WO2018139610A1 - 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法 - Google Patents

複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法 Download PDF

Info

Publication number
WO2018139610A1
WO2018139610A1 PCT/JP2018/002581 JP2018002581W WO2018139610A1 WO 2018139610 A1 WO2018139610 A1 WO 2018139610A1 JP 2018002581 W JP2018002581 W JP 2018002581W WO 2018139610 A1 WO2018139610 A1 WO 2018139610A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
electrolytic cell
anode
cathode
porous
Prior art date
Application number
PCT/JP2018/002581
Other languages
English (en)
French (fr)
Inventor
悠介 鈴木
稔幸 平野
泰大 中嶋
陽介 内野
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201880004648.2A priority Critical patent/CN110023542B/zh
Priority to JP2018564668A priority patent/JP6746721B2/ja
Priority to DK18744656.2T priority patent/DK3575442T3/da
Priority to EP18744656.2A priority patent/EP3575442B1/en
Publication of WO2018139610A1 publication Critical patent/WO2018139610A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a bipolar electrolytic cell, a bipolar electrolytic cell for alkaline water electrolysis, and a hydrogen production method.
  • renewable energy has the characteristic that its output varies greatly because it depends on climatic conditions. For this reason, it is not always possible to transport electric power (hereinafter also referred to as “variable power source”) generated by renewable energy generation to the general electric power system. There are concerns about social impacts. In addition, it is well known that an imbalance between electric power obtained from renewable energy and electric power demand occurs not only during the day, but also depending on the season.
  • Hydrogen is widely used industrially in scenes such as petroleum refining, chemical synthesis, and metal refining. In recent years, hydrogen can be used in hydrogen stations for fuel cell vehicles (FCV), smart communities, hydrogen power plants, etc. Sex is also spreading. For this reason, there is high expectation for the development of a technology for obtaining particularly high-purity hydrogen from renewable energy.
  • FCV fuel cell vehicles
  • Sex is also spreading. For this reason, there is high expectation for the development of a technology for obtaining particularly high-purity hydrogen from renewable energy.
  • Water electrolysis methods include solid polymer water electrolysis, high temperature steam electrolysis, alkaline water electrolysis and the like.
  • alkaline water electrolysis is one of the most promising because it has been industrialized for decades or more, it can be implemented on a large scale, and it is cheaper than other water electrolysis devices. Has been.
  • the structure of the electrolysis cell is particularly a structure in which the gap between the diaphragm and the electrode is substantially eliminated. It is well known that the adoption of a structure called a zero gap structure is effective (see Patent Documents 1 and 2). In the zero gap structure, the generated gas is quickly released to the opposite side of the electrode through the pores of the electrode, thereby reducing the distance between the electrodes and suppressing the occurrence of gas accumulation near the electrodes as much as possible. The voltage is kept low. Therefore, the zero gap structure is extremely effective for suppressing the electrolysis voltage, and is used in various electrolysis devices.
  • an object of the present invention is to provide an electrolysis apparatus capable of suppressing deterioration of conversion efficiency and hydrogen purity even when a high current density operation is performed.
  • the present inventors have conducted intensive studies on the electrodes and the diaphragm. Surprisingly, by controlling the average pore diameter of the pores of the porous electrode and the average primary particle diameter of the inorganic particles contained in the porous film within a predetermined range, even in the case of high-density current operation, the electrolytic efficiency and It has been found that the deterioration of the generated gas purity can be suppressed, and the present invention has been completed.
  • a bipolar electrolytic cell comprising a plurality of combinations of an anode, a cathode, and a diaphragm disposed between the anode and the cathode, At least one of the anode and the cathode is a porous electrode having an average pore diameter of 10 nm or more and 200 nm or less, and the diaphragm is a porous film containing inorganic particles having an average primary particle diameter of 20 nm or more and 300 nm or less.
  • a bipolar electrolytic cell characterized by that.
  • a bipolar electrolytic cell comprising a plurality of combinations of an anode, a cathode, and a diaphragm disposed between the anode and the cathode, At least one of the anode and the cathode is a porous electrode having an average pore diameter of 10 nm or more and 200 nm or less, and the diaphragm is a porous film containing inorganic particles having an average primary particle diameter of 20 nm or more and 300 nm or less.
  • a bipolar electrolytic cell for alkaline water electrolysis.
  • the double layer capacity of the porous body electrode is 0.5F / cm 2 or more 4.0F / cm 2 or less, [2] to alkaline water electrolysis a bipolar type electrolytic cell according to any one of [5].
  • the porous electrode has a center distance (LW) in the long direction of the mesh of 2.0 mm to 6.0 mm and a center distance (SW) in the short direction of the mesh of 1.0 mm to 5.0 mm.
  • the bipolar electrolytic cell for alkaline water electrolysis according to any one of [4] to [8], comprising an expandable base material.
  • porous electrode includes a punching type substrate having a hole diameter (D) of 1.0 mm or more and 10.0 mm or less and a pitch (P) between holes of 1.0 mm or more and 12.0 mm.
  • D hole diameter
  • P pitch
  • a hydrogen production method for producing hydrogen by electrolyzing water containing an alkali with an electrolytic cell is a bipolar electrolytic cell comprising a plurality of combinations of an anode, a cathode, and a diaphragm disposed between the anode and the cathode, At least one of the anode and the cathode is a porous electrode having an average pore diameter of 10 nm to 200 nm,
  • the membrane is a bipolar electrolytic cell, which is a porous membrane containing inorganic particles having an average primary particle size of 20 nm or more and 300 nm or less.
  • a bipolar electrolytic cell and a hydrogen production method capable of maintaining excellent electrolysis efficiency and high gas purity even when high-density current operation or variable power supply operation is performed. Can do.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the electrolytic cell for alkaline water electrolysis of this embodiment a plurality of bipolar elements with one side serving as an anode and one side serving as a cathode are arranged in series in the same direction across a diaphragm, and only both ends are connected to a power source.
  • This is a bipolar electrolytic cell.
  • the electrolytic cell for alkaline water electrolysis of this embodiment includes a plurality of combinations (also referred to as “electrolysis cells”) of an anode, a cathode, and a diaphragm disposed between the anode and the cathode. This is a bipolar electrolytic cell.
  • the anode, the cathode, and the diaphragm which are important components that characterize the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment, will be described in detail.
  • alkaline water electrolysis reaction alkaline water is electrolyzed in an electrolytic cell having an electrode pair (that is, an anode and a cathode) connected to a power source, oxygen gas is generated at the anode, and hydrogen gas is generated at the cathode.
  • electrode means either one or both of an anode and a cathode.
  • the size of gas bubbles (bubbles) generated from the electrodes greatly depends on the pore diameter of the electrode, and the gas generated when the pore diameter of the electrode is reduced. It has been found that the bubble diameter of is small. When the pore diameter is small, the specific surface area increases and the overvoltage of the electrode decreases. On the other hand, the amount of gas passing through the porous membrane, which is the diaphragm, increases as the bubble diameter decreases, and the purity of the generated gas tends to decrease.
  • the inorganic particles in the porous membrane generally exist as aggregates called secondary particles in which the primary particles are aggregated in a matrix of a hydrophobic organic polymer in the porous membrane, and the electrolytic solution is the secondary particles. It penetrates the through-hole formed by the aggregate and ensures the permeability of ions during electrolysis. If the primary particle size of the inorganic particles is too small, the gas bubbles in the through holes can be prevented from permeating, but the ion permeability is limited. Conversely, it has been found that if the primary particle size is too large, the opposite result is obtained.
  • the present inventors have repeated elaborate experiments and combined the appropriate range of the pore diameter of the electrode and the primary particle diameter of the inorganic particles in the porous membrane, so that the electrolysis efficiency can be improved even in temporary high current density operation. It has been found that deterioration of hydrogen purity can be suppressed, and has led to the present invention.
  • At least one of the anode and the cathode has an average pore diameter of 10 nm or more and 200 nm. It is the following porous body electrode. From the viewpoint of further enhancing the above effect, the average pore diameter of the porous electrode is preferably 40 nm or more and 190 nm or less, and more preferably 50 nm or more and 180 nm or less. The average pore diameter of the porous electrode can be measured using the BET method.
  • the measurement sample is put in a dedicated cell, and pretreatment is performed by heating and evacuating to remove the adsorbate on the pore surface in advance. Thereafter, an adsorption / desorption isotherm of gas adsorption on the measurement sample is measured at -196 ° C.
  • the average pore diameter can be obtained. More specifically, it can be measured by the method shown in Examples described later.
  • the diaphragm used in combination with the porous electrode contains inorganic particles having an average primary particle size of 20.0 nm to 300 nm. It is a porous film.
  • the range of the average pore diameter of the porous body electrode and the range of the average primary particle diameter of the inorganic particles in the diaphragm (porous membrane) may be selected individually for obtaining the effects of the present invention. .
  • double layer capacity of the porous electrode is not particularly limited, is 0.5F / cm 2 or more 4.0F / cm 2 or less It is preferably 0.6 F / cm 2 or more and 3.8 F / cm 2 or less, and more preferably 0.7 F / cm 2 or more and 3.6 F / cm 2 or less.
  • the double layer capacity is the electrostatic capacity of the electric double layer formed at the interface between the electrode and the electrolytic solution, and can specifically indicate the specific surface area used for electrolysis on the electrode surface. When the double layer capacity is in this range, the specific surface area used for electrolysis can be optimized, the overvoltage can be further reduced, and the electrolysis efficiency can be further improved.
  • the double layer capacity can be measured by the electrochemical impedance method.
  • the double layer capacitance is calculated by analyzing the Cole-Cole plot obtained by plotting the real part and the imaginary part obtained by the AC impedance measurement by equivalent circuit fitting.
  • the porous electrode has a surface that is opposite to the surface in contact with the diaphragm. Preferably it is.
  • the porous electrode in the present embodiment is not particularly limited, but from the viewpoint of controlling the average pore diameter, a mesh of plain weave mesh type, punching type, expanded type, etc.
  • Examples include electrodes having a (mesh) -like structure, metal foams, and the like.
  • the plain woven mesh type weaves wires made of metal, resin, etc. so that a plurality of wires parallel to one direction intersect with each other while keeping a certain distance from each other.
  • FIG. 4 shows an enlarged opening of an example of a plain weave mesh type porous body electrode.
  • the shape of the opening portion of the plain woven mesh type has two adjacent wire rods parallel to one direction and two adjacent wires parallel to another direction when the opening portion is observed from the vertical direction as a plane. It is a parallelogram formed by intersecting one set of wires, and may be any of a square, a rectangle, and a rhombus.
  • the size is not particularly limited.
  • the aperture (A) can be 0.1 mm or more and 5.0 mm or less, preferably 0.2 mm or more and 4.0 mm or less. More preferably, it is 0.3 mm or more and 3.0 mm or less.
  • the mesh opening (A) is a vertical distance between a pair of two adjacent wires in parallel among the four wires constituting the plain woven mesh type opening, and the other Means the average value of the vertical distance between a set of two wires.
  • the punching die is a net-like structure in which a plurality of round or square punch holes are formed at regular intervals on a plate made of metal or resin.
  • the shape of a punch hole is not specifically limited, From a viewpoint of mechanical strength, a circular shape is preferable and a perfect circle is more preferable.
  • FIG. 5 shows a plan view of an example of a punching-type porous electrode.
  • the hole diameter (D) can be 0.5 mm to 12.0 mm and the hole pitch (P) can be 0.5 mm to 15 mm.
  • the hole diameter (D) is 1.0 mm or more and 10.0 mm or less, and the pitch (P) between holes is 1.0 mm or more and 10.0 mm or less. More preferably, the hole diameter (D) is 1.5 mm or more. 8.0 mm or less, and the pitch (P) between holes is 1.5 mm or more and 8.0 mm or less.
  • the hole diameter (D) means the diameter when the punch hole is a perfect circle, and means the average value of the major axis diameter and the minor axis diameter when the punch hole is elliptical.
  • the inter-hole pitch (P) means the center-to-center distance between one punch hole and the closest punch hole.
  • it means the shortest distance among the distances from the center of a plurality of punch holes adjacent to one punch hole to the center of the one punch hole.
  • the average value is used.
  • the expand type is a net-like structure in which a rhombus opening is formed by spreading a plate made of metal, resin or the like while making a staggered cut.
  • the “diamond” in the expanded type means a parallelogram in which the lengths of the four sides are equal, the diagonals are orthogonal to each other, and one of the four inner angles is greater than 0 ° and less than 180 °. When the angle of one interior angle is 90 °, that is, “square” is included.
  • FIG. 3 shows an enlarged plan view and a cross-sectional view of an opening of an example of an expanded porous electrode.
  • the size is not particularly limited.
  • the center distance (LW) in the long direction of the mesh is 1.0 mm or more and 10.0 mm or less, and the distance between the centers in the short direction of the mesh (SW ) Can be 0.5 mm or more and 8.0 mm or less.
  • LW is 2.0 mm to 6.0 mm
  • SW is 1.0 mm to 5.0 mm
  • more preferably LW is 3.0 mm to 5.0 mm
  • SW is 1.0 mm to 4.0 mm. It is.
  • the center-to-center distance (LW) of the mesh in the long direction means the longest distance between adjacent bond (mesh intersection) centers when the opening is observed from the vertical direction.
  • the center-to-center distance (SW) in the short direction of the mesh means the shortest distance between bond centers adjacent to each other in the direction perpendicular to the LW when observed from the vertical direction with the opening as a plane.
  • LW and SW are different between meshes on one base material, the average value is used.
  • the dimensions are not particularly limited, but the porosity is increased in order to achieve both an increase in gas generation due to an increase in electrolytic surface area and efficient removal of gas generated by electrolysis from the electrode surface. It is preferably 80% or more and 95% or less.
  • the surface aperture ratio of the porous electrode is not particularly limited, but from the viewpoint of improving electrolytic efficiency, for example, 8% to 85%. 30% to 80% is preferable, 31% to 70% is more preferable, and 35% to 65% is still more preferable.
  • the surface opening ratio of a porous body electrode shows the ratio of the hole part which occupies on the surface of a porous body electrode.
  • the surface aperture ratio of the porous electrode can be determined as the ratio of the hole occupying the electrode surface by imaging the measurement sample with a scanning electron microscope (SEM) from the direction perpendicular to the electrode surface. More specifically, it can be determined by the method described in the examples described later.
  • the thickness of the porous electrode is not particularly limited, but is preferably about 0.7 to 3 mm from the viewpoint of mechanical strength.
  • the water contact angle of the porous electrode is not particularly limited, but is preferably more than 0 ° and 30 ° or less, more than 0 ° and 25 °. More preferably, it is more than 0 °, more preferably more than 0 ° and not more than 20 °.
  • the water contact angle is within this range, the wettability of the electrode surface can be improved, the gas generated by electrolysis can be more efficiently removed from the electrode surface, and the electrolysis efficiency can be further increased.
  • the water contact angle of the porous electrode refers to the tangent and the surface of the porous electrode when water is dropped on the surface of the porous electrode and a tangent is drawn from the portion where the water droplet contacts the porous electrode to the surface of the water droplet. This is the angle formed by The water contact angle of the porous electrode can be measured by the ⁇ / 2 method using a commercially available contact angle meter.
  • the porous electrode in the present embodiment may be the substrate itself, or may have a catalyst layer with high reaction activity on the surface of the substrate. What has a catalyst layer with high reaction activity on the surface of a base material is preferable.
  • the porous electrode when the porous electrode is composed of only the base material, the average pore diameter, the surface opening ratio, and the water described above for the porous electrode.
  • the contact angle is for the substrate surface.
  • the porous electrode when the porous electrode includes a substrate and a catalyst layer that covers the surface of the substrate, the porous electrode is described above.
  • the average pore diameter, surface opening ratio, and water contact angle are those for the electrode catalyst layer surface.
  • the material of the substrate is not particularly limited and is a conductive substrate made of at least one selected from the group consisting of nickel, iron, mild steel, stainless steel, vanadium, molybdenum, copper, silver, manganese, platinum group, graphite, chromium, and the like. Is mentioned. You may use the electroconductive base material which consists of an alloy which consists of 2 or more types of metals, or a mixture of 2 or more types of electroconductive substances. Among these, nickel and nickel-based alloys are preferable from the viewpoint of the conductivity of the base material and the resistance to the use environment.
  • the anode catalyst layer preferably has a high oxygen generation capacity, and uses nickel, cobalt, iron, a platinum group element, or the like. can do.
  • the catalyst layer can be formed as a single metal, a compound such as an oxide, a complex oxide or alloy composed of a plurality of metal elements, or a mixture thereof.
  • An organic substance such as a polymer may be contained in order to improve durability and adhesion to the substrate.
  • the cathode catalyst layer preferably has a high hydrogen generation capability, and uses nickel, cobalt, iron, a platinum group element, or the like. can do.
  • the catalyst layer can be formed as a single metal, a compound such as an oxide, a complex oxide or alloy composed of a plurality of metal elements, or a mixture thereof.
  • Raney nickel, Raney alloy consisting of a combination of a plurality of materials such as nickel and aluminum, nickel and tin, a porous coating produced by plasma spraying using nickel compounds and cobalt compounds as raw materials, nickel and cobalt Alloys and composite compounds with elements selected from iron, molybdenum, silver, copper, etc., metals and oxides of platinum group elements such as platinum and ruthenium with high hydrogen generating ability, and metals and oxides of these platinum group elements And other platinum group element compounds such as iridium and palladium, rare earth metal compounds such as lanthanum and cerium, and carbon materials such as graphene.
  • a plurality of the above materials may be stacked, or a plurality of the above materials may be mixed in the catalyst layer.
  • An organic substance such as a polymer material may be included in order to improve durability and adhesion to the substrate.
  • the anode when the porous electrode includes a catalyst layer, from the viewpoint of electrode conductivity, gas generation ability, and resistance to the use environment, the anode At least one of the catalyst layers of the cathode and the cathode preferably contains nickel (Ni).
  • Ni nickel
  • the said porous body electrode and the below-mentioned diaphragm (porous film) may each be selected separately, when acquiring the effect of this invention suitably.
  • the thickness of the catalyst layer is preferably 0.2 ⁇ m or more and 1000 ⁇ m or less, more preferably 0.5 ⁇ m or more and 300 ⁇ m or less.
  • the thickness of the catalyst layer can be measured, for example, by observing the cross section of the electrode with an electron microscope.
  • a thermal spraying method such as a plating method or a plasma spraying method, a thermal decomposition method in which heat is applied after applying a precursor layer solution on the substrate, a catalyst substance is mixed with a binder component
  • a method such as a method of fixing to a substrate and a vacuum film forming method such as a sputtering method.
  • the powder for thermal spraying is melted with the combustion heat of flammable gas such as acetylene and oxygen
  • the powder for thermal spraying used in the thermal spraying method (raw material powder of the catalyst layer) is processed into a rod shape, and the combustible gas is combusted.
  • a method of spraying a raw material melted with heat with a combustion gas and a method of melting sprayed powder with a plasma gas obtained by heating a gas such as argon, hydrogen, nitrogen or helium.
  • a plasma spraying method in which a gas obtained by mixing hydrogen in nitrogen or argon is turned into plasma and the thermal spray powder is melted with plasma is preferable.
  • the velocity of the plasma gas is large enough to exceed the speed of sound, and the gas temperature is 5000 ° C. or higher. Therefore, the thermal spraying powder having a high melting point can be melted, and the molten thermal spraying powder can be adhered to the substrate at a high speed. As a result, a dense and strong coating layer can be formed.
  • the plasma spraying method since the coating speed of the raw material powder is high, a catalyst layer having a thickness of 10 to 1000 ⁇ m can be formed in a relatively short time.
  • the pores formed between the particles of the melted raw material powder on the substrate become denser than when using other spraying methods. Cheap.
  • an oxide is sprayed onto a substrate by a thermal spraying method using a plasma gas containing hydrogen, a part of the coating is easily reduced, the conductivity of the coating layer increases, and it is possible to produce an electrode with excellent conductivity. Become.
  • Fine pores can be formed in the catalyst layer by reducing a coating layer (also referred to as “catalyst layer precursor” in the examples) formed by thermal spraying in a hydrogen stream.
  • a coating layer also referred to as “catalyst layer precursor” in the examples
  • the temperature at which the metal oxide layer formed by the thermal spraying method is reduced with hydrogen is important. When the reduction temperature is too high, the pores generated by the reduction are crushed by heat, and the expected pores, ratio Surface area and pore volume may not be obtained. If the reduction temperature is too low, the reduction of the metal oxide does not proceed.
  • the reduction temperature of the metal oxide layer with hydrogen is preferably 180 to 300 ° C., and particularly preferably 180 to 250 ° C.
  • the coating layer may be reduced by electrolysis.
  • the surface of the obtained catalyst layer may be modified with at least one catalyst selected from the group consisting of rhodium, palladium, iridium, and ruthenium by the thermal spraying step and the reduction step.
  • the film produced by the plasma spraying method is porous, an electrode having a high specific surface area can be obtained.
  • a metal oxide powder is preferably used as a raw material for the plasma spraying method.
  • a metal oxide powder having an average particle size of 1.0 ⁇ m to 5.0 ⁇ m is granulated by spray drying granulation to obtain metal oxide particles having an average particle size of 10 to 100 ⁇ m.
  • the metal oxide particles are blown into a high-temperature gas such as plasma gas, melted, and blown onto the conductive substrate. That is, the conductive substrate is coated with a molten metal oxide. Even if the particle size of the metal oxide before granulation is too large or too small, the required pore diameter, specific surface area, and pore capacity cannot be obtained when the electrode is formed.
  • the average particle diameter of the metal oxide powder before granulation is preferably 1.0 to 5.0 ⁇ m, and more preferably 1.0 to 1.2 ⁇ m.
  • the metal oxide used as the plasma spraying raw material preferably contains at least nickel oxide from the viewpoint of durability to an electrolytic environment and catalytic activity.
  • a mixture of nickel oxide powder and other powders may be used as a raw material.
  • other powders include powders of at least one metal selected from the group consisting of metallic nickel, titanium, chromium, molybdenum, cobalt, manganese, iron, tantalum, zirconium, aluminum, zinc, platinum group, and rare earth elements.
  • at least one additive selected from the group consisting of gum arabic, carboxymethyl cellulose, and sodium lauryl sulfate may be mixed with the nickel oxide powder before being sprayed onto the conductive substrate.
  • the average particle diameter of the metal oxide as the spraying raw material the average particle diameter of the granulated product, the thermal spraying raw material (for example, metal oxide) in the granulated product, and the additive
  • the content ratio and the like it is possible to control the average pore diameter and the surface opening ratio in the electrode catalyst layer.
  • a thin film having a uniform thickness can be formed on the porous substrate. Therefore, the substrate surface can be efficiently coated with a small amount of raw material.
  • a precursor forming step for forming a precursor layer on the surface of the substrate, and a firing step for heating the substrate having the precursor layer formed on the surface to decompose the precursor and form a catalyst layer is used.
  • the precursor forming step includes, for example, a technique of applying a liquid containing a metal element to the substrate surface.
  • the form of the metal in the coating solution is not particularly limited, and may be fine particles of metal or metal compound, or may be dissolved and ionized. In the case of a fine particle state, in order to form a homogeneous precursor layer, a state where it is dispersed in a liquid is preferable. Therefore, the particle size is preferably 100 nm or less.
  • metal salts include halide salts such as fluoride, chloride, bromide and iodide, inorganic compound salts such as nitrate, sulfate and phosphate, and organic compound salts represented by acetate Etc.
  • chlorides and nitrates are preferably used because the raw materials can be obtained industrially. Furthermore, nitrate is more preferable because the substrate is less deteriorated by the anion component remaining after decomposition, and an electrode having good storage stability can be obtained. Any solvent may be used as long as it dissolves a metal salt that is a solute. If a high-concentration solution can be prepared, the coating amount can be increased and the productivity can be increased. Therefore, it is preferable to contain at least one kind of water or an alcohol having 2 to 5 carbon atoms. When the concentration of the metal salt in the solution is low, much energy is required for volatilization of the solvent.
  • the concentration of the metal salt in the coating solution used in the precursor forming step is preferably 0.001 mol / L or more and 1 mol / L or less, more preferably 0.01 mol / L or more and 0.5 mol / L.
  • various known methods can be used as a method of applying a liquid containing a metal element to the surface of the substrate.
  • a dipping method in which the base material is immersed in the liquid a method in which the liquid is applied to the base material with a brush, a roll method in which a liquid impregnated in a sponge roll is applied to the base material, and the coating liquid and the base material have opposite charges.
  • Examples thereof include an electrostatic coating method in which charging is performed and spraying is performed using a spray or the like.
  • the roll method and the electrostatic coating method are suitably used from the viewpoint of productivity and the point that the catalyst layer can be uniformly coated.
  • the substrate may be subjected to a surface treatment for providing irregularities on the surface prior to applying the solution.
  • a surface treatment for providing irregularities on the surface prior to applying the solution.
  • the surface treatment method is not particularly limited, and examples include blast treatment and etching using a chemical solution.
  • the temperature which forms a catalyst layer in a calcination process should just be more than the thermal decomposition temperature of the metal salt to be used, 300 degreeC or more is preferable. This is because the thermal decomposition of many metal salts proceeds at 300 ° C. or higher.
  • the temperature is preferably 400 ° C. or higher, more preferably 500 ° C. or higher, in order to allow the thermal decomposition to proceed well and to remove unreacted substances.
  • the base material When fired at a temperature higher than 1000 ° C., the base material may be softened and deformed, and therefore the temperature is preferably 1000 ° C. or lower, more preferably 800 ° C. or lower.
  • the number of repetitions is not particularly limited as long as a desired thickness can be obtained, but is preferably 5 times or more and 30 times or less.
  • a step of firing at a temperature higher than the temperature of the firing step may be further included.
  • the upper limit of the firing temperature at this time is preferably 1000 ° C. or less, more preferably 800 ° C. or less.
  • the electrode catalyst layer is controlled by controlling the average particle size and concentration of the fine particles of metal (including metal compounds and metal salts) in the coating solution, the coating method, the number of coating firings, and the like. It is possible to control the average pore diameter and the surface opening ratio.
  • the other electrode to be paired is known Can be used, and may or may not be a porous electrode.
  • the other electrode may or may not have the characteristics described above for the porous electrode having an average pore diameter of 10 nm or more and 200 nm or less with respect to characteristics other than the average pore diameter.
  • the diaphragm is pressed more strongly against the electrode than the conventional electrolysis cell.
  • the diaphragm may be damaged at the end of the opening, or the diaphragm may bite into the opening, creating a gap between the cathode and the diaphragm, and the voltage may increase.
  • the electrode shape is made as planar as possible.
  • a method in which an expanded base material (for example, an expanded base material) is pressed with a roller and processed into a flat shape can be applied. At this time, it is desirable to press from 95% to 110% with respect to the original thickness of the metal flat plate before the expansion process to planarize.
  • the electrode manufactured by performing the above treatment not only prevents the diaphragm from being damaged but also surprisingly reduces the voltage. The reason for this is not clear, but it is expected that the current density is equalized because the surface of the diaphragm and the electrode surface are in uniform contact.
  • the size of the electrode is not particularly limited, and depends on the shape and size of a bipolar electrolytic cell for alkaline water electrolysis, an electrolytic cell, a bipolar element, a partition wall, etc., which will be described later, and according to the desired electrolytic capacity. Can be determined. For example, when the partition has a plate shape, it may be determined according to the size of the partition.
  • the diaphragm In the electrolytic cell, the diaphragm is disposed between the anode and the cathode, and plays a role of blocking gas generated at the electrode while allowing the electrolyte containing ions to pass therethrough.
  • the diaphragms in the bipolar electrolytic cell of this embodiment (for example, the forms of [1] to [19] above) and the bipolar electrolytic cell for alkaline water electrolysis are inorganic having an average primary particle size of 20.0 nm to 300 nm. It is a porous film containing particles.
  • the average primary particle size of the inorganic particles is preferably 25 nm or more and 250 nm or less, more preferably 30 nm or more and 200 nm or less, and further preferably 50 nm or more and 180 nm or less.
  • the diaphragm is a porous membrane containing fine particles of inorganic particles
  • the inorganic particles hydrophilize the pores of the porous membrane, improving electrolyte permeability, ion permeability and gas barrier properties, and increasing the purity of the generated gas be able to.
  • the average primary particle size of the inorganic particles is within the above range, the contact area with the porous membrane per inorganic particle constituting the secondary particles in the porous membrane is increased, and the inorganic particles are removed from the porous membrane.
  • the surface area of the secondary particles of the inorganic particles can be increased to improve the hydrophilicity in the pores of the porous membrane, and the generated gas purity can be further increased.
