WO2018126513A1 - 微发光二极管显示面板及其修复方法 - Google Patents
微发光二极管显示面板及其修复方法 Download PDFInfo
- Publication number
- WO2018126513A1 WO2018126513A1 PCT/CN2017/073606 CN2017073606W WO2018126513A1 WO 2018126513 A1 WO2018126513 A1 WO 2018126513A1 CN 2017073606 W CN2017073606 W CN 2017073606W WO 2018126513 A1 WO2018126513 A1 WO 2018126513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- emitting diode
- light emitting
- micro light
- disposed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000008439 repair process Effects 0.000 title abstract description 31
- 238000005520 cutting process Methods 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 182
- 239000000758 substrate Substances 0.000 claims description 45
- 239000011229 interlayer Substances 0.000 claims description 24
- 230000002950 deficient Effects 0.000 claims description 22
- 238000002955 isolation Methods 0.000 claims description 19
- 230000002093 peripheral effect Effects 0.000 claims description 14
- 230000000149 penetrating effect Effects 0.000 claims description 4
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 238000005286 illumination Methods 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/16—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
- H01L25/167—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/22—Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/075—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
- H01L25/0753—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1248—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1262—Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/124—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0066—Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
Definitions
- the present invention relates to the field of display technologies, and in particular, to a micro light emitting diode display panel and a repair method thereof.
- Flat display devices are widely used in various consumer electronics such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc. due to their high image quality, power saving, thin body and wide application range. Products have become the mainstream in display devices.
- a micro LED ( ⁇ LED) display is a display that realizes image display by using a high-density and small-sized LED array integrated on one substrate as a display pixel.
- each pixel Addressable, individually driven and lit can be seen as a miniature version of the outdoor LED display, reducing the pixel distance from millimeters to micrometers, and the ⁇ LED display is the same as the Organic Light-Emitting Diode (OLED) display.
- OLED Organic Light-Emitting Diode
- Self-illuminating display but compared with OLED display, ⁇ LED display has the advantages of better material stability, longer life, no image imprinting, etc., and is considered to be the biggest competitor of OLED display.
- Micro Transfer Printing technology is currently the mainstream method for preparing ⁇ LED display devices.
- the specific preparation process is as follows: First, a micro light-emitting diode is grown on a sapphire-based substrate, and then laser lift-off (LLO) is used to micro-transfer.
- LLO laser lift-off
- the LED bare chip is separated from the sapphire substrate, and then a patterned polydimethylsiloxane (PDMS) transfer head is used to adsorb the micro LED bare chip from the sapphire substrate, and The PDMS transfer head is aligned with the receiving substrate, and then the micro light emitting diode bare chip adsorbed by the PDMS transfer head is attached to a preset position on the receiving substrate, and then the PDMS transfer head is peeled off, thereby completing the micro light emitting diode bare chip. Transfer to the receiving substrate to produce a ⁇ LED display device.
- PDMS polydimethylsiloxane
- FIG. 1 is a cross-sectional view of a conventional micro light emitting diode display panel, including: a substrate 100, a gate electrode 200 disposed on the substrate 100, and a gate insulating layer disposed on the gate electrode 200 and the substrate 100.
- the layer 300, the active layer 400 disposed on the gate insulating layer 300 on the gate 200, and the interlayer insulating layer 500 disposed on the active layer 400 and the gate insulating layer 300 are disposed on the layer
- the source 601 and the drain 602 which are spaced apart from each other on the interlayer insulating layer 500 and are respectively in contact with both ends of the active layer 400 are provided on the source 601, the drain 602, and the interlayer insulating layer 500.
- the anode 800 in the existing micro-light-emitting diode display panel, the anode 800 is integrated, and several micro-light-emitting diodes 1000 are sequentially arranged on the anode 800.
- the anode needs to be used.
- the path between the 800 and the drain 602 is cut and repaired.
- the cut point is located at the position of the cross in FIG. 2 and FIG. 1.
- the other normal micro-light-emitting diodes 1000 are not illuminated, and the entire pixel becomes a dark point. , resulting in waste of resources and reduced display quality.
- An object of the present invention is to provide a micro light emitting diode display panel, which can simplify the repair process of the micro light emitting diode display panel, improve the success rate of the repair of the micro light emitting diode display panel, and ensure the repair effect of the micro light emitting diode display panel.
