%)を示し、a4+b4+d4+e4+f4=100モル%である。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-T000037
 表4の略号については、上記表1~表3の注を参照。
[ポリイミドポリマーの合成]
 以下のようにして、実施例に用いるポリイミドポリマーをそれぞれ合成した。得られたポリイミドポリマーは後述する式(P-5)で表される。
<合成例6-1:ポリイミドポリマー(B-58)の合成>
 200mLの3つ口フラスコに、4,4’-(2,2’-ヘキサフルオロイソプロピリデン)ジフタル酸無水物(6FDAA)2.5gを投入し、THF50mLに溶解した。これに、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン(6FPA)0.54gと、上記で合成したジオール化合物(b-12)0.76gと、水素添加ポリイソプレンジオール(H-4、EPOL:商品名)2.0gとをTHFに溶解させたTHF50mL溶液を加えた(THF溶液は滴下により加えた)。これを50℃で2時間加熱撹拌した。得られたポリマー溶液をメタノールに加えて沈殿させた。得られた固体を固液分離して、真空オーブンで、60℃の温度下で12時間乾燥させた。このようにしてポリイミドポリマー(B-58)を得た。
<合成例6-2~6-11:ポリイミドポリマー(B-50)~(B-57)、(B-59)及び(B-60)の合成>
 ポリイミドポリマー(B-58)の合成方法において、酸無水物、ジアミン化合物、ジオール化合物及び/又は炭化水素ポリマーとして表5に示す化合物を表5に示す割合(モル比)で用いたこと以外は、ポリイミドポリマー(B-58)の合成方法と同様にして、ポリイミドポリマー(B-50)~(B-57)、(B-59)及び(B-60)をそれぞれ合成した。
 得られたポリイミドポリマーは下記式(P-5)で表される。
 下記式(P-5)において、「残基」とは、ポリイミドポリマーの合成に用いた化合物(表5参照)のうち、化合物末端の反応性基である、酸無水物基、-OH基及び-NH基以外の部分構造をいう。また、a5、b5、d5、e5及びf5はそれぞれ各構成成分のポリマー中の含有量(モル%)を示し、a5+b5+d5+e5+f5=100モル%である。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-T000039
(表の注)
6FDAA:4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸無水物
THFDAA:5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物
PDAA:ピロメリット酸無水物
CHDAA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物
6FPA:2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン
DPEA:4,4’-ジアミノジフェニルエーテル
 上記以外の略号は表1~表4の注を参照。
[実施例1]
<固体電解質組成物の調製例>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLPS4.85gと、表6に示すバインダー(B)0.15g(固形分質量)と、表6に示す分散媒17.0gとを投入した。その後、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃、回転数300rpmで2時間混合して、固体電解質組成物No.S-1~S-17及びCS-1~CS-4をそれぞれ調製した。
 ここで、No.S-1~S-17が本発明例であり、No.CS-1~CS-4が比較例である。
Figure JPOXMLDOC01-appb-T000040
(表の注)
 表中の%は固形分中の質量%を示す。
 LPS:上記で合成したLi-P-S系ガラス
 バインダー(B)の番号は上記で合成した各ポリマーの番号を示す。
 BC-1:フッ素系ポリマー:PVdF-HFP(KYNAR FLEX2800-20:商品名、アルケマ社製)
 BC-2:炭化水素ポリマー:SBR(スチレンブタジエンゴム、商品コード182907、アルドリッチ社製)
 BC-3:アクリル系ポリマー(ポリメタクリル酸メチル-ポリメタクリル酸共重合体(50/50モル%)、商品コード376914、アルドリッチ社製)
 BC-4:ウレタン系ポリマー(ジフェニルメタンジイソシアネート(50モル%)と1,4-ブタンジオール(30モル%)と2,2-ジメチロールブタン酸(20モル%)との付加重合体、上記合成例2-1と同様の方法で合成したもの。質量平均分子量は43000であった。)
