WO2018142464A1 - 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法 - Google Patents

蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法 Download PDF

Info

Publication number
WO2018142464A1
WO2018142464A1 PCT/JP2017/003409 JP2017003409W WO2018142464A1 WO 2018142464 A1 WO2018142464 A1 WO 2018142464A1 JP 2017003409 W JP2017003409 W JP 2017003409W WO 2018142464 A1 WO2018142464 A1 WO 2018142464A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
magnetic metal
metal body
vapor deposition
opening
Prior art date
Application number
PCT/JP2017/003409
Other languages
English (en)
French (fr)
Inventor
光志 西田
崎尾 進
克彦 岸本
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to PCT/JP2017/003409 priority Critical patent/WO2018142464A1/ja
Priority to CN201780085302.5A priority patent/CN110234783B/zh
Priority to CN202111028520.XA priority patent/CN113737128A/zh
Priority to JP2017566424A priority patent/JP6410247B1/ja
Priority to US16/315,327 priority patent/US10557191B2/en
Publication of WO2018142464A1 publication Critical patent/WO2018142464A1/ja
Priority to US16/721,210 priority patent/US11230759B2/en
Priority to US17/550,010 priority patent/US20220098720A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method for manufacturing a vapor deposition mask, and more particularly, to a method for manufacturing a vapor deposition mask having a structure in which a resin layer and a metal layer are laminated. Moreover, this invention relates also to the manufacturing method of the organic-semiconductor element using a vapor deposition mask and a vapor deposition mask.
  • organic EL Electro Luminescence
  • the formation of the organic EL layer is mainly performed using a vacuum deposition method.
  • a metal mask As a vapor deposition mask, a metal mask (metal mask) is generally used.
  • metal mask metal mask
  • a vapor deposition mask having a structure in which a resin layer and a metal layer are laminated (hereinafter also referred to as “laminated mask”) has been proposed as a vapor deposition mask for forming a high-definition vapor deposition pattern.
  • Patent Document 1 discloses a laminated mask in which a resin film and a holding member that is a metal magnetic material are laminated. A plurality of openings corresponding to a desired vapor deposition pattern are formed in the resin film. A slit having a size larger than the opening of the resin film is formed in the holding member. The opening part of the resin film is arrange
  • Patent Document 1 describes a method of irradiating a resin film placed on a support material (such as a glass substrate) with a laser to form an opening having a desired size.
  • 28 (a) to 28 (d) are schematic process cross-sectional views for explaining a conventional method of manufacturing a vapor deposition mask disclosed in Patent Document 1, respectively.
  • Patent Document 1 first, as shown in FIG. 28A, a metal layer 82 having an opening (slit) 85 is formed on a resin film 81 to obtain a laminated film 80.
  • the laminated film 80 is attached to the frame 87 in a state where tension is applied to the laminated film 80 in a predetermined in-plane direction.
  • the laminated film 80 is placed on the glass substrate 90 as shown in FIG.
  • the surface of the resin film 81 opposite to the metal layer 82 is brought into close contact with the glass substrate 90 via a liquid 88 such as ethanol.
  • a liquid 88 such as ethanol
  • a plurality of openings 89 are formed in the resin film 81 by irradiating a portion of the resin film 81 exposed by the slit 85 of the metal layer 82 with the laser light L. To do. In this way, the stacked vapor deposition mask 900 is manufactured.
  • the conventional manufacturing method illustrated in FIG. 28 has a problem that it is difficult to process the resin film with high accuracy, or burrs are generated at the periphery of the opening of the resin film.
  • vapor deposition substrate a substrate to be deposited
  • a gap may be formed between the deposition mask and the deposition target substrate.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a stacked vapor deposition mask that can be suitably used for forming a high-definition vapor deposition pattern, and a method for manufacturing the same. Moreover, the other object of this invention is to provide the manufacturing method of the organic-semiconductor element using such a vapor deposition mask.
  • the manufacturing method of the vapor deposition mask of one Embodiment by this invention is a manufacturing method of the vapor deposition mask provided with the resin layer and the magnetic metal body formed on the said resin layer, Comprising: (A) At least 1 1st 1st Preparing a magnetic metal body having an opening, (B) preparing a substrate, (C) applying a solution containing a resin material or a varnish of the resin material to the surface of the substrate, and then performing a heat treatment.
  • the step (E) is performed after the step (D), and the plurality of second openings are in the at least one first opening of the magnetic metal body in the resin layer. Formed in the region located at
  • the step (E) is performed between the step (C) and the step (D).
  • the method further includes a step of providing a frame on a peripheral edge of the magnetic metal body.
  • the heat treatment is performed under a condition in which a tensile stress greater than 0.2 MPa is generated at room temperature in the in-plane direction of the resin layer.
  • the width of the at least one first opening is 30 mm or more, and the resin layer when the magnetic metal body is held in a horizontal direction after peeling the substrate in the step (F).
  • the maximum deflection amount ⁇ is 5 ⁇ m or less in the step (C), where ⁇ is the maximum deflection amount of the region of the magnetic metal body located in the at least one first opening. It is performed under the condition that a large tensile stress is generated in the resin layer.
  • the minimum width of the at least one first opening is W
  • the magnetic metal body is held in the horizontal direction after peeling the substrate in the step (F).
  • the heat treatment is such that ⁇ / W is 0.01% or less. It is performed under the condition that tensile stress is applied to the resin layer.
  • the magnetic metal body is applied with compressive stress from the resin layer.
  • the resin layer is a polyimide layer
  • the substrate is a glass substrate
  • the heat treatment in the step (C) is performed by applying the solution containing the resin material or the varnish of the resin material. Is heated to a temperature of 300 ° C. or higher and 600 ° C. or lower at a rate of 30 ° C./min or higher.
  • the step (D) includes a step (D1) of forming an adhesive layer on a part of the resin layer, and a step of bonding the resin layer to the magnetic metal body via the adhesive layer ( D2).
  • the adhesive layer is a metal layer
  • the resin layer is formed on the magnetic metal body via the metal layer by welding the metal layer to the magnetic metal body. It is the process of joining.
  • the width of the at least one first opening is 30 mm or more, and a magnetic metal is present in a region of the resin layer located in the at least one first opening of the magnetic metal body.
  • the magnetic metal body has an open mask structure.
  • An evaporation mask includes a frame, a magnetic metal body including at least one first opening supported by the frame, and the at least one first metal disposed on the magnetic metal body.
  • a resin layer that covers one opening, and an adhesive layer that is positioned between the resin layer and the magnetic metal body and that joins the resin layer and the magnetic metal body, the resin layer having an in-plane direction
  • the magnetic metal body receives a compressive stress in the in-plane direction from the resin layer.
  • the tensile stress at room temperature of the resin layer is greater than 0.2 MPa.
  • the adhesive layer is a metal layer fixed to the resin layer, and the metal layer is welded to the magnetic metal body.
  • the width of the at least one first opening is 30 mm or more, and the at least one first of the magnetic metal bodies in the resin layer when the magnetic metal bodies are held in a horizontal direction.
  • the maximum deflection amount ⁇ of the region located in the opening is 5 ⁇ m or less.
  • the at least one first opening of the magnetic metal body in the resin layer is included in the resin layer. Assuming that the maximum deflection amount of the located region is ⁇ , ⁇ / W is 0.01% or less.
  • the width of the at least one first opening is 30 mm or more, and a magnetic metal is present in a region of the resin layer located in the at least one first opening of the magnetic metal body.
  • the magnetic metal body has an open mask structure.
  • the manufacturing method of the organic semiconductor element of one embodiment by this invention includes the process of vapor-depositing organic-semiconductor material on a workpiece
  • a stacked vapor deposition mask that can be suitably used for forming a high-definition vapor deposition pattern and a method for manufacturing the same are provided.
  • (A) is a top view which shows typically the vapor deposition mask 100 of embodiment by this invention
  • (b) is sectional drawing along the AA in FIG. 1 (a).
  • (A) And (b) is a top view which shows typically the other vapor deposition mask of embodiment by this invention, respectively.
  • (A) And (b) is the process top view and process sectional drawing which illustrate the manufacturing method of the vapor deposition mask of embodiment by this invention, respectively.
  • (A) And (b) is the process top view and process sectional drawing which illustrate the manufacturing method of the vapor deposition mask of embodiment by this invention, respectively.
  • (A) And (b) is the process top view and process sectional drawing which illustrate the manufacturing method of the vapor deposition mask of embodiment by this invention, respectively.
  • FIGS. 4A to 4E are process cross-sectional views illustrating another method for manufacturing a vapor deposition mask according to an embodiment of the present invention.
  • FIGS. 4A to 4E are process cross-sectional views illustrating another method for manufacturing a vapor deposition mask according to an embodiment of the present invention.
  • FIGS. 4A to 4E are process cross-sectional views illustrating another method for manufacturing a vapor deposition mask according to an embodiment of the present invention.
  • FIGS. 4A to 4E are process cross-sectional views illustrating still another method for manufacturing a vapor deposition mask according to an embodiment of the present invention. It is a top view of samples A to C.
  • FIG. (A) And (b) is the top view and sectional drawing which show the vapor deposition mask of Example 1.
  • FIG. (A) And (b) is a top view which shows the scanning direction in a deflection
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C1 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C1 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C2 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C2 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C3 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell C3 in the vapor deposition mask of Example 1, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell in the vapor deposition mask of Example 2, respectively.
  • (A)-(c) is a figure which shows the change of the height of the polyimide film of the cell in the vapor deposition mask of Example 1, respectively.
  • (A) And (b) is a figure which shows the vapor deposition mask of Example 1, 2, respectively.
  • 1 is a cross-sectional view schematically showing a top emission type organic EL display device 500.
  • FIGS. 5A to 5D are process cross-sectional views illustrating manufacturing steps of the organic EL display device 500.
  • FIGS. FIGS. 5A to 5D are process cross-sectional views illustrating manufacturing steps of the organic EL display device 500.
  • FIGS. (A)-(d) is typical sectional drawing for demonstrating a mode that a burr
  • (A)-(d) is typical process sectional drawing for demonstrating the manufacturing method of the conventional vapor deposition mask disclosed by patent document 1, respectively.
  • burrs may be generated at the periphery of the opening of the resin film.
  • the present inventor has repeatedly studied the factors that generate burrs and has obtained the following knowledge.
  • the resin film 81 is brought into close contact with the glass substrate 90 by the surface tension of the liquid 88 such as ethanol.
  • a predetermined region (hereinafter abbreviated as “laser irradiation region”) is irradiated with laser light L to form an opening 89.
  • the present inventor not only makes it difficult to form the opening 89 with high accuracy when bubbles are present under the laser irradiation region where the resin film 81 is present, but also makes it difficult to form a variable in the laser irradiation region. Has been found to be easily generated. This will be described in detail with reference to FIG.
  • FIGS. 27A to 27D are schematic cross-sectional views for explaining how burrs are generated by bubbles between the glass substrate 90 and the resin film 81.
  • FIG. 27 the metal layer and the liquid are not shown.
  • Laser ablation is a phenomenon in which, when a solid surface is irradiated with laser light, the constituent material on the solid surface is suddenly released by the energy of the laser light.
  • the released speed is called ablation speed.
  • the ablation speed is distributed in the laser irradiation region 92 depending on the energy distribution, and a through-hole is first formed only in a part of the resin film 81.
  • the other thinned portion 98 of the resin film 81 is inside the bubble 94 located between the back side of the resin film 81 (that is, between the resin film 81 and the glass substrate 90).
  • the opening 89 is formed in a state where the thinned portion 98 is left without being removed.
  • the portion 98 of the resin film 81 left in a thinned state is referred to as “burr”.
  • the burr 98 protrudes to the back side of the resin film 81, a part of the vapor deposition mask may float from the vapor deposition target substrate when the vapor deposition mask is placed on the vapor deposition target substrate. For this reason, the vapor deposition pattern of the shape corresponding to the opening part 89 may not be obtained.
  • flash 98 of the resin film 81 may be performed after laser processing. For example, an attempt has been made to wipe off the back surface of the resin film 81 (wiping). However, it is difficult to remove all burrs 98 generated in the resin film 81 by the deburring process. In addition, as illustrated in FIG. 27D, wiping may return a part of the burrs 98 so as to protrude into the opening 89, which may cause shadowing in the vapor deposition process.
  • the present inventor has found a novel method capable of forming an opening of a desired size with high accuracy while suppressing the occurrence of burrs in the resin layer supported by the support material. I came up with it.
  • FIGS. 1A and 1B are a plan view and a cross-sectional view schematically showing the vapor deposition mask 100, respectively.
  • FIG. 1B shows a cross section taken along the line AA in FIG.
  • FIG. 1 schematically shows an example of the vapor deposition mask 100, and it goes without saying that the size, number, arrangement relationship, length ratio, and the like of each component are not limited to the illustrated example. The same applies to other drawings described later.
  • the vapor deposition mask 100 includes a magnetic metal body 20 and a resin layer 10 disposed on the main surface 20s of the magnetic metal body 20, as shown in FIGS. 1 (a) and (b). You may further provide the contact bonding layer 50 located in at least one part between the resin layer 10 and the magnetic metal body 20.
  • FIG. The adhesive layer 50 is a layer that joins the resin layer 10 and the magnetic metal body 20 together.
  • the vapor deposition mask 100 is a laminated mask having a structure in which a resin layer 10 and a magnetic metal body 20 are laminated.
  • the laminated body 30 including the resin layer 10 and the magnetic metal body 20 may be referred to as a “mask body”.
  • a frame 40 may be provided on the peripheral edge of the mask body 30.
  • the frame 40 may be joined to a surface of the magnetic metal body 20 opposite to the main surface 20s.
  • the magnetic metal body 20 has at least one opening (hereinafter referred to as “first opening”) 25.
  • first opening the magnetic metal body 20 has six first openings 25.
  • a portion (including a portion positioned between adjacent first openings 25) 21 in the vicinity of the first opening 25 in the magnetic metal body 20 where the metal exists is referred to as a “solid portion”. .
  • the magnetic metal body 20 may have an open mask structure.
  • the “open mask structure” is an evaporation mask for forming a plurality of devices (for example, an organic EL display) on one evaporation target substrate, and one opening portion is provided for a unit region U corresponding to one device.
  • the magnetic metal body 20 may not have an open mask structure.
  • the magnetic metal body 20 may have a structure in which two or more openings (for example, slits) are arranged for one unit region U. Good.
  • a magnetic metal body having an open mask structure may be simply referred to as an “open mask”.
  • the vapor deposition mask 100 is disposed such that the magnetic metal body 20 is positioned on the vapor deposition source side and the resin layer 10 is positioned on the workpiece (vapor deposition target) side. . Since the magnetic metal body 20 is a magnetic body, the vapor deposition mask 100 can be easily held and fixed on the workpiece in the vapor deposition process by using a magnetic chuck.
  • the resin layer 10 is disposed on the main surface 20 s of the magnetic metal body 20 so as to cover the first opening 25.
  • a region 10 a located in the first opening 25 in the resin layer 10 is a “first region”, a region 10 b overlapping with the solid portion 21 of the magnetic metal body 20 when viewed from the normal direction of the vapor deposition mask 100. Is referred to as a “second region”.
  • a plurality of openings (hereinafter referred to as “second openings”) 13 are formed in the first region 10 a of the resin layer 10.
  • the plurality of second openings 13 are formed in a size, shape, and position corresponding to the vapor deposition pattern to be formed on the workpiece.
  • a plurality of second openings 13 are arranged at a predetermined pitch.
  • the interval between two adjacent unit regions U is typically larger than the interval between two adjacent second openings 13 in the unit region U.
  • no magnetic metal is present on the first region 10a.
  • the second region 10 b of the resin layer 10 is bonded to the periphery (solid portion 21) of the first opening 25 of the magnetic metal body 20 through the adhesive layer 50.
  • the adhesive layer 50 is not particularly limited, but may be a metal layer.
  • the resin layer 10 and the magnetic metal body 20 are It may be joined.
  • the adhesive layer 50 may be formed of an adhesive.
  • the resin layer 10 should just be joined to the magnetic metal body 20 by the method illustrated above, and does not need to be joined directly to the frame 40.
  • the resin layer 10 provides a solution containing a resin material (eg, a soluble polyimide solution) or a solution containing a precursor of a resin material (eg, a polyimide varnish) on a support substrate such as a glass substrate, It is a layer formed by performing heat treatment.
  • the heat treatment herein includes a heat treatment for performing a drying step (for example, 100 ° C. or higher) when a soluble polyimide solution is used, and a drying and firing step (for example, 300 ° C. or higher) when using a polyimide varnish.
  • the plurality of second openings 13 are formed by performing laser processing on the resin layer 10 on the support substrate. Since the support substrate and the resin layer 10 are in close contact with each other and no bubbles are present (or almost no) between them, the generation of burrs is suppressed in the laser processing step of the resin layer 10. Therefore, the resin layer 10 of this embodiment has almost no burrs. Or even if it has a burr
  • the support substrate is peeled off from the resin layer 10 after the second opening 13 is formed in the resin layer.
  • the resin layer 10 formed on the support substrate by the above method may have a tensile stress (tensile internal stress) in the layer plane direction.
  • tensile stress tensile internal stress
  • the tensile stress of the resin layer 10 can be controlled by, for example, heat treatment conditions when the resin layer 10 is formed on the support substrate.
  • the tensile stress of the resin layer 10 is larger than 0.2 MPa, for example, at room temperature. Preferably it is 3 MPa or more. Thereby, the deflection can be reduced more effectively.
  • the heat treatment is performed under conditions that can reduce residual stress generated in the resin film as much as possible. This is because when the residual stress (tensile stress) of the resin film is increased, problems such as warping of the support substrate occur, which causes a decrease in shape stability and reliability.
  • a predetermined tensile stress is intentionally generated in the resin layer 10, and the deflection of the resin layer 10 is reduced using the tensile stress. Thereby, the process of stretching the resin layer 10 becomes unnecessary, and a vapor deposition mask with reduced deflection can be manufactured by an easier process.
  • the resin layer 10 may have a stress distribution on the support substrate, when the support substrate is peeled off, the magnitude of the tensile stress of the resin layer 10 is averaged and can be substantially uniform in the plane. Accordingly, the first region 10a of the resin layer 10 can have a tensile stress having substantially the same magnitude.
  • the deflection generated in the resin layer 10 is reduced without arranging a metal film in the vicinity of the second opening 13 of the resin layer 10. . Therefore, a precise patterning process for the metal film is not necessary.
  • the size of the first opening 25 of the magnetic metal body 20 can be increased while suppressing the occurrence of deflection, and for example, the magnetic metal body 20 having an open mask structure can be used. This will be described in detail below.
  • a laminated film (or resin film) of a resin film and a metal film is fixed to a frame in a state where the film is pulled in a specific layer in-plane direction by a stretcher or the like (hereinafter referred to as a layer) , Called “stretching process”).
  • a laminated mask if the opening of the metal film is too large, the resin film may bend due to its own weight, and a vapor deposition pattern having a shape corresponding to the opening of the resin film may not be obtained.
  • This embodiment is particularly advantageous when a magnetic metal body 20 having a relatively large first opening 25 such as an open mask is used. Even when the size of the first opening 25 is relatively large, the deflection generated in the resin layer 10 due to the tensile stress inherent in the resin layer 10 can be reduced. Therefore, it is not necessary to separately arrange a magnetic metal on the first region 10a of the resin layer 10 in order to suppress the displacement of the vapor deposition pattern due to the deflection.
  • the width (length along the short direction) of the first opening 25 may be, for example, 30 mm or more, or 50 mm or more. Although the upper limit of the width
  • the maximum deflection amount ⁇ of the resin layer 10 can be suppressed to a predetermined value ⁇ s or less.
  • the maximum deflection amount ⁇ of the resin layer 10 refers to the maximum deflection amount of the first region 10a of the resin layer 10 when the magnetic metal body 20 is held in the horizontal direction. ⁇ s is not particularly limited, but is, for example, 5 ⁇ m, preferably 2 ⁇ m.
  • the maximum deflection amount ⁇ of the resin layer 10 may be 5 ⁇ m or less.
  • ⁇ / W may be 0.01% or less.
  • the magnetic metal body 20 receives a compressive stress from the resin layer 10 in the in-plane direction.
  • both the metal film and the resin film are subjected to tension in the in-plane direction from the frame, and a configuration in which the resin film applies compressive stress to the metal film cannot be obtained.