- the object of the present invention is to provide a repair method for a micro light emitting diode display panel, which can simplify the repair process of the micro light emitting diode display panel, improve the success rate of the repair of the micro light emitting diode display panel, and ensure the repair effect of the micro light emitting diode display panel. .
- the present invention provides a micro light emitting diode display panel comprising: a substrate; and a plurality of pixel units arranged in an array on the substrate;
- Each of the pixel units includes a TFT layer disposed on the substrate, a planarization layer disposed on the TFT layer, and an anode disposed on the planarization layer and electrically connected to the TFT layer.
- a pixel defining layer on the peripheral edge of the anode and the planarization layer a cathode isolation layer disposed on the anode, a plurality of micro light emitting diodes disposed on the anode and embedded in the cathode isolation layer, and a cathode disposed on the pixel defining layer, the cathode isolating layer and the plurality of micro light emitting diodes;
- the anode includes: an anode potential input board electrically connected to the TFT layer, a plurality of electrode plates spaced apart from the anode potential input board, and a plurality of connecting lines electrically connected to the electrode board;
- the micro light emitting diode has the same number of the electrode plates, and one micro light emitting diode is disposed on each of the electrode plates;
- the anode potential input board is electrically connected to at least two electrode plates through a connection line, each of the electrode plates is electrically connected to at least two other electrode plates through a connection line or to at least one other electrode plate and an anode potential input plate. Electrical connection.
- Each of the pixel units includes three micro-light-emitting diodes and three electrode plates, wherein the two electrode plates are electrically connected to the other electrode plate and the anode potential input plate through two connection lines.
- the other electrode plate is also electrically connected to the anode potential input board through a connecting line.
- the TFT layer includes: a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode and the substrate, and an active layer disposed on the gate insulating layer on the gate electrode; An interlayer insulating layer on the active layer and the gate insulating layer, and a first via and a second via which are spaced apart from the interlayer insulating layer and pass through the interlayer insulating layer, respectively A source and a drain of the active layer are contacted at both ends.
- the anode potential input plate is in contact with the drain through a third via extending through the planarization layer.
- the invention also provides a method for repairing a micro light emitting diode display panel, comprising the following steps:
- Step S1 providing a micro light emitting diode display panel, the micro light emitting diode display panel comprising: a substrate, and a plurality of pixel units arranged in an array on the substrate;
- Each of the pixel units includes a TFT layer disposed on the substrate, a planarization layer disposed on the TFT layer, an anode disposed on the planarization layer and electrically connected to the TFT layer, and disposed on the pixel layer a peripheral defining edge of the anode and a pixel defining layer on the planarization layer, a cathode isolation layer disposed on the anode, a plurality of micro light emitting diodes disposed on the anode and embedded in the cathode isolation layer, and a cathode on the pixel defining layer, the cathode isolating layer and the plurality of micro light emitting diodes;
- the anode includes: an anode potential input board electrically connected to the TFT layer, a plurality of electrode plates spaced apart from the anode potential input board, and a plurality of connecting lines electrically connected to the electrode board;
- the micro light emitting diode has the same number of the electrode plates, and one micro light emitting diode is disposed on each of the electrode plates;
- the anode potential input board is electrically connected to at least two electrode plates through a connection line, each of the electrode plates is electrically connected to at least two other electrode plates through a connection line or to at least one other electrode plate and an anode potential input plate. Electrical connection
- Step S2 detecting that one of the plurality of micro light emitting diodes is defective, and determining a position of the defective micro light emitting diode;
- step S3 all the connecting lines electrically connected to the electrode plates of the micro-light-emitting diodes with poor appearance are cut off, and the defective micro-light-emitting diodes are separately repaired into dark spots.
- Each of the pixel units includes three micro-light-emitting diodes and three electrode plates, wherein the two electrode plates are electrically connected to the other electrode plate and the anode potential input plate through two connection lines.
- the other electrode plate is also electrically connected to the anode potential input board through a connecting line.
- the TFT layer includes: a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode and the substrate, and an active layer disposed on the gate insulating layer on the gate electrode; An interlayer insulating layer on the active layer and the gate insulating layer, and first and second via vias spaced apart from the interlayer insulating layer and passing through the interlayer insulating layer, respectively Both ends of the active layer Contact source and drain.
- the anode potential input plate is in contact with the drain through a third via extending through the planarization layer.