<全固体二次電池用シート(全固体二次電池用固体電解質含有シート)の作製>
 上記で得られた各固体電解質組成物を厚み20μmのアルミ箔(集電体)上に、アプリケーター(商品名:SA-201ベーカー式アプリケーター、テスター産業社製)により塗布し、80℃2時間加熱して、固体電解質組成物を乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように120℃の温度及び600MPaの圧力で、乾燥させた固体電解質組成物を加熱及び加圧し、各全固体二次電池用シートNo.101~117及びc11~c14を得た。固体電解質層の膜厚は50μmであった。
<試験>
 上記で作製した固体電解質含有シートについて、以下の試験を行った。以下に試験方法を記載し、結果を下記表7にまとめて記載する。
(試験例1:耐傷性の評価)
 全固体二次電池用シートを10cm×20cmの長方形に切り出した。切り出したシートの表面部を、10mmφのアルミ箔に荷重1.0gをかけて、連続加重式引掻強度試験機「TYPE:18/18L」(新東科学社製)を用いて、片道5cmずつ合計20往復擦った。擦ったシート表面を検査用光学顕微鏡「エクリプスCi」(商品名、ニコン社製)で観察して、固体電解質層の欠け、割れ若しくはヒビの有無、及び、固体電解質層のアルミ箔からの剥がれの有無を、以下の基準で評価した。本試験において、評価基準「C」以上が合格である。
 -評価基準-
 A:欠陥(欠け、割れ、ヒビ及び剥がれ)が全く見られなかった
 B:欠陥部分の面積が、観測対象となる全面積のうち0%越え10%以下
 C:欠陥部分の面積が、観測対象となる全面積のうち10%越え30%以下
 D:欠陥部分の面積が、観測対象となる全面積のうち30%越え90%以下
 E:欠陥部分の面積が、観測対象となる全面積のうち90%越えたもの
 欠陥部分の面積は、固体電解質層の表面積に換算した面積(投影面積)である。
(試験例2:耐屈曲性の評価)
 全固体二次電池用シートを10cm×20cmの長方形に切り出した。切り出したシートを、円筒形マンドレル試験機「商品コード056」(マンドレル直径10mm、Allgood社製)を用いて、日本工業規格(JIS) K5600-5-1(耐屈曲性(円筒形マンドレル:タイプ1の試験装置を用いた試験)、国際標準規格(ISO)1519と同試験。)に従って、屈曲させた。耐傷性の評価と同様にして欠陥の有無を確認し、以下の基準で評価した。本試験において、評価基準「C」以上が合格である。
-評価基準-
 A:欠陥(欠け、割れ、ヒビ及び剥がれ)が全く見られなかった
 B:欠陥部分の面積が、観測対象となる全面積のうち0%越え10%以下
 C:欠陥部分の面積が、観測対象となる全面積のうち10%越え30%以下
 D:欠陥部分の面積が、観測対象となる全面積のうち30%越え90%以下
 E:欠陥部分の面積が、観測対象となる全面積のうち90%越えたもの
(試験例3:イオン伝導度の評価)
 上記で得られた固体電解質含有シートを直径14.5mmの円板状に2枚切り出し、塗布面(固体電解質層の表面)を貼り合わせて(図2中、符号15、図3中、符号17で示す。)、図3に示すように、スペーサーとワッシャー(ともに図示せず)を組み込んで、ステンレス製の2032型コインケース16(図2において14)に入れた(コイン型の全固体二次電池18を作製した)。これを図2に示すように、下部支持板12と上部支持板11とに全固体二次電池13(図2において18)を挟んで、トルクレンチでネジSを8ニュートン(N)の力で締め付けて、イオン伝導度測定用試験体101~117及びc11~c14を作製した。
 上記で得られた各イオン伝導度測定用試験体を用いて、イオン伝導度を測定した。具体的には、30℃の恒温槽中、1255B FREQUENCY RESPONSE ANALYZER(商品名、SOLARTRON社製)を用いて、電圧振幅5mV、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより、貼り合わせた固体電解質含有シート(試料)の膜厚方向の抵抗を求め、下記式(I)により計算して、イオン伝導度を求めた。
 イオン伝導度(mS/cm)= 1000×試料膜厚(cm)/(抵抗(Ω)×試料面積(cm))・・・式(I)
Figure JPOXMLDOC01-appb-T000041
 上記表7から明らかなように、上述の式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有しないバインダーを含有する固体電解質組成物から作製したNo.c11~c14の固体電解質含有シートは、耐傷性、耐屈曲性及びイオン伝導度を高い水準でバランスよく兼ね備えるものではない。