  • the combination with the porous electrode having an average pore diameter in the above specific range can prevent the inorganic particles detached from the porous film from blocking the pores of the porous electrode, thereby preventing an increase in overvoltage. can do.
  • the inorganic particles may be attached to the surface of the porous film, or a part thereof may be embedded in a polymer material constituting the porous film. Further, when the inorganic particles are encapsulated in the voids of the porous film, it becomes difficult to detach from the porous film, and the performance of the porous film can be maintained for a long time.
  • the average primary particle size of the inorganic particles in the diaphragm can be determined by the following method.
  • the measurement sample was observed with a scanning electron microscope (SEM) from the direction perpendicular to the film surface and imaged at a magnification at which inorganic particles could be observed.
  • SEM scanning electron microscope
  • the image is binarized using image analysis software, the absolute maximum length is measured for each of the 10 non-aggregated inorganic particles, and the number average is obtained. More specifically, it can be determined by the method described in Examples described later.
  • the average secondary particle size of the inorganic particles is not particularly limited, but it is possible to prevent falling off from the diaphragm and to make the porous membrane pores hydrophilic. Therefore, it is preferably 0.2 ⁇ m or more and 10.0 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the average secondary particle diameter is an average particle diameter in a state of secondary particles formed by inorganic particles in the porous film.
  • the average secondary particle diameter can be measured from the volume distribution by laser diffraction / scattering method using inorganic particles remaining after dissolving and removing the polymer resin from the porous film as a measurement sample. . More specifically, it can be determined by the method described in Examples described later.
  • the inorganic particles are not particularly limited.
  • an oxide or hydroxide of zirconium, titanium, bismuth, cerium examples include Group IV element oxides; Group IV element nitrides, and Group IV element carbides, and at least one inorganic substance selected from the group consisting of Group IV element carbides.
  • oxides of zirconium, titanium, bismuth, cerium, and oxides of Group IV elements of the periodic table are preferable, and zirconium oxide (ZrO 2 ) and titanium oxide (TiO 2 ) are preferable. More preferred.
  • These orientation particles may be used alone or in combination of two or more.
  • the particle surface of the inorganic particles is polar. Considering the affinity between oxygen molecules and hydrogen molecules with a small polarity and water molecules with a large polarity in an electrolyte solution that is an aqueous solution, water molecules with a large polarity are considered to be more easily adsorbed to inorganic particles. . Therefore, when such inorganic particles are present on the film surface, water molecules are preferentially adsorbed on the film surface, and bubbles such as oxygen molecules and hydrogen molecules are not adsorbed on the film surface. As a result, it is possible to effectively suppress the adhesion of bubbles to the surface of the porous film.
  • the average water-permeable pore diameter of the porous membrane is not particularly limited, but may be, for example, 0.05 ⁇ m or more and 1.5 ⁇ m or less. It is preferably 1 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.15 ⁇ m or more and 0.8 ⁇ m or less. If the average water-permeable pore diameter is in this range, the ion permeability of the porous membrane is improved, voltage loss is easily reduced, and further, the generated gas has a bubble diameter controlled by the porous electrode having the average pore diameter described above. However, it is possible to prevent the diaphragm hole from being blocked and permeated.
  • dropping off of secondary particles formed by aggregation of primary particles of inorganic particles can be suppressed. Accordingly, the high hydrophilicity of the porous membrane can be maintained, and the electrolyte solution permeability, ion permeability, and gas barrier property can be improved. And the gas barrier property of a diaphragm can be improved, without raising the voltage loss by a diaphragm, and electrolysis efficiency and generated gas purity can be improved further.
  • the average water-permeable pore diameter of a porous membrane means the average water-permeable pore diameter measured with the following method using the integrity tester (The Sartorius Stedim Japan company make, "Sartochcheck Junior BP-Plus").
  • a porous film including a core material is cut into a predetermined size and used as a sample. This sample is set in an arbitrary pressure vessel, and the inside of the vessel is filled with pure water.
  • the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature.
  • the average water permeable pore diameter can be obtained from the following Hagen-Poiseuille equation using a gradient between a pressure between 10 kPa and 30 kPa and a water flow rate.
  • Average water-permeable pore diameter (m) ⁇ 32 ⁇ L ⁇ 0 / ( ⁇ P) ⁇ 0.5
  • is the viscosity of water (Pa ⁇ s)
  • L is the thickness (m) of the porous membrane
  • ⁇ 0 is the apparent flow velocity
  • ⁇ 0 (m / s) flow rate (m 3 / s) / flow path.
  • is the porosity
  • P is the pressure (Pa).
  • the porosity ⁇ of the porous film refers to the open porosity determined by the Archimedes method, and can be determined by the following equation.
  • Porosity ⁇ (%) ( ⁇ 1- ⁇ 2) ⁇ 100
  • ⁇ 1 represents the saturated water density (g / cm 3 ), that is, the density of the sample in a state where the open pores are saturated with water.
  • ⁇ 2 represents the dry density (g / cm 3 ), that is, the density of the sample in a state where water is sufficiently removed from the open pores and dried.
  • the porosity ⁇ can be measured in a room set at 25 ° C. by the following procedure. A porous membrane washed with pure water is cut into three pieces with a size of 3 cm ⁇ 3 cm, and the thickness d is measured with a thickness gauge. These measurement samples are immersed in pure water for 24 hours, excess water is removed, and the weight w1 (g) is measured. Subsequently, the sample taken out is allowed to stand for 12 hours or more in a dryer set at 50 ° C.
  • the maximum pore diameter of the porous membrane is not particularly limited, but from the viewpoint of gas barrier properties and prevention of clogging, for example, 0.05 ⁇ m or more and 4.0 ⁇ m. Or less, preferably 0.5 ⁇ m or more and 3.0 ⁇ m or less, and more preferably 0.8 ⁇ m or more and 2.0 ⁇ m or less.
  • the maximum pore diameter can be measured by the following method using an integrity tester (manufactured by Sartorius Stedim Japan, “Sartochcheck Junior BP-Plus”). First, a porous membrane used as a diaphragm is cut into a predetermined size including a core material, and this is used as a sample.
  • This sample is wetted with pure water, impregnated with pure water in the pores of the porous membrane, and set in a pressure-resistant container for measurement.
  • the pressure vessel is held in a thermostatic chamber set at a predetermined temperature, and measurement is started after the pressure vessel reaches a predetermined temperature.
  • the upper surface side of the sample is pressurized with nitrogen, and the nitrogen pressure when bubbles are continuously generated from the lower surface side of the sample is defined as a bubble point pressure.
  • the maximum pore diameter can be obtained from the following bubble point equation obtained by modifying the Young-Laplace equation.
  • the surface aperture ratio of the porous membrane is not particularly limited, but is 20% or more and 80% from the viewpoint of gas barrier properties and electrolyte solution permeability. Or less, more preferably from 25% to 75%, and even more preferably from 30% to 70%.
  • the surface opening ratio of the porous film can be determined by the following method. An image of the porous membrane surface is taken with an SEM. Next, this image is binarized by image analysis software (“WinROOF” manufactured by Mitani Corporation), and the hole and the part other than the hole are separated. Subsequently, the obtained binarized image is analyzed to determine the ratio of holes to the entire image, and this is used as the surface aperture ratio. More specifically, it can be determined by the method described in the examples described later.
  • the water contact angle of the porous membrane is not particularly limited, but is 10 ° to 110 ° from the viewpoint of gas barrier properties and electrolyte permeability.
  • the angle may be 20 ° or more and 100 ° or less, and more preferably 30 ° or more and 90 ° or less.
  • the water contact angle of the porous membrane can be controlled by controlling the hydrophilicity of a material such as a polymer constituting the surface of the porous membrane.
  • the water contact angle of the porous film can be obtained in the same manner as the water contact angle of the electrode.
  • the average water-permeable pore diameter, the maximum pore diameter, the average pore diameter, the surface aperture ratio, and the water contact angle of the porous film can be controlled by, for example, manufacturing with a porous film manufacturing method described later.
  • the range of the average primary particle size of the inorganic particles, the range of the average secondary particle size of the inorganic particles, the range of the chemical composition of the inorganic particles, the range of the water-permeable pore size, the range of the maximum pore size, the surface aperture ratio may be individually selected in order to suitably obtain the effects of the present invention.
  • the porous membrane (diaphragm) and the porous body electrode may be individually selected for obtaining the effects of the present invention.
  • Examples of the porous membrane that can be used as the diaphragm in the present embodiment include a polymer porous membrane, an inorganic porous membrane, a woven fabric, and a nonwoven fabric. These can be produced by a known technique.
  • Examples of the production method of the polymer porous membrane include a phase change method (microphase separation method), an extraction method, a stretching method, a wet gel stretching method and the like.
  • the phase inversion method is a method of forming a film with a solution obtained by dissolving a polymer material in a good solvent and making it porous by phase separation in a poor solvent (non-solvent) Induced phase separation method).
  • the extraction method is a method in which an inorganic powder such as calcium carbonate is kneaded with a polymer material to form a film, and then the inorganic powder is dissolved and extracted to make it porous.
  • the stretching method is a method in which a polymer material film having a predetermined crystal structure is stretched and opened under predetermined conditions.
  • the wet gel stretching method is a method in which a polymer material is swollen with an organic solvent such as liquid paraffin to form a gel-like sheet, which is stretched under predetermined conditions, and then the organic solvent is extracted and removed. Examples of the method for producing the inorganic porous membrane include a sintering method.
  • the sintering method is a method in which a molded product obtained by pressing or extrusion is baked and integrated while leaving fine holes.
  • Examples of the method for producing the nonwoven fabric include a spunbond method and an electrospinning method.
  • the spunbond method is a method in which a yarn spun from a melted pellet is pressed with a hot roll and integrated into a sheet shape.
  • Electrospinning is a method in which finely stretched fibers are accumulated on a collector by injection while applying a high voltage between a syringe containing a molten polymer and a collector.
  • polysulfone examples include polysulfone, polyethersulfone, polyphenylsulfone, polyvinylidene fluoride, polycarbonate, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / ethylene copolymer, and polyvinylidene fluoride.
  • polysulfone polyethersulfone, polyphenylsulfone, polyphenylene sulfide, and polytetrafluoroethylene are preferable, and polysulfone is more preferable. These may be used alone or in combination of two or more.
  • polysulfone By using polysulfone, polyethersulfone, or polyphenylsulfone as the polymer material, resistance to high-temperature, high-concentration alkaline solutions is further improved.
  • the diaphragm can be more easily formed.
  • the pore diameter can be controlled with higher accuracy.
  • Polysulfone, polyethersulfone, and polyphenylsulfone may be subjected to crosslinking treatment.
  • the weight average molecular weight of the polysulfone, polyethersulfone and polyphenylsulfone subjected to such crosslinking treatment is preferably 40,000 to 150,000 in terms of standard polystyrene equivalent weight average molecular weight.
  • the method for the crosslinking treatment is not particularly limited, and examples thereof include crosslinking by irradiation with radiation such as electron beams and ⁇ rays and thermal crosslinking using a crosslinking agent.
  • the weight average molecular weight of standard polystyrene conversion can be measured by GPC.
  • polysulfone examples include “Ultrason S PSU (registered trademark)” by BASF, “Udel (registered trademark)” by Solvay Advanced Polymers, and the like.
  • polyether sulfone examples include “Ultrason E PES (registered trademark)” manufactured by BASF, “Radel A (registered trademark)” manufactured by Solvay Advanced Polymers, and the like.
  • polyphenylsulfone include “Ultrason P PPSU (registered trademark)” manufactured by BASF, “Radel R (registered trademark)” manufactured by Solvay Advanced Polymers, and the like.
  • polyphenylene sulfide examples include “Torelina (registered trademark)” manufactured by Toray Industries, Inc.
  • polytetrafluoroethylene examples include “Teflon (registered trademark)” manufactured by Mitsui DuPont Fluorochemical Co., Ltd., “Polyflon (registered trademark)” manufactured by Daikin, and “Furoon (registered trademark)” manufactured by Asahi Glass.
  • the thickness of the porous film is not particularly limited, but is preferably 200 ⁇ m or more and 700 ⁇ m or less. If the thickness of the porous film is 250 ⁇ m or more, further excellent gas barrier properties can be obtained, and the strength of the porous film against impact can be further improved. On the other hand, if the thickness of the porous film is 700 ⁇ m or less, the ion permeability is hardly hindered by the resistance of the electrolyte contained in the pores during operation, and a further excellent ion permeability can be maintained. In particular, when the polymer resin contains at least one selected from the group consisting of polysulfone, polyethersulfone and polyphenylsulfone, this effect is further improved.
  • the porous membrane When a porous membrane is used as the diaphragm, the porous membrane may be used with a porous support.
  • the porous membrane has a structure in which a porous support is contained, and more preferably, the porous membrane is laminated on both sides of the porous support.
  • stacked the porous film symmetrically on both surfaces of the porous support body may be sufficient.
  • a porous support can be included.
  • the porous support is laminated on the other side of the porous support. Gas barrier properties can be ensured by the porous membrane.
  • the porous film is symmetrically laminated on both surfaces of the porous support, it is possible to effectively prevent the film from curling and the like, and the handling property at the time of transportation or installation of the film is further improved.
  • the material of the porous support is not particularly limited, but is preferably a material that does not substantially reduce the ion permeability of the electrolyte solution in the diaphragm.
  • the material of the porous support is not particularly limited, and examples thereof include polyphenylene sulfide, polyethylene, polypropylene, fluorine resin, polyparaphenylene benzobisoxazole, polyketone, polyimide, and polyetherimide. Among these, it is preferable that polyphenylene sulfide is included.
  • polyphenylene sulfide By using polyphenylene sulfide, it exhibits excellent resistance to high-temperature and high-concentration alkaline solutions, and also exhibits excellent chemical stability against active oxygen generated from the anode during electrolysis of water. .
  • it can be easily processed into various forms such as a woven fabric and a non-woven fabric, it can be suitably adjusted according to the purpose of use and the usage environment. These may be used alone or in combination of
  • porous support examples include meshes, porous membranes, non-woven fabrics, woven fabrics, non-woven fabrics, and composite fabrics including woven fabrics inherent in the non-woven fabrics. These may be used alone or in combination of two or more.
  • a mesh base material composed of monofilaments of polyphenylene sulfide or a composite cloth including a non-woven fabric and a woven fabric present in the non-woven fabric can be mentioned.
  • the porous support is a mesh, it has a sufficient degree of opening, so that the ion permeability of the diaphragm can be maintained at a higher level.
  • the mechanical strength is high, breakage of the diaphragm and changes in dimensions can be more effectively suppressed (mechanical strength and dimensional stability). Further, it is possible to effectively suppress the peeling of the porous support from the porous film due to the anchor effect.
  • the fiber diameter in the case of a monofilament is not specifically limited, It is preferable that they are 30 micrometers or more and 600 micrometers or less. If the lower limit of the fiber diameter of the monofilament is 30 ⁇ m or more, sufficient mechanical strength is obtained, and the porous membrane is more difficult to break. Moreover, if the upper limit of a fiber diameter is 600 micrometers or less, the unevenness
  • the production method by the non-solvent induced phase separation method includes the following steps: Preparing a solution containing a polymer resin, a solvent, and optionally inorganic particles, Coating the solution on one or both sides of a porous support, and forming a coating film on the porous support; Exposing the coating film on the porous support to a gas containing a poor solvent vapor of the polymer resin; A step of immersing the coating film on the porous support in a coagulation bath containing a poor solvent for the polymer resin to form a porous film.
  • the solvent has a property of dissolving the polymer resin, and is preferably a good solvent having high solubility for the polymer resin to be used.
  • This solvent can be appropriately selected according to the type of polymer resin used.
  • a solvent is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and dimethyl sulfoxide. These solvents may be used alone or in combination of two or more. Among these, N-methyl-2-pyrrolidone is more preferable from the viewpoint of solubility in various resins, non-volatility, ease of solvent management, and the like.
  • the poor solvent is a solvent that does not substantially dissolve the polymer resin, and is preferably a non-solvent that does not dissolve at all.
  • a poor solvent can be suitably selected according to the kind of polymer resin to be used. Although it does not specifically limit as a poor solvent, For example, water, methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, etc. are mentioned, These liquid mixture may be sufficient.
  • a step of coating a solution on a porous support and forming a coating on the porous support, and a coating on the porous support It is preferable to perform a step of exposing the coating film to a gas containing a vapor of the poor solvent of the polymer resin between the step of immersing in a coagulation bath containing the poor solvent of the polymer resin and forming the porous film.
  • the surface and internal pore diameters of the porous membrane include the average pore diameter, the surface aperture ratio, the average water-permeable pore diameter, the maximum pore diameter, and the porosity of the front and back surfaces of the porous membrane.
  • the ion permeability into the diaphragm deteriorates, and as a result, the voltage loss tends to increase.
  • the substitution of the solvent of the polymer resin and the poor solvent inside the coating film is performed from small holes formed on the surface of the coating film, it takes a long time for substitution until the inside solidifies. Thereby, the phase separation time inside the coating film becomes very long, and large voids are easily formed inside the film. When a large void is formed in the film, there arises a problem that the gas barrier property is lost or the film becomes brittle.
  • the average pore diameter of the surface of the porous film it is easy to control the average pore diameter of the surface of the porous film to the above lower limit value or more by exposing the coating film surface to a gas containing a poor solvent vapor and allowing the poor solvent to penetrate into the coating film surface. Etc. are preferable.
  • the pore diameter on the surface of the porous membrane can be controlled by adjusting the amount of vapor that penetrates the coating film.
  • the steam may be generated by raising the temperature of the coagulation bath in which the coated solution is immersed, or a steam generation bath for generating steam may be used separately from the coagulation bath.
  • the temperature for generating steam is not particularly limited, but is preferably 30 ° C. or higher and 100 ° C. or lower. If the temperature of vapor generation is 30 ° C. or higher, it is easy to generate an amount of vapor that can penetrate the coated solution and proceed with phase separation.
  • the time for exposing the coating film surface to the gas containing the vapor of the poor solvent is not particularly limited, but is preferably 3 seconds or more and 180 seconds or less.
  • the time for which the surface of the coating film is exposed to the gas containing the vapor of the poor solvent can be appropriately selected depending on the composition of the coating film, the temperature of the steam generation bath, and the like.
  • the pore diameter on the surface of the porous membrane is not too small, and it is preferable from the viewpoint that the average pore diameter on the surface of the porous membrane can be easily controlled to the above lower limit or more.
  • the ion permeability of a diaphragm is favorable and the increase in the voltage loss at the time of a driving
  • large voids are not easily formed inside the porous film, and high gas barrier properties can be maintained. If it is 180 seconds or less, even when the temperature of the steam generation bath is high, the film is difficult to solidify by the gas containing the vapor of the poor solvent, and the pore diameter on the surface of the porous film does not become too large. Is preferable from the viewpoint of easily controlling the value below the upper limit. Thereby, the loss
  • the time for immersing the coating film on the porous support in the coagulation bath is not particularly limited, but is preferably 30 seconds or more and 600 seconds or less.
  • the time for immersing the coating film in the coagulation bath can be appropriately selected according to the composition of the coating film, the composition of the poor solvent, the temperature of the coagulation bath, and the like. Usually, if it is 30 second or more and 5600 second or less, the coating film on a porous support body can fully be solidified.
  • the temperature of the coagulation bath is not particularly limited, but is preferably 10 ° C or higher and 60 ° C or lower.
  • the temperature of the coagulation bath can be appropriately selected depending on the composition of the coating film, the composition of the poor solvent, the temperature of the coagulation bath, etc.
  • the internal pore diameter can be controlled within a desired range.
  • the method for controlling the pore size on the surface and inside of the porous membrane is not particularly limited.
  • a method of adding an additive for controlling the pore size to a solution containing inorganic particles, a polymer resin, and a solvent thereof is also possible.
  • By changing the rate of non-solvent-induced phase separation that occurs when the solution comes into contact with a coagulation bath containing a poor solvent for the polymer resin, or by eluting the additive after coagulating the polymer resin The average water-permeable pore diameter and the maximum pore diameter in the porous membrane can be controlled.
  • it does not specifically limit as an additive for controlling a pore diameter The following organic compounds, inorganic compounds, etc. are mentioned.
  • an organic compound that is soluble in both the solvent described above and a poor solvent for the polymer resin It is preferable to use an organic compound that is soluble in both the solvent described above and a poor solvent for the polymer resin.
  • the organic compound can be appropriately selected based on the type of solvent or poor solvent used, but for example, polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone, polyethylene imine, polyacrylic acid, dextran and the like are preferable. .
  • polyethylene glycol, polyethylene oxide, polyvinyl pyrrolidone and the like are more preferable from the viewpoint of compatibility with a solvent.
  • the inorganic compound it is preferable to use a compound that is soluble in both the solvent described above and the poor solvent of the polymer resin.
  • a suitable one can be selected as appropriate based on the type of the solvent to be used and the poor solvent, and for example, calcium chloride, magnesium chloride, lithium chloride, barium sulfate and the like are preferable. These may be used alone or in combination of two or more.
  • phase separation speed it is also possible to control the surface and internal pore diameter of the porous membrane by controlling the phase separation speed by the type, concentration and temperature of the poor solvent in the coagulation bath without using an additive.
  • phase separation rate when the phase separation rate is high, the average pore size tends to be small, and when the phase separation rate is low, the average pore size tends to be large.
  • adding a poor solvent for a polymer resin to a solution containing the polymer resin and those solvents is also effective in controlling the average pore diameter in the porous membrane by changing the phase separation rate.
  • the content of the polymer resin in the solution containing the polymer resin, inorganic particles, and solvents thereof is preferably 5% by mass or more and 25% by mass or less, and preferably 10% by mass or more and 15% by mass or less. More preferred.
  • the content of the polymer resin is preferably 5% by mass or more and 25% by mass or less, and preferably 10% by mass or more and 15% by mass or less. More preferred.
  • the content of the inorganic particles in the solution is preferably 10% by mass to 60% by mass, more preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 40% by mass. Further preferred.
  • the content of the inorganic particles not more than the above upper limit, it is possible to suppress the increase in the viscosity of the solution and further improve the film forming property, so that the thickness of the porous film can be made more uniform.
  • the content of the inorganic particles is further improved.
  • the content of the solvent in the solution is preferably 30% by mass or more and 80% by mass or less, preferably 40% by mass or more and 70% by mass or less, and more preferably 45% by mass or more and 60% by mass or less. .
  • content of a solvent below the said upper limit, the increase in viscosity of a solution can be suppressed and the nonuniformity and spot at the time of coating can also be suppressed further.
  • the content of the solvent By setting the content of the solvent to the above lower limit value or more, the polymer resin can be further dissolved, and the inorganic particles can be further dispersed in the solution.
  • the method for preparing the solution is not particularly limited, but for example, the following method can be used.
  • the ball mill pot is stirred to disperse the inorganic particles in the polymer resin solvent while being subdivided. Thereafter, the balls are separated from the obtained liquid by filtration. Thereafter, while stirring the solution in which the inorganic particles are dispersed with a stirring blade, the polymer resin is added and dissolved little by little to adjust the film forming solution. If necessary, an additive can be added to prepare a solution.
  • the adjustment of the solution may be performed by, for example, adding the polymer resin solvent, the inorganic particles, and the additive together into the ball mill pot, and then stirring the ball mill pot or adding the additive to the polymer resin solvent. It is also possible to dissolve.
  • the method for applying the polymer resin, inorganic particles, and a solution containing these solvents to the porous support is not particularly limited.
  • a method of scraping off the portion other than the target coating amount using a coater the target coating after immersing the porous support in the solution
  • a method of squeezing a portion other than the amount with a roll a method of immersing the porous support in a solution, and then scraping off a portion other than the target coating amount with a coater, and a porous support with a coating solution by a T-die And a method of coating by coating.
  • the adjustment of the thickness of the porous film is not particularly limited, but for example, a method of adjusting the distance between the coater and the porous support for applying the solution, and the amount of liquid applied by the T die. A method of adjusting is used.
  • the coagulation bath can control the phase separation rate and the pore size inside and inside the porous membrane by adding the above-mentioned solvent.
  • the substitution rate of the solvent in the coating film and the poor solvent in the coagulation bath can be slowed, thereby increasing the phase separation time until solidification and the pore size. Can be increased.
  • the solvent those described above can be used. If the poor solvent is 30% by volume or more in the coagulation bath, non-solvent-induced phase separation can proceed without any problem. However, if the amount is less than that, the solidification of the polymer resin may be insufficient. Therefore, the proportion of the poor solvent contained in the coagulation bath is preferably 30% by volume or more.
  • the porous membrane partially penetrates into the pores of the porous support and is integrated. If these are integrated, peeling of the porous support from the porous membrane can be more effectively suppressed by the so-called anchor effect.
  • heat treatment may be performed after forming the porous film.
  • the polymer chain of the polymer resin can be crystallized or immobilized, and the structure of the porous membrane can be further stabilized.
  • the heat treatment include a method of immersing the porous film in a hot water bath; a method of sandwiching the porous film with a high-temperature metal plate and pressing; a method of sandwiching the porous film with a high-temperature roll and pressing.
  • heat processing temperature is not specifically limited, It is preferable that it is 80 to 210 degreeC, and it is more preferable that it is 180 to 210 degreeC. If the heat treatment temperature is 80 ° C. or higher, the temperature will be higher than the use temperature in water electrolysis.
  • the polymer chain of the polymer resin starts to move again and the structure of the porous membrane becomes unstable. Can be effectively suppressed. If heat processing temperature is 210 degrees C or less, the thermal deterioration of a polymer can be suppressed effectively. If the heat treatment temperature is 180 ° C. or higher, the temperature is higher than the glass transition temperature of a commonly used polymer resin. Therefore, the polymer chain is crystallized or immobilized, and a porous film having better heat resistance and can do.
  • Zero gap structure in which the diaphragm 4 is in contact with the anode 2 a and the cathode 2 c is formed.
  • Zero gap structure means that the anode and the diaphragm are in contact with each other over the entire surface of the electrode, and the cathode and the diaphragm are in contact with each other, or the distance between the electrodes is almost the same as the thickness of the diaphragm over the entire surface of the electrode. The distance between the anode and the diaphragm and the gap between the cathode and the diaphragm can be maintained with almost no gap.
  • a zero gap structure For example, a method in which the anode and the cathode are processed completely smoothly and pressed so as to sandwich the diaphragm, and a spring or the like is provided between the electrode and the partition wall. A method of arranging an elastic body and supporting an electrode with this elastic body can be mentioned. In addition, in the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment, a preferred embodiment of the means constituting the zero gap structure will be described later.
  • bipolar electrolytic cell for alkaline water electrolysis (Bipolar electrolytic cell for alkaline water electrolysis)
  • a bipolar electrolytic cell for alkaline water electrolysis which includes the above-described cathode, anode, and diaphragm, will be described with reference to the drawings.
  • the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is not limited to what is demonstrated below.
  • members other than the anode, the cathode and the diaphragm included in the bipolar electrolytic cell for alkaline water electrolysis are not limited to those listed below, and known members can be appropriately selected, designed and used. .
  • the bipolar electrolytic cell for alkaline water electrolysis includes a plurality of electrolytic cells including an anode, a cathode, a partition that separates the anode and the cathode, and an outer frame that borders the partition.
  • Reference numeral 65 denotes a bipolar electrolytic cell 50 that is overlapped with a diaphragm interposed therebetween.
  • the bipolar electrolytic cell for alkaline water electrolysis of the present embodiment although not particularly limited, it is preferable that a zero gap structure in which the diaphragm 4 is in contact with the anode 2a and the cathode 2c is formed.
  • the bipolar element 60 used in a bipolar electrolytic cell for alkaline water electrolysis as an example includes a partition wall that separates the anode 2a and the cathode 2c, and an outer frame that borders the partition wall. More specifically, the partition has conductivity, and the outer frame is provided so as to surround the partition along the outer edge of the partition.
  • the bipolar electrolytic cell 50 is configured by stacking a necessary number of bipolar elements 60.
  • the bipolar electrolytic cell 50 has a fast head 51g, an insulating plate 51i, and an anode terminal element 51a arranged in order from one end, and further, an anode side gasket portion 7, a diaphragm 4, and a cathode side gasket portion. 7.