  • polyimide As the material of the resin layer 10, for example, polyimide can be suitably used. Polyimide is excellent in strength, chemical resistance and heat resistance. As the material of the resin layer 10, other resin materials such as polyparaxylene, bismaleimide, silica hybrid polyimide may be used.
  • the linear thermal expansion coefficient ⁇ R (ppm / ° C.) of the resin film forming the resin layer 10 is preferably about the same as the linear thermal expansion coefficient of the substrate to be deposited.
  • Such a resin layer 10 can be formed according to formation conditions such as a resin material and baking conditions. A method for forming the resin layer 10 will be described later.
  • the thickness of the resin layer 10 is not particularly limited. However, if the resin layer 10 is too thick, a part of the deposited film may be formed thinner than a desired thickness (referred to as “shadowing”). From the viewpoint of suppressing the occurrence of shadowing, the thickness of the resin layer 10 is preferably 25 ⁇ m or less. Moreover, if it is 3 micrometers or more, the resin layer 10 of more uniform thickness can be formed by heat-processing with respect to the solution containing the resin material (or its precursor) provided on the support substrate. Also, from the viewpoint of the strength and washing resistance of the resin layer 10 itself, the thickness of the resin layer 10 is preferably 3 ⁇ m or more.
  • various magnetic metal materials can be used.
  • a material having a relatively large linear thermal expansion coefficient ⁇ M such as Ni, Cr, ferritic stainless steel, martensitic stainless steel, etc.
  • Fe—Ni alloy (Invar) Fe—Ni—Co
  • a material having a relatively small linear thermal expansion coefficient ⁇ M such as an alloy may be used.
  • the slit size of the metal layer is designed to be as small as possible, and the area ratio of the solid portion in the entire mask is relatively high ( In FIG. 1 of Patent Document 1, it is over 70%).
  • a material having a small linear thermal expansion coefficient ⁇ M for example, ⁇ M: less than 6 ppm / ° C.
  • the linear thermal expansion coefficient that could not be conventionally used is high. It is also possible to use a metal. Therefore, various metal materials can be used regardless of the linear thermal expansion coefficient, and the degree of freedom in selecting the metal material can be increased.
  • the thickness of the magnetic metal body 20 is not particularly limited. However, if the magnetic metal body 20 is too thin, the attracting force received from the magnetic field of the magnetic chuck becomes small, and it may be difficult to hold the vapor deposition mask 100 on the workpiece in the vapor deposition step. For this reason, the thickness of the magnetic metal body 20 is preferably 5 ⁇ m or more.
  • the thickness of the magnetic metal body 20 is preferably set within a range in which shadowing does not occur in the vapor deposition process.
  • the metal layer that is the holding member is disposed in the vicinity of the opening of the resin film. For this reason, it was necessary to reduce the thickness of the metal layer (for example, 20 ⁇ m or less) from the viewpoint of suppressing shadowing in the vapor deposition process.
  • the resin layer 10 has a predetermined tensile stress, and the magnetic metal body 20 may not be disposed in the vicinity of the second opening 13 of the resin layer 10.
  • the end of the first opening 25 of the magnetic metal body 20 can be arranged far from the second opening 13 of the resin layer 10 (for example, the solid portion 21 and the second opening 13 of the magnetic metal body 20).
  • Minimum distance Dmin 1 mm or more). If the minimum distance Dmin is large, shadowing hardly occurs even if the magnetic metal body 20 is thickened. Therefore, the magnetic metal body 20 can be made thicker than before.
  • the thickness of the magnetic metal body 20 depends on the vapor deposition angle, the taper angle of the magnetic metal body 20, and the minimum distance Dmin between the solid portion 21 and the second opening 13 of the magnetic metal body 20, for example, 1000 ⁇ m. It may be the above.
  • the thickness of the open mask can be increased to, for example, 300 ⁇ m or more by designing the size of the first opening 25 to be sufficiently larger than the unit region U.
  • the upper limit of the thickness of the magnetic metal body 20 is not particularly limited, for example, if it is 1.5 mm or less, shadowing can be suppressed.
  • the material of the magnetic metal body 20 but also the degree of freedom in selecting the thickness can be increased.
  • the frame 40 is made of, for example, a magnetic metal. Or you may form with materials other than a metal, for example, resin (plastic). In the conventional vapor deposition mask, the frame is required to have an appropriate rigidity so that the frame is not deformed or broken by the tension from the laminated film (resin film and metal film) fixed to the frame by the stretching process. For this reason, for example, a frame made of Invar having a thickness of 20 mm has been used. On the other hand, in the present embodiment, the frame 40 is attached without performing the stretching process or without applying a large tension to the magnetic metal body 20, so that the frame 40 is not subjected to the tension resulting from the stretching process. .
  • the frame 40 having a smaller rigidity than the conventional one, and the degree of freedom in selecting the material of the frame 40 is high. Further, it is possible to make the frame 40 thinner than before. When a thinner frame or a resin frame is used than before, a vapor deposition mask 100 that is lightweight and excellent in handling properties can be obtained.
  • FIGS. 2A and 2B are plan views schematically showing other vapor deposition masks 200 and 300 of the present embodiment, respectively.
  • the same components as those in FIG. 1 are denoted by the same reference numerals. In the following description, only differences from the vapor deposition mask 100 will be described.
  • the magnetic metal body 20 has a plurality of first openings 25 in the unit region U. Within each first opening 25, two or more second openings 13 (not to mention the number shown in the figure) are positioned.
  • the first openings 25 are arranged in the unit region U for each column (or for each row) of the second openings 13 arranged in the row direction and the column direction. It may be a slit. Alternatively, as illustrated in FIG. 2B, the first openings 25 may be arranged for each sub-region including the second openings 13 arranged in a plurality of columns and a plurality of rows.
  • vapor deposition mask having a plurality of unit regions U, the number and arrangement method of each unit region U, the number of second openings 13 in each unit region U and the arrangement method thereof. Is determined by the configuration of the device to be manufactured, and is not limited to the illustrated example.
  • the number of unit regions U may be singular.
  • FIGS. 3A to 7B are a process plan view showing an example of a method of manufacturing the vapor deposition mask 100, and a process cross section along the line AA shown in FIG. FIG.
  • a support substrate 60 is prepared, and the resin layer 10 is formed on the support substrate 60.
  • a glass substrate can be suitably used as the support substrate 60.
  • the size and thickness of the glass substrate are not particularly limited.
  • the resin layer 10 is formed as follows. First, a solution containing a resin material precursor (for example, a polyimide varnish) or a solution containing a resin material (for example, a soluble polyimide solution) is applied on the support substrate 60. As a method for applying the solution, a known method such as a spin coating method or a slit coater method can be used. Here, polyimide is used as the resin material, and a solution (polyimide varnish) containing a polyamic acid which is a precursor of polyimide is applied onto the support substrate 60 by a spin coating method. Subsequently, a polyimide layer is formed as the resin layer 10 by performing heat treatment (drying and firing). The heat treatment temperature can be set to 300 ° C. or higher, for example, 400 ° C. or higher and 500 ° C. or lower.
  • the heat treatment conditions are set such that a predetermined tensile stress is generated in the resin layer 10. For example, it may be set so as to generate a tensile stress greater than 0.2 MPa (preferably 3 MPa or more).
  • the magnitude of the tensile stress depends on, for example, the thickness, shape and size of the support substrate 60 and the material properties of the support substrate 60 (Young's modulus, Poisson's ratio, thermal expansion coefficient, etc.) in addition to the material of the resin layer 10 and the heat treatment conditions. It can change.
  • the heat treatment conditions here include a heat treatment temperature (maximum temperature), a temperature rising rate, a holding time at a high temperature (for example, 300 ° C. or higher), an atmosphere during the heat treatment, and the like. In addition to the temperature profile at the time of temperature increase, the temperature profile at the time of cooling is also included.
  • the conditions so that the polyimide varnish is rapidly imidized are set.
  • the glass substrate provided with a polyimide varnish may be heated to a temperature of 300 ° C. or more and 600 ° C. or less at a rate of 30 ° C./min or more.
  • the total time for which the glass substrate is held at a temperature of, for example, 300 ° C. or higher is set short (for example, within 30 minutes) through all heat treatment steps including temperature increase and cooling, so that it remains in the resin layer 10.
  • the heat treatment atmosphere is not particularly limited, and may be an air atmosphere or a nitrogen gas atmosphere. However, when the heat treatment is performed in a reduced pressure atmosphere of 100 Pa or less, the rate of temperature increase can be increased more easily.
  • the resin layer 10 may be formed by applying a solution containing a solvent-soluble polyimide (polymer) (soluble polyimide solution) on the support substrate 60 and drying it.
  • the drying temperature is appropriately selected depending on the boiling point of the solvent and is not particularly limited, but is, for example, 100 ° C. to 320 ° C., preferably 120 ° C. to 250 ° C. Even in this case, it is possible to increase the tensile stress remaining in the resin layer 10 by increasing the rate of temperature increase to the same level as described above or by shortening the holding time at a high temperature.
  • the support substrate 60 may be warped depending on the material and thickness of the support substrate 60. Further, on the support substrate 60, the resin layer 10 has a stress distribution. For example, the tensile stress increases toward the end from the center of the resin layer 10. Further, a larger tensile stress can be generated in the direction in which the length of the support substrate 60 is larger.
  • FIGS. 8A and 8B the relationship between the stress caused by the film RF formed on the substrate SUB and the method of deformation of the substrate SUB will be described with reference to FIGS. 8A and 8B.
  • a compressive stress acts on the surface of the substrate SUB, so that the surface of the substrate SUB forms a concave surface. It deforms (warps).
  • FIG. 8B when the film RF has the compressive stress Sc, the surface of the substrate SUB has a convex surface because tensile stress acts on the surface of the substrate SUB. Deform to form.
  • the support substrate 60 Since the resin layer 10 formed by the above-described method has a tensile stress, as shown in FIG. 8A, the support substrate 60 is deformed so as to form a concave surface, and the end of the support substrate 60 floats from the horizontal plane. There is a case. Depending on the material and thickness of the support substrate 60, the support substrate 60 may not be warped even when compressive stress is applied from the resin layer 10.
  • an adhesive layer 50 is formed on a part of the resin layer 10.
  • the adhesive layer 50 has an opening 55 corresponding to a first opening 25 of the magnetic metal body 20 described later.
  • the adhesive layer 50 may be formed on the entire region of the resin layer 10 corresponding to the solid portion 21 of the magnetic metal body 20 (region to be the second region 10b) or may be formed on a part thereof. Good. Preferably, it arrange
  • the adhesive layer 50 may be a metal layer or may be formed of an adhesive.
  • the adhesive layer 50 only needs to be fixed to the upper surface of the resin layer 10.
  • a metal layer can be formed by a method such as electrolytic plating or electroless plating.
  • various metal materials can be used, for example, Ni, Cu, and Sn can be suitably used.
  • the thickness of the metal layer only needs to be large enough to withstand the welding process to the magnetic metal body 20 described later, and is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the resin layer 10 formed on the support substrate 60 is fixed on the magnetic metal body 20 so as to cover the first opening 25.
  • the resin layer 10 and the magnetic metal body 20 are bonded via the adhesive layer 50.
  • a region 10 a located in the first opening 25 of the magnetic metal body 20 is a first region
  • a region 10 b overlapping the solid portion 21 is a second region.
  • the magnetic metal body 20 is made of a magnetic metal material and has at least one first opening 25.
  • the manufacturing method of the magnetic metal body 20 is not particularly limited. For example, it can be manufactured by preparing a magnetic metal plate and forming the first opening 25 in the magnetic metal plate by a photolithography process.
  • the adhesive layer 50 is a metal layer
  • laser beam may be irradiated from the resin layer 10 side to weld the adhesive layer 50 to the magnetic metal body 20.
  • spot welding may be performed at a plurality of positions at intervals. The number of spots to be spot welded and the interval (pitch) can be selected as appropriate. In this way, the resin layer 10 is bonded to the magnetic metal body 20 via the adhesive layer 50.
  • the adhesive layer 50 may not be a metal layer.
  • the resin layer 10 and the magnetic metal body 20 may be joined using an adhesive layer 50 formed of an adhesive (dry lamination or heat lamination).
  • the adhesive layer 50 may be disposed only on the peripheral edge of the resin layer 10. If the portion of the magnetic metal body 20 that overlaps with the frame provided later is a “peripheral portion” and the portion located within the opening of the frame is a “mask portion”, the adhesive layer 50 is connected to the peripheral portion of the magnetic metal body 20. It may be arranged only between the resin layer 10. In that case, the solid portion 21 of the magnetic metal body 20 and the resin layer 10 are not bonded in the mask portion.
  • the adhesive layer 50 is preferably not formed on the portion of the resin layer 10 that becomes the first region 10a.
  • the tensile stress of the resin layer 10 has an in-plane distribution in the first region 10a even after the support substrate 60 is peeled from the resin layer 10 in a later step. There is a possibility that.
  • a plurality of second openings 13 are formed in the first region 10a of the resin layer 10 by a laser ablation method, for example (laser processing step).
  • laser processing step a laser processing step
  • a pulse laser is used for laser processing of the resin layer 10.
  • a YAG laser is used to irradiate a predetermined region of the resin layer 10 with laser light L1 having a wavelength of 355 nm (third harmonic).
  • the energy density of the laser beam L1 is set to 0.36 J / cm 2 , for example.
  • the laser processing of the resin layer 10 is performed by performing a plurality of shots with the laser beam L1 focused on the surface of the resin layer 10.
  • the shot frequency is set to 60 Hz, for example.
  • the laser processing conditions are not limited to the above, and are appropriately selected so that the resin layer 10 can be processed.
  • the size and shape of the second opening 13 is the first when the stress distribution in the first region 10a is averaged after the support substrate 60 is peeled off. There is a case where it changes depending on the position in one area 10a. In such a case, considering the deformation amount of the second opening 13 due to the average of the stress distribution so that the second opening 13 has a desired size and shape after the support substrate 60 is peeled off, It is preferable to form the second opening 13.
  • laser processing is performed on the resin layer 10 formed by baking (or drying) on the support substrate 60. Since there are no bubbles between the support substrate 60 and the resin layer 10, it is possible to form the second opening 13 having a desired size with higher accuracy than before, and to generate burrs (see FIG. 27). Is also suppressed.
  • the mask body 30 is peeled from the support substrate 60.
  • the support substrate 60 can be peeled off by, for example, a laser lift-off method.
  • mechanical peeling may be performed using a knife edge or the like.
  • the resin layer 10 is peeled from the support substrate 60 by irradiating laser light (wavelength: 308 nm) from the support substrate 60 side.
  • the laser light only needs to have a wavelength that passes through the support substrate 60 and is absorbed by the resin layer 10, and other high-power lasers such as an excimer laser or a YAG laser may be used.
  • the resin layer 10 When the support substrate 60 is peeled off, the resin layer 10 is in a state where it is stretched (pinned) without sagging due to the inherent tensile stress. Moreover, in the part (here 1st area
  • the frame 40 is fixed to the mask body 30 (frame attachment process).
  • the vapor deposition mask 100 shown in FIG. 1 is manufactured.
  • the frame 40 is placed on the periphery of the magnetic metal body 20 and the periphery of the magnetic metal body 20 and the frame 40 are joined.
  • the frame 40 is made of a magnetic metal such as Invar.
  • the peripheral part of the magnetic metal body 20 and the frame 40 may be welded (spot welding) by irradiating laser light from the resin layer 10 side.
  • the pitch of spot welding can be selected as appropriate.
  • the inner edge portion of the frame 40 and the inner edge portion of the magnetic metal body 20 are substantially aligned. May be exposed inside the frame 40.
  • the frame 40 may cover the entire peripheral portion of the magnetic metal body 20 and a part of the resin layer 10.
  • the frame 40 since the step (stretching step) of pulling the resin layer 10 and the magnetic metal body 20 in a predetermined in-plane direction and fixing it to the frame 40 is not performed, the frame has a smaller rigidity than the conventional one. 40 can be used.
  • the frame 40 may be formed of a resin such as ABS (acrylonitrile butadiene styrene) or PEEK (polyether ether ketone).
  • frame 40 is not limited to laser welding.
  • the peripheral part of the magnetic metal body 20 and the frame 40 may be joined using an adhesive.
  • a magnetizing step of magnetizing the magnetic metal body 20 with an electromagnetic coil is performed, and the residual magnetic flux density of the magnetic metal body 20 is adjusted to, for example, 10 mT or more and 1000 mT. Note that the magnetizing step may not be performed. Even if the magnetizing step is not performed, the magnetic metal body 20 is a magnetic body. Therefore, by using a magnetic chuck, the vapor deposition mask 100 can be held on the workpiece in the vapor deposition step.
  • the method of forming the vapor deposition mask 100 has been described as an example, but the other vapor deposition masks 200 and 300 can be manufactured by the same method as described above.
  • the second opening 13 is formed in the resin layer 10 after the resin layer 10 and the magnetic metal body 20 are joined. Prior to joining the metal body 20, the second opening 13 may be formed.
  • the support substrate 60 is peeled off from the mask body 30 before the mask body 30 and the frame 40 are joined. After bonding, the support substrate 60 may be peeled off. Further, the frame 40 may be attached to the magnetic metal body 20 before the resin layer 10 and the magnetic metal body 20 are joined.
  • 9A to 9E are process cross-sectional views illustrating another method for manufacturing a vapor deposition mask.
  • the resin layer 10 is formed on the support substrate 60.
  • the formation method of the resin layer 10 is the same as the method described above with reference to FIG.
  • the resin layer 10 is formed by applying a polyimide varnish on the support substrate 60 and baking it.
  • the second opening 13 is formed in the resin layer 10 by laser processing.
  • the second opening 13 is formed in a region of the resin layer 10 that is located in the first opening 25 of the magnetic metal body 20 when bonded to the magnetic metal body 20 in a later step.
  • the resin layer 10 and the magnetic metal body 20 are bonded via the adhesive layer 50.
  • the joining method is the same as that described above with reference to FIG. 9C.
  • the support substrate 60 is peeled from the resin layer 10 by, for example, a laser lift-off method.
  • the frame 40 is provided on the periphery of the magnetic metal body 20 by spot welding using, for example, laser light L 2. In this way, the vapor deposition mask 100 is obtained.
  • 10A to 10E are process cross-sectional views illustrating another method for manufacturing a vapor deposition mask.
  • the resin layer 10 is formed on the support substrate 60.
  • the formation method of the resin layer 10 is the same as the method described above with reference to FIG.
  • the resin layer 10 and the magnetic metal body 20 are joined via the adhesive layer 50.
  • the second opening 13 is formed in the resin layer 10 by laser processing.
  • the frame 40 is provided on the periphery of the magnetic metal body 20 by spot welding using, for example, the laser beam L2.
  • the support substrate 60 is peeled from the resin layer 10 by, for example, a laser lift-off method. In this way, the vapor deposition mask 100 is obtained.
  • FIGS. 11A to 11E are process cross-sectional views illustrating still another method for manufacturing a vapor deposition mask.
  • the resin layer 10 is formed on the support substrate 60.
  • the formation method of the resin layer 10 is the same as the method described above with reference to FIG. 11A.
  • the frame structure is formed by attaching the magnetic metal body 20 to the frame 40.
  • the frame 40 is placed on the periphery of the magnetic metal body 20 and the periphery and the frame 40 are joined.
  • the peripheral part of the magnetic metal body 20 and the frame 40 are welded by irradiating the laser beam L3 from the magnetic metal body 20 side.
  • spot welding may be performed at a plurality of positions with a predetermined interval.
  • the magnetic metal body 20 may be joined to the frame 40 in a state where a certain tension is applied to the magnetic metal body 20 in a predetermined direction using a stretch welding apparatus.
  • the magnetic metal body 20 should just be fixed to the flame
  • the resin layer 10 and the magnetic metal body 20 are bonded via the adhesive layer 50.
  • the second opening 13 is formed in the resin layer 10 by laser processing.
  • the support substrate 60 is peeled from the resin layer 10 by, for example, a laser lift-off method. In this way, the vapor deposition mask 100 is obtained.
  • the vapor deposition mask 100 of this embodiment can be manufactured by various methods. In the method illustrated in FIG. 9, it is necessary to perform highly accurate alignment when the resin layer 10 in which the second opening 13 is formed and the magnetic metal body 20 are bonded. On the other hand, if the second opening 13 is formed after the resin layer 10 and the magnetic metal body 20 are joined, it is not necessary to perform such highly accurate alignment.
  • the frame 40 is attached before the support substrate 60 is peeled off.
  • the support substrate 60 to which the frame 40 having a large weight and bulk is attached is placed on the stage of the laser lift-off device, and the support substrate 60 is peeled off.