 これに対して、上述の式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有するバインダー(B)を含有する本発明の固体電解質組成物から作製した固体電解質含有シートNo.101~117は、いずれも、耐傷性、耐屈曲性及びイオン伝導度を高い水準でバランスよく兼ね備えていることが分かる。
[実施例2]
 実施例2では、全固体二次電池用電極シートを作製して、その性能を評価した。
<電極層用組成物の調製>
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、実施例1で合成したLPS2.0gと、バインダー(B)0.1gと、分散媒としてオクタン22gとを投入した。その後に、この容器をフリッチュ社製遊星ボールミルP-7にセットし、温度25℃で、回転数300rpmで2時間攪拌した。その後、表8に示す電極活物質7.9gを容器に投入し、再びこの容器を遊星ボールミルP-7にセットし、温度25℃、回転数100rpmで15分間混合を続けた。このようにして、電極用組成物P-1を得た。
 電極用組成物P-1の調製において、電極活物質、バインダー(B)及び/又は分散媒と、その使用量とを、表8に示すように変更したこと以外は、電極用組成物P-1の調製と同様にして、電極用組成物P-2~P-17及びCP-1~CP-4をそれぞれ調製した。
<全固体二次電池用電極シートの作製>
 上記で得られた各電極層用組成物を厚み20μmのステンレス箔(集電体)上に、上記ベーカー式アプリケーターにより塗布し、80℃2時間加熱して、各電極用組成物を乾燥させた。その後、ヒートプレス機を用いて、所定の密度になるように乾燥させた電極層用組成物を加熱(120℃)しながら加圧(600MPa、1分)した。このようにして、電極活物質層を有する全固体二次電池用電極シートNo.P-1~P-17及びCP-1~CP-4を作製した。電極活物質層の膜厚は100μmであった。
<試験>
 上記で作製した全固体二次電池用電極シートについて、固体電解質含有シートと同様にして、上記(試験例1:耐傷性の評価)及び上記(試験例2:耐屈曲性の評価)を行った。また、得られた各全固体二次電池用電極シートを用いて作製したコイン電池を用いて、上記(試験例3:イオン伝導度の評価)を行った。結果を下記表8にまとめて記載する。
Figure JPOXMLDOC01-appb-T000042
(表の注)
 LPS:上記で合成したLi-P-S系ガラス
 バインダー(B)の番号は上記で合成した各ポリマーの番号を示す。
 NCA:LiNi0.85Co0.10Al0.05 ニッケルコバルトアルミニウム酸リチウム
 NMC:LiNi1/3Co1/3Mn1/3 ニッケルマンガンコバルト酸リチウム
 上記表8から明らかなように、上述の式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有しないバインダー(B)を含有する電極層用組成物から作製したNo.CP-1~CP-4の全固体二次電池用電極シートは、耐傷性、耐屈曲性及びイオン伝導度を高い水準でバランスよく兼ね備えるものではない。
 これに対して、上述の式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有するバインダー(B)を含有する本発明の電極層用組成物から作製した全固体二次電池用電極シートNo.P-1~P-17は、いずれも、バインダー(B)の含有量が1質量%という低いものであっても、耐傷性、耐屈曲性及びイオン伝導度を高い水準でバランスよく兼ね備えていることが分かる。
 上述の実施例1及び実施例2の結果から、本発明の固体電解質組成物を用いて作製した固体電解質含有シートないしは全固体二次電池用電極シートは、全固体二次電池に用いると、高いイオン伝導度と、更には短絡発生を抑制できるという優れた特性を全固体二次電池に付与できることが分かる。また、固体電解質含有シートないしは全固体二次電池用電極シートを全固体二次電池の製造に用いると、全固体二次電池の生産適性に優れ、歩留まりを向上させることもできる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年2月13日に日本国で特許出願された特願2017-24481に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
10 全固体二次電池
11 上部支持板
12 下部支持板
13、18 全固体二次電池
14、16 2032型コインケース
15、17 固体電解質含有シート又は全固体二次電池用電極シート
S ネジ