  • Bipolar elements 60 are arranged in this order. At this time, the bipolar element 60 is arranged so that the cathode 2c faces the anode terminal element 51a side.
  • the anode gasket portion 7 to the bipolar element 60 are repeatedly arranged as many times as necessary for the design production amount.
  • the bipolar electrolyzer 50 is formed into a body by tightening the entire body with a tightening mechanism such as a tie rod 51r (see FIG. 1) or a hydraulic cylinder system.
  • the arrangement constituting the bipolar electrolytic cell 50 can be arbitrarily selected from the anode 2a side or the cathode 2c side, and is not limited to the order described above.
  • the bipolar element 60 is disposed between the anode terminal element 51a and the cathode terminal element 51c, and the diaphragm 4 is connected to the anode terminal element 51a and the bipolar terminal element. It is disposed between the element 60, between the adjacent bipolar elements 60, and between the bipolar element 60 and the cathode terminal element 51c.
  • an electrode chamber through which the electrolytic solution passes is defined by the partition wall, the outer frame, and the diaphragm 4.
  • the bipolar electrolytic cell 50 is usually provided with a header which is a pipe for distributing or collecting the electrolytic solution, and an anode for inserting the electrolytic solution into the anode chamber below the outer frame at the edge of the partition wall.
  • An inlet header and a cathode inlet header for introducing an electrolyte into the cathode chamber are provided.
  • an anode outlet header for discharging the electrode solution from the anode chamber and a cathode outlet header for discharging the electrolyte solution from the cathode chamber are provided above the outer frame at the edge of the partition wall.
  • positioning aspect of the header attached to the bipolar electrolytic cell 50 shown in FIG. 1 there exist an internal header type
  • the partition walls, the anode 2a, and the cathode 2c are all plate-like shapes having a predetermined thickness.
  • the present invention is not limited to this, and all or part of the cross-section is in the cross section.
  • the shape may be zigzag or wavy, and the end may be rounded.
  • a spring which is an elastic body is disposed between the electrode 2 and the partition wall, and the electrode 2 is supported by this spring. Is preferred. When adopting a form using such an elastic body, the strength of the springs, the number of springs, the shape, etc. are adjusted as necessary so that the pressure at which the electrode 2 contacts the diaphragm 4 is not uneven. There is a need to.
  • the structure is less deformed even when pressed. It is said.
  • the electrode 2 supported via the elastic body has a flexible structure that is deformed when the diaphragm 4 is pressed, thereby absorbing tolerances in manufacturing accuracy of the electrolytic cell 50 and irregularities due to deformation of the electrode 2 and the like. Thus, a zero gap structure can be maintained.
  • the alkaline water electrolyzer 70 includes a rectifier 74, an oxygen concentration meter, in addition to the liquid feed pump 71, the gas-liquid separation tank 72, and the water replenisher 73, in addition to the bipolar electrolytic cell 50 for alkaline water electrolysis of the present embodiment. 75, a hydrogen concentration meter 76, a flow meter 77, a pressure gauge 78, a heat exchanger 79, a pressure control valve 80, and the like.
  • Alkaline water electrolysis The electrolytic solution is circulated through the alkaline water electrolysis apparatus equipped with the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment to perform electrolysis, so that even in the case of high-density current operation, excellent electrolysis efficiency and high generated gas purity Thus, highly efficient alkaline water electrolysis can be carried out.
  • the electrolytic solution that can be used for the alkaline water electrolysis of the present embodiment may be an alkaline aqueous solution in which an alkali salt is dissolved, and examples thereof include an aqueous NaOH solution and an aqueous KOH solution.
  • concentration of the alkali salt is not particularly limited, but is preferably 20% by mass to 50% by mass, and more preferably 25% by mass to 40% by mass. Among these, from the viewpoint of ionic conductivity, kinematic viscosity, and freezing at low temperature, a 25% to 40% by weight aqueous KOH solution is particularly preferable.
  • the temperature of the electrolytic solution in the electrolytic cell is not particularly limited, but is preferably 80 ° C. to 130 ° C. If it is set as the said temperature range, it can suppress effectively that the members of electrolysis apparatuses, such as a gasket and a diaphragm, deteriorate with heat, maintaining high electrolysis efficiency.
  • the temperature of the electrolytic solution is more preferably 85 ° C. to 125 ° C., and particularly preferably 90 ° C. to 115 ° C.
  • the current density applied to the electrolytic cell is not particularly limited, is preferably 4kA / m 2 ⁇ 20kA / m 2, a 6kA / m 2 ⁇ 15kA / m 2 Is more preferable.
  • the pressure in the electrolytic cell is not particularly limited, but is preferably 3 kPa to 1000 kPa, and more preferably 3 kPa to 300 kPa.
  • the flow rate of the electrolytic solution per electrode chamber and other conditions may be appropriately controlled according to each configuration of the bipolar electrolytic layer for alkaline water electrolysis.
  • the hydrogen production method of the present embodiment is a method in which water containing an alkali is electrolyzed in a bipolar electrolytic cell to produce hydrogen, and the bipolar electrolytic cell of the present embodiment, the electrolytic device of the present embodiment, You may implement using the water electrolysis method of this embodiment.
  • the bipolar electrolytic cell includes a plurality of combinations of an anode, a cathode, and a diaphragm disposed between the anode and the cathode, and at least one of the anode and the cathode is porous having an average pore diameter of 10 nm or more and 200 nm or less. It is a body electrode, and the diaphragm is a porous film containing inorganic particles having an average primary particle size of 20 nm or more and 300 nm or less.
  • the bipolar electrolytic cell for alkaline water electrolysis As described above, the bipolar electrolytic cell for alkaline water electrolysis, the alkaline water electrolysis apparatus, and the alkaline water electrolysis method of the embodiment of the present invention have been illustrated and described with reference to the drawings.
  • a tank, an alkaline water electrolysis apparatus, and an alkaline water electrolysis method are not limited to said example, A change can be suitably added to the said embodiment.
  • the electrodes (anode and cathode) and diaphragm used in Examples and Comparative Examples were prepared as follows.
  • Example 1 (anode) As the anode of Example 1, a porous electrode produced by the following procedure was used. 100 parts by weight of nickel oxide powder having a particle size of 0.1 to 2.0 ⁇ m, 1.50 parts by weight of gum arabic, 0.7 parts by weight of carboxymethyl cellulose, 0.001 part by weight of sodium lauryl sulfate, and 100 parts by weight of water The suspension was adjusted by mixing and stirring. Using a spray drying granulator, a granulated product having a particle size of 2 to 10 ⁇ m was prepared from the suspension. The granulated molded product was sprayed on both surfaces of the conductive substrate by a plasma spraying method.
  • the conductive base material a nickel expanded type base material that had been previously blasted was used.
  • the center-to-center distance (LW) in the long direction of the mesh was 4.5 mm
  • the center-to-center distance (SW) in the short direction of the base material mesh was 3.2 mm.
  • the thickness of the base material was 1 mm.
  • a gas in which argon and nitrogen are mixed at a ratio of 1: 0.8 was used as the plasma gas.
  • the thickness of the catalyst layer precursor covering the surface of the conductive substrate was adjusted to 240 ⁇ m.
  • the thickness of the catalyst layer precursor covering the back surface of the conductive substrate was adjusted to 160 ⁇ m. This conductive substrate was placed in a quartz tube.
  • the quartz tube was inserted into a tubular furnace, and while the quartz tube was heated to 200 ° C., a hydrogen stream was continuously supplied into the quartz tube for 2 hours, thereby reducing the catalyst layer precursor.
  • covers an electroconductive base material was obtained by the above process.
  • the anode is referred to as “anode 1” below and in Table 1.
  • cathode As the cathode of Example 1, an electrode produced by the following procedure was used.
  • a plain woven mesh type base material in which nickel fine wires having a diameter of 0.15 mm were knitted to 40 mesh was used. Blasting was performed using alumina powder having a weight average particle diameter of 100 ⁇ m or less, and then acid treatment was performed in 6N hydrochloric acid at room temperature for 5 minutes, followed by washing with water and drying.
  • a palladium nitrate solution (Tanaka Kikinzoku, palladium concentration: 100 g / L) and a dinitrodiammine platinum nitric acid solution (Tanaka Kikinzoku, platinum concentration: 100 g / L) are prepared with a molar ratio of palladium to platinum of 1: 1. It mixed so that the 1st coating liquid might be prepared. Install the vat containing the first coating solution at the bottom of the coating roll, soak the coating solution into the EPDM coating roll, and install the roll so that the roll and coating solution are always in contact with each other. A PVC roller was installed thereon, and a coating solution was applied to the conductive substrate (roll method).
  • the conductive substrate was quickly passed between two EPDM sponge rolls, and the coating solution collected at the intersection of the meshes of the conductive substrate was removed. Then, after drying at 50 ° C. for 10 minutes to form a coating film, the coating film was thermally decomposed by heating and baking at 500 ° C. for 10 minutes using a muffle furnace. This roll coating, drying and pyrolysis cycle was repeated twice to form the first layer.
  • a chlorinated iridium acid solution (Tanaka Kikinzoku, iridium concentration: 100 g / L) and a dinitrodiammine platinum nitric acid solution (Tanaka Kikinzoku, platinum concentration: 100 g / L) are used, and the molar ratio of iridium and platinum is 0.73.
  • the second coating solution was applied, dried and thermally decomposed onto the substrate on which the first layer was formed by the roll method.
  • the drying temperature was 50 ° C.
  • the thermal decomposition temperature was 500 ° C. twice to form a second layer.
  • post-heating was performed at 500 ° C. for 1 hour in an air atmosphere to produce a cathode.
  • the cathode is referred to as “cathode 1” below and in Table 1.
  • Polysulfone 20 parts by mass Polyvinylpyrrolidone: 6 parts by mass N-methyl-2-pyrrolidone: 80 parts by mass Zirconium oxide: 45 parts by mass
  • This coating solution was used as a base material for polyphenylene sulfide mesh (manufactured by Kuraba Co., Ltd., film thickness) The coating was applied to both surfaces of 280 ⁇ m, mesh opening 358 ⁇ m, yarn diameter 150 ⁇ m using a comma coater so that the coating thickness was 150 ⁇ m on each side. Immediately after coating, the base material coated with the coating solution was stored with a 40 ° C.
  • Example 2 As the anode of Example 2, the particle size of the nickel oxide powder was changed to 0.2 to 2.0 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5 to 50 ⁇ m.
  • the base material was previously blasted, the center distance (LW) in the long direction of the mesh is 4.5 mm, the center distance (SW) in the short direction of the mesh is 3.2 mm, and the thickness of the base material is A porous electrode produced in the same manner as the anode of Example 1 was used except that the substrate was changed to a 1 mm nickel expanded substrate.
  • the anode is referred to as “anode 2” below and in Table 1.
  • cathode As the cathode of Example 2, the cathode 1 was used.
  • diaphragm As the diaphragm of Example 2, the diaphragm 1 was used.
  • Example 3 As the anode of Example 3, the diameter of the nickel oxide powder was changed to 0.1 to 1.0 ⁇ m, the amount of gum arabic was changed to 1.00 parts by mass, and the conductive base material was subjected to blasting in advance. A porous electrode produced in the same manner as the anode of Example 1 was used, except that it was changed to a nickel punching type base material having a thickness of 1.2 mm, a pitch between holes of 1.4 mm, and a base material thickness of 1 mm. The anode is referred to as “anode 3” in Table 1. (cathode) As the cathode of Example 3, the cathode 1 was used.
  • the amount of N-methyl-2-pyrrolidone was 210 g (70 parts by mass)
  • the amount of polysulfone was 45 g (15 parts by mass)
  • the amount of polyvinylpyrrolidone was 24 g (8 parts by mass).
  • the porous membrane produced similarly to the diaphragm of Example 1 was used except having changed the temperature of the changed coagulation bath into 30 degreeC.
  • This porous membrane had an average water permeability pore size of 0.2 ⁇ m, a maximum pore size of 1.1 ⁇ m, a surface pore size of 1.1 ⁇ m, a back surface pore size of 0.9 ⁇ m, a thickness of 580 ⁇ m, and a porosity of 43%.
  • the average primary particle size of ZrO 2 was 50 ⁇ m, and the average secondary particle size was 5.5 ⁇ m.
  • the water contact angle was 50 °.
  • the diaphragm is referred to as “diaphragm 2” below and in Table 1.
  • Example 4 As the anode of Example 4, the particle size of the nickel oxide powder was changed to 0.2-2 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5-50 ⁇ m. Was changed to a nickel punching type base material having a hole diameter of 9.0 mm, a hole-to-hole pitch of 11.5 mm, and a base material thickness of 1 mm. The produced porous electrode was used. The anode is referred to as “anode 4” in Table 1. (cathode) As the cathode of Example 4, the cathode 1 was used. (diaphragm) The diaphragm 2 was used as the diaphragm of Example 4.
  • Example 5 As the anode of Example 5, the particle size of the nickel oxide powder was changed to 0.2-2 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5-50 ⁇ m.
  • the center distance (LW) in the long direction of the mesh is 3.0 mm
  • the center distance (SW) in the short direction of the mesh is 2.0 mm
  • the thickness of the base material is 1 mm.
  • a porous electrode produced in the same manner as the anode of Example 1 was used except that the substrate was changed to a nickel expanded substrate.
  • the anode is referred to as “anode 5” in Table 1.
  • cathode As the cathode of Example 5, the cathode 1 was used.
  • (diaphragm) The diaphragm 2 was used as the diaphragm of Example 5.
  • Example 6 As an anode of Example 6, the particle size of the nickel oxide powder was changed to 0.2-2 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5-50 ⁇ m. In this case, the center distance (LW) in the long direction of the mesh is 6.0 mm, the center distance (SW) in the short direction of the mesh is 4.0 mm, and the thickness of the base material is 1 mm. A porous electrode produced in the same manner as the anode of Example 1 was used except that the nickel expanded substrate was used. The anode is referred to as “anode 6” in Table 1. (cathode) As the cathode of Example 6, the cathode 1 was used. (diaphragm) The diaphragm 2 was used as the diaphragm of Example 6.
  • Example 7 As the anode of Example 7, the particle size of the nickel oxide powder was changed to 0.2 to 2 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5 to 50 ⁇ m.
  • the porous electrode was prepared in the same manner as the anode of Example 1 except that a plain woven mesh type base material knitted with a fine mesh of 0.40 mm in diameter and knitted with 9 mesh openings was previously blasted. It was used.
  • the anode is referred to as “anode 7” in Table 1.
  • cathode As the cathode of Example 7, the cathode 1 was used.
  • diaphragm As the diaphragm of Example 7, the diaphragm 1 was used.
  • Example 8 (diaphragm) The diaphragm of Example 1 except that the amount of polysulfone was changed to 45 g (15 parts by mass), the amount of polyvinylpyrrolidone was changed to 36 g (12 parts by mass), and the temperature of the coagulation bath was changed to 30 ° C.
  • a porous membrane produced in the same manner as in Example 1 was used. This porous membrane had an average water-permeable pore diameter of 0.8 ⁇ m, a maximum pore diameter of 2.5 ⁇ m, and a thickness of 480 ⁇ m.
  • the average primary particle size of ZrO 2 was 50 nm, and the average secondary particle size was 4.0 ⁇ m.
  • the diaphragm is referred to as “diaphragm 3” in Table 1.
  • anode As the anode of Example 8, the anode 2 was used.
  • cathode As the cathode of Example 8, a porous electrode produced by the following procedure was used.
  • As the conductive base material a plain woven mesh type base material in which nickel fine wires having a diameter of 0.15 mm were knitted to 40 mesh was used. Blasting was performed using alumina powder having a weight average particle size of 100 ⁇ m or less, and then acid treatment was performed in 6N hydrochloric acid at room temperature for 5 minutes, followed by washing with water and drying.
  • a PVC roller was installed thereon, and a coating solution was applied to the conductive substrate (roll method). Before the coating solution dried, the conductive substrate was quickly passed between two EPDM sponge rolls, and the coating solution collected at the intersection of the meshes of the conductive substrate was removed. Then, after drying at 50 ° C. for 10 minutes to form a coating film, the coating film was thermally decomposed by heating and baking at 500 ° C. for 10 minutes using a muffle furnace. This roll coating, drying and pyrolysis cycle was repeated twice to form the first layer.
  • a chlorinated iridium acid solution (Tanaka Kikinzoku, iridium concentration: 100 g / L) and a dinitrodiammine platinum nitric acid solution (Tanaka Kikinzoku, platinum concentration: 100 g / L) are used, and the molar ratio of iridium and platinum is 0.73.
  • the second coating solution was applied, dried and thermally decomposed onto the substrate on which the first layer was formed by the roll method.
  • the drying temperature was 50 ° C.
  • the thermal decomposition temperature was 500 ° C. twice to form a second layer.
  • post-heating was performed at 500 ° C.
  • cathode 2 is a porous material using a plain woven mesh type substrate (aperture 0.5 mm) obtained by knitting nickel fine wires having a diameter of 0.15 mm, which has been blasted in advance, as a conductive substrate.
  • the body electrode had an average pore diameter of 160 nm, a surface opening ratio of 40%, a double layer capacity of 0.5 F / cm 2 , and a water contact angle of 13 °.
  • Example 9 (diaphragm) As the diaphragm of Example 9, zirconium oxide is titanium oxide (“TTO-51 (A)”, manufactured by Ishihara Sangyo Co., Ltd.), polysulfone is 45 g (15 parts by mass), and N-methyl-2-pyrrolidone is used.
  • TTO-51 (A) titanium oxide
  • polysulfone 45 g (15 parts by mass)
  • N-methyl-2-pyrrolidone was used.
  • This porous membrane had an average water-permeable pore diameter of 0.5 ⁇ m, a maximum pore diameter of 1.2 ⁇ m, and a thickness of 590 ⁇ m.
  • the average primary particle size of TiO 2 was 20 nm, and the average secondary particle size was 0.5 ⁇ m.
  • the diaphragm is referred to as “diaphragm 4” in Table 1.
  • anode As the anode of Example 9, the anode 2 was used.
  • cathode As the cathode of Example 9, the cathode 1 was used.
  • Example 10 (diaphragm) As the diaphragm of Example 10, zirconium oxide was changed from “EP zirconium oxide” (manufactured by Daiichi Rare Element Chemical Co., Ltd.) to “SRP-2 zirconium oxide” (manufactured by Daiichi Rare Element Chemical Industries, Ltd.), and the amount of polysulfone was 45 g.
  • the porous membrane produced similarly to the diaphragm of Example 1 was used except having changed into (15 mass parts). This porous membrane had an average water-permeable pore diameter of 0.4 ⁇ m, a maximum pore diameter of 1.3 ⁇ m, and a thickness of 530 ⁇ m.
  • the average primary particle size of ZrO 2 was 250 nm, and the average secondary particle size was 8.0 ⁇ m.
  • the diaphragm is referred to as “diaphragm 5” in Table 1.
  • anode As the anode of Example 10, the anode 2 was used.
  • cathode As the cathode of Example 10, the cathode 1 was used.
  • Example 11 (anode) Example 11 except that the particle size of the nickel oxide powder was 0.5 to 2.5 ⁇ m, the amount of gum arabic was 2.25 parts by mass, and the particle size of the granulated product was 10 to 60 ⁇ m as the anode of Example 11.
  • a porous electrode produced in the same manner as the anode 1 was used.
  • the anode is referred to as “anode 8” in Table 1.
  • cathode As the cathode of Example 11, the cathode 1 was used.
  • diaphragm As the diaphragm of Example 11, the diaphragm 2 was used.
  • Example 12 As the cathode of Example 12, a porous material produced in the same manner as the cathode of Example 8 except that a plain woven mesh type substrate in which a fine nickel wire having a diameter of 0.5 mm was knitted to 20 mesh was used as the conductive substrate. A body electrode was used. The cathode is referred to as “cathode 3” in Table 1.
  • anode As the anode of Example 12, anode 2 was used.
  • diaphragm As the diaphragm of Example 12, the diaphragm 2 was used.
  • Example 13 As the anode of Example 13, the particle size of the nickel oxide powder was changed to 0.2 to 2.0 ⁇ m, the amount of gum arabic was changed to 2.25 parts by mass, and the particle size of the granulated product was changed to 5 to 50 ⁇ m.
  • the base material was blasted in advance, and the center distance (LW) in the long direction of the mesh was 51.0 mm, the center distance (SW) in the short direction of the mesh was 11.0 mm, and the thickness of the base material
  • the anode is referred to as “anode 9” in Table 1.
  • cathode As the cathode of Example 13, the cathode 1 was used.
  • diaphragm The diaphragm 2 was used as the diaphragm of Example 13.
  • Example 14 (diaphragm) The diaphragm of Example 1 except that the amount of polysulfone was changed to 9 g (15 parts by mass), the amount of polyvinylpyrrolidone was changed to 9 g (3 parts by mass), and the temperature of the coagulation bath was changed to 30 ° C.
  • a porous membrane produced in the same manner as in Example 1 was used. This porous membrane had an average water-permeable pore diameter smaller than a measurement lower limit of 0.05 ⁇ m, a maximum pore diameter of 0.3 ⁇ m, and a thickness of 550 ⁇ m.
  • the average primary particle size of ZrO 2 was 50 nm, and the average secondary particle size was 4.0 ⁇ m.
  • the diaphragm is referred to as “diaphragm 6” in Table 1.
  • anode As the anode of Example 14, anode 2 was used.
  • cathode The cathode 1 was used as the cathode of Example 14.
  • This porous membrane had an average water-permeable pore diameter of 0.4 ⁇ m, a maximum pore diameter of 1.4 ⁇ m, and a thickness of 550 ⁇ m.
  • the average primary particle size of ZrO 2 was 15 nm, and the average secondary particle size was 0.1 ⁇ m.
  • the diaphragm is referred to as “diaphragm 11” in Table 1.
  • anode As the anode of Comparative Example 3, anode 2 was used.
  • cathode As the cathode of Comparative Example 3, the cathode 1 was used.
  • a porous membrane prepared in the same manner as the diaphragm of Example 1 was used except that it was immersed in a coagulation bath for 4 minutes without being exposed to steam.
  • the average water-permeable pore diameter on the porous membrane surface was 0.05 ⁇ m or less and the maximum pore diameter was 0.3 ⁇ m.
  • the surface hole diameter was 0.2 ⁇ m, and the surface hole diameter on the back surface was 0.1 ⁇ m.
  • the thickness was 400 ⁇ m.
  • the porosity was 24%.
  • the average primary particle size of ZrO 2 was 5 nm, and the average secondary particle size was 0.1 ⁇ m.
  • the water contact angle was 40 °.
  • the diaphragm is referred to as “diaphragm 12” in Table 1.
  • anode As the anode of Comparative Example 4, anode 2 was used.
  • cathode As the cathode of Comparative Example 4, the cathode 1 was used.
  • the surface hole diameter was 2.3 ⁇ m, and the surface hole diameter on the back surface was 2.1 ⁇ m.
  • the thickness was 500 ⁇ m.
  • the porosity was 70%.
  • the average primary particle size of ZrO 2 was 500 nm, and the average secondary particle size was 10.5 ⁇ m.
  • the water contact angle was 25 °.
  • the diaphragm is represented as “diaphragm 13” in Table 1. (anode) As the anode of Comparative Example 5, anode 2 was used. (cathode) As the cathode of Comparative Example 5, the cathode 1 was used.
  • FIG. 1 An electrolytic cell having a bipolar zero-gap structure as shown in FIG. 1 was prepared, which was composed of an anode terminal element, a cathode terminal element, and four bipolar elements.
  • the anodes, cathodes, and diaphragms of the respective examples and comparative examples are similarly incorporated.
  • the members other than the anode, the cathode, and the diaphragm were those common in this technical field.
  • the bipolar element was a rectangle of 540 mm ⁇ 620 mm, and the area of the anode and the cathode was 500 mm ⁇ 500 mm.
  • This zero gap bipolar element was stacked through a 525 mm ⁇ 525 mm diaphragm to form a zero gap structure in which the cathode and the anode were pressed against the diaphragm.
  • the bipolar electrode electrolytic cell was incorporated in the electrolyzer 70 shown in FIG. 2 and used for alkaline water electrolysis.
  • the gas-liquid separation tank 72 and the bipolar electrolytic cell 50 are filled with a 30% KOH aqueous solution as an electrolytic solution.
  • the electrolyte solution is fed between the anode chamber and the anode gas-liquid separation tank (oxygen separation tank 72o) and between the cathode chamber and the cathode gas-liquid separation tank (hydrogen separation tank 72h) by the liquid feed pump 71, respectively. It is circulating.
  • the flow rate of the electrolyte was measured with a flow meter 77 to 200 L / min, and the temperature was adjusted to 90 ° C. with a heat exchanger 79. From the rectifier 74, electricity was supplied at a predetermined electrode density to the cathode and anode of each electrolytic cell.
  • the pressure in the cell after the start of energization was measured with a pressure gauge 78 and adjusted so that the cathode side pressure was 50 kPa and the oxygen side pressure was 49 kPa. The pressure was adjusted by installing a pressure control valve 80 downstream of the pressure gauge 78.
  • Rectifier 74 oxygen concentration meter 75, hydrogen concentration meter 76, flow meter 77, pressure gauge 78, heat exchanger 79, liquid feed pump 71, gas-liquid separation tank 72 (72h and 72o), water replenisher 73, etc. Also, those commonly used in the technical field were used.
  • the average pore diameter of the electrode catalyst layer was measured using the BET method.
  • the measurement sample was placed in a dedicated cell and pretreated by heating and evacuating to remove the adsorbate on the pore surface in advance. Thereafter, the adsorption / desorption isotherm of gas adsorption on the measurement sample was measured at -196 ° C.
  • the average pore diameter of the catalyst layer of the measurement sample was determined.
  • the surface aperture ratio of the electrode catalyst layer was determined using a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, “Miniscope TM3000”). The electrode was cut into a predetermined size and used as a sample for SEM observation. This sample was set on the SEM observation sample stage and measurement was started. At this time, an electrode as a measurement sample was set and measurement was started so that observation by the SEM could be performed from the direction perpendicular to the surface of the electrode to be measured. Images were taken while adjusting the magnification of SEM (preferably 10,000 times or more), and the imaged screen was stored as an image. The obtained image was binarized by using image analysis software (manufactured by Mitani Corporation, “WinROOF”), and the ratio of the hole portion in the electrode surface was calculated to obtain the surface aperture ratio (%).
  • SEM scanning electron microscope
  • the water contact angle of the porous electrode was measured using “Drop Master DM-701” (Kyowa Interface Chemical Co., Ltd.). 3 ⁇ L of pure water was dropped on the surface of the measurement target (porous electrode), and the water contact angle was measured by the ⁇ / 2 method.
  • the measurement atmosphere conditions were a temperature of 23 ° C. and a humidity of 65% RH.
  • Double-layer capacity of electrode was measured by the electrochemical impedance method.
  • the double layer capacitance was calculated by analyzing the Cole-Cole plot obtained by plotting the real part and the imaginary part obtained by the AC impedance measurement by equivalent circuit fitting.
  • the average water permeability of the diaphragm was determined by the following method using an integrity tester (Sartorius Stedim Japan, “Sartochcheck Junior BP-Plus”). The pore size was used. First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was set in a pressure-resistant container for measurement (permeation area: 12.57 cm 2 ), and the inside of the container was filled with 150 mL of pure water. Next, the pressure vessel was held in a thermostat set at 90 ° C., and the measurement was started after the inside of the pressure vessel reached 90 ° C.
  • the average water permeable pore diameter was determined from the following Hagen-Poiseuille equation using the gradient between the pressure between 10 kPa and 30 kPa and the water flow rate.
  • Average water-permeable pore diameter (m) ⁇ 32 ⁇ L ⁇ 0 / ( ⁇ P) ⁇ 0.5
  • is the viscosity of water (Pa ⁇ s)
  • L is the thickness of the diaphragm (m)
  • ⁇ 0 is the apparent flow velocity
  • ⁇ 0 (m / s) flow rate (m 3 / s) / flow channel area. (M 2 ).
  • is the porosity
  • P is the pressure (Pa).
  • the maximum pore diameter of the diaphragm was measured by the following method using an integrity tester ("Sartochcheck Junior BP-Plus" manufactured by Sartorius Stedim Japan). First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was wetted with pure water, impregnated with pure water in the pores of the membrane, and set in a pressure-resistant container for measurement. Next, the pressure vessel was held in a thermostat set at a predetermined temperature, and measurement was started after the pressure vessel reached the predetermined temperature.
  • Average primary particle diameter of inorganic particles The average primary particle diameter of the inorganic particles of the diaphragm was measured using a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, “Miniscope TM3000”). First, the diaphragm was cut into a predetermined size including the core material, and this was used as a sample. This sample was subjected to metal coating for 1 minute using a magnetron sputtering apparatus (“MSP-1S type” manufactured by Vacuum Device Inc.). Next, this sample was set on an SEM observation sample stage, and measurement was started. At this time, the diaphragm which is a measurement sample was set so that observation by SEM could be performed from the direction perpendicular to the film surface to be measured.
  • SEM scanning electron microscope
  • the measurement was started, the magnification was adjusted (preferably 20,000 times or more) so that the inorganic particles to be observed can be seen, and the imaging screen was stored as an image.
  • the obtained image was binarized using image analysis software (“WinROOF”, manufactured by Mitani Corporation), the absolute maximum length was measured for each of the 10 non-aggregated inorganic particles, and the number average was calculated. Calculated. This average was taken as the primary particle size of the inorganic particles.
  • WinROOF image analysis software
  • the average secondary particle size of inorganic fine particles was determined using a laser diffraction / scattering type particle size distribution measuring device (“LA-950” manufactured by Horiba, Ltd.). First, using N-methyl-2-pyrrolidone as a solvent, the polymer resin forming the porous film was dissolved and removed from the diaphragm for alkaline water electrolysis. Thereafter, the remaining inorganic particles were repeatedly washed three times or more with N-methyl-2-pyrrolidone in an amount of 1000 times or more by weight. The washed inorganic particles were put into an ultrasonic cleaning tank containing ion exchange water.
  • Zirconium oxide was irradiated with ultrasonic waves for 1 minute while circulating and stirring in the washing tank, and then gently stirred and vented for about 1 minute to prepare a sample.
  • the average secondary particle size of the inorganic particles as a sample was measured by the following method. The average secondary particle size is calculated from the volume distribution by laser diffraction / scattering method within the range of 80-90% transmission intensity of red laser (wavelength: 655 nm) and 70-90% transmission intensity of blue LED (wavelength: 405 nm). Measured.
  • the refractive index of water was 1.33, and the refractive index of zirconium oxide was 2.4.
  • the sample cut out to 8 cm square was put up in the disposable cup, and ultrasonic cleaning was performed for 1 minute.
  • the surface of the sample taken out was washed away with a washing bottle containing pure water.
  • the sample after washing was dried for 12 hours or more with a drier set at 50 ° C., and then cut into a predetermined size including the core material, which was used as a sample for SEM observation.
  • This sample was subjected to metal coating for 1 minute using a magnetron sputtering apparatus (“MSP-1S type” manufactured by Vacuum Device Inc.). Next, this sample was set on an SEM observation sample stage, and measurement was started.
  • MSP-1S type manufactured by Vacuum Device Inc.
  • the diaphragm which is a measurement sample was set so that observation by SEM could be performed from the direction perpendicular to the film surface to be measured.
  • an image was taken while adjusting the magnification of the SEM so that 100 or more and 400 or less holes on the diaphragm surface to be observed appeared in the measurement screen, and the imaged screen was saved as an image.
  • the obtained image was binarized using image analysis software (“WinROOF”, manufactured by Mitani Corporation), and for each shot hole, a hole having an absolute maximum length of 0.5 ⁇ m or more occupies the surface. The percentage was calculated.
  • the observation with the SEM is performed so as to be perpendicular to the observation surface of the film, and the hole is surrounded by the resin without interruption. In addition, a case where a part of the hole is completely cut off in the measurement screen is not regarded as a hole.
  • a porous membrane containing inorganic particles is used as a diaphragm to maintain excellent electrolysis efficiency and high generated gas purity even in high-density current operation.
  • highly efficient alkaline water electrolysis can be performed.