  • the mounting process of the frame 40 is performed after the support substrate 60 is peeled off, it is more practical because the above-mentioned restrictions are not imposed on the size, strength, WD, etc. of the stage of the laser lift-off device. .
  • the resin layer 10 is formed by applying a solution containing a resin material or a solution containing a precursor of a resin material to the surface of the support substrate 60 and performing a heat treatment.
  • the resin layer 10 formed by this method is in close contact with the support substrate 60, and no bubbles are generated at the interface between the resin layer 10 and the support substrate 60. Therefore, by forming the plurality of second openings 13 in the resin layer 10 on the support substrate 60, the second openings 13 having a desired size can be formed with higher accuracy than in the past, and the burr 98 (FIG. 27). Generation) can be suppressed.
  • a desired tensile stress can be generated in the resin layer 10.
  • the amount of deflection generated in the first region 10a of the resin layer 10 can be reduced.
  • the resin layer 10 can be brought into close contact with the deposition target substrate without disposing a magnetic metal on the first region 10 a in the vicinity of the second opening 13. Therefore, the size of the first opening 25 can be increased, and for example, an open mask can be used.
  • the magnetic metal body 20 having an extremely small area ratio of the solid part (for example, 50% or less with respect to the area of the mask part). Further, since it is not necessary to form a magnetic metal layer patterned with high accuracy, the manufacturing process can be simplified. Further, it is possible to use a metal material having a large thermal expansion coefficient ⁇ M. Accordingly, the shape of the magnetic metal body 20 and the degree of freedom in selecting the metal material can be increased as compared with the conventional case.
  • the resin layer 10 is formed on the support substrate 60, and the resin layer 10 supported by the support substrate 60 and the magnetic metal body 20 are bonded. Since the resin layer 10 has a predetermined tensile stress as a residual stress, a stretching process for pulling the resin layer 10 and joining it to the frame is not performed. Since a stretching process using a large stretcher is not required, there is an advantage that the manufacturing cost can be reduced. In addition, since the stretching process is not performed, a predetermined in-plane tension is not applied from the frame 40 to the magnetic metal body 20. Therefore, the rigidity of the frame 40 can be reduced as compared with the prior art, and the degree of freedom in selecting the material of the frame 40 and the degree of freedom in designing the frame width, thickness, etc. are increased.
  • the attachment process of the frame 40 may be performed before the laser processing of the resin layer 10, or may be performed after the laser processing.
  • the mask body 30 (including the mask body before laser processing) supported by the support substrate 60 before the frame 40 is attached is lighter and easier to handle than the mask body 30 after the frame 40 is attached. Work such as installation and transfer to the processing machine becomes easy. Further, since the frame 40 is not attached, it is easy to irradiate the resin layer 10 with the laser light L1 and to process the resin layer 10 easily. Further, in the method of Patent Document 1, it is necessary to peel the laminated mask from the frame when the laser processing of the resin layer is not successful. However, when laser processing is performed before the frame 40 is attached, An exfoliation process is unnecessary.
  • the resin film fixed to the frame by the stretching process is sensitive to changes in the surrounding environment such as humidity and temperature, and the amount of deflection of the resin film can vary depending on the surrounding environment.
  • the deflection of the resin layer 10 is zero or slight, and the change in the deflection amount with time is hardly seen.
  • ⁇ T is less than 3 ° C., for example, about 1 ° C.
  • ⁇ T may be about 3 ° C. to 15 ° C.
  • the temperature T1 at the time of manufacture in the present embodiment is an environmental temperature in which a manufacturing apparatus (for example, a laser processing machine used for processing the resin layer 10 or a welding machine used for a frame mounting process) is installed, For example, room temperature.
  • the temperature T2 in the vapor deposition process refers to the temperature of the portion of the vapor deposition mask where vapor deposition is performed when performing vapor deposition while moving the position of the vapor deposition source relative to the workpiece (while scanning). .
  • ⁇ T is relatively large (for example, more than 3 ° C.)
  • the temperature rise ( ⁇ T) of the vapor deposition mask is measured in advance.
  • the positional deviation amount includes a deviation between the position of the second opening 13 and the vapor deposition position, and a deviation between the shape of the second opening 13 and a desired vapor deposition pattern due to the deformation of the second opening 13 itself.
  • the size of the second opening 13 of the resin layer 10 is formed to be smaller than the desired vapor deposition pattern by a predetermined amount so as to cancel out this displacement. Instead of calculating the amount of displacement, the amount of displacement may be measured by actually performing vapor deposition.
  • FIG. 12 is a top view of samples A to C.
  • a glass substrate (AN-100 manufactured by Asahi Glass) 61 was prepared as a support substrate.
  • the glass substrate 61 had a thermal expansion coefficient of 3.8 ppm / ° C., a size of 370 mm ⁇ 470 mm, and a thickness of 0.5 mm.
  • a polyimide varnish (U-Varnish-S manufactured by Ube Industries Co., Ltd.) was applied on a part of the glass substrate 61 described above.
  • a polyimide varnish was applied to a predetermined region (330 mm ⁇ 366 mm) in the glass substrate 61.
  • the glass substrate 61 coated with the polyimide varnish was heat-treated in a vacuum atmosphere at a pressure of 20 Pa to form a polyimide film 62.
  • the temperature was raised from room temperature (25 ° C. here) to 500 ° C. (maximum temperature), and held at 500 ° C. for a predetermined time. Thereafter, nitrogen gas was supplied as a purge gas, and then rapidly cooled (3 minutes).
  • Table 1 shows the temperature rising time up to 500 ° C., the holding time at 500 ° C., the temperature rising speed (from room temperature to reaching 500 ° C.), and the thickness of the polyimide film 62 in each sample.
  • glass substrates 61 on which a polyimide film 62 was formed were obtained as samples A to C.
  • the compressive stress was applied to the glass substrate 61 due to the tensile stress of the polyimide film 62, and the glass substrate 61 was warped.
  • Table 1 shows the average value of the warpage amount of the glass substrate 61 in the long side direction and the short side direction.
  • the tensile stress of the polyimide film 62 was calculated from the amount of warpage of the glass substrate 61 in samples A to C. The results are shown in Table 1.
  • the tensile stress can be obtained from the thickness of the glass substrate 61, Young's modulus, Poisson's ratio, the thickness of the polyimide film 62, and the curvature radius (approximate value) of the glass substrate 61 using the Stoney equation.
  • Table 1 also shows the results when a polyimide film was produced under conditions with a low rate of temperature increase (referred to as “sample D”).
  • sample D As shown in Table 1, in Sample D, after reaching 120 ° C., 150 ° C., and 180 ° C., the temperature was raised to 450 ° C. stepwise by holding at that temperature for a predetermined time.
  • the tensile stress of sample D is a value calculated by setting the warp of the glass substrate 61 to 10 ⁇ m.
  • the tensile stress generated in the resin layer on the support substrate can be controlled by the heat treatment conditions. For example, it was found that a resin layer having a large tensile stress can be formed by increasing the temperature rising rate.
  • the heat treatment was performed by changing the heating rate for each sample, but the tensile stress of the resin layer can be varied even if the heat treatment conditions other than the heating rate are changed.
  • Example The vapor deposition mask of an Example was produced and the deflection amount of the resin layer was evaluated, The result is demonstrated.
  • FIG. 13A is a plan view for explaining the vapor deposition mask of Example 1
  • FIG. 13B is a cross-sectional view taken along line BB of FIG. 13A.
  • the manufacturing method of the vapor deposition mask of Example 1 was the same as that described above with reference to FIG.
  • Example 1 the glass substrate (200x130 mm, thickness: 0.5 mm) was used as a support substrate.
  • a polyimide film (thickness: 20 ⁇ m) 71 was formed on the glass substrate under the same heat treatment conditions as in Sample B above.
  • an open mask (200 ⁇ 110 mm, thickness: 100 ⁇ m) 72 having three first openings (50 mm ⁇ 90 mm) 73 was prepared as a magnetic metal body.
  • This open mask 72 was welded to a SUS frame (not shown) (200 ⁇ 130 mm, thickness: 10 mm, frame width 20 mm).
  • an epoxy resin adhesive (EP330 manufactured by Cemedine) 75 was applied as an adhesive layer on part of the polyimide film 71 on the glass substrate. Thereafter, the polyimide film 71 and the open mask 72 were joined via the adhesive 75.
  • Example 1 the vapor deposition mask of Example 1 was obtained.
  • the vapor deposition mask of Example 1 includes three cells C1 to C3.
  • the “cell” refers to a portion including each first opening 73 and its periphery when the vapor deposition mask is viewed from the normal direction, and corresponds to the unit region U described above.
  • a region 71 a exposed by the first opening 73 in the polyimide film 71 is referred to as a “first region”
  • a region 71 b bonded to the open mask 72 by the adhesive 75 is referred to as a “second region”.
  • Example 2 -Preparation of the vapor deposition mask of Example 2
  • the vapor deposition mask of Example 2 was produced by the method similar to Example 1 except the point which formed the polyimide film 71 on the heat processing conditions similar to said sample D.
  • FIG. However, in Example 2, the polyimide film 71 was not attached to the opening located in the center among the three first openings 73 of the open mask 72. Therefore, the vapor deposition mask of Example 2 includes two cells.
  • 14 (a) and 14 (b) are plan views showing the scan direction of each cell in the deflection measurement.
  • a laser displacement meter manufactured by Keyence Corporation, LK-H057K
  • scanning is performed in the short side direction and the long side direction of the first opening 73 in each cell, and the change in the height of the polyimide film 71 is examined. It was.
  • the data sampling period was 200 ⁇ s.
  • FIG. 15 to 20 are diagrams showing measurement results of the polyimide film 71 of each cell in the vapor deposition mask of Example 1.
  • FIG. 15 to 20 are diagrams showing measurement results of the polyimide film 71 of each cell in the vapor deposition mask of Example 1.
  • FIGS. 15 (a) to 15 (c) and FIGS. 16 (a) to 16 (c) are diagrams showing changes in the height of the polyimide film 71 of the cell C1 in the vapor deposition mask of Example 1, respectively.
  • FIGS. 17 (a) to 17 (c) and FIGS. 18 (a) to (c) are diagrams showing changes in the height of the polyimide film 71 of the cell C2, respectively.
  • FIGS. 20A to 20C are diagrams showing changes in the height of the polyimide film 71 of the cell C3.
  • FIGS. 15, 17 and 19 show (a) to (c) in the short direction of the cell along the lines II, II-II and III-III shown in FIG. 14 (a), respectively.
  • FIGS. 16, 18, and 20 (a) to 20 (c) respectively show polyimide films in the longitudinal direction of the cell along the lines IV-IV, VV, and VI-VI shown in FIG. 14 (a). The measurement result when 71 is scanned is shown.
  • the vertical axis represents the height of the polyimide film 71, which is a value based on the height of the central portion of each cell.
  • the horizontal axis represents the number of data points acquired at intervals of 200 ⁇ s. Note that the measurement is performed by manually moving the sensor, and the scanning speed of the sensor is not constant, so the horizontal axis does not correspond to the distance.
  • the height of the first region 71a of the polyimide film 71 has an inclination, but this inclination depends on the tilt of the frame, the thickness variation of the adhesive 75, and the like.
  • a step h is formed between the first region 71a and the second region 71b of the polyimide film 71. This is because the vapor deposition mask of Example 1 is installed with the polyimide film 71 facing up, and measurement is performed with a displacement meter from below (on the open mask 72 side of the polyimide film 71). The step h corresponds to the total thickness of the open mask 72 and the adhesive 75.
  • the correction lines are indicated by broken lines in the measurement results of the cross sections of the cells C1 to C3.
  • the “correction line” represents a change in the height of the polyimide film 71 (first region 71a) when the deflection of the polyimide film 71 is zero.
  • the actually measured value of the height of the polyimide film 71 is smaller than the height of the correction line.
  • the maximum value of the difference in height between the correction line and the actual measurement value (when the actual measurement value is negative with respect to the height of the correction line) was obtained as the deflection amount of the polyimide film 71 in each cross section. Further, the maximum value of the deflection amount was set as the “maximum deflection amount” of the cell.
  • the maximum deflection amount was 5 ⁇ m or less. Therefore, in the vapor deposition mask of Example 1, regardless of the position of the cell, the first region 71a of the polyimide film 71 has a predetermined magnitude of tensile stress, and the amount of deflection (that is, the measured value and the correction line) It was found that the difference in height) can be suppressed. Further, it was found that the stress distribution generated immediately after the heat treatment is reduced (averaged) in the first region 71a of the polyimide film 71.
  • Example 2 also for the cell of the vapor deposition mask of Example 2, the deflection of the polyimide film 71 was measured in the same manner as in Example 1 to obtain the maximum deflection amount.
  • FIGS. 21A to 21C and FIGS. 22A to 22C show changes in the height of the polyimide film 71 of one cell in the vapor deposition mask of Example 2, respectively.
  • the maximum deflection amount in each cell was 400 ⁇ m or more and 500 ⁇ m or less, and it was found that a larger deflection than that in Example 1 occurred. Therefore, it was confirmed that the amount of deflection of the polyimide film 71 can be reduced by increasing the tensile stress of the polyimide film 71.
  • a resin film having a predetermined tensile stress (for example, 3 MPa or more) and a conventional resin film formed under a condition that the tensile stress is relatively small are a compressive stress (warpage) applied to the support substrate or the magnetic metal body.
  • a compressive stress warpage
  • the measurement of the in-plane orientation (IR absorption spectrum) of the resin film For example, in the conventional resin film, the IR absorption spectra on the front surface and the back surface are substantially the same, but in the resin film having a large tensile stress, differences such as different IR absorption spectra on the front surface and the back surface may occur.
  • a resin film having a predetermined tensile stress bonded to an open mask and a conventional resin film fixed to a frame by stretching can be distinguished from each other by observation using polarized light, for example.
  • the vapor deposition mask by embodiment of this invention is used suitably for the vapor deposition process in the manufacturing method of an organic-semiconductor element.
  • FIG. 24 is a cross-sectional view schematically showing a top emission type organic EL display device 500.
  • the organic EL display device 500 includes an active matrix substrate (TFT substrate) 510 and a sealing substrate 520, and includes a red pixel Pr, a green pixel Pg, and a blue pixel Pb.
  • TFT substrate active matrix substrate
  • sealing substrate 520 includes a red pixel Pr, a green pixel Pg, and a blue pixel Pb.
  • the TFT substrate 510 includes an insulating substrate and a TFT circuit formed on the insulating substrate (both not shown).
  • a planarization film 511 is provided so as to cover the TFT circuit.
  • the planarizing film 511 is formed from an organic insulating material.
  • Lower electrodes 512R, 512G, and 512B are provided on the planarizing film 511.
  • the lower electrodes 512R, 512G, and 512B are formed on the red pixel Pr, the green pixel Pg, and the blue pixel Pb, respectively.
  • the lower electrodes 512R, 512G and 512B are connected to the TFT circuit and function as an anode.
  • a bank 513 that covers the ends of the lower electrodes 512R, 512G, and 512B is provided between adjacent pixels.
  • the bank 513 is made of an insulating material.
  • Organic EL layers 514R, 514G, and 514B are provided on the lower electrodes 512R, 512G, and 512B of the red pixel Pr, the green pixel Pg, and the blue pixel Pb, respectively.
  • Each of the organic EL layers 514R, 514G, and 514B has a stacked structure including a plurality of layers formed from an organic semiconductor material. This stacked structure includes, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in this order from the lower electrodes 512R, 512G, and 512B sides.
  • the organic EL layer 514R of the red pixel Pr includes a light emitting layer that emits red light.
  • the organic EL layer 514G of the green pixel Pg includes a light emitting layer that emits green light.
  • the organic EL layer 514B of the blue pixel Pb includes a light emitting layer that emits blue light.
  • An upper electrode 515 is provided on the organic EL layers 514R, 514G, and 514B.
  • the upper electrode 515 is formed using a transparent conductive material so as to be continuous over the entire display area (that is, common to the red pixel Pr, the green pixel Pg, and the blue pixel Pb), and functions as a cathode.
  • a protective layer 516 is provided on the upper electrode 515.
  • the protective layer 516 is formed from an organic insulating material.
  • the above-described structure of the TFT substrate 510 is sealed with a sealing substrate 520 bonded to the TFT substrate 510 with a transparent resin layer 517.
  • the organic EL display device 500 can be manufactured as follows using the vapor deposition mask according to the embodiment of the present invention.
  • 25 (a) to 25 (d) and FIGS. 26 (a) to 26 (d) are process cross-sectional views illustrating the manufacturing process of the organic EL display device 500.
  • FIG. In the following description, an organic semiconductor material is deposited on the work using the deposition mask 101R for red pixels, the deposition mask 101G for green pixels, and the deposition mask 101B for blue pixels in this order (organic EL layer on the TFT substrate 510). The description will focus on the process of forming 514R, 514G and 514B.
  • a TFT substrate 510 in which a TFT circuit, a planarizing film 511, lower electrodes 512R, 512G, and 512B and a bank 513 are formed on an insulating substrate is prepared.
  • the process of forming the TFT circuit, the planarizing film 511, the lower electrodes 512R, 512G, and 512B and the bank 513 can be performed by various known methods.
  • the TFT substrate 510 is placed close to the vapor deposition mask 101R held in the vacuum vapor deposition apparatus by the transfer device.
  • the deposition mask 101R and the TFT substrate 510 are aligned so that the second opening 13R of the resin layer 10 overlaps the lower electrode 512R of the red pixel Pr.
  • the evaporation mask 101R is brought into close contact with the TFT substrate 510 by a magnetic chuck (not shown) disposed on the opposite side of the TFT substrate 510 from the evaporation mask 101R.
  • an organic semiconductor material is sequentially deposited on the lower electrode 512R of the red pixel Pr by vacuum evaporation to form an organic EL layer 514R including a light emitting layer that emits red light.
  • the vapor deposition mask 101G is installed in a vacuum vapor deposition apparatus.
  • the vapor deposition mask 101G and the TFT substrate 510 are aligned so that the second opening 13G of the resin layer 10 overlaps the lower electrode 512G of the green pixel Pg. Further, the deposition mask 101G is brought into close contact with the TFT substrate 510 by a magnetic chuck.
  • organic semiconductor materials are sequentially deposited on the lower electrode 512G of the green pixel Pg by vacuum vapor deposition to form an organic EL layer 514G including a light emitting layer that emits green light. .
  • the vapor deposition mask 101B is installed in a vacuum vapor deposition apparatus.
  • the vapor deposition mask 101B and the TFT substrate 510 are aligned so that the second opening 13B of the resin layer 10 overlaps the lower electrode 512B of the blue pixel Pb. Further, the vapor deposition mask 101B is brought into close contact with the TFT substrate 510 by a magnetic chuck.
  • an organic semiconductor material is sequentially deposited on the lower electrode 512B of the blue pixel Pb by vacuum vapor deposition to form an organic EL layer 514B including a light emitting layer that emits blue light.
  • the upper electrode 515 and the protective layer 516 are sequentially formed on the organic EL layers 514R, 514G, and 514B.
  • the formation of the upper electrode 515 and the protective layer 516 can be performed by various known methods. In this way, the TFT substrate 510 is obtained.
  • the sealing substrate 520 is bonded to the TFT substrate 510 with the transparent resin layer 517, whereby the organic EL display device 500 shown in FIG. 24 is completed.
  • vapor deposition masks 101R, 101G, and 101B corresponding to the organic EL layers 514R, 514G, and 514B of the red pixel Pr, the green pixel Pg, and the blue pixel Pb are used, respectively, but one vapor deposition mask is used.
  • the organic EL layers 514R, 514G, and 514B corresponding to the red pixel Pr, the green pixel Pg, and the blue pixel Pb may be formed by sequentially shifting.
  • a sealing film may be used instead of the sealing substrate 520.
  • a thin film encapsulation (TFE) structure may be provided on the TFT substrate 510 without using a sealing substrate (or sealing film).
  • the thin film sealing structure includes, for example, a plurality of inorganic insulating films such as a silicon nitride film.
  • the thin film sealing structure may further include an organic insulating film.
  • the top emission type organic EL display device 500 is illustrated, but it goes without saying that the vapor deposition mask of the present embodiment is also used for manufacturing a bottom emission type organic EL display device.
  • the organic EL display device manufactured using the vapor deposition mask of this embodiment is not necessarily a rigid device.
  • the vapor deposition mask of this embodiment is also suitably used for manufacturing a flexible organic EL display device.
  • a TFT circuit or the like is formed on a polymer layer (for example, a polyimide layer) formed on a support substrate (for example, a glass substrate), and the polymer layer is formed after the protective layer is formed.
  • the entire laminated structure is peeled off from the support substrate (for example, a laser lift-off method is used).
  • the vapor deposition mask of this embodiment is used also for manufacture of organic-semiconductor elements other than an organic electroluminescent display apparatus, and is used suitably especially for manufacture of the organic-semiconductor element in which formation of a high-definition vapor deposition pattern is required. .
  • the vapor deposition mask according to the embodiment of the present invention is preferably used for manufacturing an organic semiconductor element such as an organic EL display device, and particularly suitable for manufacturing an organic semiconductor element that requires formation of a high-definition vapor deposition pattern. Used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