Claims (18)

  1.  周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質組成物であって、
     前記バインダー(B)が、下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
     式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
    <官能基群>
     カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
  2.  前記La1及びLb1の一方が、単結合、メチレン基又はエチレン基であり、かつ前記La1及びLb1の他方がメチレン基又はエチレン基である請求項1に記載の固体電解質組成物。
  3.  前記La2及びLb2が、いずれも、エチレン基である請求項1に記載の固体電解質組成物。
  4.  前記式(1)中の部分構造-L11-A、又は、前記式(2)中の部分構造-L12-Aが下記式(3)~(7)のいずれかで表される請求項1~3のいずれか1項に記載の固体電解質組成物。
    Figure JPOXMLDOC01-appb-C000002
     式(3)~(7)中、R21~R26は各々独立に水素原子、アルキル基又はアリール基を示す。Lは、炭素数1~18のアルキレン基、炭素数2~20のアルケニレン基若しくは炭素数6~16のアリーレン基、又は、これらの組み合わせを示す。Aはカルボン酸基を示す。n、m及びlは各々独立に0~2の整数である。Xは-O-、-S-又は-N(R)-を示し、Rは水素原子、アルキル基又はアリール基を示す。*は、前記式(1)中のC原子又は前記式(2)のN原子との結合部を示す。
  5.  前記バインダー(B)が、ウレタン結合、ウレア結合、アミド結合及びイミド結合から選ばれた少なくとも1種の結合を有するハードセグメントと、数平均分子量300以上の、ポリアルキレンエーテル鎖、ポリエステル鎖、ポリカーボネート鎖及びシリコーン鎖から選ばれた少なくとも1種の鎖を有するソフトセグメントとを有する請求項1~4のいずれか1項に記載の固体電解質組成物。
  6.  前記バインダー(B)が、炭化水素ポリマーセグメントを有する請求項1~5のいずれか1項に記載の固体電解質組成物。
  7.  前記バインダー(B)が、平均粒子径10~1000nmの粒子状ポリマーである請求項1~6のいずれか1項に記載の固体電解質組成物。
  8.  分散媒(C)を含有する請求項1~7のいずれか1項に記載の固体電解質組成物。
  9.  活物質(D)を含有する請求項1~8のいずれか1項に記載の固体電解質組成物。
  10.  導電助剤(E)を含有する請求項1~9のいずれか1項に記載の固体電解質組成物。
  11.  前記無機固体電解質(A)が、硫化物系無機固体電解質である請求項1~10のいずれか1項に記載の固体電解質組成物。
  12.  周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)と、バインダー(B)とを含有する固体電解質含有シートであって、
     前記バインダー(B)が、下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する固体電解質含有シート。
    Figure JPOXMLDOC01-appb-C000003
     式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
     式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
    <官能基群>
     カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
  13.  請求項12に記載の固体電解質含有シートの製造方法であって、
     前記無機固体電解質(A)と、前記バインダー(B)と、分散媒(C)とを含有する固体電解質組成物を基材上に塗布する工程と、塗布した固体電解質組成物を乾燥する工程とを含む固体電解質含有シートの製造方法。
  14.  正極活物質層、負極活物質層及び固体電解質層を具備する全固体二次電池であって、
     前記正極活物質層、前記負極活物質層及び前記固体電解質層の少なくとも1つの層が、周期律表第一族又は第二族に属する金属のイオンの伝導性を有する無機固体電解質(A)とバインダー(B)とを含有し、前記バインダー(B)が下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種を有する全固体二次電池。
    Figure JPOXMLDOC01-appb-C000004
     式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。L11は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