Abstract

本発明は、隔膜として無機粒子を含有した多孔膜を使用したアルカリ水電解用複極式電解槽において、高密度電流運転の場合でも、優れた電解効率及び高い発生ガス純度を維持することを目的とする。陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である、ことを特徴とする、複極式電解槽、アルカリ水電解用複極式電解槽、並びに水素製造方法。

Description

複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法
 本発明は、複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法に関する。
 近年、二酸化炭素等の温室効果ガスによる地球温暖化、化石燃料の埋蔵量の減少等の問題を解決するため、風力や太陽光などの再生可能エネルギーを利用した風力発電や太陽光発電等の技術が注目されている。
 再生可能エネルギーは、出力が気候条件に依存するため、その変動が非常に大きいという性質がある。そのため、再生可能エネルギーによる発電で得られた電力(以下、「変動電源」とも称する)を一般電力系統に輸送することが常に可能とはならず、電力需給のアンバランスや電力系統の不安定化等の社会的な影響が懸念されている。また、再生可能エネルギーから得られる電力と電力需要のアンバランスが一日の中でも起こるばかりでなく、季節によってもアンバランスを生じることはよく知られている。
 そこで、再生可能エネルギーから発電された電力を、貯蔵及び輸送が可能な形に代えて、これを利用しようとする研究が行われている。具体的には、再生可能エネルギーから発電された電力を利用した水の電気分解(電解)により、貯蔵及び輸送が可能な水素を発生させ、発生した水素をエネルギー源や原料として利用することが検討されている。
 水素は、石油精製、化学合成、金属精製等の場面において、工業的に広く利用されており、近年では、燃料電池車(FCV)向けの水素ステーションやスマートコミュニティ、水素発電所等における利用の可能性も広がっている。このため、再生可能エネルギーから特に高純度の水素を得る技術の開発に対する期待は高い。
 水の電気分解の方法としては、固体高分子型水電解法、高温水蒸気電解法、アルカリ水電解法等がある。中でも、数十年以上前から工業化されていること、大規模に実施することができること、他の水電解装置に比べると安価であること等の理由から、アルカリ水電解は特に有力なものの一つとされている。
 しかしながら、アルカリ水電解を今後エネルギーの貯蔵及び輸送のための手段として適応させるためには、前述のとおり出力の変動が大きい電力を効率的且つ安定的に利用して水電解を行うことを可能にする必要がある。前記の需給のアンバランス、特に再生可能エネルギーからの電力の供給が大幅に電力需要を超える場合に水素に変換して貯蔵しようとすると、水電解装置に大きな電力が供給され、電解セル単位面積当たりの電流密度が大きくなった場合に、既存のアルカリ水電解装置では変換効率や水素純度悪化が深刻であり、水素生成の電力原単位の悪化だけでなく、発生した水素中酸素及び/または酸素中水素濃度が増えて精製ロスの増加等が懸念される。このような状況下では、水電解装置の容量を大きくして大電流を受けられるようにせざるを得ず、設備投資が増えて採算性に問題が生じる。
 アルカリ水電解において電解電圧を低く抑えて、水素製造の電力原単位を改善するという課題を解決するために、電解セルの構造として、特に、隔膜と電極との隙間を実質的に無くした構造である、ゼロギャップ構造と呼ばれる構造の採用が有効なことはよく知られている(特許文献1、2参照)。ゼロギャップ構造では、発生するガスを電極の細孔を通して電極の隔膜側とは反対側に素早く逃がすことによって、電極間の距離を低減しつつ、電極近傍におけるガス溜まりの発生を極力抑えて、電解電圧を低く抑制している。そのため、ゼロギャップ構造は、電解電圧の抑制にきわめて有効であり、種々の電解装置に採用されている。
 また近年、効率的且つ安定的なアルカリ水電解を実現するために、電解セルの構造の最適化に加えて、電極や隔膜の最適化等によって上述の諸課題に取り組む研究が盛んに行われている(特許文献3、4参照)。
米国特許第4530743号明細書 特開昭59-173281号公報 国際公開第2013/191140号 特開2015-117417号公報
 そこで、本発明の目的は、高電流密度運転が行われた場合でも変換効率及び水素純度の悪化を抑制できる電解装置を提供することにある。
 本発明者らは、上述の課題を解決するため、電極及び隔膜について鋭意検討を行った。そして、驚くべきことに多孔体電極の細孔の平均孔径及び多孔膜に含有される無機粒子の平均一次粒径を所定の範囲に制御することにより、高密度電流運転の場合でも、電解効率と発生ガス純度の悪化を抑制できることを見出し、本発明の完成に至った。
 本発明の要旨は以下の通りである。
[1]
 陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
 前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である、
ことを特徴とする、複極式電解槽。
[2]
 陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
 前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である、
ことを特徴とする、アルカリ水電解用複極式電解槽。
[3]
 前記隔膜に含有される前記無機粒子の平均一次粒径が50nm以上180nm以下である、[2]に記載のアルカリ水電解用複極式電解槽。
[4]
 前記多孔体電極が、基材と、前記基材の表面上に形成された触媒層とを備える、[2]又は[3]に記載のアルカリ水電解用複極式電解槽。
[5]
 前記多孔体電極が、網状構造の基材と、Niを含有する触媒層とを備える、[4]に記載のアルカリ水電解用複極式電解層。
[6]
 前記多孔体電極の二重層容量が、0.5F/cm以上4.0F/cm以下である、[2]~[5]のいずれかに記載のアルカリ水電解用複極式電解槽。
[7]
 前記多孔体電極の水接触角が0°超30°以下である、[2]~[6]のいずれか1項に記載のアルカリ水電解用複極式電解槽。
[8]
 前記多孔体電極が、30%以上80%以下の表面開口率を有する、[2]~[7]のいずれかに記載のアルカリ水電解用複極式電解槽。
[9]
 前記多孔体電極が、目開き0.2mm以上4.0mm以下の平織メッシュ型基材を含む、[4]~[8]のいずれかに記載のアルカリ水電解用複極式電解槽。
[10]
 前記多孔体電極が、メッシュの長目方向の中心間距離(LW)が2.0mm以上6.0mm以下、かつメッシュの短目方向の中心間距離(SW)が1.0mm以上5.0mm以下のエキスパンド型基材を含む、[4]~[8]のいずれかに記載のアルカリ水電解用複極式電解槽。
[11]
 前記多孔体電極が、穴径(D)が1.0mm以上10.0mm以下、穴間ピッチ(P)が1.0mm以上12.0mmのパンチング型基材を含む、[4]~[8]のいずれかに記載のアルカリ水電解用複極式電解槽。
[12]
 前記隔膜に含有される前記無機粒子が、0.2μm以上10.0μm以下の平均二次粒径を有する、[2]~[11]のいずれかに記載のアルカリ水電解用複極式電解槽。
[13]
 前記隔膜に含有される前記無機粒子が、酸化ジルコニウム(ZrO)及び/又は酸化チタン(TiO)を含む、[2]~[12]のいずれかに記載のアルカリ水電解用複極式電解槽。
[14]
 前記隔膜の平均透水孔径が、0.1μm以上1.0μm以下である、[2]~[13]のいずれかに記載のアルカリ水電解用複極式電解槽。
[15]
 前記隔膜の最大孔径が、0.5μm以上3.0μm以下である、[2]~[14]のいずれかに記載のアルカリ水電解用複極式電解槽。
[16]
 前記隔膜の表面開口率が、20%以上80%以下である、[2]~[15]のいずれかに記載のアルカリ水電解用複極式電解槽。
[17]
 前記隔膜の水接触角が30°以上90°以下である、[2]~[16]のいずれかに記載のアルカリ水電解用複極式電解槽。
[18]
 前記陽極及び前記陰極と前記隔膜がゼロギャップ構造をなしている、[2]~[17]のいずれかに記載のアルカリ水電解用複極式電解槽。
[19]
 アルカリを含有する水を、電解槽により水電解し、水素を製造する水素製造方法であって、
 前記電解槽が、陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
  前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、
  前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である、複極式電解槽である、
ことを特徴とする、水素製造方法。
 本発明によれば、高密度電流運転や変動電源運転が行われた場合でも、優れた電解効率及び高い発生ガス純度を維持することができる、複極式電解槽及び水素製造方法を提供することができる。
本実施形態のアルカリ水電解用複極式電解槽の一例の全体について示す側面図である。 本実施形態のアルカリ水電解用複極式電解槽の一例を備えるアルカリ水電解装置の概要を示す図である。 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例のエキスパンド型基材の網目部分について示す平面図、及び、前記平面図の線A-Aに沿う面により切断したときの断面図である。 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例の平織メッシュ型基材の網目部分について示す平面図である。 本実施形態のアルカリ水電解用複極式電解槽の多孔体電極の一例のパンチング型基材について示す平面図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本実施形態のアルカリ水電解用電解槽は、片面が陽極、片面が陰極となる複数の複極式エレメントを、隔膜を挟んで同じ向きに並べて直列に接続し、両端のみを電源に接続した、複極式電解槽である。言い換えると、本実施形態のアルカリ水電解用電解槽は、陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせ(「電解セル」とも称する)を、複数備える、複極式電解槽である。
 以下、本実施形態のアルカリ水電解用複極式電解槽を特徴付ける重要な構成要素である、陽極、陰極、隔膜について、詳細に説明する。
 アルカリ水電解反応では、電源に接続されている電極対(すなわち、陽極及び陰極)を備える電解槽で、アルカリ水を電気分解して、陽極で酸素ガスを発生させ、陰極で水素ガスを発生させる。なお、本明細書中において、「電極」と称する場合には、陽極及び陰極のいずれか一方又は両方を意味するものとする。
 本発明者らの検討から、電極(陽極、陰極)から発生するガスのバブル(気泡)の大きさは、電極の細孔径に大きく依存しており、電極の細孔径を小さくすると、発生するガスのバブル径は小さくなることが判明した。細孔径が小さいと比表面積が大きくなって電極の過電圧が低下する一方で、隔膜である多孔膜を通り抜けるガスの量はバブル径が小さくなる程増加して、発生するガスの純度が低下する傾向があることがわかった。逆に、ガス純度を高めるために電極の細孔径を大きくすると、発生するガスのバブル径は大きくなって多孔膜のガス遮断性が高まる一方で、電極の比表面積が小さくなって過電圧が上昇することにより、電解効率が低下することがあった。
 他方、多孔質膜中の無機粒子は、一般に、多孔膜中では疎水性の有機高分子のマトリックス中に一次粒子が凝集した二次粒子と呼ばれる凝集体として存在し、電解液がこの二次粒子凝集体が形成する貫通孔に浸透し、電解時のイオンの透過性を確保する。無機粒子の一次粒径を小さくし過ぎると、貫通孔内のガスバブルの透過はより防げるものの、イオンの透過性が制限される。逆に、一次粒子径を大きくし過ぎると逆の結果となることが判明した。
 本発明者らは、精緻な実験を繰り返し、電極の細孔径と多孔質膜中に無機粒子の一次粒子径との適切な範囲を組み合わせることで、一時的な高電流密度運転においても電解効率と水素純度の悪化を抑制できることを見出し、本発明をなすに至った。
[電極(陽極、陰極)]
 本実施形態(例えば、上記[1]~[19]の形態等)の複極式電解槽及びアルカリ水電解用複極式電解槽においては、陽極及び陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極である。上記効果をさらに高める観点から、多孔体電極の平均孔径は、40nm以上190nm以下であることが好ましく、50nm以上180nm以下であることがより好ましい。
 なお、多孔体電極の平均孔径は、BET法を用いて測定することができる。測定試料を専用セルに入れ、加熱真空排気を行うことにより前処理を行い、細孔表面への吸着物を予め取り除く。その後、-196℃で測定サンプルへのガス吸着の吸脱着等温線を測定する。得られた吸脱着等温線をBET法で解析することにより、平均孔径を求めることができる。より具体的には、後述する実施例に示す方法で測定することができる。
 そして、本実施形態(例えば、上記[1]~[19]の形態等)において、上記の多孔体電極と組み合わせて使用する隔膜は、平均一次粒径20.0nm以上300nm以下の無機粒子を含有する多孔膜である。
 なお、上記多孔体電極の平均孔径の範囲、上記隔膜(多孔膜)中の無機粒子の平均一次粒径の範囲は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極の二重層容量は、特に限定されないが、0.5F/cm以上4.0F/cm以下であることが好ましく、0.6F/cm以上3.8F/cm以下であることがより好ましく、0.7F/cm以上3.6F/cm以下であることが更に好ましい。二重層容量は、電極と電解液との界面で形成される電気二重層の静電容量であり、電極表面で電解に使用される比表面積を疑似的に示すことができる。この範囲の二重層容量を有すると、電解に用いられる比表面積を最適化して、過電圧を一層低下させ、電解効率を一層向上させることができる。
 なお、二重層容量は、電気化学インピーダンス法により測定することができる。交流インピーダンス測定により得られた実部と虚部をプロットしたCole-Coleプロットに対して、等価回路フィッティングにより解析することで、二重層容量を算出する。
 後述するゼロギャップ電解槽の場合は、隔膜との接触面の裏側から発生するガスを脱泡する必要があるため、多孔体電極は、隔膜に接する面と反対に位置する面が、貫通していることが好ましい。
 本実施形態(例えば、上記[1]~[19]の形態等)における多孔体電極としては、特に限定されないが、平均孔径の制御の観点から、平織メッシュ型、パンチング型、エキスパンド型などの網(メッシュ)状構造を有する電極、金属発泡体等が挙げられる。中でも、細孔の寸法や形状の制御の観点から、平織メッシュ型、パンチング型、エキスパンド型からなる群より選択される網状構造を有することが好ましい。
 平織メッシュ型は、金属や樹脂などからなる線材を、一方向に平行な複数の線材に対して、別方向に平行な複数の線材が一定の間隔を保ちつつ互いに1本ずつ交差するように織られた網状構造である。図4に、平織メッシュ型の多孔体電極の一例の開口部を拡大して示す。
 なお、平織メッシュ型の開口部の形状は、開口部を平面として垂直方向から観察した場合に、一方向に平行な隣接する2本の線材1組と、別方向に平行な隣接する2本の線材1組とが交差して形成される平行四辺形であり、正方形、長方形、菱形のいずれであってもよい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、平織メッシュ型の多孔体電極を用いる場合、寸法は特に制限されないが、電解表面積増加によるガス発生量の増加と、電解により発生するガスの電極表面からの効率的な除去を両立させるために、目開き(A)は、0.1mm以上5.0mm以下とすることができ、0.2mm以上4.0mm以下が好ましく、0.3mm以上3.0mm以下がより好ましい。
 ここで、目開き(A)は、図4に示すように、平織メッシュ型の開口部を構成する4本の線材のうち、平行な隣接する2本1組の線材間の垂直距離と、他方の2本1組の線材間の垂直距離との平均値を意味する。1の基材上の開口部間で目開き(A)が異なる場合には、平均値とする。
 なお、目開きは、後述する線径及びメッシュ数から下記式で求めることができる。
 目開き=(25.4/メッシュ数)-線径
 本実施形態(例えば、上記[1]~[19]の形態等)において、目開き以外の寸法については、特に制限されないが、線径は0.05mm以上1.0mm以下、メッシュ数は5以上70以下が好ましい。より好ましくは、線径は0.1mm以上0.3mm以下、メッシュ数は10以上65以下である。
 線径は、図4に示すように、平織メッシュ型を構成する線材の直径である。メッシュ数は、1インチ(25.4mm)の中にある目の数であり、下記式で求めることができる。
  メッシュ数=25.4/(目開き+線径)。
 パンチング型は、金属や樹脂などからなる板に丸型や角型のパンチ穴を一定間隔で複数開けた網状構造である。パンチ穴の形状は、特に限定されないが、機械的強度の観点から、円形が好ましく、真円形がより好ましい。図5に、パンチング型の多孔体電極の一例の平面図を示す。
 本実施形態(例えば、上記[1]~[19]の形態等)において、パンチング型の多孔体電極を用いる場合、寸法は特に制限されないが、電解表面積増加によるガス発生量の増加と、電解により発生するガスの電極表面からの効率的な除去を両立させるため、穴径(D)は0.5mm以上12.0mm以下、穴間ピッチ(P)は0.5mm以上15mm以下とすることができる。好ましくは、穴径(D)が1.0mm以上10.0mm以下、穴間ピッチ(P)が1.0mm以上10.0mm以下であり、より好ましくは、穴径(D)が1.5mm以上8.0mm以下、穴間ピッチ(P)が1.5mm以上8.0mm以下である。
 ここで、穴径(D)は、パンチ穴が真円形の場合は直径を意味し、パンチ穴が楕円形の場合には長軸径と短軸径の平均値を意味する。穴間ピッチ(P)は、1のパンチ穴と最近接するパンチ穴との中心間距離を意味する。言い換えると、1のパンチ穴に隣接する複数のパンチ穴の中心から当該1のパンチ穴中心までの距離のうち最短のものを意味する。1の基材上のパンチ穴間で穴径(D)、穴間ピッチ(P)が異なる場合は、平均値とする。
 エキスパンド型は、金属や樹脂などからなる板に千鳥状に切れ目を入れながら押し広げて、菱形の開口部を成形した網状構造である。ここで、エキスパンド型における「菱形」は、四辺の長さが等しく、対角線同士が直交し、4つの内角のうちの1つの角度が0°超180°未満である、平行四辺形を意味する。1つの内角の角度が90°である場合、すなわち「正方形」も含むものとする。図3に、エキスパンド型の多孔体電極の一例の開口部を拡大した平面図及び断面図を示す。
 本実施形態(例えば、上記[1]~[19]の形態等)において、エキスパンド型の多孔体電極を用いる場合、寸法は特に制限されないが、電解表面積増加によるガス発生量の増加と、電解により発生するガスの電極表面からの効率的な除去を両立させるため、メッシュの長目方向の中心間距離(LW)は1.0mm以上10.0mm以下、メッシュの短目方向の中心間距離(SW)は0.5mm以上8.0mm以下とすることができる。好ましくは、LWが2.0mm以上6.0mm以下、SWが1.0mm以上5.0mm以下、より好ましくは、LWが3.0mm以上5.0mm以下、SWが1.0mm以上4.0mm以下である。
 ここで、メッシュの長目方向の中心間距離(LW)は、開口部を平面として垂直方向から観察した場合の、隣接するボンド(メッシュ交差部)中心間の最長距離を意味する。メッシュの短目方向の中心間距離(SW)は、開口部を平面として垂直方向から観察した場合の、LWに対し直角方向で隣接するボンド中心間の最短距離を意味する。1の基材上のメッシュ間でLW、SWが異なる場合は、平均値とする。
 金属発泡体を多孔体電極として用いる場合、寸法は特に制限されないが、電解表面積増加によるガス発生量の増加と、電解により発生するガスの電極表面からの効率的な除去を両立させるため、気孔率80%以上95%以下が好ましい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極の表面開口率としては、特に限定されないが、電解効率の向上の観点から、例えば8%以上85%以下とすることができ、30%以上80%以下が好ましく、31%以上70%以下がより好ましく、35%以上65%以下が更に好ましい。
 なお、多孔体電極の表面開口率は、多孔体電極の表面上に占める孔部分の割合を示す。多孔体電極の表面開口率は、測定用サンプルを、電極表面の垂直方向から走査型電子顕微鏡(SEM)で撮像し、孔が電極表面内を占める割合として求めることができる。より具体的には、後述する実施例で説明する方法で求めることができる。
 多孔体電極の厚みとしては、特に限定されないが、機械的強度の観点から、0.7mmから3mm程度が好ましい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極の水接触角は、特に限定されないが、0°超30°以下であることが好ましく、0°超25°以下であることがより好ましく、0°超20°以下であることが更に好ましい。水接触角がこの範囲であると、電極表面の濡れ性を向上させ、電解で発生するガスを電極表面から一層効率的に除去することができ、電解効率を一層高めることができる。ここで、多孔体電極の水接触角とは、多孔体電極の表面に水を滴下し、水滴が多孔体電極と接する部位から水滴の表面に接線を引いたときに、接線と多孔体電極表面のなす角度である。
 多孔体電極の水接触角は、市販の接触角計を用いて、θ/2法により測定することができる。
 本実施形態(例えば、上記[1]~[19]の形態等)における多孔体電極は、基材そのものとしてもよく、基材の表面に反応活性の高い触媒層を有するものとしてもよいが、基材の表面に反応活性の高い触媒層を有するものが好ましい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極が、基材のみで構成される場合、多孔体電極について上述する、平均孔径、表面開口率、及び水接触角は、基材表面についてのものとする。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極が、基材と、基材の表面を被覆する触媒層とを備える場合、多孔体電極について上述する、平均孔径、表面開口率、及び水接触角は、電極触媒層表面についてのものとする。
 基材の材料としては、特に制限されず、ニッケル、鉄、軟鋼、ステンレス、バナジウム、モリブデン、銅、銀、マンガン、白金族、黒鉛及びクロム等から群より選ばれる少なくとも一種からなる導電性基材が挙げられる。二種以上の金属からなる合金又は、二種以上の導電性物質の混合物からなる導電性基材を用いてもよい。中でも、基材の導電性及び使用環境への耐性の観点から、ニッケル及びニッケル基合金などが好ましい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、陽極の触媒層は、酸素発生能が高いものであることが好ましく、ニッケルやコバルト、鉄若しくは白金族元素等を使用することができる。これらは、所望の活性や耐久性を実現するために、金属単体や、酸化物等の化合物、複数の金属元素からなる複合酸化物や合金、あるいはそれらの混合物として、触媒層を形成できる。具体的には、ニッケルめっきや、ニッケルとコバルト、ニッケルと鉄等の合金めっき、LaNiOやLaCoO、NiCo2O等のニッケルやコバルトを含む複合酸化物、酸化イリジウム等の白金族元素の化合物、グラフェン等の炭素材料等が挙げられる。耐久性や基材との接着性を向上させるために高分子等の有機物が含まれていてもよい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、陰極の触媒層は、水素発生能が高いものであることが好ましく、ニッケルやコバルト、鉄若しくは白金族元素等を使用することができる。これらは、所望の活性や耐久性を実現するために、金属単体や、酸化物等の化合物、複数の金属元素からなる複合酸化物や合金、あるいはそれらの混合物として、触媒層を形成できる。具体的には、ラネーニッケルや、ニッケルとアルミニウム、あるいはニッケルと錫等の複数の材料の組み合わせからなるラネー合金、ニッケル化合物やコバルト化合物を原料として、プラズマ溶射法により作製した多孔被膜、ニッケルと、コバルト、鉄、モリブデン、銀、銅等から選ばれる元素との合金や複合化合物、水素発生能が高い白金やルテニウム等の白金族元素の金属や酸化物、及び、それら白金族元素の金属や酸化物と、イリジウムやパラジウム等の他の白金族元素の化合物やランタンやセリウム等の希土類金属の化合物との混合物、グラフェン等の炭素材料等が挙げられる。高い触媒活性や耐久性を実現するために、上記の材料を複数積層してもよく、触媒層中に複数混在させてもよい。耐久性や基材との接着性を向上させるために高分子材料等の有機物が含まれていてもよい。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔体電極が、触媒層を含む場合、電極の導電性、ガス発生能及び使用環境への耐性の観点から、陽極及び陰極の少なくとも一方の触媒層は、ニッケル(Ni)を含むことが好ましい。
 上記多孔体電極において、平均孔径の範囲、触媒層の有無、触媒層の組成の範囲、二重層容量の範囲、水接触角の範囲、表面開口率の範囲、基材の形状は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 また上記多孔体電極、後述の隔膜(多孔膜)は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 触媒層の厚みは、厚すぎると電気抵抗が増加し過電圧を上昇させる場合があり、逆に薄すぎると長期間の電解や電解の停止により触媒層が溶解若しくは脱落することで電極が劣化し、過電圧が上昇する場合がある。
 これらの理由から、触媒層の厚みは、0.2μm以上、1000μm以下が好ましく、より好ましくは0.5μm以上、300μm以下である。
 なお、触媒層の厚みは、例えば電子顕微鏡にて電極の断面を観察することにより測定できる。
 基材上に触媒層を形成させる方法としては、めっき法、プラズマ溶射法等の溶射法、基材上に前駆体層溶液を塗布した後に熱を加える熱分解法、触媒物質をバインダー成分と混合して基材に固定化する方法、及び、スパッタリング法等の真空成膜法といった手法が挙げられる。
 溶射法としては、アセチレン等の可燃性ガスと酸素の燃焼熱で溶射用粉末を溶融する方法、溶射法に用いる溶射用粉末(触媒層の原料粉末)を棒状に加工し、可燃性ガスを燃焼した熱で溶融した素材を燃焼ガスで吹き付ける方法、アルゴン、水素、窒素又はヘリウム等のガスを加熱して得たプラズマガスで溶射粉末を溶融する方法がある。その中では、窒素又はアルゴンに水素を混ぜたガスをプラズマ化して、プラズマで溶射用粉末を溶融するプラズマ溶射法が好ましい。プラズマガスの速度が音速を超える程度に大きく、ガスの温度が5000℃以上である。そのため、融点の高い溶射用粉末を溶融することができ、溶融した溶射用粉末を高速で基材に付着させることができる。その結果、緻密で強度の強いコーティング層を形成することが可能になる。プラズマ溶射法を用いた場合、原料粉末のコーティング速度が速いため、10~1000μmの厚みを有する触媒層を比較的短時間で形成することができる。プラズマ溶射法では、その条件にもよるが、溶融した原料粉末の粒子が基材上に積層する過程で粒子間に形成される細孔が、他の溶射法を用いた場合に比べ緻密になりやすい。水素を含むプラズマガスを用いた溶射法で酸化物を基材に吹き付ける場合、コーティングの一部が還元されやすく、コーティング層の導電性が増し、導電性に優れた電極を製造することが可能となる。