樹脂層(10)と、樹脂層(10)上に形成された磁性金属体(20)とを備えた蒸着マスク(100)の製造方法であって、(A)少なくとも1つの第1開口部(25)を有する磁性金属体(20)を用意する工程と、(B)基板(60)を用意する工程と、(C)基板(60)の表面に樹脂材料を含む溶液または樹脂材料のワニスを付与した後、熱処理を行うことによって樹脂層(10)を形成する工程と、(D)基板(60)に形成された樹脂層(10)を、磁性金属体(20)上に、少なくとも1つの第1開口部(25)を覆うように固定する工程と、(E)樹脂層(10)のうち磁性金属体(20)の少なくとも1つの第1開口部(25)内に位置する領域に、複数の第2開口部(13)を形成する工程と、(F)工程(E)の後、樹脂層(10)から基板(60)を剥離する工程とを包含する。

Description

蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
 本発明は、蒸着マスクの製造方法に関し、特に、樹脂層と金属層とが積層された構造を有する蒸着マスクの製造方法に関する。また、本発明は、蒸着マスク、および蒸着マスクを用いた有機半導体素子の製造方法にも関する。
 近年、次世代ディスプレイとして有機EL(Electro Luminescence)表示装置が注目を集めている。現在量産されている有機EL表示装置では、有機EL層の形成は、主に真空蒸着法を用いて行われている。
 蒸着マスクとしては、金属製のマスク(メタルマスク)が一般的である。しかしながら、有機EL表示装置の高精細化が進むにつれ、メタルマスクを用いて精度良く蒸着パターンを形成することが困難になりつつある。現在の金属加工技術では、メタルマスクとなる金属板(例えば厚さ100μm程度)に、短い画素ピッチ(例えば10~20μm程度)に対応した小さな開口部を高い精度で形成することが難しいからである。
 そこで、精細度の高い蒸着パターンを形成するための蒸着マスクとして、樹脂層と金属層とが積層された構造を有する蒸着マスク(以下では「積層型マスク」とも呼ぶ)が提案されている。
 例えば特許文献1は、樹脂フィルムと、金属磁性体である保持部材とが積層された積層型マスクを開示している。樹脂フィルムには、所望の蒸着パターンに対応した複数の開口部が形成されている。保持部材には、樹脂フィルムの開口部よりもサイズの大きいスリットが形成されている。樹脂フィルムの開口部は、スリット内に配置されている。そのため、特許文献1の積層型マスクを用いる場合、蒸着パターンは、樹脂フィルムの複数の開口部に対応して形成される。一般的なメタルマスク用の金属板よりも薄い樹脂フィルムには、小さな開口部であっても高い精度で形成することができる。
 樹脂フィルムに上記のような小さな開口部を形成する際には、レーザアブレーション法が好適に用いられる。特許文献1には、サポート材(ガラス基板など)に載置された樹脂フィルムにレーザを照射し、所望のサイズの開口部を形成する方法が記載されている。
 図28(a)~(d)は、それぞれ、特許文献1に開示された従来の蒸着マスクの製造方法を説明するための模式的な工程断面図である。
 特許文献1では、まず、図28(a)に示すように、樹脂フィルム81上に、開口部(スリット)85を有する金属層82を形成し、積層膜80を得る。次いで、図28(b)に示すように、積層膜80に所定の面内方向に張力を付与した状態で、積層膜80をフレーム87に取り付ける。この後、積層膜80を、図28(c)に示すように、ガラス基板90上に載置する。このとき、樹脂フィルム81における金属層82と反対側の面を、エタノールなどの液体88を介してガラス基板90に密着させる。この後、図28(d)に示すように、樹脂フィルム81のうち金属層82のスリット85によって露出された部分にレーザ光Lを照射することにより、樹脂フィルム81に複数の開口部89を形成する。このようにして、積層型の蒸着マスク900が製造される。
特開2014-205870号公報
 しかしながら、図28に例示される従来の製造方法では、樹脂フィルムを高い精度で加工することが困難であったり、樹脂フィルムの開口部の周縁にバリが発生したりするという問題があった。
 樹脂フィルムにバリが生じると、完成した蒸着マスクを蒸着対象となる基板(以下、「蒸着対象基板」とも呼ぶ)に密着させ難くなり、蒸着マスクと蒸着対象基板との間に隙間が生じ得る。このため、従来の蒸着マスクを用いると、蒸着マスクの開口部に対応した高精細な蒸着パターンが得られない可能性がある。詳細は後述する。
 なお、樹脂フィルムの加工後にワイピング等によってバリを取り除くことは試みられているものの、バリの発生自体を抑制し得る方法は提案されていない。
 本発明は、上記事情に鑑みてなされたものであり、その目的は、高精細な蒸着パターンの形成に好適に用いられ得る積層型の蒸着マスク、およびその製造方法を提供することにある。また、本発明の他の目的は、そのような蒸着マスクを用いた有機半導体素子の製造方法を提供することにある。
 本発明による一実施形態の蒸着マスクの製造方法は、樹脂層と、前記樹脂層上に形成された磁性金属体とを備えた蒸着マスクの製造方法であって、(A)少なくとも1つの第1開口部を有する磁性金属体を用意する工程と、(B)基板を用意する工程と、(C)前記基板の表面に樹脂材料を含む溶液または樹脂材料のワニスを付与した後、熱処理を行うことによって樹脂層を形成する工程と、(D)前記基板に形成された前記樹脂層を、前記磁性金属体上に、前記少なくとも1つの第1開口部を覆うように固定する工程と、(E)前記樹脂層に、複数の第2開口部を形成する工程と、(F)前記工程(E)の後、前記樹脂層から前記基板を剥離する工程とを包含する。
 ある実施形態において、前記工程(E)は、前記工程(D)の後で行われ、前記複数の第2開口部は、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域に形成される。
 ある実施形態において、前記工程(E)は、前記工程(C)と前記工程(D)との間に行われる。
 ある実施形態において、上記方法は、前記磁性金属体の周縁部にフレームを設ける工程をさらに包含する。
 ある実施形態において、前記工程(C)において、前記熱処理は、前記樹脂層に、層面内方向に室温で0.2MPaより大きい引張応力を生成させる条件で行われる。
 ある実施形態において、前記少なくとも1つの第1開口部の幅は30mm以上であり、前記工程(F)で前記基板を剥離した後、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、前記工程(C)において、前記熱処理は、前記最大たわみ量δが5μm以下となるような引張応力が前記樹脂層に生成される条件で行われる。
 ある実施形態において、前記少なくとも1つの第1開口部の最小幅をW、前記工程(F)で前記基板を剥離した後、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、前記工程(C)において、前記熱処理は、δ/Wが0.01%以下となるような引張応力が前記樹脂層に付与される条件で行われる。
 ある実施形態において、前記工程(F)において、前記基板を剥離した後、前記磁性金属体は、前記樹脂層から圧縮応力が付与される。
 ある実施形態において、前記樹脂層はポリイミド層であり、前記基板はガラス基板であり、前記工程(C)の前記熱処理は、前記樹脂材料を含む溶液または前記樹脂材料のワニスが付与された前記基板を、30℃/min以上のレートで300℃以上600℃以下の温度まで昇温させる工程を含む。
 ある実施形態において、前記工程(D)は、前記樹脂層の一部上に接着層を形成する工程(D1)と、前記接着層を介して前記樹脂層を前記磁性金属体に接合する工程(D2)とを包含する。
 ある実施形態において、前記接着層は金属層であり、工程(D2)は、前記金属層を前記磁性金属体に溶接することによって、前記金属層を介して、前記樹脂層を前記磁性金属体に接合する工程である。
 ある実施形態において、前記少なくとも1つの第1開口部の幅は30mm以上であり、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域には磁性金属が存在していない。
 ある実施形態において、前記磁性金属体はオープンマスク構造を有する。
 本発明による一実施形態の蒸着マスクは、フレームと、前記フレームに支持された、少なくとも1つの第1開口部を含む磁性金属体と、前記磁性金属体上に配置された、前記少なくとも1つの第1開口部を覆う樹脂層と、前記樹脂層と前記磁性金属体との間に位置し、前記樹脂層と前記磁性金属体とを接合する接着層とを備え、前記樹脂層は、層面内方向に引張応力を有し、前記磁性金属体は、前記樹脂層から面内方向に圧縮応力を受けている。
 ある実施形態において、前記樹脂層の室温における引張応力は、0.2MPaより大きい。
 ある実施形態において、前記接着層は、前記樹脂層に固着された金属層であり、前記金属層は、前記磁性金属体に溶接されている。
 ある実施形態において、前記少なくとも1つの第1開口部の幅は30mm以上であり、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量δは5μm以下である。
 ある実施形態において、前記少なくとも1つの第1開口部の幅をW、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、δ/Wは0.01%以下である。
 ある実施形態において、前記少なくとも1つの第1開口部の幅は30mm以上であり、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域には磁性金属が存在していない。
 ある実施形態において、前記磁性金属体はオープンマスク構造を有する。
 本発明による一実施形態の有機半導体素子の製造方法は、上記のいずれかに記載の蒸着マスクを用いて、ワーク上に有機半導体材料を蒸着する工程を包含する。
 本発明の実施形態によると、高精細な蒸着パターンの形成に好適に用いられ得る積層型の蒸着マスクおよびその製造方法が提供される。
(a)は、本発明による実施形態の蒸着マスク100を模式的に示す平面図であり、(b)は、図1(a)中のA-A線に沿った断面図である。 (a)および(b)は、それぞれ、本発明による実施形態の他の蒸着マスクを模式的に示す平面図である。 (a)および(b)は、それぞれ、本発明による実施形態の蒸着マスクの製造方法を例示する工程平面図および工程断面図である。 (a)および(b)は、それぞれ、本発明による実施形態の蒸着マスクの製造方法を例示する工程平面図および工程断面図である。 (a)および(b)は、それぞれ、本発明による実施形態の蒸着マスクの製造方法を例示する工程平面図および工程断面図である。 (a)および(b)は、それぞれ、本発明による実施形態の蒸着マスクの製造方法を例示する工程平面図および工程断面図である。 (a)および(b)は、それぞれ、本発明による実施形態の蒸着マスクの製造方法を例示する工程平面図および工程断面図である。 (a)および(b)は、基板上に形成された膜による応力と、基板の変形の仕方との関係を模式的に示す図である。 (a)~(e)は、それぞれ、本発明による実施形態の蒸着マスクの他の製造方法を例示する工程断面図である。 (a)~(e)は、それぞれ、本発明による実施形態の蒸着マスクの他の製造方法を例示する工程断面図である。 (a)~(e)は、それぞれ、本発明による実施形態の蒸着マスクのさらに他の製造方法を例示する工程断面図である。 サンプルA~Cの上面図である。 (a)および(b)は、実施例1の蒸着マスクを示す平面図および断面図である。 (a)および(b)は、それぞれ、たわみ測定におけるスキャン方向を示す平面図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC1のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC1のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC2のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC2のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC3のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC3のポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例2の蒸着マスクにおけるセルのポリイミド膜の高さの変化を示す図である。 (a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルのポリイミド膜の高さの変化を示す図である。 (a)および(b)は、それぞれ、実施例1、2の蒸着マスクを示す図である。 トップエミッション方式の有機EL表示装置500を模式的に示す断面図である。 (a)~(d)は、有機EL表示装置500の製造工程を示す工程断面図である。 (a)~(d)は、有機EL表示装置500の製造工程を示す工程断面図である。 (a)~(d)は、レーザアブレーション法によって樹脂フィルムにバリが生成される様子を説明するための模式的な断面図である。 (a)~(d)は、それぞれ、特許文献1に開示された従来の蒸着マスクの製造方法を説明するための模式的な工程断面図である。
 上述したように、積層型の蒸着マスクを製造する従来の方法によると、樹脂フィルムの開口部の周縁にバリが生成される場合がある。本発明者は、バリが生成される要因について検討を重ね、以下のような知見を得た。
 従来の方法では、図28(c)および(d)を参照しながら説明したように、エタノールなどの液体88の表面張力によって樹脂フィルム81をガラス基板90に密着させた状態で、樹脂フィルム81の所定の領域(以下、「レーザ照射領域」と略する)にレーザ光Lを照射し、開口部89を形成する。本発明者が検討したところ、この方法では、樹脂フィルム81をガラス基板90に密着させる際に、ガラス基板90と樹脂フィルム81との界面に部分的に気泡が生じ、局所的に密着性が低くなるおそれがあることが分かった。さらに、本発明者は、樹脂フィルム81のあるレーザ照射領域の下方に気泡が存在していると、高い精度で開口部89を形成することが困難になるだけでなく、そのレーザ照射領域にバリが生成され易くなることを見出した。図27を参照して詳しく説明する。
 図27(a)~(d)は、ガラス基板90と樹脂フィルム81との間の気泡によってバリが生成される様子を説明するための模式的な断面図である。図27では金属層および液体の図示を省略している。
 図27(a)に示すように、ガラス基板90などのサポート材上に、(例えば液体を介して)樹脂フィルム81を密着させる場合、ガラス基板90と樹脂フィルム81との間に部分的に隙間(気泡)94が生じ得る。この状態で、レーザアブレーション法により、樹脂フィルム81の加工(以下、単に「レーザ加工」と呼ぶことがある)を行うと、図27(b)に示すように、樹脂フィルム81のうち気泡94上に位置する部分に、開口部を形成するためのレーザ照射領域92が配置される可能性がある。レーザ照射領域92には、例えば樹脂フィルム81の表面に焦点を合わせて、複数回のショットが行われる。
 レーザアブレーションは、固体の表面にレーザ光を照射したとき、レーザ光のエネルギーによって固体表面の構成物質が急激に放出される現象をいう。ここでは、放出される速度をアブレーション速度という。レーザ加工の際に、レーザ照射領域92において、エネルギーの分布に依存してアブレーション速度に分布が生じ、樹脂フィルム81の一部のみに先に貫通孔が形成される可能性がある。そうすると、図27(c)に示すように、樹脂フィルム81のうち薄膜化された他の部分98は、樹脂フィルム81の裏側(すなわち、樹脂フィルム81とガラス基板90との間にある気泡94内)に折り返されてしまい、それ以上レーザ光Lで照射されなくなる。この結果、薄膜化された部分98が除去されずに残された状態で、開口部89が形成されてしまう。本明細書では、樹脂フィルム81のうち薄膜化された状態で残された部分98を「バリ」と呼ぶ。
 バリ98が樹脂フィルム81の裏面側に突出していると、蒸着マスクを蒸着対象基板に設置するときに、蒸着マスクの一部が蒸着対象基板から浮いてしまうことがある。このため、開口部89に対応した形状の蒸着パターンが得られない可能性がある。
 なお、レーザ加工後に樹脂フィルム81のバリ98を取り除く処理(バリ取り工程)が行われることもある。例えば樹脂フィルム81の裏面を拭き取ること(ワイピング)が試みられている。しかしながら、バリ取り工程によって、樹脂フィルム81に生じたバリ98を全て取り除くことは難しい。また、図27(d)に例示するように、ワイピングによって、一部のバリ98が開口部89の内部に突出するように戻され、蒸着工程でシャドウイングを引き起こす可能性もある。
 本発明者は、上記知見に基づいて、サポート材に支持された樹脂層に、バリの発生を抑制しつつ、所望のサイズの開口部を高い精度で形成し得る新規な方法を見出し、本願発明に想到した。
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
 (実施の形態)
 <蒸着マスクの構造>
 図1(a)および(b)を参照しながら、本発明の実施形態による蒸着マスク100を説明する。図1(a)および(b)は、それぞれ蒸着マスク100を模式的に示す平面図および断面図である。図1(b)は、図1(a)中のA-A線に沿った断面を示している。なお、図1は、蒸着マスク100の一例を模式的に示すものであり、各構成要素のサイズ、個数、配置関係、長さの比率などは図示する例に限定されないことはいうまでもない。後述する他の図面でも同様である。
 蒸着マスク100は、図1(a)および(b)に示すように、磁性金属体20と、磁性金属体20の主面20sに配置された樹脂層10とを備える。樹脂層10と磁性金属体20との間の少なくとも一部に位置する接着層50をさらに備えてもよい。接着層50は、樹脂層10と磁性金属体20とを接合する層である。
 蒸着マスク100は、樹脂層10と磁性金属体20とが積層された構造を有する積層型マスクである。以下では、樹脂層10および磁性金属体20を含む積層体30を「マスク体」と呼ぶことがある。
 マスク体30の周縁部には、フレーム40が設けられていてもよい。フレーム40は、磁性金属体20における主面20sと反対側の面に接合されていてもよい。
 磁性金属体20は、少なくとも1つの開口部(以下、「第1開口部」と呼ぶ)25を有している。この例では、磁性金属体20は、6つの第1開口部25を有している。磁性金属体20のうち第1開口部25の周辺に位置し、金属の存在している部分(隣接する第1開口部25の間に位置する部分も含む)21を「中実部」と呼ぶ。