     式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。L12は2価の有機基を示す。Aは下記官能基群から選ばれる基を示す。
    <官能基群>
     カルボン酸基、スルホン酸基、リン酸基、シアノ基、3環以上が縮環した炭化水素環基
  15.  請求項13に記載の固体電解質含有シートの製造方法を介して、全固体二次電池を製造する、全固体二次電池の製造方法。
  16.  ウレタン結合、ウレア結合、アミド結合、イミド結合及びエステル結合から選ばれた少なくとも1種の結合を有するポリマーであって、
     下記式(1)で表される構成成分及び下記式(2)で表される構成成分から選ばれた少なくとも1種の構成成分を有するポリマー。
    Figure JPOXMLDOC01-appb-C000005
     式(1)中、Rは水素原子、アルキル基又はアリール基を示す。La1及びLb1は各々独立に単結合又はアルキレン基を示す。-L11-Aは下記式(3)~(7)のいずれかで表される部分構造を示す。
     式(2)中、La2及びLb2は各々独立に炭素数2以上のアルキレン基を示す。-L12-Aは下記式(3)~(7)のいずれかで表される部分構造を示す。
    Figure JPOXMLDOC01-appb-C000006
     式(3)~(7)中、R21~R26は各々独立に水素原子、アルキル基又はアリール基を示す。Lは、炭素数1~18のアルキレン基、炭素数2~20のアルケニレン基若しくは炭素数6~16のアリーレン基、又は、これらの組み合わせを示す。Aはカルボン酸基を示す。n、m及びlは各々独立に0~2の整数である。Xは-O-、-S-又は-N(R)-を示し、Rは水素原子、アルキル基又はアリール基を示す。*は、前記式(1)中のC原子又は前記式(2)のN原子との結合部を示す。
  17.  請求項16に記載のポリマーの非水溶媒分散物。
  18.  下記式(1M)で表わされる、請求項16に記載のポリマー用のジオール化合物。
    Figure JPOXMLDOC01-appb-C000007
     式(1M)中、Rはメチル基又はエチル基を示す。
     Xはメチレン基又はカルボニル基を示し、Yは単結合又はカルボニル基を示す。ただし、X及びYがともにカルボニル基となることはない。
     Lは炭素数1~18のアルキレン基又は炭素数6~16のアリーレン基である。
PCT/JP2018/001660 2017-02-13 2018-01-19 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物 WO2018147051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018567343A JP6840776B2 (ja) 2017-02-13 2018-01-19 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物
CN201880010010.XA CN110249468B (zh) 2017-02-13 2018-01-19 固体电解质组合物、全固态二次电池、相关材料和制造方法
KR1020197019201A KR102244412B1 (ko) 2017-02-13 2018-01-19 고체 전해질 조성물, 고체 전해질 함유 시트 및 그 제조 방법, 전고체 이차 전지 및 그 제조 방법과, 폴리머와 그 비수용매 분산물 및 다이올 화합물
EP18751228.0A EP3582316B1 (en) 2017-02-13 2018-01-19 Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid-state secondary battery and manufacturing method therefor
US16/520,483 US11417908B2 (en) 2017-02-13 2019-07-24 Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, polymer and non-aqueous solvent dispersion thereof, and diol compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-024481 2017-02-13
JP2017024481 2017-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/520,483 Continuation US11417908B2 (en) 2017-02-13 2019-07-24 Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, polymer and non-aqueous solvent dispersion thereof, and diol compound