 溶射法によって形成されたコーティング層(実施例中で「触媒層の前駆体」とも称する)を、水素気流下で還元することにより、触媒層に細孔を形成することもできる。溶射法によって形成された金属酸化物層を水素で還元する際の温度は重要であり、還元の温度が高すぎる場合、還元により生じた細孔が熱によりつぶされて、期待する細孔、比表面積及び細孔容量が得られない場合がある。また還元温度が低すぎると、金属酸化物の還元が進まない。例えば、金属酸化物として酸化ニッケルを用いる場合、水素による金属酸化物層の還元温度としては、180~300℃が好ましく、180~250℃が特に好ましい。
 コーティング層は電解によって還元してもよい。
 上記の溶射工程及び還元工程によって、得られた触媒層の表面をロジウム、パラジウム、イリジウム、及びルテニウムからなる群より選ばれる少なくとも1種の触媒で修飾してもよい。
 プラズマ溶射法で作製される膜は多孔質であるため、高い比表面積を有する電極を得ることができる。
 プラズマ溶射法の原料としては、金属酸化物の粉末が好ましく用いられる。プラズマ溶射工程に先立ち、平均粒径が1.0μm~5.0μmである金属酸化物粉末を噴霧乾燥造粒気により造粒し、平均粒径が10~100μmである金属酸化物粒子を得る。この金属酸化物の粒子をプラズマガス等の高温のガス中に吹き込み、溶融させて、導電性基材に吹き付ける。つまり、導電性基材を溶融した金属酸化物でコーティングする。造粒する前の金属酸化物の粒径が大きすぎても、小さすぎても、電極を形成した際に必要な孔径や比表面積、細孔容量が得られない。造粒前の金属酸化物粉末の平均粒径は1.0~5.0μmであることが好ましく、1.0~1.2μmであることがより好ましい。
 プラズマ溶射原料として用いられる金属酸化物は、電解環境への耐久性や触媒活性能から、少なくともニッケル酸化物を含むことが好ましい。酸化ニッケル粉末と他の粉末との混合物を原料に用いてもよい。他の粉末としては、金属ニッケル、チタン、クロム、モリブデン、コバルト、マンガン、鉄、タンタル、ジルコニウム、アルミニウム、亜鉛、白金族及び希土類元素等からなる群より選ばれる少なくとも一種の金属の粉末が挙げられる。さらに、導電性基材に吹き付ける前の酸化ニッケル粉末に、アラビアガム、カルボキシメチルセルロース及びラウリル硫酸ナトリウムからなる群より選ばれる少なくとも一種の添加材を混ぜてもよい。
 なお、プラズマ溶射法などの溶射法では、溶射原料としての金属酸化物の平均粒径、その造粒物の平均粒径、造粒物中の溶射原料(例えば、金属酸化物)と添加剤の含有割合などを制御することによって、電極触媒層における平均孔径や表面開口率を制御することができる。
 熱分解法を用いると、多孔基材上に均一な厚みの薄膜を形成することができる。そのため、少量の原料で基材表面を効率的に被覆することができる。
 熱分解法では、基材表面に前駆体層を形成する前駆体形成工程と、表面に前駆体層を形成した基材を加熱することで、前駆体を分解し、触媒層を形成させる焼成工程とを備える。
 前駆体形成工程は、例えば金属元素を含む液を基材表面に塗布する手法が挙げられる。塗布液中での金属の形態は特に制限はなく、金属や金属化合物の微粒子でもよく、溶解してイオン化されていてもよい。微粒子状態の場合、均質な前駆体層を形成するために、液中で分散されている状態が好ましい。そのため粒径は100nm以下であることが好ましい。イオン化されている場合、金属塩としては、フッ化物、塩化物、臭化物、ヨウ化物等のハロゲン化物塩、硝酸塩、硫酸塩、リン酸塩等の無機化合物塩、酢酸塩に代表される有機化合物塩等が例示できる。これらの中で、塩化物、硝酸塩は原料を工業的に入手できるために好ましく用いられる。さらに、硝酸塩は分解後に残留するアニオン成分による基材の劣化が小さく、保存安定性の良好な電極を得ることができるため、より好ましい。溶液の溶媒としては、溶質である金属塩等を溶解するものであればよい。高濃度の溶液を調製することができれば、塗布量が増加し、生産性を高めることができるため、水若しくは炭素数が2~5のアルコールの少なくとも1種以上を含むことが好ましい。溶液の金属塩の濃度が薄いと、溶媒の揮発に多くのエネルギーを要する。一方、金属塩の濃度が濃いと、ムラが生じる恐れがあり、触媒層の厚みが不均一となる場合がある。そのため、前駆体形成工程において用いる塗布液の金属塩の濃度は0.001mol/L以上、1mol/L以下が好ましく、より好ましくは0.01mol/L以上、0.5mol/Lである。
 前駆体形成工程において、基材表面に金属元素を含む液を塗布する方法としては、公知の様々な手法を用いることが可能である。例えば、基材を液に浸漬するディップ法、基材に液を刷毛で塗る方法、スポンジ状ロールに含浸させた液を基材に塗布するロール法、塗布液と基材とを反対の電荷に帯電させてスプレー等を用いて噴霧を行う静電塗布法等が挙げられる。特に、生産性の点と触媒層が均一に塗布できる点とからロール法及び静電塗布法が好適に用いられる。
 基材には、溶液を塗布するのに先立ち、表面に凹凸を設けるための表面処理を行ってもよい。基材表面に凹凸を設けると、基材と触媒層との密着性が向上する。表面処理の方法は特に限定されず、ブラスト処理や薬液を用いたエッチング等が例示できる。
 焼成工程において触媒層を形成する温度は、用いる金属塩の熱分解温度以上であればよいが、300℃以上が好ましい。多くの金属塩の熱分解は300℃以上で進行するためである。熱分解を良好に進行させ、未反応の物質を除去するため、400℃以上が好ましく、より好ましくは500℃以上である。1000℃より高い温度で焼成すると、基材が軟化して変形する場合があるので、1000℃以下が好ましく、より好ましくは800℃以下である。
 前駆体形成工程と焼成工程は複数回繰り返すことが好ましい。所望の厚みの触媒層を形成するためには、1回当たりの液塗布量や、あるいは液中の金属塩の濃度だけでも調整できるが、1回当たりの液塗布量や液中の金属濃度を高くし過ぎると、ムラになる恐れがあり、各層が均一に形成されない場合がある。そのため、前駆体形成工程と焼成工程を複数回繰り返すことによって、より均一な触媒層を所望の厚みで形成することができる。繰り返し回数は、所望の厚みが得られる条件であれば、特に限定されないが、5回以上、30回以下が好ましい。
 前駆体形成工程と焼成工程とを複数回繰り返した後に、さらに、焼成工程の温度以上の高温で焼成する工程を含んでもよい。この際の焼成する温度の上限は1000℃以下が好ましく、より好ましくは800℃以下である。
 上述する熱分解法では、塗布液中の金属(金属化合物、金属塩の場合も含む)の微粒子の平均粒径や濃度、塗工方法、塗工焼成回数などを制御することによって、電極触媒層の平均孔径や表面開口率を制御することができる。
 本実施形態(例えば、上記[1]~[19]の形態等)において、陽極及び陰極の一方のみが平均孔径10nm以上200nm以下の多孔体電極である場合、対となる他方の電極は、公知のものを用いることができ、多孔体電極であってもなくてもよい。また、前記他方の電極は、平均孔径以外の特性について、平均孔径10nm以上200nm以下の多孔体電極について上述した特性を有するものであっても、そうでなくてもよい。
 後述するゼロギャップ構成では、隔膜が、従来の電解セルより強く電極に押しつけられる。例えばエキスパンド型基材を用いた電極では開口部の端部で、隔膜が破損すること或いは、開口部に隔膜が食い込んで、陰極と隔膜の間に隙間ができて電圧が上昇する場合がある。
 上記の課題を解決するためには、できるだけ平面的な電極形状とすることが好ましい。例えば、エキスパンド加工した基材(例えば、エキスパンド型基材)をローラーでプレスして平面状に加工する方法が適用できる。この際、エキスパンド加工前の元の金属平板厚みに対し、95%から110%までプレスし、平面化することが望ましい。
 上記の処理を施して製造した電極は、隔膜の損傷を防げるだけでなく、意外なことに電圧も低減できる。この理由は明確ではないが隔膜の表面と電極面が均一に接触するので電流密度が均―化するためと予想される。
 電極のサイズとしては、特に限定されず、後述するアルカリ水電解用複極式電解槽、電解セル、複極式エレメント、隔壁などの形状やサイズに合わせて、また所望する電解能力などに応じて、定めることができる。例えば、隔壁が板状の形状の場合、隔壁のサイズに合わせて定められてよい。
[隔膜]
 電解セルにおいて、隔膜は、陽極と陰極との間に配置されており、イオンを含む電解液を透過する一方、電極で発生したガスを遮断する役割を担う。
 本実施形態(例えば、上記[1]~[19]の形態等)の複極式電解槽及びアルカリ水電解用複極式電解槽における隔膜は、平均一次粒径20.0nm以上300nm以下の無機粒子を含有する多孔膜である。無機粒子の平均一次粒径は、25nm以上250nm以下であることが好ましく、30nm以上200nm以下であることがより好ましく、50nm以上180nm以下であることが更に好ましい。
 隔膜が微粒子形状の無機粒子を含有する多孔膜であると、無機粒子が多孔膜の孔を親水化して、電解液透過性、イオン透過性及びガス遮断性を向上させて、発生ガス純度を高めることができる。そして、無機粒子の平均一次粒径が上記範囲であると、多孔膜内で二次粒子を構成する無機粒子1個あたりの多孔膜との接触面積を増加させて多孔膜からの無機粒子の脱離を防止すると共に、無機粒子の二次粒子の表面積を増加させて、多孔膜の孔内の親水性を向上させることができ、発生ガス純度を一層高めることができる。更には、上記特定の範囲の平均孔径の多孔体電極との組み合わせにより、多孔膜から脱離した無機粒子が多孔体電極の細孔を閉塞するのを防止することができ、過電圧の上昇を防止することができる。
 無機粒子は、多孔膜の表面に付着していても良いし、一部が多孔膜を構成する高分子材料に埋没していても良い。また無機粒子が多孔膜の空隙部に内包されると、多孔膜から脱離しにくくなり、多孔膜の性能を長時間維持することができる。
 隔膜(多孔膜)中の無機粒子の平均一次粒径は、次の方法で求めることができる。
 測定サンプルを膜表面の垂直方向から走査型電子顕微鏡(SEM)で観察し、無機粒子が観察できる倍率で撮像した。その画像を、画像解析ソフトを用いて2値化し、凝集していない10点の無機粒子のそれぞれに対して絶対最大長を測定し、その個数平均を求める。より具体的には、後述する実施例に記載の方法によって求めることができる。 
 本実施形態(例えば、上記[1]~[19]の形態等)において、無機粒子の平均二次粒径は、特に限定されないが、隔膜からの脱落防止及び多孔膜孔内の親水化の観点から、0.2μm以上10.0μm以下であることが好ましく、0.5μm以上8.0μm以下であることがより好ましい。平均二次粒径は、無機粒子が多孔膜中で形成している二次粒子の状態の平均粒径である。
 なお、平均二次粒径は、多孔膜から高分子樹脂を溶解除去して残った無機粒子を測定試料として、レーザー回折・散乱法により、体積分布から平均二次粒径を計測することができる。より具体的には、後述する実施例に記載の方法によって求めることができる。
 本実施形態(例えば、上記[1]~[19]の形態等)において、無機粒子としては、特に限定されないが、例えば、ジルコニウム、チタン、ビスマス、セリウムの酸化物又は水酸化物;周期律表第IV族元素の酸化物;周期律表第IV族元素の窒化物、及び周期律表第IV族元素の炭化物からなる群より選ばれる少なくとも1種の無機物が挙げられる。これらの中でも、化学的安定性の観点から、ジルコニウム、チタン、ビスマス、セリウムの酸化物、周期律表第IV族元素の酸化物が好ましく、酸化ジルコニウム(ZrO)、酸化チタン(TiO)がより好ましい。これら向き粒子は、1種単独で用いてもよいし、2種以上を併用してもよい。無機粒子の粒子表面は、極性を帯びている。水溶液である電解液内における、極性の小さな酸素分子や水素分子と、極性の大きな水分子との親和性等を踏まえると、極性の大きな水分子の方が無機粒子と吸着し易いとと考えられる。よって、このような無機粒子が膜表面に存在することで、膜表面には水分子が優先的に吸着し、酸素分子や水素分子等の気泡は膜表面に吸着しない。その結果、多孔膜の表面への気泡の付着を効果的に抑制することができる。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔膜の平均透水孔径は、特に限定されないが、例えば0.05μm以上1.5μm以下とすることができ、0.1μm以上1.0μm以下であることが好ましく、0.15μm以上0.8μm以下であることがより好ましい。平均透水孔径がこの範囲であれば、多孔膜のイオン透過性が良好となり、電圧損失を低減しやすくなり、更には、上述の平均孔径を有する多孔体電極によって制御されたバブル径を有する発生ガスが、隔膜孔を閉塞及び透過することを防止できる。加えて、無機粒子の一次粒子が凝集して形成される二次粒子の脱落を抑制できる。それに伴い、多孔膜の高い親水性を維持することができ、電解液透過性、イオン透過性及びガス遮断性を向上させることができる。そして、隔膜による電圧損失を上昇させることなく隔膜のガス遮断性を高めることができ、電解効率及び発生ガス純度を一層向上させることができる。
 なお、多孔膜の平均透水孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定した平均透水孔径をいう。まず、多孔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを任意の耐圧容器にセットして、容器内を純水で満たす。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から純水が透過してくる際の圧力及び透過流量の数値を記録する。平均透水孔径は、圧力が10kPaから30kPaの間の圧力と透水流量との勾配を使い、以下のハーゲンポアズイユの式から求めることができる。
  平均透水孔径(m)={32ηLμ/(εP)}0.5
 ここで、ηは水の粘度(Pa・s)、Lは多孔膜の厚み(m)、μは見かけの流速でありμ(m/s)=流量(m/s)/流路面積(m)である。また、εは気孔率、Pは圧力(Pa)である。
 ここで、多孔膜の気孔率εとは、アルキメデス法により求めた開気孔率をいい、以下の式により求めることができる。
  気孔率ε(%)=(ρ1-ρ2)×100
ρ1は、飽水密度(g/cm)、すなわち、開気孔内が水を含んで飽和した状態のサンプルの密度を表す。ρ2は、乾燥密度(g/cm)、すなわち、開気孔内から水が十分に除去されて乾燥した状態のサンプルの密度を表す。ρ1及びρ2は、それぞれの状態のサンプルについて、w:重量(g)、d:厚み(cm)、s:厚み方向に垂直な面の面積(cm)を測定し、ρ=w/(d×s)として求めることができる。
 多孔膜サンプルの水接触面が低吸水性であって、サンプルが水を含んだ状態と乾燥状態との間で厚みや面積が有意に変化しない場合には、d及びsは一定値とみなすこともできる。
 気孔率εは、具体的に、25℃に設定した室内で次の手順で測定することができる。純水で洗浄した多孔膜を3cm×3cmの大きさで3枚に切出して、シックネスゲージで厚みdを測定する。これら測定サンプルを純水中に24時間浸し、余分な水分を取り除いて重量w1(g)を測定する。続いて、取り出したサンプルを50℃に設定された乾燥機で12時間以上静置して乾燥させて、重量w2(g)を測定する。そして、w1、w2、及びdの値から気孔率を求める。3枚のサンプルについて気孔率を求め、それらの算術平均値を多孔膜の気孔率εとする。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔膜の最大孔径は、特に限定されないが、ガス遮断性及び閉塞防止の観点から、例えば0.05μm以上4.0μm以下とすることができ、0.5μm以上3.0μm以下であることが好ましく、0.8μm以上2.0μm以下であることがより好ましい。
 最大孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定することができる。まず、隔膜として使用する多孔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとする。このサンプルを純水で濡らし、多孔膜の孔内に純水を含浸させ、これを測定用の耐圧容器にセットする。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始する。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から気泡が連続して発生してくるときの窒素圧力を、バブルポイント圧力とする。最大孔径はヤング-ラプラスの式を変形させた下記バブルポイント式から求めることができる。
  最大孔径(m)=4γcosθ/P
 ここで、γは水の表面張力(N/m)、cosθは多孔膜表面と水の接触角(rad)、Pはバブルポイント圧力(Pa)である。
 なお、多孔膜の平均孔径と最大孔径との差が小さい程、多孔膜の分離性能は高くなる傾向にある。特に、電解においては、多孔膜内の孔径のばらつきを小さく保てる為、ピンホールが発生して両電極室から発生するガスの純度が低下する可能性を低くできる。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔膜の表面開口率は、特に限定されないが、ガス遮断性及び電解液透過性の観点から、20%以上80%以下であることが好ましく、25%以上75%以下であることがより好ましく、30%以上70%以下であることが更に好ましい。
 多孔膜の表面開口率は、以下の方法で求めることができる。多孔膜表面の画像をSEMで撮像する。次に、この画像を画像解析ソフト(三谷商事社製、「WinROOF」)で2値化し、孔と孔以外の部分とを分ける。続いて、得られた2値化像を分析し画像全体に対する孔の割合を求め、これを表面開口率とする。より具体的には、後述する実施例で説明する方法で求めることができる。
 本実施形態(例えば、上記[1]~[19]の形態等)において、多孔膜の水接触角は、特に限定されないが、ガス遮断性及び電解液透過性の観点から、10°以上110°以下とすることができ、20°以上100°以下であることが好ましく、30°以上90°以下であることがより好ましい。水接触角がこの範囲であると、電極で発生したガスが電極表面へ付着して電極反応を阻害するのを防止することができ、電解効率を一層高めることができる。
 多孔膜の水接触角は、多孔膜の表面を構成する高分子等の材料の親水性を制御することにより、制御することができる。
 多孔膜の水接触角は、電極の水接触角と同様に求めることができる。
 多孔膜の平均透水孔径、最大孔径、平均孔径、表面開口率、水接触角は、例えば、後述の多孔膜の製造方法で製造することによって制御することができる。
 上記多孔膜(隔膜)において、無機粒子の平均一次粒径の範囲、無機粒子の平均二次粒径の範囲、無機粒子の化学組成の範囲、透水孔径の範囲、最大孔径の範囲、表面開口率の範囲、水接触角の範囲は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 また、上記多孔膜(隔膜)、上記多孔体電極は、本発明の効果を好適に得るうえで、それぞれ個別に選択されてもよい。
 本実施形態において隔膜として使用できる多孔膜としては、高分子多孔膜、無機多孔膜、織布、不織布等が挙げられる。これらは公知の技術により作製することができる。
 高分子多孔膜の製法例としては、相転換法(ミクロ相分離法)、抽出法、延伸法、湿式ゲル延伸法等が挙げられる。相転換法(ミクロ相分離法)とは、高分子材料を良溶媒に溶解して得られた溶液により製膜し、これを貧溶媒中で相分離させることで多孔質化する方法(非溶媒誘起相分離法)である。抽出法とは、高分子材料に炭酸カルシウム等の無機粉体を混練して製膜した後に、該無機粉体を溶解抽出して多孔質化する方法である。延伸法とは、所定の結晶構造を有する高分子材料のフィルムを所定の条件で延伸して開孔させる方法である。湿式ゲル延伸法とは、高分子材料を流動パラフィン等の有機溶剤で膨潤させてゲル状シートとし、これを所定の条件で延伸したのち有機溶剤を抽出除去する方法である。
 無機多孔膜の製法例としては、焼結法等が挙げられる。焼結法は、プレスや押出しによって得られた成形物を焼き、微細孔を残したまま一体化させる方法である。
 不織布の製法例としては、スパンボンド法、電界紡糸(エレクトロスピニング)法等が挙げられる。スパンボンド法とは、溶融したペレットから紡糸された糸を熱ロールで圧着し、シート状に一体化させる方法である。電界紡糸(エレクトロスピニング)法とは、溶融ポリマーの入ったシリンジとコレクター間に高電圧を印加しながら射出することで、細く伸長した繊維をコレクター上に集積させる方法である。
---高分子材料---
 高分子材料としては、例えば、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリビニリデンフロライド、ポリカーボネート、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・エチレン共重合体、ポリビニリデンフルオライド、ポリテトラフルオロエチレン、パーフルオロスルホン酸、パーフルオロカルボン酸、ポリエチレン、ポリプロピレン、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾール、ポリケトン、ポリイミド、ポリエーテルイミド等が挙げられる。これらの中でも、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、であることが好ましく、ポリスルホンであることがより好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 高分子材料として、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンを用いることで、高温、高濃度のアルカリ溶液に対する耐性が一層向上する。
 また、例えば、非溶媒誘起相分離法等の方法を用いることで、隔膜を一層簡便に製膜することができる。特にポリスルホンであれば、孔径を一層精度よく制御することができる。
 ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンは架橋処理が施されていてもよい。かかる架橋処理が施されたポリスルホン、ポリエーテルスルホン、ポリフェニルスルホンの重量平均分子量は、標準ポリスチレン換算の重量平均分子量として、4万以上15万以下であることが好ましい。架橋処理の方法は、特に限定されないが、電子線やγ線等の放射線照射による架橋や架橋剤による熱架橋等が挙げられる。なお、標準ポリスチレン換算の重量平均分子量はGPCで測定することができる。
 上記した高分子材料は、市販品を用いることもできる。ポリスルホンとしては、例えば、BASF社の「Ultrason S PSU(登録商標)」、ソルベイアドバンストポリマーズ社の「ユーデル(登録商標)」等が挙げられる。ポリエーテルスルホンとしては、例えば、BASF社の「Ultrason E PES(登録商標)」、ソルベイアドバンストポリマーズ社の「レーデル A(登録商標)」等が挙げられる。ポリフェニルスルホンとしては、例えば、BASF社の「Ultrason P PPSU(登録商標)」、ソルベイアドバンストポリマーズ社の「レーデル R(登録商標)」等が挙げられる。ポリフェニレンサルファイドとしては、例えば、東レ社の「トレリナ(登録商標)」等が挙げられる。ポリテトラフルオロエチレンとしては、三井デュポンフロロケミカル社の「テフロン(登録商標)」、ダイキン社の「ポリフロン(登録商標)」、旭硝子社の「フロオン(登録商標)」等が挙げられる。
 多孔膜の厚みは、特に限定されないが、200μm以上700μm以下であることが好ましい。多孔膜の厚みが、250μm以上であれば、一層優れたガス遮断性が得られ、また、衝撃に対する多孔膜の強度が一層向上する。一方で、多孔膜の厚みが、700μm以下であれば、運転時に孔内に含まれる電解液の抵抗によりイオンの透過性を阻害されにくく、一層優れたイオン透過性を維持することができる。特に、高分子樹脂が、ポリスルホン、ポリエーテルスルホン及びポリフェニルスルホンからなる群より選ばれる少なくとも1種を含むものである場合に、かかる効果は一層向上する。
--多孔性支持体--
 隔膜として多孔膜を用いる場合、多孔膜は多孔性支持体と共に用いてよい。好ましくは、多孔膜が多孔性支持体を内在した構造であり、より好ましくは、多孔性支持体の両面に多孔膜を積層した構造である。また、多孔性支持体の両面に対称に多孔膜を積層した構造であってもよい。
 隔膜の強度を一層向上する目的で、多孔性支持体を含むことができる。例えば、機械的なストレスによる、隔膜の切れや破れや伸び等といった不具合を防止できる。また、多孔性支持体の両面に多孔膜が積層されている構造では、多孔性支持体の片面に傷や穴(ピンホール等)が生じた場合でも、多孔性支持体の他方に積層された多孔膜によりガス遮断性を担保することができる。多孔性支持体の両面に、対称に多孔膜が積層される構造では、膜のカール等を効果的に防止でき、運搬時や膜設置時等における取り扱い性が一層向上する。
 多孔性支持体の材質は、特に限定されないが、隔膜における電解液のイオン透過性を実質的に低減させない材質であることが好ましい。多孔性支持体の材質は、特に限定されないが、例えば、ポリフェニレンサルファイド、ポリエチレン、ポリプロピレン、フッ素系樹脂、ポリパラフェニレンベンゾビスオキサゾール、ポリケトン、ポリイミド、ポリエーテルイミド等が挙げられる。これらの中でも、ポリフェニレンサルファイドを含むことが好ましい。ポリフェニレンサルファイドを用いることで、高温、高濃度のアルカリ溶液に対しても優れた耐性を示し、また、水の電気分解時に陽極から発生する活性酸素に対しても化学的に優れた安定性を示す。さらに、織布や不織布等のような様々に形態に加工し易いので、使用目的や使用環境に即して好適に調節することができる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 多孔性支持体としては、例えば、メッシュ、多孔質膜、不織布、織布、不織布及びこの不織布に内在する織布とを含む複合布等が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。多孔性支持体のより好適な態様としては、例えば、ポリフェニレンサルファイドのモノフィラメントで構成されるメッシュ基材、又は不織布及び該不織布内に内在する織布とを含む複合布等が挙げられる。
 多孔性支持体が、メッシュであれば、十分な開口度を有するため、隔膜のイオン透過性をより高いレベルで維持できる。また、機械的強度が高いため、隔膜の破断や寸法の変化を一層効果的に抑制できる(機械的強度、寸法安定性)。さらに、アンカー効果によって多孔膜から多孔性支持体が剥離することも効果的に抑制できる。モノフィラメントである場合の繊維径は、特に限定されないが、30μm以上600μm以下であることが好ましい。モノフィラメントの繊維径の下限が、30μm以上であれば、十分な機械的強度が得られ、多孔膜が一層破れにくくなる。また、繊維径の上限が600μm以下であれば、メッシュ表面の凸凹をより一層抑制でき、多孔膜表面の平滑性を一層向上させることができる。
<隔膜の製造方法>
 隔膜の製造方法は、特に限定されないが、非溶媒誘起相分離法(「湿式相分離法」とも称される)で行うことが好ましい。以下、非溶媒誘起相分離法による製造方法の例を記載する。
 非溶媒誘起相分離法による製造方法は、以下の工程を含む:
 高分子樹脂と、溶媒と、任意により無機粒子とを含有する溶液を調製する工程、
 前記溶液を多孔性支持体の片面又は両面に塗工し、多孔性支持体上に塗膜を形成する工程、