- the invention also provides a method for repairing a micro light emitting diode display panel, comprising the following steps:
- Step S1 providing a micro light emitting diode display panel, the micro light emitting diode display panel comprising: a substrate, and a plurality of pixel units arranged in an array on the substrate;
- Each of the pixel units includes a TFT layer disposed on the substrate, a planarization layer disposed on the TFT layer, and an anode disposed on the planarization layer and electrically connected to the TFT layer.
- a pixel defining layer on the peripheral edge of the anode and the planarization layer a cathode isolation layer disposed on the anode, a plurality of micro light emitting diodes disposed on the anode and embedded in the cathode isolation layer, and a cathode disposed on the pixel defining layer, the cathode isolating layer and the plurality of micro light emitting diodes;
- the anode includes: an anode potential input board electrically connected to the TFT layer, a plurality of electrode plates spaced apart from the anode potential input board, and a plurality of connecting lines electrically connected to the electrode board;
- the micro light emitting diode has the same number of the electrode plates, and one micro light emitting diode is disposed on each of the electrode plates;
- the anode potential input board is electrically connected to at least two electrode plates through a connection line, each of the electrode plates is electrically connected to at least two other electrode plates through a connection line or to at least one other electrode plate and an anode potential input plate. Electrical connection
- Step S2 detecting that one of the plurality of micro light emitting diodes is defective, and determining a position of the defective micro light emitting diode;
- Step S3 cutting all the connecting lines electrically connected to the electrode plates of the micro-light-emitting diodes with poor appearance, and separately repairing the defective micro-light-emitting diodes into dark spots;
- Each of the pixel units includes three micro-light-emitting diodes and three electrode plates, wherein the two electrode plates are electrically connected to the other electrode plate and the anode potential input plate through two connecting lines respectively;
- the TFT layer includes: a gate electrode disposed on the substrate, a gate insulating layer disposed on the gate electrode and the substrate, and an active layer disposed on the gate insulating layer on the gate electrode An interlayer insulating layer disposed on the active layer and the gate insulating layer, and first and second vias spaced apart from the interlayer insulating layer and passing through the interlayer insulating layer A source and a drain of the hole in contact with both ends of the active layer.
- the invention provides a micro light emitting diode display panel.
- the anode of the micro light emitting diode display panel is divided into a plurality of mutually spaced electrode blocks, and the electrode blocks are electrically connected by a connecting line, and each A micro light-emitting diode is disposed on an electrode block, and when one of the micro light-emitting diodes is defective, the micro light-emitting diode can be cut and disposed
- the electrode board is electrically connected to the connecting line, and the micro light emitting diode is separately repaired as a dark point, and the other micro light emitting diodes are normally illuminated, which can simplify the repair process of the micro light emitting diode display panel and improve the success rate of the repair of the micro light emitting diode display panel.
- the invention provides a method for repairing a micro light emitting diode display panel, which can simplify the repair process of the micro light emitting diode display panel, improve the success rate of the repair of the micro light emitting diode display panel, and ensure the repair effect of the micro light emitting diode display panel.
- FIG. 1 is a cross-sectional view of a conventional micro light emitting diode display panel
- FIG. 2 is an anode top view of a conventional micro light emitting diode display panel
- FIG. 3 is a cross-sectional view of a micro light emitting diode display panel of the present invention.
- FIG. 4 is an anode top view of a first embodiment of a micro light emitting diode display panel of the present invention
- FIG. 5 is an anode top view of a second embodiment of a micro light emitting diode display panel of the present invention.
- FIG. 6 is an anode top view of a third embodiment of a micro light emitting diode display panel of the present invention.
- FIG. 7 is an anode top view of a fourth embodiment of a micro light emitting diode display panel of the present invention.
- FIG. 8 is a flow chart of a method for repairing a micro light emitting diode display panel of the present invention.
- the present invention provides a micro light emitting diode display panel comprising: a substrate 1, and a plurality of pixel units 2 arranged in an array on the substrate 1;
- Each of the pixel units 2 includes a TFT layer 21 disposed on the substrate 1 , a planarization layer 22 disposed on the TFT layer 21 , and a planarization layer 22 disposed on the planarization layer 22 and the TFT layer 21 .