Publications (1)

Publication Number Publication Date
WO2018147051A1 true WO2018147051A1 (ja) 2018-08-16

Family

ID=63107341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001660 WO2018147051A1 (ja) 2017-02-13 2018-01-19 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物

Country Status (6)

Country Link
US (1) US11417908B2 (ja)
EP (1) EP3582316B1 (ja)
JP (1) JP6840776B2 (ja)
KR (1) KR102244412B1 (ja)
CN (1) CN110249468B (ja)
WO (1) WO2018147051A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080261A1 (ja) * 2018-10-15 2020-04-23 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
WO2020203231A1 (ja) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 硫化物固体電解質
JPWO2021020031A1 (ja) * 2019-07-26 2021-02-04
JPWO2021039468A1 (ja) * 2019-08-30 2021-03-04
CN113614960A (zh) * 2019-03-28 2021-11-05 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
WO2022070850A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20220050189A (ko) 2019-09-30 2022-04-22 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및, 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
TWI841712B (zh) 2019-03-29 2024-05-11 日商三井金屬鑛業股份有限公司 硫化物固體電解質

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766400B (zh) 2020-10-23 2022-06-01 財團法人工業技術研究院 電解液與其所用的化合物以及電容器
US20220190346A1 (en) * 2020-12-14 2022-06-16 Global Graphene Group, Inc. Lithium-protecting polymer composite layer for a lithium metal secondary battery and manufacturing method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863980A (en) * 1995-12-20 1999-01-26 Hepce Chem Co., Ltd. Preparation process of polyurethane prepolymer, preparation process of aqueous dispersion obtained therefrom, and use thereof
JP2008056894A (ja) * 2006-08-03 2008-03-13 Mie Univ 高分岐ポリマー及びその製造方法、並びに、高分岐ポリマー合成用モノマー及びその前駆体
JP2008268744A (ja) 2007-04-24 2008-11-06 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
JP2009053632A (ja) * 2007-08-29 2009-03-12 Fujifilm Corp 重合性組成物、平版印刷版原版及びアルカリ可溶性樹脂
JP2009084443A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 重合性組成物、平版印刷版原版及びポリウレタン樹脂の製造方法
WO2012073678A1 (ja) 2010-11-29 2012-06-07 Jsr株式会社 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
JP2016025025A (ja) 2014-07-23 2016-02-08 トヨタ自動車株式会社 固体電池用負極の製造方法及び固体電池の製造方法、並びに、負極用スラリー
JP2017024481A (ja) 2015-07-17 2017-02-02 本田技研工業株式会社 車両用バッテリユニット

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388906B1 (ko) * 2000-09-29 2003-06-25 삼성에스디아이 주식회사 리튬 2차 전지
JP4319567B2 (ja) * 2004-03-04 2009-08-26 富士フイルム株式会社 重合性組成物及び平版印刷版原版
JP2011048921A (ja) * 2009-08-25 2011-03-10 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
WO2011064842A1 (ja) * 2009-11-25 2011-06-03 トヨタ自動車株式会社 電極積層体の製造方法および電極積層体
JP6110885B2 (ja) * 2014-02-03 2017-04-05 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
JP6415008B2 (ja) * 2015-02-20 2018-10-31 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびに電池用電極シートおよび全固体二次電池の製造方法
CN105602497B (zh) * 2016-01-26 2018-01-09 浙江中科立德新材料有限公司 聚氨酯改性丙烯酸类水性粘结剂及其制备方法和应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863980A (en) * 1995-12-20 1999-01-26 Hepce Chem Co., Ltd. Preparation process of polyurethane prepolymer, preparation process of aqueous dispersion obtained therefrom, and use thereof
JP2008056894A (ja) * 2006-08-03 2008-03-13 Mie Univ 高分岐ポリマー及びその製造方法、並びに、高分岐ポリマー合成用モノマー及びその前駆体
JP2008268744A (ja) 2007-04-24 2008-11-06 Fujifilm Corp ポジ型感光性組成物及びそれを用いたパターン形成方法
JP2009053632A (ja) * 2007-08-29 2009-03-12 Fujifilm Corp 重合性組成物、平版印刷版原版及びアルカリ可溶性樹脂
JP2009084443A (ja) * 2007-09-28 2009-04-23 Fujifilm Corp 重合性組成物、平版印刷版原版及びポリウレタン樹脂の製造方法
WO2012073678A1 (ja) 2010-11-29 2012-06-07 Jsr株式会社 電池用バインダー組成物、電池電極用スラリー、固体電解質組成物、電極及び全固体型電池
JP2015088480A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物および全固体二次電池用のバインダー、ならびにこれらを用いた電池用電極シートおよび全固体二次電池
JP2015088486A (ja) 2013-09-25 2015-05-07 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池
JP2015167126A (ja) * 2014-02-17 2015-09-24 富士フイルム株式会社 固体電解質組成物、これを用いた電池用電極シートおよび全固体二次電池、ならびにそれらの製造方法
JP2016025025A (ja) 2014-07-23 2016-02-08 トヨタ自動車株式会社 固体電池用負極の製造方法及び固体電池の製造方法、並びに、負極用スラリー
JP2017024481A (ja) 2015-07-17 2017-02-02 本田技研工業株式会社 車両用バッテリユニット