 前記多孔性支持体上の塗膜を、前記高分子樹脂の貧溶媒の蒸気を含む気体に晒す工程、
 前記多孔性支持体上の塗膜を、前記高分子樹脂の貧溶媒を含む凝固浴に浸漬させ、多孔膜を形成する工程。
 本実施形態の作用効果が得られる範囲であれば、上記各工程はこの順に行うことに限定されるものではなく、必要に応じて同時に行ってもよいし、連続的に行ってもよい。
 溶媒は、高分子樹脂を溶解する性質を有するものであり、使用する高分子樹脂について高い溶解性を有する良溶媒であることが好ましい。この溶媒は、使用する高分子樹脂の種類等に応じて適宜選択することができる。かかる溶媒としては、特に限定されないが、例えば、N-メチル-2-ピロリドン、N、N-ジメチルアセトアミド、N、N-ジメチルホルムアミド、ジメチルスルホオキシド等が挙げられる。これらの溶媒は、1種単独で用いてもよいし、2種以上を併用してもよい。これらの中で、種々の樹脂に対する溶解性、不揮発性、及び溶媒の管理の容易性等の観点から、N-メチル-2-ピロリドンがより好ましい。
 貧溶媒は、高分子樹脂を実質的に溶解しない溶媒であり、全く溶かさない非溶媒であることが好ましい。貧溶媒は、使用する高分子樹脂の種類に応じて適宜選択することができる。貧溶媒としては、特に限定されないが、例えば、水、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール等が挙げられ、これらの混合液であってもよい。
 多孔膜の表面及び内部の孔径を制御するには、例えば、溶液を多孔性支持体に塗工し、多孔性支持体上に塗膜を形成する工程と、多孔性支持体上の塗膜を、高分子樹脂の貧溶媒を含む凝固浴に浸漬させ、多孔膜を形成する工程との間に、塗膜を、高分子樹脂の貧溶媒の蒸気を含む気体に晒す工程を行うことが好ましい。
 なお、多孔膜の表面及び内部の孔径とは、多孔膜の表面及び裏面の平均孔径、表面開口率、平均透水孔径、最大孔径、並びに気孔率等を包含するものとする。
 多孔性支持体に塗工した塗膜が貧溶媒の蒸気を含む気体に晒されると、蒸気に晒されている表面から、微量な貧溶媒が塗膜表面内に浸透する。貧溶媒が浸透したところは非溶媒誘起相分離が始まり、凝固浴に浸漬されるまでの間に相分離が十分に進行する。塗膜を、貧溶媒の蒸気を含む気体に晒すことなく、高分子樹脂の貧溶媒を含む凝固浴に浸漬させると、塗膜表面の相分離がほとんど進行していない状態で、塗膜表面が固化するため、表面の孔径は非常に小さなものとなる。これにより、隔膜内へのイオン透過性が悪くなり、結果として電圧損失が増大する傾向となる。また塗膜内部の高分子樹脂の溶媒と貧溶媒の置換は、塗膜表面に形成された小さな孔から行われるため、内部が固化するまでの置換に長い時間を有することとなる。これにより、塗膜内部の相分離時間は非常に長いものとなり、膜内部に大きなボイドが形成され易くなる。膜内に大きなボイドが形成されると、ガス遮断性が失われたり、膜が脆くなったりする問題が生じる。この点、塗膜表面に貧溶媒の蒸気を含む気体を晒し、塗膜表面に貧溶媒を浸透させる工程を有することで、多孔膜の表面の平均孔径を上記下限値以上に制御しやすいという観点等から好ましい。また、多孔膜の表面の孔径は、塗膜に浸透させる蒸気量等を調整することで制御できる。
 蒸気の発生方法としては、例えば、塗工した溶液を浸漬する凝固浴の温度上げて蒸気を発生させてもよいし、凝固浴とは別に蒸気を発生させるための蒸気発生浴を用いてもよい。蒸気発生の温度は、特に限定されないが、30℃以上100℃以下であることが好ましい。蒸気発生の温度が30℃以上であれば、塗工した溶液に浸透して相分離を進行できる量の蒸気を発生させ易い。
 塗膜表面を貧溶媒の蒸気を含む気体に晒す時間は、特に限定されないが、3秒以上180秒以下であることが好ましい。塗膜表面を貧溶媒の蒸気を含む気体に晒す時間は、塗膜の組成、蒸気発生浴の温度等によって適宜好適な条件を選択できる。通常、3秒以上であれば、多孔膜表面の孔径が小さくなり過ぎず、多孔膜の表面の平均孔径を上記下限値以上に制御しやすくなるという観点等から好ましい。これにより隔膜のイオン透過性が良好で、運転時の電圧損失の増大を一層効果的に抑制できる。また、多孔膜内部に大きなボイドが形成されにくく、高いガス遮断性を維持できる。180秒以下であれば、蒸気発生浴の温度が高い場合でも、貧溶媒の蒸気を含む気体により膜が固化しづらく、また多孔膜表面の孔径が大きくなり過ぎず、多孔膜の表面の平均孔径を上記上限値以下に制御しやすくなるという観点等から好ましい。これにより多孔膜の孔内等からの無機粒子の欠落を一層効果的に抑制できる。
 多孔性支持体上の塗膜を凝固浴に浸漬させる時間は、特に限定されないが、30秒以上600秒以下であることが好ましい。塗膜を凝固浴に浸漬させる時間は、塗膜の組成、貧溶媒の組成、凝固浴の温度等によって適宜好適な条件を選択できる。通常、30秒以上5600秒以下であれば、多孔性支持体上の塗膜を十分に凝固させることができる。
 凝固浴の温度は、特に限定されないが、10℃以上60℃以下であることが好ましい。凝固浴の温度は、塗膜の組成、貧溶媒の組成、凝固浴の温度等によって適宜好適な条件を選択できるが、通常、10℃以上60℃以下であれば、得られる多孔膜の表面及び内部の孔径を所望の範囲に制御することができる。
 多孔膜の表面及び内部の孔径を制御する方法としては、特に限定されないが、例えば、無機粒子と高分子樹脂とその溶媒を含有する溶液に、孔径を制御するための添加剤を加える方法等も挙げられる。これにより該溶液が高分子樹脂の貧溶媒を含む凝固浴に接触した際に生じる非溶媒誘起相分離の速度を変化させる、あるいは、高分子樹脂を凝固させた後に、添加剤を溶出させることにより、多孔膜における平均透水孔径や最大孔径を制御することができる。孔径を制御するための添加剤としては、特に限定されないが、以下の有機化合物や無機化合物等が挙げられる。
 有機化合物としては、上述した溶媒と高分子樹脂の貧溶媒の両方に溶解するものを用いることが好ましい。有機化合物は、使用する溶媒や貧溶媒の種類等を踏まえて適宜好適なものを選択することができるが、例えば、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリエチレンイミン、ポリアクリル酸、デキストラン等が好ましい。これらの中で、特に溶媒との相溶性の観点から、ポリエチレングリコール、ポリエチレンオキサイド、ポリビニルピロリドン等がより好ましい。さらに、少量の添加量であっても相分離速度を大幅に変化させること等が可能といった観点から、分子量が1万~5万のポリエチレングリコール、分子量が5万~30万のポリエチレンオキサイド、分子量が3万~100万のポリビニルピロリドン等が更に好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 無機化合物としては、上述した溶媒及び高分子樹脂の貧溶媒の両方に溶解するものを用いることが好ましい。無機化合物は、使用する溶媒や貧溶媒の種類等を踏まえて適宜好適なものを選択することができるが、例えば、塩化カルシウム、塩化マグネシウム、塩化リチウム、硫酸バリウム等が好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 また、添加剤を用いずに、凝固浴における貧溶媒の種類、濃度及び温度によって相分離速度を制御し、多孔膜の表面及び内部の孔径を制御することも可能である。一般的には、相分離速度が速いと平均孔径が小さくなり、相分離速度が遅いと平均孔径が大きくなる傾向にある。また、高分子樹脂とそれらの溶媒を含有する溶液に、高分子樹脂の貧溶媒を添加することも、相分離速度を変化させて、多孔膜における平均孔径を制御することに有効である。
 高分子樹脂、無機粒子、及びそれらの溶媒を含有する溶液における高分子樹脂の含有量は、5質量%以上25質量%以下であることが好ましく、10質量%以上15質量%以下であることがより好ましい。高分子樹脂の含有量を上記上限値以下とすることで、多孔膜の機械的強度が一層向上する。高分子樹脂の含有量を上記下限値以上とすることで、溶液の高粘度化を抑制でき、製膜性が一層向上するので、多孔膜の厚みを一層均一なものとすることができる。
 溶液における無機粒子の含有量は、10質量%以上60質量%以下であることが好ましく、20質量%以上50質量%以下であることがより好ましく、25質量%以上40質量%以下であることがさらに好ましい。無機粒子の含有量を上記上限値以下とすることで、溶液の高粘度化を抑制でき、製膜性が一層向上するので、多孔膜の厚みを一層均一なものにできる。無機粒子の含有量を上記下限値以上とすることで、多孔膜の親水性が一層向上する。
 溶液における溶媒の含有量は、30質量%以上80質量%以下であることが好ましく、40質量%以上70質量%以下であることが好ましく、45質量%以上60質量%以下であることがより好ましい。溶媒の含有量を上記上限値以下とすることで、溶液の高粘度化を抑制でき、塗工時のむらや斑も一層抑制できる。溶媒の含有量を上記下限値以上とすることで、高分子樹脂をより溶解させることができるとともに、無機粒子を溶液中に一層分散させることができる。
 溶液を調製する方法は、特に限定されていないが、例えば次の様な方法を用いることができる。ボールミルのポット内に高分子樹脂の溶媒と無機粒子を投入した後、ボールミルのポットを撹拌し、無機粒子を高分子樹脂の溶媒に細分化しながら分散させる。その後、得られた液からボールを濾過により分離する。その後、無機粒子を分散した溶液を撹拌翼で撹拌しながら、高分子樹脂を少量ずつ添加して溶解させ、製膜溶液を調節する。また必要があれば添加剤を添加して溶液を調製することもできる。この他、溶液の調節は、例えば、ボールミルのポット内に高分子樹脂の溶媒と無機粒子と添加剤を一緒に投入した後、ボールミルのポットを撹拌することや、高分子樹脂の溶媒に添加剤を溶解させることでも可能である。
 高分子樹脂、無機粒子、及びそれらの溶媒を含有する溶液を多孔性支持体に塗工する方法は、特に限定されない。例えば、多孔性支持体上に溶液を供給した後、コーターを用いて、目的とした塗工量以外の部分を掻き取る方法、溶液に多孔性支持体を浸漬させた後、目的とした塗工量以外の部分をロールで絞り取る方法、溶液に多孔性支持体を浸漬させた後、目的とした塗工量以外の部分をコーターで掻き取る方法、Tダイにより塗工液を多孔性支持体にフィードして塗工する方法等が挙げられる。また、多孔膜の厚みの調節としては、特に限定されるものではないが、例えば溶液を塗工するコーターと多孔性支持体の間隔を調節する方法や、Tダイにより塗工される液量を調節する方法が用いられる。
 凝固浴は貧溶媒以外に、上記した溶媒を加えることにより、相分離速度を制御して、多孔膜における表面及び内部の孔径を制御することができる。例えば、溶媒を凝固浴に加えることにより、塗膜内の溶媒と凝固浴内の貧溶媒の置換速度を遅くすることができ、これにより固化するまでの相分離時間を長くすることができ、孔径を大きくすることができる。溶媒としては、上記したものを使用することができる。貧溶媒は凝固浴内に30体積%以上あれば、非溶媒誘起相分離を問題なく進行させることができるが、それ以下の量になると、高分子樹脂の固化が不十分となる場合がある。よって、凝固浴中に含まれる貧溶媒の割合は30体積%以上が好ましい。
 また、多孔膜は多孔性支持体の孔内に一部入り込み、一体となっていることが好ましい。これらが一体となっていれば、いわゆるアンカー効果により、多孔膜から多孔性支持体の剥離を一層効果的に抑制できる。
 多孔膜を製膜した後に、更に熱処理を施してもよい。熱処理を行うと、高分子樹脂の高分子鎖を結晶化又は固定化させて、多孔膜の構造を一層安定化することができる。熱処理の方法としては、多孔膜を湯浴に浸漬させる方法;高温の金属板で多孔膜を挟み、プレスする方法;高温のロールで多孔膜を挟み、プレスする方法等が挙げられる。熱処理温度は、特に限定されないが、80℃以上210℃以下であることが好ましく、180℃以上210℃以下であることがより好ましい。熱処理温度が80℃以上であれば、水電解における使用温度より高い温度となるため、隔膜とした際に、高分子樹脂の高分子鎖が再び動き始めて多孔膜の構造が不安定となるといった不具合を効果的に抑制できる。熱処理温度が210℃以下であれば、高分子の熱劣化を効果的に抑制できる。熱処理温度が180℃以上であれば、通常汎用される高分子樹脂のガラス転移点温度以上の温度であるため、高分子鎖を結晶化又は固定化して、より優れた耐熱性を有する多孔膜とすることができる。
 本実施形態のアルカリ水電解用複極式電解槽では、特に限定されないが、隔膜4が陽極2a及び陰極2cと接触した、いわゆる「ゼロギャップ構造」が形成されていることが好ましい。「ゼロギャップ構造」は、電極全面にわたり、陽極と隔膜とが互いに接触し、且つ、陰極と隔膜とが互いに接触している状態、又は、電極全面にわたり、極間距離が隔膜の厚みとほぼ同じとなる距離で、陽極と隔膜との間及び陰極と隔膜との間に隙間のほとんど無い状態、に保つことのできる構造である。
 アルカリ水電解において、隔膜と、陽極や陰極との間に隙間がある場合、この部分には電解液の他に電解で発生した大量のガスバブルが滞留することで、電気抵抗が非常に高くなる。
 一方、ゼロギャップ構造を形成すると、発生するガスを電極の細孔を通して電極の隔膜側とは反対側に素早く逃がすことによって、陽極と陰極の間隔(以下、「極間距離」ともいう。)を低減しつつ、電解液による電圧損失や電極近傍におけるガス溜まりの発生を極力抑え、電解電圧を低く抑制することができる。
 ゼロギャップ構造を構成する手段は、既にいくつか提案されており、例えば、陽極と陰極を完全に平滑に加工して、隔膜を挟むように押し付ける方法や、電極と隔壁との間にバネ等の弾性体を配置し、この弾性体で電極を支持する方法が挙げられる。
 なお、本実施形態のアルカリ水電解用複極式電解槽において、ゼロギャップ構造を構成する手段の好ましい実施形態については、後述する。
(アルカリ水電解用複極式電解槽)
 以下、上述した陰極、陽極、隔膜を備える、本実施形態のアルカリ水電解用複極式電解槽の一例について、図を参照しながら説明する。
 なお、本実施形態のアルカリ水電解用複極式電解槽は、下記で説明するものに限定されるものではない。また、アルカリ水電解用複極式電解槽に含まれる、陽極、陰極及び隔膜以外の部材も、下記で挙げられるものに限定されず、公知のものを適宜選択、設計等して用いることができる。
 図1に、本実施形態のアルカリ水電解用複極式電解槽の一例の全体についての側面図を示す。
 本実施形態のアルカリ水電解用複極式電解槽は、図1に示すとおり、陽極と、陰極と、陽極と陰極とを隔離する隔壁と、隔壁を縁取る外枠とを備える複数の電解セル65が隔膜を挟んで重ね合わせられている複極式電解槽50である。
 本実施形態のアルカリ水電解用複極式電解槽では、特に限定されないが、隔膜4が陽極2a及び陰極2cと接触したゼロギャップ構造が形成されていることが好ましい。
((複極式エレメント))
 一例のアルカリ水電解用複極式電解槽に用いられる複極式エレメント60は、陽極2aと陰極2cとを隔離する隔壁を備え、隔壁を縁取る外枠を備えている。より具体的には、隔壁は導電性を有し、外枠は隔壁の外縁に沿って隔壁を取り囲むように設けられている。
 本実施形態では、図1に示すとおり、複極式電解槽50は複極式エレメント60を必要数積層することで構成されている。
 図1に示す一例では、複極式電解槽50は、一端からファストヘッド51g、絶縁板51i、陽極ターミナルエレメント51aが順番に並べられ、更に、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7、複極式エレメント60が、この順番で並べて配置される。このとき、複極式エレメント60は、陽極ターミナルエレメント51a側に陰極2cを向けるよう配置する。陽極側ガスケット部分7から複極式エレメント60までは、設計生産量に必要な数だけ繰り返し配置される。陽極側ガスケット部分7から複極式エレメント60までを必要数だけ繰り返し配置した後、再度、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7を並べて配置し、最後に陰極ターミナルエレメント51c、絶縁板51i、ルーズヘッド51gをこの順番で配置する。複極式電解槽50は、全体をタイロッド51r(図1参照)や油圧シリンダー方式等の締め付け機構で締め付けることによりー体化され、複極式電解槽50となる。
 複極式電解槽50を構成する配置は、陽極2a側からでも陰極2c側からでも任意に選択でき、上述の順序に限定されるものではない。
 図1に示すように、複極式電解槽50では、複極式エレメント60が、陽極ターミナルエレメント51aと陰極ターミナルエレメント51cとの間に配置され、隔膜4は、陽極ターミナルエレメント51aと複極式エレメント60との間、隣接して並ぶ複極式エレメント60同士の間、及び複極式エレメント60と陰極ターミナルエレメント51cとの間に配置されている。
 また、本実施形態における複極式電解槽50では、隔壁と外枠と隔膜4とにより、電解液が通過する電極室が画成されている。
 複極式電解槽50には、通常、電解液を配液又は集液する管であるヘッダーが取り付けられ、隔壁の端縁にある外枠のうちの下方に、陽極室に電解液を入れる陽極入口ヘッダーと、陰極室に電解液を入れる陰極入口ヘッダーとを備えている。また、同様に、隔壁の端縁にある外枠のうちの上方に、陽極室から電極液を出す陽極出口ヘッダーと、陰極室から電解液を出す陰極出口ヘッダーとを備えている。
 なお、図1に示す複極式電解槽50に取り付けられるヘッダーの配設態様として、代表的には、内部ヘッダー型と外部ヘッダー型とがあるが、本発明では、いずれの型を採用してもよく、特に限定されない。
 なお、図1に示す例では、隔壁、陽極2a、陰極2cがいずれも所定の厚みを有する板状の形状であるが、本発明はこれに限定されることなく、断面において全部又は一部がジグザグ状、波状となる形状であってもよく、端部が丸みを帯びている形状であってもよい。
((ゼロギャップ構造))
 ゼロギャップ型セルにおける複極式エレメント60では、極間距離を小さくする手段として、電極2と隔壁との間に弾性体であるバネを配置し、このバネで電極2を支持する形態をとることが好ましい。なお、このような弾性体を用いた形態を採用する場合には、電極2が隔膜4に接する圧力が不均一にならないように、バネの強度、バネの数、形状等必要に応じて適宜調節する必要がある。
 また弾性体を介して支持した電極2の対となるもう一方の電極2の剛性を強くすること(例えば、陽極の剛性を陰極の剛性よりも強くすること)で、押しつけても変形の少ない構造としている。―方で、弾性体を介して支持した電極2については、隔膜4を押しつけると変形する柔軟な構造とすることで、電解槽50の製作精度上の公差や電極2の変形等による凹凸を吸収してゼロギャップ構造を保つことができる。
(アルカリ水電解装置)
 本実施形態のアルカリ水電解用複極式電解槽を用いることができる、アルカリ水電解装置の一例を図2に示す。
 アルカリ水電解装置70は、本実施形態のアルカリ水電解用複極式電解槽50に加えて、送液ポンプ71、気液分離タンク72、水補給器73以外にも、整流器74、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、圧力制御弁80などを備えてよい。
(アルカリ水電解)
 本実施形態のアルカリ水電解用複極式電解槽を備えたアルカリ水電解装置に電解液を循環させて電解を行うことにより、高密度電流運転の場合でも、優れた電解効率及び高い発生ガス純度を維持して、高効率なアルカリ水電解を実施することができる。
 本実施形態のアルカリ水電解に用いることができる電解液としては、アルカリ塩が溶解されたアルカリ性の水溶液としてよく、例えば、NaOH水溶液、KOH水溶液等が挙げられる。
 アルカリ塩の濃度としては、特に限定されないが、20質量%~50質量%が好ましく、25質量%~40質量%がより好ましい。
 中でも、イオン導電率、動粘度、冷温化での凍結の観点から、25質量%~40質量%のKOH水溶液が特に好ましい。
 電解セル内にある電解液の温度は、特に限定されないが、80℃~130℃であることが好ましい。
 上記温度範囲とすれば、高い電解効率を維持しながら、ガスケット、隔膜等の電解装置の部材が熱により劣化することを効果的に抑制することができる。
 電解液の温度は、85℃~125℃であることがさらに好ましく、90℃~115℃であることが特に好ましい。
 本実施形態のアルカリ水電解において、電解セルに与える電流密度としては、特に限定されないが、4kA/m~20kA/mであることが好ましく、6kA/m~15kA/mであることがさらに好ましい。
 特に、変動電源を使用する場合には、電流密度の上限を上記範囲にすることが好ましい。
 本実施形態のアルカリ水電解において、電解セル内の圧力としては、特に限定されないが、3kPa~1000kPaであることが好ましく、3kPa~300kPaであることがさらに好ましい。
 電極室当たりの電解液の流量その他の条件は、アルカリ水電解用複極式電解層の各構成に応じて適宜制御すればよい。
(水素製造方法)
 本実施形態の水素製造方法は、アルカリを含有する水を複極式電解槽により水電解し、水素を製造するものであり、本実施形態の複極式電解槽、本実施形態の電解装置、本実施形態の水電解方法を用いて実施されてよい。
 複極式電解槽は、陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備え、陽極及び陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である。
 本実施形態の水素製造方法における、本実施形態の電解槽の詳細、本実施形態の電解装置の詳細、本実施形態の水電解方法の詳細は、前述のとおりである。
 以上、図面を参照して、本発明の実施形態のアルカリ水電解用複極式電解槽、アルカリ水電解装置及びアルカリ水電解方法について例示説明したが、本発明のアルカリ水電解用複極式電解槽、アルカリ水電解装置及びアルカリ水電解方法は、上記の例に限定されることはなく、上記実施形態には、適宜変更を加えることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
 実施例及び比較例で使用した電極(陽極、陰極)及び隔膜は、下記の通りに作製した。
[実施例1]
(陽極)
 実施例1の陽極として、下記の手順で作製した多孔体電極を使用した。
 粒径が0.1~2.0μmである酸化ニッケル粉末100質量部、アラビアゴム1.50質量部、カルボキシルメチルセルロース0.7質量部、ラウリル硫酸ナトリウム0.001質量部、及び水100質量部を混合・攪拌して、懸濁液を調整した。噴霧乾燥造粒機を用いて、懸濁液から、粒径が2~10μmである造粒物を調製した。
 造粒成形物を、プラズマ溶射法によって導電性基材の両面に吹き付けた。導電性基材としては、予めブラスト処理を施したニッケルエキスパンド型基材を用いた。メッシュの長目方向の中心間距離(LW)は4.5mm、基材メッシュの短目方向の中心間距離(SW)は3.2mmであった。基材の厚みは1mmであった。プラズマ溶射法では、プラズマガスとして、アルゴンと窒素とを1:0.8の割合で混合したガスを用いた。導電性基材の表面を被覆する触媒層の前駆体の厚みは、240μmに調整した。導電性基材の裏面を被覆する触媒層の前駆体の厚みは、160μmに調整した。
 この導電性基材を、石英管中に設置した。この石英管を、管状炉内に差し込んで、石英管内を200℃に加熱しつつ、石英管内へ水素気流を2時間供給し続けることにより、触媒層の前駆体を還元した。
 以上の工程により、導電性基材と、導電性基材を被覆する触媒層と、を備える多孔体電極を得た。
 なお、当該陽極を以下及び表1において「陽極1」と表記する。
(陰極)
 実施例1の陰極として、下記の手順で作製した電極を使用した。
 導電性基材として、直径0.15mmのニッケルの細線を40メッシュに編んだ平織メッシュ型基材を用いた。重量平均粒径100μm以下のアルミナ粉を用いてブラストし、次に、6Nの塩酸中にて室温で5分間酸処理した後、水洗し、乾燥させた。
 次に、硝酸パラジウム溶液(田中貴金属製、パラジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)とを、パラジウムと白金のモル比が1:1となるように混合して、第一塗布液を調製した。
 塗布ロールの最下部に上記第一塗布液を入れたバットを設置し、EPDM製の塗布ロールに塗布液をしみこませ、その上部にロールと塗布液とが常に接するようにロールを設置し、さらにその上にPVC製のローラーを設置して、該導電性基材に塗布液を塗布した(ロール法)。塗布液が乾燥する前に手早く、2つのEPDM製スポンジロールの間にこの導電性基材を通過させて、導電性基材のメッシュの交点に溜まる塗布液を吸い取って除いた。その後、50℃で10分間乾燥させて塗布膜を形成した後、マッフル炉を用いて500℃で10分間の加熱焼成を行って該塗布膜を熱分解させた。このロール塗布、乾燥及び熱分解のサイクルを2回繰り返し、第一層を形成させた。
 次に、塩化イリジウム酸溶液(田中貴金属製、イリジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)を、イリジウムと白金とのモル比が0.73:0.27となるように混合し、第二塗布液を調製した。第一層と同様にロール法にて第二塗布液を上記第一層が形成された基材上へ、塗布、乾燥及び熱分解を行った。乾燥温度は、50℃、熱分解温度は500℃で2回繰り返し、第二層を形成させた。さらに、空気雰囲気中500℃で1時間の後加熱を行い、陰極を作製した。
 なお、当該陰極を以下及び表1において「陰極1」と表記する。
(隔膜)
 実施例1の隔膜として、下記の手順で作製した多孔膜を使用した。
 酸化ジルコニウム(「EP酸化ジルコニウム」、第一稀元素化学工業社製)135gとN-メチル-2-ピロリドン(和光純薬工業社製)240gを、粒径0.5mmのSUSボールが1kg入った容量1000mLのボールミルポットに投入した。これらを回転数70rpmで25℃雰囲気下において3時間攪拌して、分散させて混合物を得た。得られた混合物を、ステンレス製のざる(網目30メッシュ)により濾過し、混合物からSUSボールを除去した。この混合物にポリスルホン(「ユーデル」、ソルベイアドバンストポリマーズ社製)60g及びポリビニルピロリドン(重量平均分子量(Mw)900000、和光純薬工業社製)18gを加え、スリーワンモータを用いて60℃で12時間攪拌して溶解させ、以下の成分組成の塗工液を得た。
ポリスルホン        :20質量部
ポリビニルピロリドン    :6質量部
N-メチル-2-ピロリドン :80質量部
酸化ジルコニウム      :45質量部
 この塗工液を、基材であるポリフェニレンサルファイドメッシュ(くればぁ社製、膜厚280μm、目開き358μm、糸径150μm)の両表面に対して、コンマコータを用いて塗工厚みが各面150μmとなるよう塗工した。塗工後直ちに、塗工液を塗工した基材を、40℃の純水/イソプロパノール混合液(和光純薬工業社製、純水/イソプロパノール=50/50(v/v))を溜めた凝固浴の蒸気下へ2分間晒した。その後直ちに、塗工液を塗工した基材を、凝固浴中へ4分間浸漬した。そして、ポリスルホンを凝固させることで基材表面に塗膜を形成した。その後、純水で塗膜を十分洗浄して多孔膜を得た。
 この多孔膜は、平均透水孔径が0.3μm、最大孔径が1.1μm、厚みが560μmであった。ZrOの平均一次粒径は50nm、平均二次粒径は4.0μmであった。
 なお、当該隔膜を以下及び表1において「隔膜1」と表記する。
[実施例2]
(陽極)