- the anode 23 includes an anode potential input plate 231 electrically connected to the TFT layer 21, a plurality of electrode plates 232 spaced apart from the anode potential input plate 231, and an electrical connection with the electrode plate 232. a plurality of connected connecting lines 233;
- the micro-light-emitting diodes 25 are the same as the number of the electrode plates 232, and each of the electrode plates 232 is provided with a micro-light-emitting diode 25;
- the anode potential input plate 231 is electrically connected to at least two electrode plates 232 through a connection line 233. Each of the electrode plates 232 is electrically connected to at least two other electrode plates 232 through a connection line 233 or to at least one other electrode.
- the board 232 and the anode potential input board 231 are electrically connected.
- each pixel unit 2 includes three micro light-emitting diodes 25 and three electrode plates 232, wherein two electrode plates 232 pass through two connection lines 233.
- Each of the electrode plates 232 and the anode potential input plate 231 are electrically connected to each other.
- any one of the micro-light-emitting diodes 25 is defective, only two connection lines 233 electrically connected to the electrode plate 232 of the micro-light-emitting diode 25 are disposed.
- the micro-light-emitting diode 25 can be repaired to a dark spot by cutting, and the remaining two micro-light-emitting diodes 25 can still normally acquire an anode potential signal from the anode potential input plate 231 to emit light normally.
- FIG. 5 is a second embodiment of the present invention, which differs from the first embodiment in that the other electrode plate 232 is further connected to the anode potential input board via a connecting line 233. 231 is electrically connected, that is, the three electrode plates 232 are electrically connected to the anode potential input plate 231.
- the two micro-light-emitting diodes 25 can be repaired to a dark spot by cutting off the four connection lines 233 electrically connected to the two electrode plates 232 of the two micro-light-emitting diodes 25, and the remaining one
- the micro light emitting diode 25 can still normally acquire the anode potential signal from the anode potential input plate 231.
- FIG. 6 is a third embodiment of the present invention.
- Each pixel unit 2 includes eight micro light emitting diodes 25 and eight electrode plates 232, and the eight electrode plates 232 and the anode potential input board 231.
- the peripheral seven electrode plates 232 and the anode potential input plate 231 are sequentially connected in series, and the middle one electrode plate 232 passes through the two connection lines 233 and the anode potential input plate 231 and a peripheral portion respectively.
- the electrode plates 232 are electrically connected.
- the fourth embodiment is a fourth embodiment of the present invention, and the fourth embodiment is a modification of the third embodiment, in which an electrode plate 232 passes through the four connection lines 233 and the anode potential input plate 231 and three, respectively.
- the peripheral electrode plate 232 is electrically connected.
- the third embodiment can perform independent repair on any one of the micro light-emitting diodes 25 without affecting the normal light-emitting of the other micro-light-emitting diodes 25.
- the fourth embodiment can realize any one or two micro-lighting.
- the diode 25 is individually repaired and does not affect the normal illumination of the other micro-light-emitting diodes 25.
- the present invention can also include other electrode plate arrangements and other connections.
- the anode potential input plate 231 is electrically connected to at least two electrode plates 232 through a connection line 233
- each of the electrode plates 232 is electrically connected to at least two other electrode plates 232 through a connection line 233 or at least
- the other electrode plate 232 and the anode potential input plate 231 are electrically connected to realize the purpose of separately repairing the micro light-emitting diode of the present invention, which does not affect the implementation of the present invention.
- the TFT layer 21 includes a gate electrode 211 disposed on the substrate 1 , a gate insulating layer 212 disposed on the gate electrode 211 and the substrate 1 , and a gate disposed on the gate electrode 211 .
- An active layer 213 on the insulating layer 212, an interlayer insulating layer 214 disposed on the active layer 213 and the gate insulating layer 212, and a spacer are disposed on the interlayer insulating layer 214 and respectively pass through the through-hole
- the first via 2141 and the second via 2142 of the interlayer insulating layer 214 are in contact with the source 215 and the drain 216 of both ends of the active layer 213.
- the anode potential input plate 231 is in contact with the drain 216 through a third via 221 penetrating the planarization layer 22.
- the present invention further provides a method for repairing a micro LED display panel, including the following steps:
- Step S1 a micro light emitting diode display panel of the present invention is provided, and the specific structure is as described above, and details are not described herein again.
- step S2 it is detected that one of the plurality of micro light-emitting diodes 25 is defective, and the position of the defective micro-light-emitting diode 25 is determined.