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872,873
See also references of EP3582316A4
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMGAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080261A1 (ja) * 2018-10-15 2020-04-23 富士フイルム株式会社 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
CN112913053A (zh) * 2018-10-15 2021-06-04 富士胶片株式会社 电极用组合物、全固态二次电池用电极片及全固态二次电池、以及电极用组合物、全固态二次电池用电极片及全固态二次电池的各制造方法
CN113614960A (zh) * 2019-03-28 2021-11-05 富士胶片株式会社 固体电解质组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
JP7159454B2 (ja) 2019-03-29 2022-10-24 三井金属鉱業株式会社 硫化物固体電解質
WO2020203231A1 (ja) * 2019-03-29 2020-10-08 三井金属鉱業株式会社 硫化物固体電解質
TWI841712B (zh) 2019-03-29 2024-05-11 日商三井金屬鑛業股份有限公司 硫化物固體電解質
JPWO2020203231A1 (ja) * 2019-03-29 2021-10-21 三井金属鉱業株式会社 硫化物固体電解質
JPWO2021020031A1 (ja) * 2019-07-26 2021-02-04
WO2021020031A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
CN114175339A (zh) * 2019-07-26 2022-03-11 富士胶片株式会社 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
JP7257520B2 (ja) 2019-07-26 2023-04-13 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JPWO2021039468A1 (ja) * 2019-08-30 2021-03-04
CN114303258A (zh) * 2019-08-30 2022-04-08 富士胶片株式会社 含有无机固体电解质的组合物、全固态二次电池用片材及全固态二次电池、以及全固态二次电池用片材及全固态二次电池的制造方法
JP7218440B2 (ja) 2019-08-30 2023-02-06 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021039468A1 (ja) * 2019-08-30 2021-03-04 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
KR20220050189A (ko) 2019-09-30 2022-04-22 후지필름 가부시키가이샤 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지, 및, 무기 고체 전해질 함유 조성물, 전고체 이차 전지용 시트 및 전고체 이차 전지의 제조 방법
WO2022070850A1 (ja) * 2020-09-30 2022-04-07 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7427106B2 (ja) 2020-09-30 2024-02-02 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Also Published As

Publication number Publication date
US11417908B2 (en) 2022-08-16
JP6840776B2 (ja) 2021-03-10
KR102244412B1 (ko) 2021-04-23
CN110249468B (zh) 2022-09-30
JPWO2018147051A1 (ja) 2019-08-08
KR20190087620A (ko) 2019-07-24
EP3582316A1 (en) 2019-12-18
CN110249468A (zh) 2019-09-17
EP3582316A4 (en) 2019-12-18
US20190348709A1 (en) 2019-11-14
EP3582316B1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
US11431022B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet and manufacturing method therefor, all-solid state secondary battery and manufacturing method therefor, and polymer and non-aqueous solvent dispersion thereof
JP6744928B2 (ja) 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマー及びその非水溶媒分散物
JP6840776B2 (ja) 固体電解質組成物、固体電解質含有シート及びその製造方法、全固体二次電池及びその製造方法、並びに、ポリマーとその非水溶媒分散物及びジオール化合物
CN108432024B (zh) 固体电解质组合物、全固态二次电池及其制造法、该电池用片、该电池用电极片及其制造法
WO2017099248A1 (ja) 固体電解質組成物、バインダー粒子、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、これらの製造方法
EP3493317A1 (en) Solid electrolyte composition, solid-electrolyte-containing sheet and all-solid-state secondary battery, production method for solid-electrolyte-containing sheet and all-solid-state secondary battery, segmented polymer, and non-aqueous-solvent dispersion of polymer and segmented polymer
JP6969004B2 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池
WO2020067107A1 (ja) 全固体二次電池の製造方法、並びに、全固体二次電池用電極シート及びその製造方法
US20210143472A1 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, method of manufacturing all-solid state secondary battery, and method of manufacturing particle binder
WO2019230592A1 (ja) 易接着層付集電体、電極、全固体二次電池、電子機器及び電気自動車、並びに、易接着層付集電体、電極及び全固体二次電池の製造方法
US20220344710A1 (en) Inorganic solid electrolyte-containing composition, sheet for all-solid state secondary battery, and all-solid state secondary battery, and manufacturing methods for sheet for all-solid state secondary battery and all-solid state secondary battery
US20210234194A1 (en) Solid electrolyte composition, sheet for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and all-solid state secondary battery
WO2017130832A1 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池、ならびに固体電解質含有シートおよび全固体二次電池の製造方法
WO2020067108A1 (ja) 全固体二次電池の負極用組成物、全固体二次電池用負極シート及び全固体二次電池、並びに、全固体二次電池用負極シート及び全固体二次電池の製造方法
WO2019098008A1 (ja) 固体電解質組成物、全固体二次電池用シート、全固体二次電池用電極シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法
JP7096367B2 (ja) 固体電解質組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート若しくは全固体二次電池の製造方法
WO2021020031A1 (ja) 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池、並びに、全固体二次電池用シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018567343

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019201

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018751228

Country of ref document: EP