 実施例2の陽極として、酸化ニッケル粉末の粒径を0.2~2.0μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、メッシュの長目方向の中心間距離(LW)が4.5mm、メッシュの短目方向の中心間距離(SW)が3.2mm、基材の厚みが1mmのニッケルエキスパンド型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を以下及び表1中において「陽極2」と表記する。
(陰極)
 実施例2の陰極としては、陰極1を使用した。
(隔膜)
 実施例2の隔膜としては、隔膜1を使用した。
[実施例3]
(陽極)
 実施例3の陽極として、酸化ニッケル粉末の粒径を0.1~1.0μm、アラビアゴムの量を1.00質量部に変え、導電性基材を、予めブラスト処理を施した、穴径1.2mm、穴間ピッチ1.4mm、基材の厚み1mmのニッケルパンチング型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極3」と表記する。
(陰極)
 実施例3の陰極としては、陰極1を使用した。
(隔膜)
 実施例3の隔膜としては、N-メチル-2-ピロリドンの量を210g(70質量部)に、ポリスルホンの量を45g(15質量部)に、ポリビニルピロリドンの量を24g(8質量部)に変えた凝固浴の温度を30℃に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜の平均透水孔径は0.2μm、最大孔径は1.1μm、表面孔径は1.1μm、裏面の表面孔径は0.9μm、厚みは580μm、気孔率は43%であった。ZrOの平均一次粒径は50μm、平均二次粒径は5.5μmであった。そして、水接触角は50°であった。
 なお、当該隔膜を以下及び表1において「隔膜2」と表記する。
[実施例4]
(陽極)
 実施例4の陽極として、酸化ニッケル粉末の粒径を0.2~2μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、穴径が9.0mm、穴間ピッチが11.5mm、基材の厚みが1mmのニッケルパンチング型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極4」と表記する。
(陰極)
 実施例4の陰極としては、陰極1を使用した。
(隔膜)
 実施例4の隔膜としては、隔膜2を使用した。
[実施例5]
(陽極)
 実施例5の陽極として、酸化ニッケル粉末の粒径を0.2~2μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、メッシュの長目方向の中心間距離(LW)が3.0mm、メッシュの短目方向の中心間距離(SW)が2.0mm、基材の厚みが1mmのニッケルエキスパンド型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極5」と表記する。
(陰極)
 実施例5の陰極としては、陰極1を使用した。
(隔膜)
 実施例5の隔膜としては、隔膜2を使用した。
[実施例6]
(陽極)
 実施例6の陽極として、酸化ニッケル粉末の粒径を0.2~2μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、メッシュの長目方向の中心間距離(LW)が6.0mm、メッシュの短目方向の中心間距離(SW)が4.0mm、基材の厚みが1mmのニッケルエキスパンド型基材とした以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極6」と表記する。
(陰極)
 実施例6の陰極としては、陰極1を使用した。
(隔膜)
 実施例6の隔膜としては、隔膜2を使用した。
[実施例7]
(陽極)
 実施例7の陽極として、酸化ニッケル粉末の粒径を0.2~2μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、直径0.40mmのニッケルの細線を9メッシュの目開きで編んだ平織メッシュ型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極7」と表記する。
(陰極)
 実施例7の陰極としては、陰極1を使用した。
(隔膜)
 実施例7の隔膜としては、隔膜1を使用した。
[実施例8]
(隔膜)
 実施例8の隔膜として、ポリスルホンの量を45g(15質量部)に、ポリビニルピロリドンの量を36g(12質量部)に、凝固浴の温度を30℃に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜は、平均透水孔径が0.8μm、最大孔径が2.5μm、厚みが480μmであった。ZrOの平均一次粒径は50nm、平均二次粒径は4.0μmであった。
 なお、当該隔膜を表1において「隔膜3」と表記する。
(陽極)
 実施例8の陽極としては、陽極2を使用した。
(陰極)
 実施例8の陰極として、下記の手順で作製した多孔体電極を使用した。
 導電性基材として、直径0.15mmのニッケルの細線を40メッシュに編んだ平織メッシュ型基材を用いた。重量平均粒径100μm以下のアルミナ粉を用いてブラストし、次に、6Nの塩酸中にて室温で5分間酸処理した後、水洗、乾燥した。
 次に、硝酸パラジウム溶液(田中貴金属製、パラジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)と塩化アルミニウム水溶液(Aldrich製、アルミニウム濃度:100g/L)とを、パラジウムと白金とアルミニウムのモル比が4:5:1となるように混合し、第一塗布液を調製した。
 塗布ロールの最下部に上記第一塗布液を入れたバットを設置し、EPDM製の塗布ロールに塗布液をしみこませ、その上部にロールと塗布液とが常に接するようにロールを設置し、さらにその上にPVC製のローラーを設置して、該導電性基材に塗布液を塗布した(ロール法)。塗布液が乾燥する前に手早く、2つのEPDM製スポンジロールの間にこの導電性基材を通過させて、導電性基材のメッシュの交点に溜まる塗布液を吸い取って除いた。その後、50℃で10分間乾燥させて塗布膜を形成した後、マッフル炉を用いて500℃で10分間の加熱焼成を行って該塗布膜を熱分解させた。このロール塗布、乾燥及び熱分解のサイクルを2回繰り返し、第一層を形成させた。
 次に、塩化イリジウム酸溶液(田中貴金属製、イリジウム濃度:100g/L)とジニトロジアンミン白金硝酸溶液(田中貴金属製、白金濃度:100g/L)を、イリジウムと白金とのモル比が0.73:0.27となるように混合し、第二塗布液を調製した。第一層と同様にロール法にて第二塗布液を上記第一層が形成された基材上へ、塗布、乾燥及び熱分解を行った。乾燥温度は、50℃、熱分解温度は500℃で2回繰り返し、第二層を形成させた。さらに、空気雰囲気中500℃で1時間の後加熱を行った。最後に、40℃の0.5mol/L水酸化ナトリウム水溶液中に1時間浸漬し、多孔体電極としての陰極を作製した。
 なお、当該陰極を表1において「陰極2」と表記する。
 陰極2は、上述のように、予めブラスト処理を施した直径0.15mmのニッケルの細線を40メッシュに編んだ平織メッシュ型基材(目開き0.5mm)を導電性基材として用いた多孔体電極であり、平均孔径160nm、表面開口率40%、二重層容量0.5F/cm、水接触角13°であった。
[実施例9]
(隔膜)
 実施例9の隔膜として、酸化ジルコニウムを酸化チタン(「TTO-51(A)」、石原産業社製)に、ポリスルホンの量を45g(15質量部)に、N-メチル-2-ピロリドンの量を210g(70質量部)に、凝固浴の温度を30℃に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜は、平均透水孔径が0.5μm、最大孔径が1.2μm、厚みが590μmであった。TiOの平均一次粒径は20nm、平均二次粒径は0.5μmであった。
 なお、当該隔膜を表1において「隔膜4」と表記する。
(陽極)
 実施例9の陽極としては、陽極2を使用した。
(陰極)
 実施例9の陰極としては、陰極1を使用した。
[実施例10]
(隔膜)
 実施例10の隔膜として、酸化ジルコニウムを「EP酸化ジルコニウム」(第一稀元素化学工業社製)から「SRP-2酸化ジルコニウム」(第一稀元素化学工業社製)に、ポリスルホンの量を45g(15質量部)に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜は、平均透水孔径が0.4μm、最大孔径が1.3μm、厚みが530μmであった。ZrOの平均一次粒径は250nm、平均二次粒径は8.0μmであった。
 なお、当該隔膜を表1において「隔膜5」と表記する。
(陽極)
 実施例10の陽極としては、陽極2を使用した。
(陰極)
 実施例10の陰極としては、陰極1を使用した。
[実施例11]
(陽極)
 実施例11の陽極として、酸化ニッケル粉末の粒径を0.5~2.5μm、アラビアゴムの量を2.25質量部、造粒物の粒径を10~60μmとした以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極8」と表記する。
(陰極)
 実施例11の陰極としては、陰極1を使用した。
(隔膜)
 実施例11の隔膜としては、隔膜2を使用した。
[実施例12]
(陰極)
 実施例12の陰極としては、導電性基材として、直径0.5mmのニッケルの細線を20メッシュに編んだ平織メッシュ型基材を用いた以外は、実施例8の陰極と同様に作製した多孔体電極を使用した。
 なお、当該陰極を表1において「陰極3」と表記する。
(陽極)
 実施例12の陽極としては、陽極2を使用した。
(隔膜)
 実施例12の隔膜としては、隔膜2を使用した。
[実施例13]
(陽極)
 実施例13の陽極としては、酸化ニッケル粉末の粒径を0.2~2.0μmに、アラビアゴムの量を2.25質量部に、造粒物の粒径を5~50μmに変え、導電性基材を、予めブラスト処理を施した、メッシュの長目方向の中心間距離(LW)が51.0mm、メッシュの短目方向の中心間距離(SW)が11.0mm、基材の厚みが1mmのニッケルエキスパンド型基材に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極9」と表記する。
(陰極)
 実施例13の陰極としては、陰極1を使用した。
(隔膜)
 実施例13の隔膜としては、隔膜2を使用した。
[実施例14]
(隔膜)
 実施例14の隔膜として、ポリスルホンの量を9g(15質量部)に、ポリビニルピロリドンの量を9g(3質量部)に、凝固浴の温度を30℃に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜は、平均透水孔径が0.05μmの測定下限値より小さく、最大孔径が0.3μm、厚みが550μmであった。ZrOの平均一次粒径は50nm、平均二次粒径は4.0μmであった。
 なお、当該隔膜を表1において「隔膜6」と表記する。
(陽極)
 実施例14の陽極としては、陽極2を使用した。
(陰極)
 実施例14の陰極としては、陰極1を使用した。
[比較例1]
(陽極)
 比較例1の陽極として、酸化ニッケル粉末の粒径を0.1~1.0μmに、アラビアゴムの量を0.50質量部に変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極11」と表記する。
(陰極)
 比較例1の陰極としては、陰極1を使用した。
(隔膜)
 比較例1の隔膜としては、隔膜2を使用した。
[比較例2]
(陽極)
 比較例2の陽極として、酸化ニッケル粉末の粒径を0.4~3.0μmに、アラビアゴムの量を2.00質量部に、造粒物の粒径を5~80μmに変えた以外は、実施例1の陽極と同様に作製した多孔体電極を使用した。
 なお、当該陽極を表1において「陽極12」と表記する。
(陰極)
 比較例2の陰極としては、陰極1を使用した。
(隔膜)
 比較例2の隔膜としては、隔膜1を使用した。
[比較例3]
(隔膜)
 比較例3の隔膜として、酸化ジルコニウムを「EP酸化ジルコニウム」から「UEP-100酸化ジルコニウム」(第一稀元素化学工業社製)に、N-メチル-2-ピロリドンの量を240g(80質量部)に、ポリスルホンの量を45g(15質量部)に、凝固浴の温度を30℃に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜は、平均透水孔径が0.4μm、最大孔径が1.4μm、厚みが550μmであった。ZrOの平均一次粒径は15nm、平均二次粒径は0.1μmであった。
 なお、当該隔膜を表1において「隔膜11」と表記する。
(陽極)
 比較例3の陽極としては、陽極2を使用した。
(陰極)
 比較例3の陰極としては、陰極1を使用した。
[比較例4]
(隔膜)
 比較例4の隔膜としては、酸化ジルコニウムを「EP酸化ジルコニウム」から「UEP-100酸化ジルコニウム」(第一稀元素化学工業社製)45g(15質量部)に、N-メチル-2-ピロリドンの量を120g(40質量部)に変え、ポリビニルピロリドンを使用せず、塗工厚みを各面100μmに、に凝固浴を30℃の純水に変えて、塗工液を塗工した基材を蒸気下へ晒さずに凝固浴中へ4分間浸漬した以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜表面の平均透水孔径は0.05μm以下で最大孔径は0.3μmであった。また、表面孔径は0.2μm、裏面の表面孔径は0.1μmであった。厚みは400μmであった。気孔率は24%であった。ZrOの平均一次粒径は5nm、平均二次粒径は0.1μmであった。そして、水接触角は40°であった。
 なお、当該隔膜を表1において「隔膜12」と表記する。
(陽極)
 比較例4の陽極としては、陽極2を使用した。
(陰極)
 比較例4の陰極としては、陰極1を使用した。
[比較例5]
(隔膜)
 比較例5の隔膜としては、酸化ジルコニウムを「EP酸化ジルコニウム」から「RC-100酸化ジルコニウム」(第一稀元素化学工業社製)に、ポリビニルピロリドンの量を48g(16質量部)に変え、凝固浴を50℃の純水に変えた以外は、実施例1の隔膜と同様に作製した多孔膜を使用した。
 この多孔膜表面の平均透水孔径は1.1μmで最大孔径は2.6μmであった。また、表面孔径は2.3μm、裏面の表面孔径は2.1μmであった。厚みは500μmであった。気孔率は70%であった。ZrOの平均一次粒径は500nm、平均二次粒径は10.5μmであった。そして、水接触角は25°であった。
 なお、当該隔膜を表1において「隔膜13」と表記する。
(陽極)
 比較例5の陽極としては、陽極2を使用した。
(陰極)
 比較例5の陰極としては、陰極1を使用した。
 以下、使用した複極式電解槽及び電解システムについて説明する。上述した電極及び隔膜以外は、実施例及び比較例の全てにおいて同一条件とした。
[複極式電解槽]
 陽極ターミナルエレメント、陰極ターミナルエレメント、4個の複極式エレメントから構成される、図1のような、複極式ゼロギャップ構造の電解槽を作製した。各電解槽にはそれぞれの実施例及び比較例の陽極、陰極、及び隔膜が同様に組み込まれている。陽極、陰極、及び隔膜以外の部材は、本技術分野で一般的なものを使用した。
<複極式エレメント>
 複極式エレメントは、540mm×620mmの長方形で、陽極及び陰極の面積は500mm×500mmとした。このゼロギャップ複極式エレメントを、525mm×525mmの隔膜を介してスタックさせることで、陰極と陽極が隔膜に押し付けられたゼロギャップ構造を形成した。
[電解システム]
 上記複極式電解槽を、図2に示す電解装置70に組み込んでアルカリ水電解に使用した。以下、図2を参照しながら、電解システムの概略を説明する。
 気液分離タンク72及び複極式電解槽50には、電解液として30%KOH水溶液が封入されている。この電解液は、送液ポンプ71により、陽極室と陽極用気液分離タンク(酸素分離タンク72o)との間、陰極室と陰極用気液分離タンク(水素分離タンク72h)との間をそれぞれ循環している。電解液の流量は、流量計77で測定して200L/minに、温度は、熱交換器79によって90℃に調整した。
 整流器74から、各電解セルの陰極及び陽極に対して、所定の電極密度で通電した。
 通電開始後のセル内圧力は、圧力計78で測定し、陰極側圧力が50kPa、酸素側圧力が49kPaとなるとように調整した。圧力調整は、圧力計78の下流に圧力制御弁80を設置し、これにより行った。
 整流器74、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、送液ポンプ71、気液分離タンク72(72h及び72o)、水補給器73等は、いずれも当該技術分野において通常使用されるものを用いた。
[物性の測定・評価方法]
 以下、対象電極及び隔膜についての物性の測定・評価方法について説明する。
 なお、実施例及び比較例で使用した対象電極は、基材上に触媒層を形成したものであるため、表面物性は触媒層に由来する。
(1)電極の平均孔径
 電極触媒層の平均孔径は、BET法を用いて測定した。測定試料を専用セルに入れ、加熱真空排気を行うことにより前処理を行い、細孔表面への吸着物を予め取り除いた。その後、-196℃で測定サンプルへのガス吸着の吸脱着等温線を測定した。得られた吸脱着等温線をBET法で解析することにより、測定サンプルの触媒層の平均孔径を求めた。
(2)電極の表面開口率
 電極触媒層の表面開口率は、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製、「Miniscope TM3000」)を使用して求めた。
 電極を所定の大きさに切り出して、これをSEM観察用のサンプルとした。このサンプルをSEMの観察用試料台にセットして測定を開始した。このとき、SEMによる観察が測定対象の電極表面の垂直方向から行えるように、測定試料である電極をセットし、測定を開始した。SEMの倍率(10000倍以上が好ましい)を調節して撮像し、その撮像画面を画像として保存した。得られた画像は、画像解析ソフト(三谷商事社製、「WinROOF」)を用いて2値化し、孔部分が電極表面内に占める割合を算出して、表面開口率(%)とした。
(3)電極の水接触角
 多孔体電極について、水接触角の測定は、「Drop Master DM-701」(協和界面化学社製)を用いて行った。純水3μLを測定対象(多孔体電極)の表面に滴下し、水接触角をθ/2法により測定した。測定雰囲気条件は、温度23℃、湿度65%RHとした。
(4)電極の二重層容量
 電極の二重層容量は、電気化学インピーダンス法により測定した。交流インピーダンス測定により得られた実部と虚部をプロットしたCole-Coleプロットに対して、等価回路フィッティングにより解析することで、二重層容量を算出した。
(5)隔膜の平均透水孔径
 隔膜の平均透水孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法の測定で得られる平均透水孔径とした。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルを測定用の耐圧容器(透過部面積12.57cm2)にセットして、容器内を150mLの純水で満たした。次に、耐圧容器を90℃に設定した恒温槽内で保持し、耐圧容器内部が90℃になってから測定を開始した。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から純水が透過してくるので、圧力及び透過流量の数値を記録した。平均透水孔径は、圧力が10kPaから30kPaの間の圧力と透水流量との勾配を使い、以下のハーゲンポアズイユの式から求めた。
  平均透水孔径(m)={32ηLμ0/(εP)}0.5
ここで、ηは水の粘度(Pa・s)、Lは隔膜の厚み(m)、μ0は見かけの流速でありμ0(m/s)=流量(m3/s)/流路面積(m2)である。また、εは気孔率、Pは圧力(Pa)である。
(6)隔膜の最大孔径
 隔膜の最大孔径は、完全性試験機(ザルトリウス・ステディム・ジャパン社製、「Sartocheck Junior BP-Plus」)を使用して以下の方法で測定した。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルを純水で濡らし、膜の孔内に純水を含浸させ、これを測定用の耐圧容器にセットした。次に、耐圧容器を所定温度に設定した恒温槽内で保持し、耐圧容器内部が所定温度になってから測定を開始した。測定が始まると、サンプルの上面側が窒素で加圧されていき、サンプルの下面側から150mL/分の割合で気泡が連続して発生してくるときの窒素圧力を、バブルポイント圧力とした。最大孔径はヤング-ラプラスの式を変形させた下記バブルポイント式から求めた。
  最大孔径(m)=4γcosθ/P
ここで、γは水の表面張力(N/m)、cosθは隔膜表面と水との接触角(rad)、Pはバブルポイント圧力(Pa)である。
(7)無機粒子の平均一次粒径
 隔膜の無機粒子の平均一次粒径の測定は、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製、「Miniscope TM3000」)を使用して行った。まず、隔膜を芯材も含めて所定の大きさに切り出して、これをサンプルとした。このサンプルに対して、マグネトロンスパッタ装置(真空デバイス社製、「MSP-1S型」)を用いて1分間メタルコーティングを行った。次に、このサンプルをSEMの観察用試料台にセットして測定を開始した。このとき、SEMによる観察が測定対象の膜表面の垂直方向から行えるように、測定試料である隔膜をセットした。測定を開始し、観察対象の無機粒子が見えるように倍率を調節(2万倍以上が好ましい)して撮像し、その撮像画面を画像として保存した。得られた画像は、画像解析ソフト(三谷商事社製、「WinROOF」)を用いて2値化し、凝集していない10点の無機粒子のそれぞれに対し絶対最大長を測定し、その個数平均を算出した。この平均を、無機粒子の一次粒径とした。
(8)無機粒子の平均二次粒径
 無機微粒子の平均二次粒径は、レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、「LA-950」)を使用して求めた。
 まず、溶媒としてN-メチル-2-ピロリドンを用いて、アルカリ水電解用隔膜から多孔膜を形成する高分子樹脂を溶解除去した。その後に残った無機粒子をその重量の1000倍以上の量のN-メチル-2-ピロリドンを用いて3回以上繰り返し洗浄した。洗浄した無機粒子を、イオン交換水が入った超音波洗浄槽に投入した。酸化ジルコニウムを、洗浄槽内で循環・撹拌しながら1分間超音波を照射した後、穏やかに撹拌して1分程度空気抜きを行い、サンプルとした。サンプルである無機粒子の平均二次粒径は、以下の方法によって測定した。赤色レーザー(波長:655nm)の透過強度80~90%、青色LED(波長:405nm)の透過強度70~90%である範囲で、レーザー回折・散乱法により、体積分布から平均二次粒径を計測した。なお、水の屈折率は1.33、酸化ジルコニウムの屈折率は2.4とした。
(9)隔膜の表面開口率
 隔膜の表面開口率は、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ社製、「Miniscope TM3000」)を使用して行った。
 SEM観察前に卓上型超音波洗浄機(BRANSON社製、「BRANSONIC Model 5800」)を使用して隔膜表面の無機粒子を取り除く。まず、卓上型超音波洗浄機内に純水を3L入れ、さらに500mL用のPP製ディスポカップに純水を500mL入れた。ディスポカップを洗浄器中央に置き、スイッチを入れ、水温が30℃になるまで運転を続けた。その後、8cm角に切出したサンプルをディスポカップの内に立てて入れ、超音波洗浄を1分間行った。取り出したサンプルを純水が入った洗瓶で表面を洗い流した。洗浄後のサンプルは、50℃に設定された乾燥機で12時間以上乾燥させた後、芯材も含めて所定の大きさに切り出して、これをSEM観察用のサンプルとした。このサンプルに対して、マグネトロンスパッタ装置(真空デバイス社製、「MSP-1S型」)を用いて1分間メタルコーティングを行った。
 次に、このサンプルをSEMの観察用試料台にセットして測定を開始した。このとき、SEMによる観察が測定対象の膜表面の垂直方向から行えるように、測定試料である隔膜をセットした。測定を開始すると、測定画面内に、観察対象の隔膜面に存在する孔が100個以上400個以下写るようにSEMの倍率を調節して撮像し、その撮像画面を画像として保存した。得られた画像は、画像解析ソフト(三谷商事社製、「WinROOF」)を用いて2値化し、写った孔のそれぞれに対し、0.5μm以上の絶対最大長を持つ孔が面内を占める割合を算出した。SEMによる観察は膜の観察面と垂直になるように行い、孔とは周囲を途切れなく樹脂で囲まれたものとする。また、測定画面内で孔の一部が見切れているものは孔と見なさないものとする。
(10)隔膜の水接触角
 隔膜の水接触角は、測定対象を隔膜に変えた以外は、電極触媒層の水接触角の測定方法(上記(3))に従って測定した。
(11)隔膜の気孔率
 隔膜の気孔率は、電子天秤を用いて、25℃に保った室内で測定した。
 隔膜を3cm×3cmの大きさ(9cm)で3枚に切出して測定サンプルとし、シックネスゲージで厚みd(cm)を測定した。次いで、測定サンプルを純水中に24時間浸し、余分な水分を取り除いて、重量w1(g)を測定した。続いて、これらを50℃に設定した乾燥機内で12時間以上静置して乾燥させて、重量w2(g)を測定した。
 測定対象の隔膜は、水接触面が非常に低吸水性であり、測定サンプルが水を含んだ状態と乾燥状態とで厚み及び面積が有意に変化しなかった。そのため、厚みd及び面積を一定値とみなして、下記式で、w1、w2の値から気孔率を求めた。
  気孔率(%)={(w1-w2)/(d×9)}×100
 3枚の測定サンプルについてそれぞれ気孔率を求め、それらの算術平均値を隔膜の気孔率εとして、隔膜の平均透水孔径の算出(上記(5))に使用した。
[電解試験]
 実施例1~16及び比較例1~4の電解槽構成で、電流密度10kA/mの高電流密度下で連続して24時間通電し、アルカリ水電解を行った。
 24時間後、各実施例及び比較例ごとに4つの電解セルの対電圧の平均値を算出し、セル電圧(V)として評価した。
 また、陰極側及び陽極側の気液分離タンクから気体をサンプリングし、陰極側での水素濃度(%)及び陽極側での酸素濃度(%)をガスクロマトグラフィで測定して、それぞれ水素純度(%)及び酸素純度(%)として評価した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のアルカリ水電解用複極式電解槽によれば、隔膜として無機粒子を含有する多孔膜を使用して、高密度電流運転の場合でも、優れた電解効率及び高い発生ガス純度を維持して、高効率なアルカリ水電解を実施することができる。
 2    電極
 2a   陽極
 2c   陰極
 7    ガスケット
 50   複極式電解槽
 51g  ファストヘッド、ルーズヘッド
 51i  絶縁板
 51a  陽極ターミナルエレメント
 51c  陰極ターミナルエレメント
 51r  タイロッド
 60   複極式エレメント
 65   電解セル
 70   電解装置
 71   送液ポンプ
 72   気液分離タンク
 72h  水素分離タンク
 72o  酸素分離タンク
 73   水補給器
 74   整流器
 75   酸素濃度計
 76   水素濃度計
 77   流量計
 78   圧力計
 79   熱交換器
 80   圧力制御弁
 SW   メッシュの短目方向の中心間距離
 LW   メッシュの長目方向の中心間距離
 C    メッシュの目開き
 TE   メッシュの厚み
 B    メッシュのボンド長さ
 T    板厚
 W    送り幅(刻み幅)
 A    平織メッシュ型の目開き
 d    平織メッシュ型の線径
 D    パンチング型の穴径
 P    パンチング型の穴間ピッチ