- step S3 the connection line 233 electrically connected to the electrode plate 232 of the micro-light-emitting diode 25 having the occurrence of the failure is completely cut, and the defective micro-light-emitting diode 25 is separately repaired into a dark spot.
- the step S3 cuts the connecting line 233 by a laser cutting process, and the specific cutting point may be a position where the cross is crossed as shown in FIGS. 4 to 7.
- each pixel unit 2 includes three micro light-emitting diodes 25 and three electrode plates 232, wherein two electrode plates 232 pass through two connection lines 233.
- Each of the electrode plates 232 and the anode potential input plate 231 are electrically connected to each other.
- any one of the micro-light-emitting diodes 25 is defective, only two connection lines 233 electrically connected to the electrode plate 232 of the micro-light-emitting diode 25 are disposed.
- the micro-light-emitting diode 25 can be repaired to a dark spot by cutting, and the remaining two micro-light-emitting diodes 25 can still normally acquire an anode potential signal from the anode potential input plate 231 to emit light normally.
- a micro-light-emitting diode 25 in the middle is defective, and only two connection lines 233 electrically connected to the electrode plate 232 of the micro-light-emitting diode 25 are cut off, and the cutting point may be crossed as shown in FIG. position.
- FIG. 5 is a second embodiment of the present invention, which differs from the first embodiment in that the other electrode plate 232 is further connected to the anode potential through a connection line 233.
- the input board 231 is electrically connected, that is, the three electrode boards 232 are electrically connected to the anode potential input board 231.
- the two micro-light-emitting diodes 25 can be repaired to a dark spot by cutting off the four connection lines 233 electrically connected to the two electrode plates 232 of the two micro-light-emitting diodes 25, and the remaining A micro light emitting diode 25 can still normally acquire an anode potential signal from the anode potential input plate 231.
- the middle micro-light-emitting diode 25 is defective, and only three connection lines 233 electrically connected to the electrode plate 232 of the micro-light-emitting diode 25 are cut off, and the cutting point may be crossed as shown in FIG. position.
- FIG. 6 is a third embodiment of the present invention.
- Each pixel unit 2 includes eight micro light emitting diodes 25 and eight electrode plates 232, and the eight electrode plates 232 and the anode potential input board 231.
- the peripheral seven electrode plates 232 and the anode potential input plate 231 are sequentially connected in series, and the middle one electrode plate 232 passes through the two connection lines 233 and the anode potential input plate 231 and a peripheral portion respectively.
- the electrode plates 232 are electrically connected.
- the fourth embodiment is a fourth embodiment of the present invention, and the fourth embodiment is a modification of the third embodiment, in which an electrode plate 232 passes through the four connection lines 233 and the anode potential input plate 231 and three, respectively.
- the peripheral electrode plate 232 is electrically connected.
- the third embodiment can perform independent repair on any one of the micro light-emitting diodes 25 without affecting the normal light-emitting of the other micro-light-emitting diodes 25.
- the fourth embodiment can realize any one or two micro-lighting.
- the diode 25 is individually repaired and does not affect the normal illumination of the other micro-light-emitting diodes 25.
- the present invention may also include other electrode plate arrangement and other connection manners, as long as the anode potential input plate 231 is electrically connected to at least two electrode plates 232 through a connection line 233, each of the electrode plates 232.
- the micro-light-emitting diode of the present invention can be separately repaired by the connection line 233 being electrically connected to at least two other electrode plates 232 or electrically connected to at least one other electrode plate 232 and the anode potential input plate 231. This does not affect the implementation of the present invention.
- each of the electrode blocks is electrically connected through the connecting line, and not only can any one of the micro-light-emitting diodes 25 be separately repaired without affecting other micro-implementation.
- the light-emitting diode 25 emits light normally, and can clearly find the area where laser cutting should be performed, which is convenient for positioning during repair and ensures the repair effect.
- the present invention provides a micro-light-emitting diode display panel.
- the anode of the micro-light-emitting diode display panel is divided into a plurality of mutually spaced electrode blocks, and each of the electrode blocks is electrically connected through a connection line, and each electrode block is integrated.
- a micro light-emitting diode is disposed correspondingly, and when one of the micro-light-emitting diodes is defective, the micro-light-emitting diode can be separately repaired into a dark spot by cutting off a connection line electrically connected to the electrode plate on which the micro-light-emitting diode is disposed, and the other micro led Normal illumination can simplify the repair process of the micro-light-emitting diode display panel, improve the success rate of the repair of the micro-light-emitting diode display panel, and ensure the repair effect of the micro-light-emitting diode display panel.