 磁性金属体20はオープンマスク構造を有していてもよい。「オープンマスク構造」とは、1つの蒸着対象基板上に複数のデバイス(例えば有機ELディスプレイ)を形成するための蒸着マスクにおいて、1つのデバイスに対応する単位領域Uに対して1つの開口部を有する構造をいう。なお、磁性金属体20は、オープンマスク構造を有していなくてもよく、例えば、1つの単位領域Uに対して2以上の開口部(例えばスリット)が配置された構造を有していてもよい。以下、オープンマスク構造を有する磁性金属体を、単に「オープンマスク」と呼ぶことがある。
 後述するように、蒸着マスク100を用いて蒸着工程を行う際、蒸着マスク100は、磁性金属体20が蒸着源側、樹脂層10がワーク(蒸着対象物)側に位置するように配置される。磁性金属体20は磁性体であるので、磁気チャックを用いることにより、蒸着工程において蒸着マスク100をワーク上に簡便に保持および固定することができる。
 樹脂層10は、磁性金属体20の主面20s上に、第1開口部25を覆うように配置されている。樹脂層10のうち第1開口部25内に位置する領域10aを「第1領域」、蒸着マスク100の法線方向から見たとき、磁性金属体20の中実部21と重なっている領域10bを「第2領域」と称する。
 樹脂層10の第1領域10aには複数の開口部(以下、「第2開口部」)13が形成されている。複数の第2開口部13は、ワークに形成されるべき蒸着パターンに対応したサイズ、形状および位置に形成されている。この例では、各単位領域Uにおいて、複数の第2開口部13が所定のピッチで配列されている。隣接する2つの単位領域Uの間隔は、典型的には、単位領域U内における隣接する2つの第2開口部13の間隔よりも大きい。また、この例では、第1領域10a上には磁性金属は存在していない。
 樹脂層10の第2領域10bは、接着層50を介して、磁性金属体20の第1開口部25の周辺(中実部21)に接合されている。接着層50は、特に限定されないが、金属層であってもよい。例えば、樹脂層10の第2領域10b上にめっき等で金属層を形成し、金属層と磁性金属体20の中実部21とを溶接することによって、樹脂層10と磁性金属体20とが接合されていてもよい。あるいは、接着層50は接着剤で形成されてもよい。なお、樹脂層10は、上記に例示した方法で磁性金属体20に接合されていればよく、フレーム40とは直接接合されていなくてもよい。
 後述するように、樹脂層10は、ガラス基板などの支持基板上に、樹脂材料を含む溶液(例えば可溶型ポリイミド溶液)または樹脂材料の前駆体を含む溶液(例えばポリイミドワニス)を付与し、熱処理を行うことによって形成された層である。ここでいう熱処理は、可溶型ポリイミド溶液を用いる場合には乾燥工程(例えば100℃以上)、ポリイミドワニスを用いる場合には乾燥および焼成工程(例えば300℃以上)を行うための熱処理を含む。
 また、本実施形態では、複数の第2開口部13は、支持基板上で樹脂層10に対してレーザ加工を行うことによって形成されている。支持基板と樹脂層10とは密着されており、両者の間には気泡が存在していない(あるいはほとんど存在していない)ため、樹脂層10のレーザ加工工程においてバリの発生が抑制される。従って、本実施形態の樹脂層10は、バリをほとんど有していない。あるいは、バリを有しているとしても、その数(単位面積当たりの個数)は従来よりも大幅に低減されている。支持基板は、樹脂層に第2開口部13が形成された後に樹脂層10から剥離される。
 上記方法で支持基板上に形成された樹脂層10は、層面内方向に引張応力(引張の内部応力)を有し得る。これにより、支持基板を剥離した後に、樹脂層10の第1領域10aに生じるたわみを低減できるので、ワーク上に高精細な蒸着パターンを形成することが可能になる。樹脂層10の引張応力は、例えば、支持基板上で樹脂層10を形成する際の熱処理条件などによって制御され得る。樹脂層10の引張応力は、室温において、例えば0.2MPaより大きい。好ましくは3MPa以上である。これにより、より効果的にたわみを低減できる。
 一般に、熱処理により支持基板上に樹脂膜を形成する場合、樹脂膜に生じる残留応力をできるだけ低減し得る条件で熱処理が行われる。樹脂膜の残留応力(引張応力)が大きくなると、支持基板の反りなどの問題が生じ、形状安定性や信頼性が低下する要因となるからである。これに対し、本実施形態は、樹脂層10に所定の引張応力を故意に生成させ、それを利用して、樹脂層10のたわみを低減するものである。これにより、樹脂層10を架張する工程が不要となり、より容易なプロセスで、たわみの低減された蒸着マスクを製造できる。
 なお、支持基板上では、樹脂層10は応力分布を有する場合があるが、支持基板を剥離すると、樹脂層10の引張応力の大きさは平均化され、面内で略均一になり得る。従って、樹脂層10の第1領域10a内で、略等しい大きさの引張応力を有し得る。
 本実施形態によると、樹脂層10が所定の引張応力を有するため、樹脂層10の第2開口部13に近接して金属膜を配置しなくても、樹脂層10に生じるたわみが低減される。従って、金属膜の精密なパターニング工程が不要になる。また、たわみの発生を抑制しつつ、磁性金属体20の第1開口部25のサイズを大きくでき、例えばオープンマスク構造を有する磁性金属体20を使用することも可能になる。以下、詳しく説明する。
 従来の蒸着マスクでは、樹脂フィルムと金属膜(磁性金属膜)との積層膜(または樹脂フィルム)を架張機等によって、特定の層面内方向に引っ張った状態でフレームに固定されていた(以下、「架張工程」と呼ぶ)。このような積層型マスクでは、金属膜の開口部が大きすぎると、樹脂膜に自重によるたわみが生じ、樹脂膜の開口部に対応した形状の蒸着パターンが得られない可能性があった。このため、従来は、樹脂膜の開口部にできるだけ近接して保持部材である金属膜を配置するために、特許文献1で提案されているように、樹脂膜上に精密な金属パターンを形成する必要があった。これに対し、本実施形態によると、樹脂層10を支持基板上に形成する際のプロセス条件により、樹脂層10に所望の引張応力を生じさせることが可能である。また、磁性金属体20とは別個に、樹脂層10に引張応力を生じさせるため、樹脂層10に生じる引張応力の大きさをより容易に制御できる。従って、樹脂膜上に精密なパターンを有する磁性金属膜を形成する必要がなく、オープンマスクなどの予め第1開口部を形成した金属板を使用できる。このため、従来よりも製造プロセスおよび製造コストを大幅に低減できる。
 本実施形態は、例えばオープンマスクなどの、比較的大きいサイズの第1開口部25を有する磁性金属体20を使用する場合に特に有利である。第1開口部25のサイズが比較的大きい場合でも、樹脂層10の内在する引張応力により、樹脂層10に生じるたわみを低減できる。従って、たわみに起因する蒸着パターンのずれを抑制するために、樹脂層10の第1領域10a上に別途磁性金属を配置する必要がない。第1開口部25の幅(短手方向に沿った長さ)は、例えば30mm以上、または50mm以上であってもよい。第1開口部25の幅の上限は特に限定しないが、例えば300mm以下であれば、たわみ量の増大を抑制できる。
 本実施形態によると、樹脂層10の最大たわみ量δを所定値δs以下に抑えることができる。ここで、樹脂層10の最大たわみ量δは、磁性金属体20を水平方向に保持したときの、樹脂層10の第1領域10aの最大たわみ量をいう。δsは、特に限定しないが、例えば5μm、好ましくは2μmである。例えば、磁性金属体20の第1開口部25の幅が30mm以上のとき、樹脂層10の最大たわみ量δは5μm以下であってもよい。あるいは、第1開口部25の幅をW、樹脂層10の最大たわみ量をδとすると、δ/Wは0.01%以下であってもよい。
 本実施形態の蒸着マスク100では、磁性金属体20は、樹脂層10から面内方向に圧縮応力を受ける。なお、架張工程によって積層膜をフレームに固定する場合、金属膜および樹脂膜はともにフレームから面内方向に張力を受けており、樹脂膜が金属膜に圧縮応力を与える構成は得られない。また、樹脂膜のみを架張工程でフレームに固定する場合でも、樹脂膜は金属膜に密着されておらず、金属膜は樹脂膜から圧縮応力を受けないと考えられる。
 樹脂層10の材料としては、例えばポリイミドを好適に用いることができる。ポリイミドは、強度、耐薬品性および耐熱性に優れる。樹脂層10の材料として、ポリパラキシレン、ビスマレイミド、シリカハイブリッドポリイミドなどの他の樹脂材料を用いてもよい。樹脂層10を形成している樹脂膜の線熱膨張係数αR(ppm/℃)は、蒸着対象となる基板の線熱膨張係数と同程度であることが好ましい。このような樹脂層10は、樹脂材料、焼成条件などの形成条件などによって形成され得る。樹脂層10の形成方法については後述する。
 樹脂層10の厚さは、特に限定されない。ただし、樹脂層10が厚すぎると、蒸着膜の一部が所望の厚さよりも薄く形成されてしまうことがある(「シャドウイング」と呼ばれる)。シャドウイングの発生を抑制する観点からは、樹脂層10の厚さは、25μm以下であることが好ましい。また、3μm以上であれば、支持基板上に付与された樹脂材料(またはその前駆体)を含む溶液に対して熱処理を行うことによって、より均一な厚さの樹脂層10を形成できる。また、樹脂層10自体の強度および洗浄耐性の観点からも、樹脂層10の厚さは3μm以上であることが好ましい。
 磁性金属体20の材料としては、種々の磁性金属材料を用いることができる。例えばNi、Cr、フェライト系ステンレス鋼、マルテンサイト系ステンレス鋼などの線熱膨張係数αMの比較的大きい材料を用いてもよいし、例えばFe-Ni系合金(インバー)、Fe-Ni-Co系合金など線熱膨張係数αMの比較的小さい材料を用いてもよい。
 なお、特許文献1に開示されているような従来の蒸着マスクでは、金属層のスリットのサイズはできるだけ小さくなるように設計されており、マスク全体に占める中実部の面積率は比較的高い(特許文献1の図1では70%超)。このため、金属層の材料として、線熱膨張係数αMの小さい材料(例えばαM:6ppm/℃未満)が用いられていた。蒸着工程での蒸着マスクの形状安定性を確保するためである。これに対し、本実施形態では、マスク全体に占める中実部21の面積率を小さく(すなわち第1開口部25の面積率を大きく)できるので、従来は使用できなかった線熱膨張係数の高い金属を用いることも可能である。従って、線熱膨張係数に関わらず種々の金属材料を用いることが可能になり、金属材料の選択の自由度を高めることができる。
 磁性金属体20の厚さは、特に限定されない。ただし、磁性金属体20が薄すぎると、磁気チャックの磁界から受ける被吸着力が小さくなり、蒸着工程において、蒸着マスク100をワーク上に保持することが困難になることがある。このため、磁性金属体20の厚さは5μm以上であることが好ましい。
 磁性金属体20の厚さは、蒸着工程におけるシャドウイングが生じない範囲内に設定されることが好ましい。従来の蒸着マスクでは、保持部材である金属層は、樹脂膜の開口部に近接して配置されていた。このため、蒸着工程におけるシャドウイングを抑制する観点から、金属層の厚さを小さく(例えば20μm以下)する必要があった。これに対し、本実施形態によると、樹脂層10が所定の引張応力を有しており、磁性金属体20を樹脂層10の第2開口部13に近接して配置しなくてもよい。このため、磁性金属体20の第1開口部25の端部を樹脂層10の第2開口部13から十分離して配置できる(例えば、磁性金属体20の中実部21と第2開口部13との最小距離Dmin:1mm以上)。最小距離Dminが大きいと、磁性金属体20を厚くしてもシャドウイングが生じ難いため、従来よりも磁性金属体20を厚くできる。磁性金属体20の厚さは、蒸着角、磁性金属体20のテーパ角、磁性金属体20の中実部21と第2開口部13との最小距離Dminの大きさにもよるが、例えば1000μm以上であってもよい。磁性金属体20としてオープンマスクを用いる場合、第1開口部25のサイズを単位領域Uよりも十分に大きくなるように設計しておくことで、オープンマスクの厚さを例えば300μm以上にできる。磁性金属体20の厚さの上限値は、特に限定しないが、例えば1.5mm以下であれば、シャドウイングを抑制することが可能である。このように、本実施形態によると、磁性金属体20の材料のみでなく、厚さの選択の自由度をも高めることができる。
 フレーム40は、例えば磁性金属から形成されている。あるいは、金属以外の材料、例えば樹脂(プラスチック)で形成されていてもよい。従来の蒸着マスクでは、架張工程によってフレームに固定された積層膜(樹脂膜および金属膜)からの張力でフレームが変形・破断しないように、フレームには適度な剛性が求められていた。このため、例えば厚さ20mmのインバーからなるフレームが使用されていた。これに対し、本実施形態では、架張工程を行わずに、あるいは磁性金属体20に大きな張力をかけずにフレーム40の取り付けを行うので、フレーム40には架張工程に起因する張力がかからない。従って、従来よりも剛性の小さいフレーム40を用いることも可能であり、フレーム40の材料の選択の自由度が高い。また、フレーム40を従来よりも薄くすることも可能である。従来よりも薄いフレームまたは樹脂製のフレームを用いると、軽量でハンドリング性に優れた蒸着マスク100が得られる。
 <蒸着マスクの他の構造例>
 図2(a)および(b)は、それぞれ、本実施形態の他の蒸着マスク200、300を模式的に示す平面図である。これらの図において、図1と同様の構成要素には同じ参照符号を付している。以下の説明では、蒸着マスク100と異なる点のみを説明する。
 蒸着マスク200、300では、磁性金属体20は、単位領域U内に複数の第1開口部25を有している。各第1開口部25内には、2以上の第2開口部13(図示している個数に限定されないのはいうまでもない)が位置している。
 第1開口部25は、図2(a)に例示するように、単位領域U内に、行方向および列方向に配列された第2開口部13の列ごと(または行ごと)に配置されたスリットであってもよい。または、図2(b)に例示するように、第1開口部25は、複数の列および複数の行に配列された第2開口部13を含むサブ領域ごとに配置されてもよい。
 なお、図1および図2には、複数の単位領域Uを有する蒸着マスクを例示したが、各単位領域Uの数および配列方法、各単位領域U内の第2開口部13の個数および配列方法などは、製造しようとするデバイスの構成によって決まり、図示する例に限定されない。単位領域Uの数は単数であってもよい。
 <蒸着マスクの製造方法>
 図3~図7を参照しながら、蒸着マスク100の製造方法を例に、本実施形態の蒸着マスクの製造方法を説明する。図3~図7の(a)および(b)は、それぞれ、蒸着マスク100の製造方法の一例を示す工程平面図、および、各図の(a)に示すA-A線に沿った工程断面図である。
 まず、図3(a)および(b)に示すように、支持基板60を用意し、支持基板60上に樹脂層10を形成する。支持基板60として、例えばガラス基板が好適に用いられ得る。ガラス基板のサイズおよび厚さは特に限定されない。
 樹脂層10は次のようにして形成される。まず、支持基板60上に、樹脂材料の前駆体を含む溶液(例えばポリイミドワニス)または樹脂材料を含む溶液(例えば可溶型ポリイミド溶液)を付与する。溶液の付与方法としては、スピンコート法、スリットコーター法などの公知の方法を用いることができる。ここでは、樹脂材料としてポリイミドを用い、ポリイミドの前駆体であるポリアミック酸を含む溶液(ポリイミドワニス)をスピンコート法で支持基板60上に塗布する。続いて、熱処理(乾燥および焼成)を行うことにより、樹脂層10としてポリイミド層を形成する。熱処理温度は300℃以上、例えば400℃以上500℃以下に設定され得る。
 熱処理条件は、樹脂層10に所定の引張応力を生成させるような条件に設定される。例えば0.2MPaより大きい(好ましくは3MPa以上の)引張応力を生成させるように設定されてもよい。引張応力の大きさは、樹脂層10の材料や熱処理条件の他、例えば、支持基板60の厚さ、形状、サイズ、支持基板60の材料特性(ヤング率、ポアソン比、熱膨張係数など)によって変わり得る。ここでいう熱処理条件は、熱処理温度(最高温度)、昇温速度、高温(例えば300℃以上)での保持時間、熱処理時の雰囲気などを含む。また、昇温時の温度プロファイルのみでなく、冷却時の温度プロファイルをも含む。
 樹脂層10に残留する引張応力を大きくするには、例えば、ポリイミドワニスのイミド化を急激に行わせるような条件に設定することが考えられる。一例として、昇温速度を大きくすることにより、引張応力を増加させることが可能である。例えば、ガラス基板上にポリイミド層を熱処理で形成する場合、ポリイミドワニスが付与されたガラス基板を、30℃/min以上のレートで300℃以上600℃以下の温度まで昇温させてもよい。また、昇温および冷却を含む全熱処理工程を通して、上記ガラス基板を例えば300℃以上の温度での保持される合計時間を短く(例えば30分以内)に設定することで、樹脂層10に残留する引張応力を増加させることができる。さらに、昇温および冷却を含む全熱処理時間を比較的短くする(例えば1時間以内)、最高温度での保持時間(放置時間)を短くする(例えば5分以内)、最高温度到達後に急冷すること等によっても、引張応力を大きくできる。熱処理雰囲気は特に限定されず、大気雰囲気または窒素ガス雰囲気であってもよいが、100Pa以下の減圧雰囲気下で熱処理を行うと、昇温速度をより容易に高めることができる。
 ポリイミドワニスの代わりに、溶媒可溶型のポリイミド(重合体)を含む溶液(可溶型ポリイミド溶液)を支持基板60上に塗布し、乾燥させることによって樹脂層10を形成してもよい。乾燥温度は、溶媒の沸点によって適宜選択され、特に限定しないが、例えば100℃~320℃、好適には120℃~250℃である。この場合でも、昇温速度を上記と同程度まで大きくしたり、高温での保持時間を短くすることによって、樹脂層10に残留する引張応力を増加させることが可能である。
 樹脂層10を支持基板60上に形成すると、支持基板60の材料や厚さによっては支持基板60に反りが生じることがある。また、支持基板60上において、樹脂層10は応力分布を有する。例えば樹脂層10の中央部から端部に向かうほど引張応力が大きくなる。また、支持基板60の長さが大きい方向において、より大きな引張応力が生じ得る。
 ここで、図8(a)および図8(b)を参照して、基板SUB上に形成された膜RFによる応力と、基板SUBの変形の仕方との関係を説明する。図8(a)に模式的に示すように、膜RFが引張応力Stを有している場合、基板SUBの表面には圧縮応力が作用しているので、基板SUBの表面は凹面を形成するように変形する(反る)。これに対して、図8(b)に示すように、膜RFが圧縮応力Scを有している場合、基板SUBの表面には引張応力が作用しているので、基板SUBの表面は凸面を形成するように変形する。