Claims (19)

  1.  陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
     前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、
     前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である
    ことを特徴とする、複極式電解槽。
  2.  陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
     前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、
     前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である
    ことを特徴とする、アルカリ水電解用複極式電解槽。
  3.  前記隔膜に含有される前記無機粒子の平均一次粒径が50nm以上180nm以下である、請求項2に記載のアルカリ水電解用複極式電解槽。
  4.  前記多孔体電極が、基材と、前記基材の表面上に形成された触媒層とを備える、請求項2又は3に記載のアルカリ水電解用複極式電解槽。
  5.  前記多孔体電極が、網状構造の基材と、Niを含有する触媒層とを備える、請求項4に記載のアルカリ水電解用複極式電解層。
  6.  前記多孔体電極の二重層容量が、0.5F/cm以上4.0F/cm以下である、請求項2~5のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  7.  前記多孔体電極の水接触角が0°超30°以下である、請求項2~6のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  8.  前記多孔体電極が、30%以上80%以下の表面開口率を有する、請求項2~7のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  9.  前記多孔体電極が、目開き0.2mm以上4.0mm以下の平織メッシュ型基材を含む、請求項4~8のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  10.  前記多孔体電極が、メッシュの長目方向の中心間距離(LW)が2.0mm以上6.0mm以下、かつメッシュの短目方向の中心間距離(SW)が1.0mm以上5.0mm以下のエキスパンド型基材を含む、請求項4~8のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  11.  前記多孔体電極が、穴径(D)が1.0mm以上10.0mm以下、穴間ピッチ(P)が1.0mm以上12.0mmのパンチング型基材を含む、請求項4~8のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  12.  前記隔膜に含有される前記無機粒子が、0.2μm以上10.0μm以下の平均二次粒径を有する、請求項2~11のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  13.  前記隔膜に含有される前記無機粒子が、酸化ジルコニウム(ZrO)及び/又は酸化チタン(TiO)を含む、請求項2~12のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  14.  前記隔膜の平均透水孔径が、0.1μm以上1.0μm以下である、請求項2~13のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  15.  前記隔膜の最大孔径が、0.5μm以上3.0μm以下である、請求項2~14のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  16.  前記隔膜の表面開口率が、20%以上80%以下である、請求項2~15のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  17.  前記隔膜の水接触角が30°以上90°以下である、請求項2~16のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  18.  前記陽極及び前記陰極と前記隔膜がゼロギャップ構造をなしている、請求項2~17のいずれか1項に記載のアルカリ水電解用複極式電解槽。
  19.  アルカリを含有する水を、電解槽により水電解し、水素を製造する水素製造方法であって、
     前記電解槽が、陽極と、陰極と、前記陽極と前記陰極との間に配置された隔膜との組み合わせを、複数備える、複極式電解槽であって、
      前記陽極及び前記陰極の少なくとも一方が、平均孔径10nm以上200nm以下の多孔体電極であり、
      前記隔膜が、平均一次粒径20nm以上300nm以下の無機粒子を含有する多孔膜である、複極式電解槽である、
    ことを特徴とする、水素製造方法。
PCT/JP2018/002581 2017-01-26 2018-01-26 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法 WO2018139610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880004648.2A CN110023542B (zh) 2017-01-26 2018-01-26 碱水电解用复极式电解槽以及氢制造方法
JP2018564668A JP6746721B2 (ja) 2017-01-26 2018-01-26 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法
DK18744656.2T DK3575442T3 (da) 2017-01-26 2018-01-26 Bipolær elektrolysator til alkalisk vandelektrolyse, og hydrogenfremstillingsfremgangsmåde
EP18744656.2A EP3575442B1 (en) 2017-01-26 2018-01-26 Bipolar electrolyzer for alkaline water electrolysis, and hydrogen production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-012552 2017-01-26
JP2017012553 2017-01-26
JP2017012552 2017-01-26
JP2017-012553 2017-01-26

Publications (1)

Publication Number Publication Date
WO2018139610A1 true WO2018139610A1 (ja) 2018-08-02

Family

ID=62978480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002581 WO2018139610A1 (ja) 2017-01-26 2018-01-26 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法

Country Status (5)

Country Link
EP (1) EP3575442B1 (ja)
JP (1) JP6746721B2 (ja)
CN (1) CN110023542B (ja)
DK (1) DK3575442T3 (ja)
WO (1) WO2018139610A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066911A1 (ja) * 2018-09-26 2020-04-02 株式会社日本触媒 アルカリ水電解用隔膜
EP3929331A4 (en) * 2019-02-22 2022-04-27 LG Chem, Ltd. ELECTRODE FOR ELECTROLYSIS
CN114457366A (zh) * 2022-02-21 2022-05-10 国网江西省电力有限公司电力科学研究院 一种电极组及其制作方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021097505A1 (de) 2019-11-21 2021-05-27 Eeg Elements Energy Gmbh Verdichter
US20230332310A1 (en) * 2020-07-03 2023-10-19 Agfa-Gevaert Nv A Separator for Water Electrolysis
CN113026054B (zh) * 2021-02-06 2022-09-02 西藏大学 一种光电催化分解水制氢氧的检测系统及其使用方法
DE102022101801A1 (de) 2021-02-15 2022-08-18 Schaeffler Technologies AG & Co. KG Elektrolyseplatte für die Wasserstoffherstellung und Verfahren zur Herstellung einer Elektrolyseplatte
EP4291697A1 (de) 2021-02-15 2023-12-20 Schaeffler Technologies AG & Co. KG Elektrolyseplatte für die wasserstoffherstellung und verfahren zur herstellung einer elektrolyseplatte
DE102021105393A1 (de) 2021-03-05 2022-09-08 Schaeffler Technologies AG & Co. KG Elektrolyseplatte für die Wasserstoffproduktion und Verfahren zum Herstellen einer Elektrolyseplatte
EP4056735A1 (en) * 2021-03-09 2022-09-14 Studiengesellschaft Kohle mbH Process for the preparation of an electrode for electrolytic applications
CN113265670B (zh) * 2021-04-20 2022-11-18 复旦大学 含有支撑薄膜的电解池及电化学系统
CN113184952B (zh) * 2021-04-20 2022-10-25 同济大学 一种废水中氮磷同步回收装置及其回收方法与应用
WO2022262894A1 (de) 2021-06-16 2022-12-22 Schaeffler Technologies AG & Co. KG Elektrodenplatte für eine elektrolyse-anlage
DE102022112593A1 (de) 2021-06-16 2022-12-22 Schaeffler Technologies AG & Co. KG Elektrodenplatte für ein Elektrolysesystem
WO2023280598A1 (en) 2021-07-08 2023-01-12 Agfa-Gevaert Nv A separator for alkaline water electrolysis
WO2023118088A1 (en) 2021-12-21 2023-06-29 Agfa-Gevaert Nv A separator for an electrolytic cell
WO2023208776A1 (en) 2022-04-25 2023-11-02 Agfa-Gevaert Nv A separator for alkaline water electrolysis
CN115011986A (zh) * 2022-05-25 2022-09-06 同济大学 一种孔结构可控调节的电解槽膜电极及其制备方法和应用
WO2023232551A1 (en) 2022-05-30 2023-12-07 Agfa-Gevaert Nv Separator for water electrolysis
WO2023236305A1 (zh) * 2022-06-06 2023-12-14 清华大学 碱性水电解用隔膜及其制备方法与应用
CN115677269B (zh) * 2022-10-25 2023-06-27 清华大学 有机无机复合隔膜及制备其的浆料、碱性水电解装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173281A (ja) 1983-03-23 1984-10-01 Tokuyama Soda Co Ltd 電解槽
US4530743A (en) 1979-08-03 1985-07-23 Oronzio Denora Impianti Elettrochimici S.P.A. Electrolysis cell
WO2013191140A1 (ja) 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
JP2015117417A (ja) 2013-12-19 2015-06-25 旭化成株式会社 アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
JP2015183254A (ja) * 2014-03-25 2015-10-22 旭化成株式会社 水電解セル
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4725346A (en) * 1986-07-25 1988-02-16 Ceramatec, Inc. Electrolyte assembly for oxygen generating device and electrodes therefor
JPH0813178A (ja) * 1994-06-28 1996-01-16 Mitsubishi Heavy Ind Ltd 電気化学セルの陰極
FR2820054B1 (fr) * 2001-01-26 2003-11-07 Air Liquide Structures-microstructures de membrane ceramique conducteurs par ions oxyde ; utilisation pour separer l'oxygene de l'air
FR2820055B1 (fr) * 2001-01-26 2003-03-21 Air Liquide Structures-microstructures de membrane ceramique conducteurs par ions oxyde pour la production d'oxygene sous pression elevee
US8216445B2 (en) * 2006-10-31 2012-07-10 Wisconsin Alumni Research Foundation Nanoporous insulating oxide deionization device having asymmetric electrodes and method of use thereof
CN101440167B (zh) * 2007-11-19 2012-07-04 中国石油大学(北京) SiO2/有机聚合物复合质子交换膜的制备方法
JP2011117056A (ja) * 2009-12-07 2011-06-16 Kurita Water Ind Ltd イオン透過性隔膜及びその製造方法
CN101768758B (zh) * 2009-12-07 2012-05-09 山东华夏神舟新材料有限公司 一种电解用阳离子透过复合膜
CN101983759A (zh) * 2010-09-21 2011-03-09 福建师范大学 一种掺杂阴离子型快离子导体制备高离子传导效率的双极膜的方法
US9416456B1 (en) * 2011-05-20 2016-08-16 University Of South Florida Nano-hybrid structured regioregular polyhexylthiophene (RRPHTh) blend films for production of photoelectrochemical energy
CN102336043B (zh) * 2011-05-27 2014-02-12 山东东岳高分子材料有限公司 具有高电流效率的离子交换膜及其制备方法和应用
JP2013166994A (ja) * 2012-02-15 2013-08-29 Asahi Kasei Chemicals Corp 電解用電極、電解槽及び電解用電極の製造方法
JP5868300B2 (ja) * 2012-09-14 2016-02-24 旭化成ケミカルズ株式会社 イオン交換膜、イオン交換膜の製造方法及び電解槽
CN102961979B (zh) * 2012-11-26 2014-12-10 山东东岳高分子材料有限公司 一种无涂层零极距离子交换膜及其制备方法
CN102961980B (zh) * 2012-12-14 2015-01-21 山东东岳高分子材料有限公司 一种超高电流密度条件下运行的离子交换膜及其制备方法
EP2993206B1 (en) * 2013-04-30 2018-09-12 Asahi Kasei Kabushiki Kaisha Titanium oxide-containing composition, polymer composition, and molded body
WO2015098769A1 (ja) * 2013-12-25 2015-07-02 旭硝子株式会社 フッ素系陽イオン交換膜の製造方法
US10287692B2 (en) * 2015-03-30 2019-05-14 De Nora Tech Inc. Diaphragm-electrode assembly for use in alkaline water electrolysers
KR101717429B1 (ko) * 2015-11-18 2017-03-17 한국에너지기술연구원 유무기 복합 분리막을 포함하는 물 전기분해용 단위셀 및 그 제조방법
CN106498429B (zh) * 2016-11-21 2018-06-12 南京理工大学 一种耐酸的电解膜
CN107012480B (zh) * 2017-03-27 2019-05-10 东北师范大学 多酸和八硫化九钴共修饰二氧化钛纳米管阵列光电化学析氧电极的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530743A (en) 1979-08-03 1985-07-23 Oronzio Denora Impianti Elettrochimici S.P.A. Electrolysis cell
JPS59173281A (ja) 1983-03-23 1984-10-01 Tokuyama Soda Co Ltd 電解槽
WO2013191140A1 (ja) 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
JP2015117417A (ja) 2013-12-19 2015-06-25 旭化成株式会社 アルカリ水電解用隔膜及びこれを用いたアルカリ水電解槽
JP2015183254A (ja) * 2014-03-25 2015-10-22 旭化成株式会社 水電解セル
WO2016148302A1 (ja) * 2015-03-18 2016-09-22 旭化成株式会社 アルカリ水電解用隔膜、アルカリ水電解装置、水素の製造方法及びアルカリ水電解用隔膜の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066911A1 (ja) * 2018-09-26 2020-04-02 株式会社日本触媒 アルカリ水電解用隔膜
JPWO2020066911A1 (ja) * 2018-09-26 2021-09-24 株式会社日本触媒 アルカリ水電解用隔膜
EP3859051A4 (en) * 2018-09-26 2022-08-03 Nippon Shokubai Co., Ltd. DIAPHRAGM FOR ALKALINE WATER ELECTROLYSIS
JP7114726B2 (ja) 2018-09-26 2022-08-08 株式会社日本触媒 アルカリ水電解用隔膜
EP3929331A4 (en) * 2019-02-22 2022-04-27 LG Chem, Ltd. ELECTRODE FOR ELECTROLYSIS
CN114457366A (zh) * 2022-02-21 2022-05-10 国网江西省电力有限公司电力科学研究院 一种电极组及其制作方法
CN114457366B (zh) * 2022-02-21 2023-08-15 国网江西省电力有限公司电力科学研究院 一种电极组及其制作方法

Also Published As

Publication number Publication date
EP3575442A4 (en) 2020-02-19
JPWO2018139610A1 (ja) 2019-06-27
EP3575442B1 (en) 2021-01-20
CN110023542A (zh) 2019-07-16
DK3575442T3 (da) 2021-02-22
JP6746721B2 (ja) 2020-08-26
EP3575442A1 (en) 2019-12-04
CN110023542B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
JP6746721B2 (ja) 複極式電解槽、アルカリ水電解用複極式電解槽、及び水素製造方法
JP6948384B2 (ja) 水電解システム、水電解方法、水素の製造方法
JP6797940B2 (ja) 電解槽、電解装置、電解方法、水素製造方法
WO2018182006A1 (ja) 隔膜、電解槽及び水素製造方法
EP3527697B1 (en) Diaphragm for electrolyzing alkaline water, and device for electrolyzing alkaline water
JP7323299B2 (ja) 陰極、その製造方法、およびそれを用いた電解槽、水素製造方法
CN112144076B (zh) 一体化膜电极及其制备方法和应用
JP2023531792A (ja) アルカリ水電解用セパレータ
JPWO2020158719A1 (ja) 電極付きアルカリ水電解用隔膜、その製造方法、及び水電解装置
JP6782796B2 (ja) 複極式電解セル、複極式電解槽、水素製造方法
JP7136580B2 (ja) 隔膜、隔膜の製造方法、電解槽及び水素製造方法
EP3854914A1 (en) Method for manufacturing electrolytic cell, laminate, electrolytic cell, and method for operating electrolytic cell
JP6837130B2 (ja) 陽極、複極式電解セル、水素製造方法
WO2023145914A1 (ja) 水素発生用陰極、アルカリ水電解用陰極、陰極の製造方法、複極式電解セル、アルカリ水電解用電解槽及び水素製造方法
JP7449362B2 (ja) 電解槽及び電解槽の製造方法
WO2023280760A1 (en) A separator for alkaline water electrolysis
WO2023208776A1 (en) A separator for alkaline water electrolysis
WO2023118088A1 (en) A separator for an electrolytic cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564668

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744656

Country of ref document: EP

Effective date: 20190826