- the repair method of the micro light emitting diode display panel provided by the invention can simplify the repair process of the micro light emitting diode display panel, improve the success rate of the repair of the micro light emitting diode display panel, and ensure the repair effect of the micro light emitting diode display panel.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Abstract
一种微发光二极管显示面板及其修复方法。该微发光二极管显示面板的阳极(23)被划分为多个相互间隔的电极板(232),各个电极板(232)通过连接线(233)电性连接成一体,每一个电极板(232)上对应设置一个微发光二极管(25),当其中一个微发光二极管(25)出现不良时,可通过切断与设置该微发光二极管(25)的电极板(232)电性连接的连接线(233),将该微发光二极管(25)单独修复为暗点,其他微发光二极管(25)正常发光,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。
Description
本发明涉及显示技术领域,尤其涉及一种微发光二极管显示面板及其修复方法。
平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
微发光二极管(Micro LED,μLED)显示器是一种以在一个基板上集成的高密度微小尺寸的LED阵列作为显示像素来实现图像显示的显示器,同大尺寸的户外LED显示屏一样,每一个像素可定址、单独驱动点亮,可以看成是户外LED显示屏的缩小版,将像素点距离从毫米级降低至微米级,μLED显示器和有机发光二极管(Organic Light-Emitting Diode,OLED)显示器一样属于自发光显示器,但μLED显示器相比OLED显示器还具有材料稳定性更好、寿命更长、无影像烙印等优点,被认为是OLED显示器的最大竞争对手。
微转印(Micro Transfer Printing)技术是目前制备μLED显示装置的主流方法,具体制备过程为:首先在蓝宝石类基板生长出微发光二极管,然后通过激光剥离技术(Laser lift-off,LLO)将微发光二极管裸芯片(bare chip)从蓝宝石类基板上分离开,随后使用一个图案化的聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)传送头将微发光二极管裸芯片从蓝宝石类基板吸附起来,并将PDMS传送头与接收基板进行对位,随后将PDMS传送头所吸附的微发光二极管裸芯片贴附到接收基板上预设的位置,再剥离PDMS传送头,即可完成将微发光二极管裸芯片转移到接收基板上,进而制得μLED显示装置。
请参阅图1,为现有的微发光二极管显示面板的剖面图,包括:基板100、设于所述基板100上的栅极200、设于所述栅极200以及基板100上的栅极绝缘层300、设于所述栅极200上的栅极绝缘层300上的有源层400、设于所述有源层400以及栅极绝缘层300上的层间绝缘层500、设于所述层间绝缘层500上的间隔分布并分别与所述有源层400的两端接触的源极601和漏极602、设于所述源极601、漏极602、以及层间绝缘层500上的平坦
层700、设于所述平坦层700上并与所述漏极602电性连接的阳极800、设于所述阳极800四周边缘以及所述平坦层700上的像素定义层900、设于所述阳极800上的阴极隔离层1200、设于所述阳极800上并嵌入所述阴极隔离层1200中的多个微发光二极管1000、以及设于所述像素定义层900、阴极隔离层1200与多个微发光二极管1000上的阴极1100。如图2所示,现有的微发光二极管显示面板中阳极800为一个整体,数个微发光二极管1000依次排列于阳极800上,当其中一颗微发光二极管1000损坏需要修复时,需要将阳极800与漏极602之间的通路切断进行修复,切断点位于图2以及图1中的打叉的位置,修复后其他的正常的微发光二极管1000也无法发光,整个像素均变成了暗点,造成了资源的浪费,降低了显示品质。
发明内容
本发明的目的在于提供一种微发光二极管显示面板,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。
本发明的目的还在于提供一种微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。
为实现上述目的,本发明提供了一种微发光二极管显示面板,包括:基板、以及设于所述基板上阵列排布的多个像素单元;
每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;
所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;
所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;
所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接。
每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。
所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。
所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。
所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。