 上述した方法で形成された樹脂層10は引張応力を有するので、図8(a)に示すように、支持基板60は凹面を形成するように変形し、支持基板60の端部は水平面から浮く場合がある。なお、支持基板60の材料や厚さによっては、樹脂層10から圧縮応力が付与されても支持基板60に反りが生じない場合もある。
 次いで、図4(a)および(b)に示すように、樹脂層10の一部上に接着層50を形成する。接着層50は、後述する磁性金属体20の第1開口部25に対応する開口部55を有する。接着層50は、樹脂層10のうち、磁性金属体20の中実部21に対応する領域(第2領域10bとなる領域)全体に形成されてもよいし、その一部に形成されてもよい。好ましくは、樹脂層10のうち第1領域10aとなる部分を包囲するように配置される。
 接着層50は金属層であってもよいし、接着剤で形成されていてもよい。接着層50は樹脂層10の上面に固着されていればよい。例えば、接着層50として、電解めっき、無電解めっきなどの方法で金属層を形成することができる。金属層の材料としては、種々の金属材料を用いることができ、例えば、Ni、Cu、Snを好適に用いることができる。金属層の厚さは、後述する磁性金属体20への溶接工程で耐え得る大きさであればよく、例えば1μm以上100μm以下である。
 次いで、図5(a)および(b)に示すように、支持基板60上に形成された樹脂層10を、第1開口部25を覆うように磁性金属体20上に固定する。樹脂層10と磁性金属体20とは、接着層50を介して接合される。樹脂層10のうち磁性金属体20の第1開口部25内に位置する領域10aが第1領域、中実部21と重なる領域10bが第2領域となる。
 磁性金属体20は、磁性金属材料から形成され、かつ、少なくとも1つの第1開口部25を有する。磁性金属体20の製造方法は、特に限定しない。例えば、磁性金属板を用意し、フォトリソグラフィプロセスによって、磁性金属板に第1開口部25を形成することによって製造され得る。磁性金属体20の材料としては、例えばインバー(約36wt%のNiを含むFe-Ni系合金)を好適に用いることができる。
 接着層50が金属層である場合、樹脂層10側からレーザ光を照射し、接着層50を磁性金属体20に溶接してもよい。このとき、間隔を空けて複数箇所でスポット溶接を行ってもよい。スポット溶接を行う箇所の数やその間隔(ピッチ)は適宜選択され得る。このようにして、樹脂層10は、接着層50を介して磁性金属体20に接合される。
 なお、接着層50は金属層でなくてもよい。樹脂層10と磁性金属体20とは、接着剤から形成された接着層50を用いて接合されてもよい(ドライラミネートまたは熱ラミネート)。
 接着層50は、樹脂層10の周縁部のみに配置されていても構わない。磁性金属体20のうち、後で設けられるフレームと重なる部分を「周辺部」、フレームの開口内に位置する部分を「マスク部」とすると、接着層50は、磁性金属体20の周辺部と樹脂層10との間のみに配置されていてもよい。その場合には、マスク部において、磁性金属体20の中実部21と樹脂層10とは接着されない。
 接着層50は、樹脂層10の第1領域10aとなる部分上には形成されないことが好ましい。第1領域10aに接着層50が形成されていると、後の工程で樹脂層10から支持基板60を剥離した後でも、樹脂層10の引張応力が第1領域10aで面内分布を有してしまう可能性がある。
 次に、図6(a)および(b)に示すように、例えばレーザアブレーション法により、樹脂層10の第1領域10aに複数の第2開口部13を形成する(レーザ加工工程)。このようにして、磁性金属体20および樹脂層10を含むマスク体30を得る。
 樹脂層10のレーザ加工には、パルスレーザを用いる。ここでは、YAGレーザを用い、波長が355nm(第3高調波)のレーザ光L1を樹脂層10の所定の領域に照射する。レーザ光L1のエネルギー密度は例えば0.36J/cm2に設定される。前述したように、樹脂層10のレーザ加工は、樹脂層10の表面にレーザ光L1の焦点を合わせて、複数回のショットを行うことによって行われる。ショット周波数は例えば60Hzに設定される。なお、レーザ加工の条件(レーザ光の波長、照射条件など)は、上記に限定されず、樹脂層10を加工し得るように適宜選択される。
 なお、樹脂層10が上述した応力分布を有していると、支持基板60の剥離後に第1領域10a内の応力分布が平均化されたときに、第2開口部13のサイズおよび形状が第1領域10a内の位置に応じて変化する場合がある。このような場合には、支持基板60を剥離した後で第2開口部13が所望のサイズおよび形状を有するように、応力分布の平均化による第2開口部13の変形量を考慮して、第2開口部13を形成しておくことが好ましい。
 本実施形態では、支持基板60上に焼成(または乾燥)することによって形成された樹脂層10に対してレーザ加工を行う。支持基板60と樹脂層10との間には気泡が存在しないため、従来よりも高い精度で所望のサイズの第2開口部13を形成することが可能であり、バリ(図27参照)の発生も抑制される。
 続いて、図7(a)および(b)に示すように、マスク体30を支持基板60から剥離する。支持基板60の剥離は、例えばレーザリフトオフ法により行うことができる。樹脂層10と支持基板60との密着力が比較的弱い場合には、ナイフエッジなどを用いて機械的に剥離を行ってもよい。
 ここでは、例えばXeClエキシマレーザを用い、支持基板60側からレーザ光(波長:308nm)を照射することによって、樹脂層10を支持基板60から剥離する。なお、レーザ光は、支持基板60を透過し、かつ、樹脂層10で吸収される波長の光であればよく、他のエキシマレーザあるいはYAGレーザなどの高出力レーザを用いてもよい。
 支持基板60を剥離すると、樹脂層10は、内在する引張応力によって、たるみなく(ピンと)張った状態になる。また、樹脂層10のうち磁性金属体20に接合されていない部分(ここでは第1領域10a)内では、所定の方向における引張応力の大きさが平均化され得る。
 この後、図示していないが、マスク体30にフレーム40を固定する(フレーム取り付け工程)。このようにして、図1に示す蒸着マスク100が製造される。
 フレーム取り付け工程では、磁性金属体20の周辺部上にフレーム40を載置し、磁性金属体20の周辺部とフレーム40とを接合する。フレーム40は、例えばインバーなどの磁性金属で形成されている。樹脂層10側からレーザ光を照射することによって、磁性金属体20の周辺部とフレーム40とを溶接してもよい(スポット溶接)。スポット溶接のピッチは適宜選択され得る。なお、図1に示す例では、支持基板60の法線方向から見たとき、フレーム40の内縁部と磁性金属体20の内縁部とが略整合しているが、磁性金属体20の一部がフレーム40の内側に露出していてもよい。あるいは、フレーム40は、磁性金属体20の周辺部全体および樹脂層10の一部を覆っていてもよい。
 前述のように、本実施形態では、樹脂層10および磁性金属体20を所定の層面内方向に引っ張ってフレーム40に固定する工程(架張工程)を行わないので、従来よりも剛性の小さいフレーム40を用いることが可能である。このため、フレーム40は、ABS(アクリロニトリルブタジエンスチレン)、PEEK(ポリエーテルエーテルケトン)などの樹脂から形成されていてもよい。また、マスク体30とフレーム40との接合方法は、レーザ溶接に限定されない。例えば接着剤を用いて磁性金属体20の周辺部とフレーム40とを接合してもよい。
 この後、必要に応じて、磁性金属体20を電磁コイルで磁化させる着磁工程を行い、磁性金属体20の残留磁束密度を例えば10mT以上1000mTに調整する。なお、着磁工程を行わなくてもよい。着磁工程を行わなくても、磁性金属体20は磁性体であるので、磁気チャックを用いることにより、蒸着工程において蒸着マスク100をワーク上に保持することができる。
 上記では、蒸着マスク100を形成する方法を例に説明したが、他の蒸着マスク200、300についても、上記と同様の方法で製造され得る。
 <蒸着マスクの他の製造方法>
 図3~図7を参照しながら前述した方法では、樹脂層10と磁性金属体20とを接合した後で、樹脂層10に第2開口部13を形成しているが、樹脂層10と磁性金属体20とを接合する前に、第2開口部13を形成してもよい。また、図3~図7を参照しながら前述した方法では、マスク体30とフレーム40とを接合する前に、支持基板60をマスク体30から剥離しているが、フレーム40とマスク体30とを接合した後で、支持基板60を剥離してもよい。さらに、樹脂層10と磁性金属体20とを接合させる前に、磁性金属体20にフレーム40を取り付けてもよい。
 以下、図面を参照しながら、本実施形態の蒸着マスクの他の製造方法を説明する。図面では、図3~図7と同じ構成要素には同じ参照符号を付している。また、図3~図7を参照しながら前述した方法と異なる点を中心に説明し、各層の形成方法、材料、厚さ等が上記方法と同様である場合には説明を省略している。
 図9(a)~(e)は、蒸着マスクの他の製造方法を例示する工程断面図である。
 まず、図9(a)に示すように、支持基板60上に樹脂層10を形成する。樹脂層10の形成方法は、図3を参照しながら前述した方法と同様である。ここでは、ポリイミドワニスを支持基板60上に塗布し、焼成することによって樹脂層10を形成する。
 次いで、図9(b)に示すように、レーザ加工により、樹脂層10に第2開口部13を形成する。第2開口部13は、樹脂層10のうち、後の工程で磁性金属体20と接合したときに磁性金属体20の第1開口部25内に位置する領域に形成される。
 続いて、図9(c)に示すように、接着層50を介して、樹脂層10と磁性金属体20とを接合する。接合方法は、図5を参照しながら前述した方法と同様である。
 この後、図9(d)に示すように、例えばレーザリフトオフ法により、樹脂層10から支持基板60を剥離する。
 次いで、図9(e)に示すように、例えばレーザ光L2を用いてスポット溶接を行うことにより、フレーム40を磁性金属体20の周辺部に設ける。このようにして、蒸着マスク100を得る。
 図10(a)~(e)は、蒸着マスクの他の製造方法を例示する工程断面図である。
 まず、図10(a)に示すように、支持基板60上に樹脂層10を形成する。樹脂層10の形成方法は、図3を参照しながら前述した方法と同様である。
 次いで、図10(b)に示すように、接着層50を介して、樹脂層10と磁性金属体20とを接合する。
 続いて、図10(c)に示すように、レーザ加工により、樹脂層10に第2開口部13を形成する。
 この後、図10(d)に示すように、例えばレーザ光L2を用いてスポット溶接を行うことにより、フレーム40を磁性金属体20の周辺部に設ける。
 次いで、図10(e)に示すように、例えばレーザリフトオフ法により、樹脂層10から支持基板60を剥離する。このようにして、蒸着マスク100を得る。
 図11(a)~(e)は、蒸着マスクのさらに他の製造方法を例示する工程断面図である。
 まず、図11(a)に示すように、支持基板60上に樹脂層10を形成する。樹脂層10の形成方法は、図3を参照しながら前述した方法と同様である。
 また、図11(b)に示すように、フレーム40に磁性金属体20を取り付けることにより、フレーム構造体を形成する。具体的には、磁性金属体20の周辺部上にフレーム40を載置し、周辺部とフレーム40とを接合する。ここでは、磁性金属体20側からレーザ光L3を照射することによって、磁性金属体20の周辺部とフレーム40とを溶接する。例えば、所定の間隔を空けて複数箇所でスポット溶接を行ってもよい。なお、架張溶接装置を用いて、磁性金属体20に所定の方向に一定の張力を付与した状態で、磁性金属体20をフレーム40に接合してもよい。ただし、本実施形態では、磁性金属体20はフレーム40に固定されていればよいので、大きな張力を付与する必要はない。
 続いて、図11(c)に示すように、接着層50を介して、樹脂層10と磁性金属体20とを接合する。
 次いで、図11(d)に示すように、レーザ加工により、樹脂層10に第2開口部13を形成する。
 この後、図11(e)に示すように、例えばレーザリフトオフ法により、樹脂層10から支持基板60を剥離する。このようにして、蒸着マスク100を得る。
 このように、本実施形態の蒸着マスク100は種々の方法で製造され得る。なお、図9に例示した方法では、第2開口部13を形成した樹脂層10と磁性金属体20とを接合する際に、高精度な位置合わせを行う必要がある。これに対し、樹脂層10と磁性金属体20とを接合した後に第2開口部13を形成すると、そのような高精度な位置合わせを行わなくてもよいので有利である。
 また、図10および図11に例示した方法では、支持基板60を剥離する前に、フレーム40の取り付けを行う。この場合、重量および嵩の大きいフレーム40が取り付けられた支持基板60を、レーザリフトオフ装置のステージに設置し、支持基板60の剥離を行うため、他の方法よりも、使用するレーザリフトオフ装置のステージを大きく、かつ、高強度にする必要がある。また、レーザヘッドとステージとの距離WD(ワークディスタンス)を大きくする必要がある。これに対し、支持基板60の剥離後に、フレーム40の取り付け工程を行うと、レーザリフトオフ装置のステージの大きさ、強度、WDなどに上記のような制限が課せられないため、より実用的である。
 <本実施形態の製造方法による効果>
 本実施形態の蒸着マスクの製造方法によると、樹脂材料を含む溶液または樹脂材料の前駆体を含む溶液を支持基板60の表面に付与し、熱処理を行うことによって樹脂層10を形成する。この方法で形成された樹脂層10は、支持基板60に密着しており、樹脂層10と支持基板60との界面に気泡は生じない。従って、支持基板60上で樹脂層10に複数の第2開口部13を形成することにより、所望のサイズの第2開口部13を従来よりも高い精度で形成でき、なおかつ、バリ98(図27参照)の発生を抑制できる。
 また、本実施形態によると、樹脂層10に所望の引張応力を生じさせることができる。これにより、樹脂層10の第1領域10aに生じるたわみ量を低減できる。このため、第1領域10a上に、第2開口部13に近接して磁性金属を配置しなくても、蒸着対象基板上に樹脂層10を密着させることが可能になる。従って、第1開口部25のサイズを拡大でき、例えばオープンマスクの使用も可能になる。中実部の面積率の極端に小さい(例えば、マスク部の面積に対して50%以下)磁性金属体20を使用することも可能である。また、高精度にパターニングされた磁性金属層を形成しなくてもよいので、製造工程を簡略化できる。さらに、熱膨張係数αMの大きい金属材料を使用することも可能になる。従って、磁性金属体20の形状および金属材料の選択の自由度を従来よりも高めることができる。
 本実施形態では、支持基板60上で樹脂層10を形成し、支持基板60に支持された状態の樹脂層10と磁性金属体20とを接合する。樹脂層10は残留応力として所定の引張応力を有しているので、樹脂層10を引っ張ってフレームに接合させる架張工程を行わない。大掛かりな架張機を用いた架張工程が不要になるので、製造コストを低減できるメリットがある。また、架張工程を行わないので、フレーム40から磁性金属体20に所定の層面内方向の張力が付与されない。従って、従来よりもフレーム40の剛性を小さくすることが可能になり、フレーム40の材料選択の自由度、および、フレーム幅、厚さ等の設計の自由度が大きくなる。
 特許文献1などに記載の従来方法では、架張工程によって樹脂フィルムをフレームに固定した後で、樹脂フィルムに対するレーザ加工が行われる。これに対し、本実施形態では、フレーム40の取り付け工程は、樹脂層10のレーザ加工前に行ってもよいし、レーザ加工後に行ってもよい。レーザ加工後にフレーム40の取り付け工程を行う場合には、次のようなメリットがある。フレーム40が取り付けられる前の、支持基板60によって支持されたマスク体30(レーザ加工前のマスク体を含む)は、フレーム40が取り付けられた後のマスク体30よりも軽量で取り扱いやすいので、レーザ加工機への設置、搬送等の作業が容易になる。また、フレーム40が取り付けられていないので、樹脂層10にレーザ光L1を照射しやすく、樹脂層10を加工し易い。さらに、特許文献1の方法では、樹脂層のレーザ加工がうまくいかなかったときに、フレームから積層マスクを剥離する必要があるが、フレーム40を取り付ける前にレーザ加工を行う場合には、そのような剥離工程は不要である。
 さらに、架張工程によってフレームに固定された樹脂フィルムは、湿度や温度などの周囲環境の変化に敏感であり、樹脂フィルムのたわみ量は周囲環境によって変化し得る。これに対し、本実施形態では、樹脂層10のたわみはゼロまたは僅かであり、たわみ量の経時変化もほとんど見られない。
 ところで、蒸着工程における蒸着マスクの温度上昇の大きさ、すなわち、製造時の蒸着マスクの温度T1と、蒸着工程における蒸着マスクの温度T2との差ΔT(℃)(=T2-T1)は、蒸着方法、蒸着装置等によって変わる。温度差ΔTが比較的小さく抑えられる場合、ΔTは3℃未満、例えば1℃程度である。一方、ΔTは3℃~15℃程度になることもある。なお、本実施形態における製造時の温度T1は、製造装置(例えば、樹脂層10の加工に使用するレーザ加工機、フレーム取り付け工程に使用する溶接機など)が設置されている環境温度であり、例えば室温である。蒸着工程における温度T2は、蒸着源の位置をワークに対して相対的に移動させながら(走査しながら)蒸着を行う場合には、蒸着マスクのうち、蒸着が行われている部分の温度を指す。本実施形態では、ΔTが比較的大きい場合(例えば3℃超)、必要に応じて、次の方法で、位置ずれを抑制することが可能である。まず、蒸着マスクの温度上昇(ΔT)を予め測定する。次いで、ΔTの測定結果に基づいて、熱膨張によって発生する位置ずれ量を算出する。位置ずれ量は、第2開口部13の位置と蒸着位置とのずれ、および、第2開口部13自体の変形による第2開口部13の形状と所望の蒸着パターンとのずれを含む。この位置ずれ量を相殺するように、樹脂層10の第2開口部13のサイズを所望の蒸着パターンよりも所定量だけ小さく形成する。なお、位置ずれ量を算出する代わりに、実際に蒸着を行って位置ずれ量を測定してもよい。
 (熱処理条件と樹脂層の引張応力との関係)
 本発明者は、樹脂層の形成条件(熱処理条件)と、樹脂層の引張応力および樹脂層のたわみ量との関係を検討した。以下、その方法および結果を説明する。
 ・サンプルA~Cの作製方法
 熱処理条件を異ならせて、ガラス基板61上にポリイミド膜62を形成し、サンプルA~Cを得た。図12は、サンプルA~Cの上面図である。