本发明还提供一种微发光二极管显示面板的修复方法,包括如下步骤:
步骤S1、提供一微发光二极管显示面板,所述微发光二极管显示面板包括:基板、以及设于所述基板上阵列排布的多个像素单元;
每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;
所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;
所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;
所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接;
步骤S2、检测到多个微发光二极管中的一个出现不良,确定该出现不良的微发光二极管的位置;
步骤S3、将与设置该出现不良的微发光二极管的电极板电性连接的连接线全部切断,将该出现不良的微发光二极管单独修复成暗点。
每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。
所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。
所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一及第二过孔过孔与所述有源层的两端
接触的源极和漏极。
所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。
本发明还提供一种微发光二极管显示面板的修复方法,包括如下步骤:
步骤S1、提供一微发光二极管显示面板,所述微发光二极管显示面板包括:基板、以及设于所述基板上阵列排布的多个像素单元;
每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;
所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;
所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;
所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接;
步骤S2、检测到多个微发光二极管中的一个出现不良,确定该出现不良的微发光二极管的位置;
步骤S3、将与设置该出现不良的微发光二极管的电极板电性连接的连接线全部切断,将该出现不良的微发光二极管单独修复成暗点;
其中,每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接;
其中,所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。
本发明的有益效果:本发明提供的一种微发光二极管显示面板,该微发光二极管显示面板的阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,每一个电极块上对应设置一个微发光二极管,当其中一个微发光二极管出现不良时,可通过切断与设置该微发光二极管
的电极板电性连接的连接线,将该微发光二极管单独修复为暗点,其他微发光二极管正常发光,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。本发明提供的一种微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为现有的微发光二极管显示面板的剖面图;
图2为现有的微发光二极管显示面板的阳极俯视图;。
图3为本发明的微发光二极管显示面板的剖面图;
图4为本发明的微发光二极管显示面板的第一实施例的阳极俯视图;
图5为本发明的微发光二极管显示面板的第二实施例的阳极俯视图;
图6为本发明的微发光二极管显示面板的第三实施例的阳极俯视图;
图7为本发明的微发光二极管显示面板的第四实施例的阳极俯视图;
图8为本发明的微发光二极管显示面板的修复方法的流程图。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图3,本发明提供一种微发光二极管显示面板,包括:基板1、以及设于所述基板1上阵列排布的多个像素单元2;
每一个像素单元2均包括:设于所述基板1上的TFT层21、设于所述TFT层21上的平坦化层22、设于所述平坦化层22上并与所述TFT层21电性连接的阳极23、设于所述阳极23的四周边缘以及平坦化层22上的像素定义层24、设于所述阳极23上的阴极隔离层26、设于所述阳极23上并嵌入所述阴极隔离层26中的多个微发光二极管25、以及设于所述像素定义层24、阴极隔离层26与多个微发光二极管25上的阴极27;
所述阳极23包括:与所述TFT层21电性连接的阳极电位输入板231、与阳极电位输入板231间隔分布的多个电极板232、以及与电极板232电性
连接的多条连接线233;
所述微发光二极管25与所述电极板232数量相同,每一个电极板232上设置一个微发光二极管25;
所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接。
具体地,如图4所示,在本发明的第一实施例中,每一个像素单元2包括三个微发光二极管25和三个电极板232,其中两个电极板232均通过两连接线233分别与另一个电极板232以及阳极电位输入板231电性连接,当其中任意一个微发光二极管25出现不良时,只要将与设置该微发光二极管25的电极板232电性连接的两连接线233进行切断即可将该微发光二极管25修复为暗点,而剩余的两个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号,正常发光。