 まず、支持基板として、ガラス基板(旭硝子製AN-100)61を用意した。ガラス基板61の熱膨張係数は3.8ppm/℃、サイズは370mm×470mm、厚さは0.5mmであった。
 上記のガラス基板61の一部上に、ポリイミドワニス(宇部興産株式会社製U-ワニス-S)を塗布した。ここでは、図12に示すように、ガラス基板61における所定の領域(330mm×366mm)にポリイミドワニスを塗布した。
 次いで、ポリイミドワニスを塗布したガラス基板61に対して、圧力:20Paの真空雰囲気下で熱処理を行い、ポリイミド膜62を形成した。熱処理では、室温(ここでは25℃とした)から500℃(最高温度)まで昇温し、500℃で所定の時間保持した。この後、パージガスとして窒素ガスを供給し、次いで急冷(3分間)した。各サンプルにおける500℃までの昇温時間、500℃での保持時間、昇温速度(室温から500℃到達時まで)、およびポリイミド膜62の厚さを表1に示す。
 このようにして、サンプルA~Cとして、ポリイミド膜62が形成されたガラス基板61を得た。サンプルA~Cでは、ポリイミド膜62の引張応力によって、ガラス基板61に圧縮応力が付与され、ガラス基板61に反りが生じた。長辺方向および短辺方向におけるガラス基板61の反り量の平均値を表1に示す。
 ・ポリイミド膜62の引張応力の算出
 次いで、サンプルA~Cにおけるガラス基板61の反り量から、ポリイミド膜62の引張応力を算出した。結果を表1に示す。引張応力は、Stoneyの式を用いて、ガラス基板61の厚さ、ヤング率、ポアソン比、ポリイミド膜62の厚さ、ガラス基板61の反りの曲率半径(近似値)から求めることができる。
 また、表1には、比較のため、昇温速度の小さい条件でポリイミド膜を作製した場合の結果も示す(「サンプルD」とする)。表1に示すように、サンプルDでは、120℃、150℃、180℃に到達後、その温度で所定時間保持することにより、段階的に450℃まで昇温した。サンプルDの引張応力は、ガラス基板61の反りを10μmとして算出した値である。
Figure JPOXMLDOC01-appb-T000001
 さらに、同じ熱処理条件で6つのサンプルB1~B6を作製し、ポリイミド膜62に生じた引張応力を算出した。サンプルB1~B6の熱処理条件は、サンプルBと同様とした(室温~500℃、圧力:20Pa、加熱時間:13分(昇温8分+保持5分)、昇温速度:59℃/分)。ただし、熱処理前に、ポリイミドワニスが付与されたガラス基板61が設置されたチャンバーを減圧する速度をサンプルBよりも小さくした。これらのサンプルについても、上記と同様に、ガラス基板の反り量からポリイミド膜の引張応力を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、熱処理条件によって、支持基板上の樹脂層に生じる引張応力を制御できることが確認された。例えば、昇温速度を大きくすることで、引張応力の大きい樹脂層を形成できることが分かった。なお、ここでは、サンプルごとに昇温速度を変えて熱処理を行ったが、昇温速度以外の熱処理条件を変えても、樹脂層の引張応力の大きさを異ならせることができる。
 (実施例)
 実施例の蒸着マスクを作製し、樹脂層のたわみ量を評価したので、その結果を説明する。
 図13(a)は、実施例1の蒸着マスクを説明するための平面図であり、図13(b)は、図13(a)のB-B線に沿った断面図である。実施例1の蒸着マスクの作製方法は、図11を参照しながら前述した方法と同様とした。
 ・実施例1の蒸着マスクの作製
 実施例1では、支持基板として、ガラス基板(200×130mm、厚さ:0.5mm)を用いた。ガラス基板上に、上記のサンプルBと同様の熱処理条件で、ポリイミド膜(厚さ:20μm)71を形成した。
 また、磁性金属体として、3つの第1開口部(50mm×90mm)73を有するオープンマスク(200×110mm、厚さ:100μm)72を用意した。このオープンマスク72を、不図示のSUS製のフレーム(200×130mm、厚さ:10mm、フレーム幅20mm)に溶接した。
 次いで、ガラス基板上のポリイミド膜71の一部上に、接着層として、エポキシ樹脂系の接着剤(セメダイン社製EP330)75を付与した。この後、接着剤75を介して、ポリイミド膜71とオープンマスク72とを接合した。
 続いて、ポリイミド膜71から支持基板を剥離した。ポリイミド膜71には第2開口部は設けなかった。このようにして、実施例1の蒸着マスクを得た。
 実施例1の蒸着マスクは、3つのセルC1~C3を含んでいる。ここで「セル」とは、蒸着マスクを法線方向から見たとき、各第1開口部73およびその周辺を含む部分を指し、上述した単位領域Uに対応する。また、各セルにおいて、ポリイミド膜71のうち第1開口部73によって露出する領域71aを「第1領域」、オープンマスク72と接着剤75によって接合された領域71bを「第2領域」とする。
 ・実施例2の蒸着マスクの作製
 上記のサンプルDと同様の熱処理条件でポリイミド膜71を形成した点以外は、実施例1と同様の方法で実施例2の蒸着マスクを作製した。ただし、実施例2では、オープンマスク72の3つの第1開口部73のうち中央に位置する開口部にはポリイミド膜71を貼らなかった。従って、実施例2の蒸着マスクは2つのセルを含む。
 ・実施例1、2の蒸着マスクの観察
 実施例1および実施例2の蒸着マスクの写真を、図23(a)および(b)に示す。実施例1の蒸着マスクでは、ポリイミド膜71のたわみに依存した皺は見られない。また、ポリイミド膜71は膜応力の分布に依存したように思われる模様が観察される。一方、実施例2の蒸着マスクでは、ポリイミド膜71のたわみに依存した皺が見られ、セルの中央部でたわみが大きくなっていることが分かる。
 ・ポリイミド膜71のたわみ測定
 実施例1の蒸着マスクのセルC1~C3のそれぞれについて、ポリイミド膜71のたわみの測定を行った。
 図14(a)および(b)は、それぞれ、たわみ測定における、各セルのスキャン方向を示す平面図である。ここでは、レーザ変位計(キーエンス社製、LK-H057K)を用いて、各セルにおける第1開口部73の短辺方向および長辺方向にスキャンして、ポリイミド膜71の高さの変化を調べた。データサンプリング周期を200μsとした。
 図15~図20は、実施例1の蒸着マスクにおける各セルのポリイミド膜71の測定結果を示す図である。
 図15(a)~(c)および図16(a)~(c)は、それぞれ、実施例1の蒸着マスクにおけるセルC1のポリイミド膜71の高さの変化を示す図である。同様に、図17(a)~(c)および図18(a)~(c)は、それぞれ、セルC2のポリイミド膜71の高さの変化を示す図であり、図19(a)~(c)および図20(a)~(c)は、それぞれ、セルC3のポリイミド膜71の高さの変化を示す図である。また、図15、図17、図19の(a)~(c)は、それぞれ、図14(a)に示すI-I、II-II、III-III線に沿って、セルの短手方向にポリイミド膜71をスキャンしたときの測定結果を示す。図16、図18、図20の(a)~(c)は、それぞれ、図14(a)に示すIV-IV、V-V、VI-VI線に沿って、セルの長手方向にポリイミド膜71をスキャンしたときの測定結果を示す。
 これらの図において、縦軸はポリイミド膜71の高さであり、各セルの中央部の高さを基準とした値である。横軸は、200μs間隔で取得したデータ点数である。なお、手動でセンサーを移動させて測定しており、センサーのスキャン速度が一定でないため、横軸は距離とは対応していない。
 図15~図20において、ポリイミド膜71の第1領域71aの高さが傾きを有しているが、この傾きは、フレームのチルト、接着剤75の厚さばらつき等に依存する。また、ポリイミド膜71の第1領域71aと第2領域71bとの間に段差hが生じている。これは、実施例1の蒸着マスクを、ポリイミド膜71を上にして設置し、下方(ポリイミド膜71のオープンマスク72側)から変位計で測定を行っているからである。段差hはオープンマスク72および接着剤75の合計厚さに対応する。
 セルC1~C3の各断面の測定結果に補正線を破線で示す。「補正線」は、ポリイミド膜71のたわみがゼロの場合のポリイミド膜71(第1領域71a)の高さの変化を表す。ポリイミド膜71にたわみが生じていると、ポリイミド膜71の高さの実測値は、補正線の高さよりも小さくなる。ここでは、各断面におけるポリイミド膜71のたわみ量として、補正線と実測値との高さの差(補正線の高さに対して実測値がマイナスになる場合)の最大値を求めた。また、たわみ量の最大値を、そのセルの「最大たわみ量」とした。
 この結果、いずれのセルにおいても、最大たわみ量は5μm以下であった。従って、実施例1の蒸着マスクでは、セルの位置にかかわらず、ポリイミド膜71の第1領域71aは所定の大きさの引張応力を有しており、たわみ量(すなわち実測値と補正線との高さの差)を抑制できることが分かった。また、ポリイミド膜71の第1領域71a内では、熱処理直後に生じた応力分布が小さくなる(平均化される)ことが分かった。
 一方、実施例2の蒸着マスクのセルについても、実施例1と同様の方法で、ポリイミド膜71のたわみ測定を行い、最大たわみ量を求めた。
 図21(a)~(c)および図22(a)~(c)は、それぞれ、実施例2の蒸着マスクにおける1つのセルのポリイミド膜71の高さの変化を示し、図14(a)および(b)に示すI-I、II-II、III-III、IV-IV、V-V、VI-VI線に沿ってポリイミド膜71をスキャンしたときの測定結果を示す。
 この結果、実施例2の蒸着マスクでは、各セルにおける最大たわみ量は400μm以上500μm以下であり、実施例1よりも大きなたわみが生じていることが分かった。従って、ポリイミド膜71の引張応力を大きくすることにより、ポリイミド膜71のたわみ量を低減できることが確認された。
 なお、所定の引張応力(例えば3MPa以上)を有する樹脂膜と、引張応力が比較的小さくなるような条件で形成された従来の樹脂膜とは、支持基板または磁性金属体にかかる圧縮応力(反り量)の測定、樹脂膜の面内配向(IR吸収スペクトル)の測定などによって区別され得る。例えば、従来の樹脂膜では、表面および裏面のIR吸収スペクトルは略同じであるが、引張応力の大きい樹脂膜では、表面および裏面のIR吸収スペクトルが異なる等の違いが生じ得る。また、オープンマスクに接合された所定の引張応力を有する樹脂膜と、架張によってフレームに固定された従来の樹脂膜とは、例えば偏光を用いた観察によっても区別され得る。
 (有機半導体素子の製造方法)
 本発明の実施形態による蒸着マスクは、有機半導体素子の製造方法における蒸着工程に好適に用いられる。
 以下、有機EL表示装置の製造方法を例として説明を行う。
 図24は、トップエミッション方式の有機EL表示装置500を模式的に示す断面図である。
 図24に示すように、有機EL表示装置500は、アクティブマトリクス基板(TFT基板)510および封止基板520を備え、赤画素Pr、緑画素Pgおよび青画素Pbを有する。
 TFT基板510は、絶縁基板と、絶縁基板上に形成されたTFT回路とを含む(いずれも不図示)。TFT回路を覆うように、平坦化膜511が設けられている。平坦化膜511は、有機絶縁材料から形成されている。
 平坦化膜511上に、下部電極512R、512Gおよび512Bが設けられている。下部電極512R、512Gおよび512Bは、赤画素Pr、緑画素Pgおよび青画素Pbにそれぞれ形成されている。下部電極512R、512Gおよび512Bは、TFT回路に接続されており、陽極として機能する。隣接する画素間に、下部電極512R、512Gおよび512Bの端部を覆うバンク513が設けられている。バンク513は、絶縁材料から形成されている。
 赤画素Pr、緑画素Pgおよび青画素Pbの下部電極512R、512Gおよび512B上に、有機EL層514R、514Gおよび514Bがそれぞれ設けられている。有機EL層514R、514Gおよび514Bのそれぞれは、有機半導体材料から形成された複数の層を含む積層構造を有する。この積層構造は、例えば、下部電極512R、512Gおよび512B側から、ホール注入層、ホール輸送層、発光層、電子輸送層および電子注入層をこの順で含んでいる。赤画素Prの有機EL層514Rは、赤色光を発する発光層を含む。緑画素Pgの有機EL層514Gは、緑色光を発する発光層を含む。青画素Pbの有機EL層514Bは、青色光を発する発光層を含む。
 有機EL層514R、514Gおよび514B上に、上部電極515が設けられている。上部電極515は、透明導電材料を用いて表示領域全体にわたって連続するように(つまり赤画素Pr、緑画素Pgおよび青画素Pbに共通に)形成されており、陰極として機能する。上部電極515上に、保護層516が設けられている。保護層516は、有機絶縁材料から形成されている。
 TFT基板510の上述した構造は、TFT基板510に対して透明樹脂層517によって接着された封止基板520によって封止されている。
 有機EL表示装置500は、本発明の実施形態による蒸着マスクを用いて以下のようにして製造され得る。図25(a)~(d)および図26(a)~(d)は、有機EL表示装置500の製造工程を示す工程断面図である。なお、以下では、赤画素用の蒸着マスク101R、緑画素用の蒸着マスク101G、青画素用の蒸着マスク101Bを順に用いてワーク上に有機半導体材料を蒸着する(TFT基板510上に有機EL層514R、514Gおよび514Bを形成する)工程を中心に説明を行う。
 まず、図25(a)に示すように、絶縁基板上に、TFT回路、平坦化膜511、下部電極512R、512G、512Bおよびバンク513が形成されたTFT基板510を用意する。TFT回路、平坦化膜511、下部電極512R、512G、512Bおよびバンク513を形成する工程は、公知の種々の方法により実行され得る。
 次に、図25(b)に示すように、真空蒸着装置内に保持された蒸着マスク101Rに、搬送装置によりTFT基板510を近接させて配置する。このとき、樹脂層10の第2開口部13Rが赤画素Prの下部電極512Rに重なるように、蒸着マスク101RとTFT基板510とが位置合わせされる。また、TFT基板510に対して蒸着マスク101Rとは反対側に配置された不図示の磁気チャックにより、蒸着マスク101RをTFT基板510に対して密着させる。
 続いて、図25(c)に示すように、真空蒸着により、赤画素Prの下部電極512R上に、有機半導体材料を順次堆積し、赤色光を発する発光層を含む有機EL層514Rを形成する。
 次に、図25(d)に示すように、蒸着マスク101Rに代えて、蒸着マスク101Gを真空蒸着装置内に設置する。樹脂層10の第2開口部13Gが緑画素Pgの下部電極512Gに重なるように、蒸着マスク101GとTFT基板510との位置合わせを行う。また、磁気チャックにより、蒸着マスク101GをTFT基板510に対して密着させる。
 続いて、図26(a)に示すように、真空蒸着により、緑画素Pgの下部電極512G上に、有機半導体材料を順次堆積し、緑色光を発する発光層を含む有機EL層514Gを形成する。
 次に、図26(b)に示すように、蒸着マスク101Gに代えて、蒸着マスク101Bを真空蒸着装置内に設置する。樹脂層10の第2開口部13Bが青画素Pbの下部電極512Bに重なるように、蒸着マスク101BとTFT基板510との位置合わせを行う。また、磁気チャックにより、蒸着マスク101BをTFT基板510に対して密着させる。
 続いて、図26(c)に示すように、真空蒸着により、青画素Pbの下部電極512B上に、有機半導体材料を順次堆積し、青色光を発する発光層を含む有機EL層514Bを形成する。
 次に、図26(d)に示すように、有機EL層514R、514Gおよび514B上に、上部電極515および保護層516を順次形成する。上部電極515および保護層516の形成は、公知の種々の方法により実行され得る。このようにして、TFT基板510が得られる。
 その後、TFT基板510に対して封止基板520を透明樹脂層517により接着することにより、図24に示した有機EL表示装置500が完成する。
 なお、ここでは、赤画素Pr、緑画素Pgおよび青画素Pbの有機EL層514R、514Gおよび514Bにそれぞれ対応する3枚の蒸着マスク101R、101G、101Bを用いたが、1枚の蒸着マスクを順次ずらすことによって、赤画素Pr、緑画素Pgおよび青画素Pbに対応する有機EL層514R、514Gおよび514Bを形成してもよい。また、有機EL表示装置500において、封止基板520に代えて封止フィルムを用いてもよい。あるいは、封止基板(または封止フィルム)を使用せずに、TFT基板510に薄膜封止(TFE:Thin Film Encapsulation)構造を設けてもよい。薄膜封止構造は、例えば、窒化シリコン膜などの複数の無機絶縁膜を含む。薄膜封止構造は有機絶縁膜をさらに含んでもよい。
 なお、上記の説明では、トップエミッション方式の有機EL表示装置500を例示したが、本実施形態の蒸着マスクがボトムエミッション方式の有機EL表示装置の製造にも用いられることはいうまでもない。
 また、本実施形態の蒸着マスクを用いて製造される有機EL表示装置は、必ずしもリジッドなデバイスでなくてもよい。本実施形態の蒸着マスクは、フレキシブルな有機EL表示装置の製造にも好適に用いられる。フレキシブルな有機EL表示装置の製造方法においては、支持基板(例えばガラス基板)上に形成されたポリマ層(例えばポリイミド層)上に、TFT回路などが形成され、保護層の形成後にポリマ層がその上の積層構造ごと支持基板から剥離(例えばレーザリフトオフ法が用いられる)される。
 また、本実施形態の蒸着マスクは、有機EL表示装置以外の有機半導体素子の製造にも用いられ、特に、高精細な蒸着パターンの形成が必要とされる有機半導体素子の製造に好適に用いられる。
 本発明の実施形態による蒸着マスクは、有機EL表示装置をはじめとする有機半導体素子の製造に好適に用いられ、高精細な蒸着パターンの形成が必要とされる有機半導体素子の製造に特に好適に用いられる。
 10   樹脂層
 10a  第1領域
 10b  第2領域
 13   開口部
 20   磁性金属体
 21   中実部
 25   開口部
 30   マスク体
 40   フレーム
 50   接着層
 60   支持基板
 L1、L1、L3    レーザ光
 100、200、300  蒸着マスク
 500  有機EL表示装置
 510  TFT基板
 511  平坦化膜
 512B、512G、512R 下部電極
 513  バンク
 514B、514G、514R 有機EL層
 515  上部電極
 516  保護層
 517  透明樹脂層
 520  封止基板
 Pb   青画素
 Pg   緑画素
 Pr   赤画素
 U    単位領域

Claims (21)

  1.  樹脂層と、前記樹脂層上に形成された磁性金属体とを備えた蒸着マスクの製造方法であって、
     (A)少なくとも1つの第1開口部を有する磁性金属体を用意する工程と、
     (B)基板を用意する工程と、
     (C)前記基板の表面に樹脂材料を含む溶液または樹脂材料のワニスを付与した後、熱処理を行うことによって樹脂層を形成する工程と、
     (D)前記基板に形成された前記樹脂層を、前記磁性金属体上に、前記少なくとも1つの第1開口部を覆うように固定する工程と、
     (E)前記樹脂層に、複数の第2開口部を形成する工程と、
     (F)前記工程(E)の後、前記樹脂層から前記基板を剥離する工程と
    を包含する、蒸着マスクの製造方法。
  2.  前記工程(E)は、前記工程(D)の後で行われ、
     前記複数の第2開口部は、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域に形成される、請求項1に記載の製造方法。
  3.  前記工程(E)は、前記工程(C)と前記工程(D)との間に行われる、請求項1に記載の製造方法。
  4.  前記磁性金属体の周縁部にフレームを設ける工程をさらに包含する、請求項1から3のいずれかに記載の製造方法。
  5.  前記工程(C)において、前記熱処理は、前記樹脂層に、層面内方向に室温で0.2MPaより大きい引張応力を生成させる条件で行われる、請求項1から4のいずれかに記載の製造方法。
  6.  前記少なくとも1つの第1開口部の幅は30mm以上であり、
     前記工程(F)で前記基板を剥離した後、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、
     前記工程(C)において、前記熱処理は、前記最大たわみ量δが5μm以下となるような引張応力が前記樹脂層に生成される条件で行われる、請求項1から5のいずれかに記載の製造方法。
  7.  前記少なくとも1つの第1開口部の幅をW、
     前記工程(F)で前記基板を剥離した後、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、
     前記工程(C)において、前記熱処理は、δ/Wが0.01%以下となるような引張応力が前記樹脂層に付与される条件で行われる、請求項1から5のいずれかに記載の製造方法。
  8.  前記工程(F)において、前記基板を剥離した後、前記磁性金属体は、前記樹脂層から圧縮応力が付与される、請求項1から7のいずれかに記載の製造方法。
  9.  前記樹脂層はポリイミド層であり、前記基板はガラス基板であり、
     前記工程(C)の前記熱処理は、前記樹脂材料を含む溶液または前記樹脂材料のワニスが付与された前記基板を、30℃/min以上のレートで300℃以上600℃以下の温度まで昇温させる工程を含む、請求項1から8のいずれかに記載の製造方法。
  10.  前記工程(D)は、
      前記樹脂層の一部上に接着層を形成する工程(D1)と、
      前記接着層を介して前記樹脂層を前記磁性金属体に接合する工程(D2)と
    を包含する、請求項1から9のいずれかに記載の製造方法。
  11.  前記接着層は金属層であり、
     工程(D2)は、前記金属層を前記磁性金属体に溶接することによって、前記金属層を介して、前記樹脂層を前記磁性金属体に接合する工程である、請求項10に記載の製造方法。
  12.  前記少なくとも1つの第1開口部の幅は30mm以上であり、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域には磁性金属が存在していない、請求項1から11のいずれかに記載の製造方法。
  13.  前記磁性金属体はオープンマスク構造を有する、請求項1から12のいずれかに記載の製造方法。
  14.  フレームと、
     前記フレームに支持された、少なくとも1つの第1開口部を含む磁性金属体と、
     前記磁性金属体上に配置された、前記少なくとも1つの第1開口部を覆う樹脂層と、
     前記樹脂層と前記磁性金属体との間に位置し、前記樹脂層と前記磁性金属体とを接合する接着層と
    を備え、
     前記樹脂層は、層面内方向に引張応力を有し、
     前記磁性金属体は、前記樹脂層から面内方向に圧縮応力を受けている、蒸着マスク。
  15.  前記樹脂層の室温における引張応力は、0.2MPaより大きい、請求項14に記載の蒸着マスク。
  16.  前記接着層は、前記樹脂層に固着された金属層であり、前記金属層は、前記磁性金属体に溶接されている、請求項14または15に記載の蒸着マスク。
  17.  前記少なくとも1つの第1開口部の幅は30mm以上であり、
     前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量δは5μm以下である、請求項14から16のいずれかに記載の蒸着マスク。
  18.  前記少なくとも1つの第1開口部の幅をW、前記磁性金属体を水平方向に保持したときの、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域の最大たわみ量をδとすると、δ/Wは0.01%以下である、請求項14から16のいずれかに記載の蒸着マスク。
  19.  前記少なくとも1つの第1開口部の幅は30mm以上であり、前記樹脂層のうち前記磁性金属体の前記少なくとも1つの第1開口部内に位置する領域には磁性金属が存在していない、請求項14から18のいずれかに記載の蒸着マスク。
  20.  前記磁性金属体はオープンマスク構造を有する、請求項14から19のいずれかに記載の蒸着マスク。
  21.  請求項14から20のいずれかに記載の蒸着マスクを用いて、ワーク上に有機半導体材料を蒸着する工程を包含する、有機半導体素子の製造方法。
PCT/JP2017/003409 2017-01-31 2017-01-31 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法 WO2018142464A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2017/003409 WO2018142464A1 (ja) 2017-01-31 2017-01-31 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
CN201780085302.5A CN110234783B (zh) 2017-01-31 2017-01-31 蒸镀掩模、蒸镀掩模及有机半导体元件的制造方法
CN202111028520.XA CN113737128A (zh) 2017-01-31 2017-01-31 蒸镀掩模、蒸镀掩模及有机半导体元件的制造方法
JP2017566424A JP6410247B1 (ja) 2017-01-31 2017-01-31 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
US16/315,327 US10557191B2 (en) 2017-01-31 2017-01-31 Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device
US16/721,210 US11230759B2 (en) 2017-01-31 2019-12-19 Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device
US17/550,010 US20220098720A1 (en) 2017-01-31 2021-12-14 Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003409 WO2018142464A1 (ja) 2017-01-31 2017-01-31 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/315,327 A-371-Of-International US10557191B2 (en) 2017-01-31 2017-01-31 Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device
US16/721,210 Continuation US11230759B2 (en) 2017-01-31 2019-12-19 Method for producing deposition mask, deposition mask, and method for producing organic semiconductor device

Publications (1)

Publication Number Publication Date
WO2018142464A1 true WO2018142464A1 (ja) 2018-08-09

Family

ID=63039392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003409 WO2018142464A1 (ja) 2017-01-31 2017-01-31 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法

Country Status (4)

Country Link
US (3) US10557191B2 (ja)
JP (1) JP6410247B1 (ja)
CN (2) CN110234783B (ja)
WO (1) WO2018142464A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031987A1 (ja) * 2018-08-09 2020-02-13 大日本印刷株式会社 蒸着マスクの製造方法及び有機el表示装置の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6430668B2 (ja) * 2016-02-10 2018-11-28 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
US10510993B1 (en) * 2017-02-27 2019-12-17 Sharp Kabushiki Kaisha Production method for EL device
USD856948S1 (en) * 2018-05-07 2019-08-20 Adura Led Solutions Llc Circuit board having arrangements of light-emitting diodes
USD933618S1 (en) * 2018-10-31 2021-10-19 Asahi Kasei Microdevices Corporation Semiconductor module
JP1665773S (ja) * 2018-11-07 2020-08-11
JP1633578S (ja) * 2018-11-07 2019-06-10
USD902164S1 (en) * 2019-01-24 2020-11-17 Toshiba Memory Corporation Integrated circuit card
WO2020158566A1 (ja) * 2019-01-31 2020-08-06 大日本印刷株式会社 蒸着マスク群、電子デバイスの製造方法及び電子デバイス
CN111636048B (zh) * 2020-05-12 2021-05-07 清华大学 一种掩膜及其制造方法、二维材料薄膜图案制造方法
KR20220069397A (ko) * 2020-11-20 2022-05-27 엘지이노텍 주식회사 Oled 화소 증착을 위한 증착용 마스크
JP1700006S (ja) * 2021-02-23 2021-11-22

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095993A (ja) * 2011-11-04 2013-05-20 V Technology Co Ltd マスクの製造方法
JP2015017308A (ja) * 2013-07-11 2015-01-29 大日本印刷株式会社 蒸着マスク、樹脂層付き金属マスク、および有機半導体素子の製造方法
US20150368785A1 (en) * 2014-06-23 2015-12-24 Samsung Display Co., Ltd. Mask frame assembly and method of manufacturing the same
JP2016130348A (ja) * 2015-01-14 2016-07-21 大日本印刷株式会社 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2016204753A (ja) * 2015-04-17 2016-12-08 大日本印刷株式会社 蒸着パターンの形成方法、押さえ板一体型の押し込み部材、蒸着装置及び有機半導体素子の製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330340A (ja) * 1995-05-29 1996-12-13 Shinko Electric Ind Co Ltd 半導体装置の製造方法
JP4190089B2 (ja) * 1998-06-30 2008-12-03 シャープ株式会社 液晶表示装置およびその製造方法
JP2001091925A (ja) * 1999-07-16 2001-04-06 Sharp Corp 液晶表示装置
GB0208506D0 (en) * 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
JP3794407B2 (ja) * 2003-11-17 2006-07-05 セイコーエプソン株式会社 マスク及びマスクの製造方法、表示装置の製造方法、有機el表示装置の製造方法、有機el装置、及び電子機器
JP4441282B2 (ja) * 2004-02-02 2010-03-31 富士フイルム株式会社 蒸着マスク及び有機el表示デバイスの製造方法
JP5297046B2 (ja) 2008-01-16 2013-09-25 キヤノントッキ株式会社 成膜装置
KR20100026655A (ko) * 2008-09-01 2010-03-10 삼성모바일디스플레이주식회사 박막 증착용 마스크 및 이를 이용한 유기전계발광 소자의 제조방법
EP2182096A1 (fr) * 2008-10-28 2010-05-05 Nivarox-FAR S.A. Procédé LIGA hétérogène
US9076989B2 (en) * 2010-12-27 2015-07-07 Sharp Kabushiki Kaisha Method for forming deposition film, and method for producing display device
JP2013055039A (ja) * 2011-08-11 2013-03-21 Canon Inc El発光装置の製造方法および蒸着装置
JP2013173968A (ja) 2012-02-24 2013-09-05 V Technology Co Ltd 蒸着マスク及び蒸着マスクの製造方法
CN103797149B (zh) * 2011-09-16 2017-05-24 株式会社V技术 蒸镀掩膜、蒸镀掩膜的制造方法及薄膜图案形成方法
JP5958804B2 (ja) 2012-03-30 2016-08-02 株式会社ブイ・テクノロジー 蒸着マスク、蒸着マスクの製造方法及び有機el表示装置の製造方法
KR101931770B1 (ko) * 2011-11-30 2018-12-24 삼성디스플레이 주식회사 마스크 조립체 및 유기 발광 표시장치
TWI463024B (zh) * 2012-01-12 2014-12-01 大日本印刷股份有限公司 A manufacturing method of the imposition-type deposition mask and a manufacturing method of the resulting stencil sheet and an organic semiconductor device
JP5895539B2 (ja) 2012-01-12 2016-03-30 大日本印刷株式会社 蒸着マスク
KR102097574B1 (ko) * 2012-01-12 2020-04-06 다이니폰 인사츠 가부시키가이샤 수지층이 형성된 금속 마스크의 제조 방법
JP5935628B2 (ja) 2012-09-24 2016-06-15 大日本印刷株式会社 蒸着マスクの製造方法
JP6142386B2 (ja) 2012-12-21 2017-06-07 株式会社ブイ・テクノロジー 蒸着マスクの製造方法
JP5976527B2 (ja) * 2012-12-27 2016-08-23 株式会社ブイ・テクノロジー 蒸着マスク及びその製造方法
JP6123301B2 (ja) * 2013-01-11 2017-05-10 大日本印刷株式会社 蒸着マスクの製造方法、金属マスク付き樹脂層、及び有機半導体素子の製造方法
JP6142388B2 (ja) * 2013-04-09 2017-06-07 株式会社ブイ・テクノロジー 蒸着マスク及び蒸着マスクの製造方法
JP6035548B2 (ja) 2013-04-11 2016-11-30 株式会社ブイ・テクノロジー 蒸着マスク
JP6078818B2 (ja) * 2013-07-02 2017-02-15 株式会社ブイ・テクノロジー 成膜マスク及び成膜マスクの製造方法
JP6394877B2 (ja) * 2013-09-30 2018-09-26 大日本印刷株式会社 蒸着マスク、蒸着マスクの製造方法、蒸着マスク準備体、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
JP2015074826A (ja) 2013-10-11 2015-04-20 株式会社ブイ・テクノロジー 成膜マスク及びその製造方法
JP5516816B1 (ja) * 2013-10-15 2014-06-11 大日本印刷株式会社 金属板、金属板の製造方法、および金属板を用いて蒸着マスクを製造する方法
JP5846287B1 (ja) * 2013-12-27 2016-01-20 大日本印刷株式会社 フレーム付き蒸着マスクの製造方法、引張装置、有機半導体素子の製造装置及び有機半導体素子の製造方法
JP6330390B2 (ja) 2014-03-14 2018-05-30 大日本印刷株式会社 基板付蒸着マスク装置の製造方法および基板付蒸着マスク
JP6326885B2 (ja) * 2014-03-19 2018-05-23 大日本印刷株式会社 蒸着マスク、蒸着マスク準備体、及び有機半導体素子の製造方法
JP6511908B2 (ja) * 2014-03-31 2019-05-15 大日本印刷株式会社 蒸着マスクの引張方法、フレーム付き蒸着マスクの製造方法、有機半導体素子の製造方法、及び引張装置
JP6394879B2 (ja) * 2014-09-30 2018-09-26 大日本印刷株式会社 蒸着マスク、蒸着マスク準備体、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
WO2016088632A1 (ja) * 2014-12-03 2016-06-09 シャープ株式会社 蒸着マスク、蒸着装置、蒸着マスクの製造方法、および蒸着方法
CN112176284B (zh) * 2015-07-03 2023-09-01 大日本印刷株式会社 制造蒸镀掩模、有机半导体元件和有机el显示器的方法、蒸镀掩模准备体、及蒸镀掩模
JP6430668B2 (ja) 2016-02-10 2018-11-28 鴻海精密工業股▲ふん▼有限公司 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP6191711B2 (ja) * 2016-03-02 2017-09-06 大日本印刷株式会社 蒸着マスク、蒸着マスク装置、及び有機エレクトロルミネッセンス素子の製造方法
JP6191712B2 (ja) * 2016-03-02 2017-09-06 大日本印刷株式会社 蒸着マスクの製造方法、及び蒸着マスク装置の製造方法
JP6341434B2 (ja) 2016-03-29 2018-06-13 株式会社ブイ・テクノロジー 成膜マスク、その製造方法及び成膜マスクのリペア方法
JP2017002410A (ja) * 2016-09-27 2017-01-05 大日本印刷株式会社 蒸着マスク

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013095993A (ja) * 2011-11-04 2013-05-20 V Technology Co Ltd マスクの製造方法
JP2015017308A (ja) * 2013-07-11 2015-01-29 大日本印刷株式会社 蒸着マスク、樹脂層付き金属マスク、および有機半導体素子の製造方法
US20150368785A1 (en) * 2014-06-23 2015-12-24 Samsung Display Co., Ltd. Mask frame assembly and method of manufacturing the same
JP2016130348A (ja) * 2015-01-14 2016-07-21 大日本印刷株式会社 蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2016204753A (ja) * 2015-04-17 2016-12-08 大日本印刷株式会社 蒸着パターンの形成方法、押さえ板一体型の押し込み部材、蒸着装置及び有機半導体素子の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031987A1 (ja) * 2018-08-09 2020-02-13 大日本印刷株式会社 蒸着マスクの製造方法及び有機el表示装置の製造方法
JP2020026543A (ja) * 2018-08-09 2020-02-20 大日本印刷株式会社 蒸着マスクの製造方法
JP7187883B2 (ja) 2018-08-09 2022-12-13 大日本印刷株式会社 蒸着マスクの製造方法

Also Published As

Publication number Publication date
CN113737128A (zh) 2021-12-03
CN110234783A (zh) 2019-09-13
US20200123643A1 (en) 2020-04-23
CN110234783B (zh) 2021-09-21
JP6410247B1 (ja) 2018-10-24
US20190211436A1 (en) 2019-07-11
US11230759B2 (en) 2022-01-25
JPWO2018142464A1 (ja) 2019-02-14
US10557191B2 (en) 2020-02-11
US20220098720A1 (en) 2022-03-31

Similar Documents

Publication Publication Date Title
JP6410247B1 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP6461413B2 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP6588125B2 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
US11313027B2 (en) Vapor deposition mask, vapor deposition mask production method, and organic semiconductor element production method
WO2014168039A1 (ja) 成膜マスク
JP6671572B1 (ja) 蒸着マスク、蒸着マスクの製造方法、および有機半導体素子の製造方法
KR102348212B1 (ko) 박막 기재 제조 방법
JP6876172B2 (ja) 蒸着マスクおよび蒸着マスクの製造方法
JP5884543B2 (ja) 薄膜パターン形成方法、マスクの製造方法及び有機el表示装置の製造方法
JP2010248553A (ja) 成膜装置及び成膜方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017566424

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894876

Country of ref document: EP

Kind code of ref document: A1