具体地,如图5所示,图5为本发明的第二实施例,其与第一实施例的区别在于,所述另一个电极板232还通过一连接线233与所述阳极电位输入板231电性连接,也就是说三个电极板232均与所述阳极电位输入板231电性连接,此时,比第一实施例更优的是,当出现其中任意两个微发光二极管25均不良时,仍可以通过将与设置该两个微发光二极管25的两个电极板232电性连接的四连接线233进行切断实现将该两个微发光二极管25修复为暗点,并且剩余的一个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号。
具体地,请参阅图6,图6为本发明的第三实施例,每一个像素单元2包括八个微发光二极管25和八个电极板232,该八个电极板232与阳极电位输入板231呈3行3列矩阵排列,外围的七个电极板232与阳极电位输入板231依次串联到一起,中间的一个电极板232通过两连接线233分别与所述阳极电位输入板231以及一外围的电极板232电性连接。此外,图7为本发明的第四实施例,第四实施例为对第三实施例的改进,其中间的一个电极板232通过四连接线233分别与所述阳极电位输入板231以及三个外围的电极板232电性连接,第三实施例可以实现对任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,第四实施例可以实现对任意一个或两个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光。
可以理解的是,本发明还可以包括其他的电极板排列方式与其他的连
接方式,只要所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接,就能够实现本发明的对微发光二极管进行单独修复的目的,这不会影响本发明的实现。
具体地,所述TFT层21包括:设于所述基板1上的栅极211、设于所述栅极211以及基板1上的栅极绝缘层212、设于所述栅极211上的栅极绝缘层212上的有源层213、设于所述有源层213以及栅极绝缘层212上的层间绝缘层214、以及间隔分布于所述层间绝缘层214上并分别通过贯穿所述层间绝缘层214的第一过孔2141及第二过孔2142与所述有源层213的两端接触的源极215和漏极216。所述阳极电位输入板231通过一贯穿所述平坦化层22的第三过孔221与所述漏极216接触。
请参阅图8,基于上述的微发光二极管显示面板,本发明还提供一种微发光二极管显示面板的修复方法,包括如下步骤:
步骤S1、提供一本发明的微发光二极管显示面板,具体结构如上述,此处不再赘述。
步骤S2、检测到多个微发光二极管25中的一个出现不良,确定该出现不良的微发光二极管25的位置。
步骤S3、将与设置该出现不良的微发光二极管25的电极板232电性连接的连接线233全部切断,将该出现不良的微发光二极管25单独修复成暗点。
具体地,所述步骤S3通过镭射切割工艺切断所述连接线233,具体的切断点可以为如图4至图7中打叉的位置。
具体地,如图4所示,在本发明的第一实施例中,每一个像素单元2包括三个微发光二极管25和三个电极板232,其中两个电极板232均通过两连接线233分别与另一个电极板232以及阳极电位输入板231电性连接,当其中任意一个微发光二极管25出现不良时,只要将与设置该微发光二极管25的电极板232电性连接的两连接线233进行切断即可将该微发光二极管25修复为暗点,而剩余的两个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号,正常发光。例如图4中,中间一个微发光二极管25出现不良,只将与设置该微发光二极管25的电极板232电性连接的两连接线233切断即可,切断点可以为如图4中打叉的位置。
具体地,如图5所示,图5为本发明的第二实施例,其与第一实施例的区别在于,所述另一个电极板232还通过一连接线233与所述阳极电位
输入板231电性连接,也就是说三个电极板232均与所述阳极电位输入板231电性连接,此时,比第一实施例更优的是,当出现其中任意两个微发光二极管25均不良时,仍可以通过将与设置该两个微发光二极管25的两个电极板232电性连接的四连接线233进行切断实现将该两个微发光二极管25修复为暗点,并且剩余的一个微发光二极管25仍可从阳极电位输入板231正常获取阳极电位信号。例如图5中,中间一个微发光二极管25出现不良,只将与设置该微发光二极管25的电极板232电性连接的三条连接线233切断即可,切断点可以为如图5中打叉的位置。
具体地,请参阅图6,图6为本发明的第三实施例,每一个像素单元2包括八个微发光二极管25和八个电极板232,该八个电极板232与阳极电位输入板231呈3行3列矩阵排列,外围的七个电极板232与阳极电位输入板231依次串联到一起,中间的一个电极板232通过两连接线233分别与所述阳极电位输入板231以及一外围的电极板232电性连接。此外,图7为本发明的第四实施例,第四实施例为对第三实施例的改进,其中间的一个电极板232通过四连接线233分别与所述阳极电位输入板231以及三个外围的电极板232电性连接,第三实施例可以实现对任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,第四实施例可以实现对任意一个或两个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光。
可以理解的是,本发明还可以包括其他的电极板排列方式与其他的连接方式,只要所述阳极电位输入板231通过连接线233与至少两个电极板232电性连接,每一个电极板232通过连接线233与至少两个其他的电极板232电性连接或者与至少一个其他的电极板232以及阳极电位输入板231电性连接,就能够实现本发明的对微发光二极管进行单独修复的目的,这不会影响本发明的实现。
需要说明的是,本发明通过将阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,不仅可以实现任意一个微发光二极管25进行单独修复且不影响其他微发光二极管25正常发光,而且可以清晰的找出应该进行镭射切割的区域,便于修复时的定位,保证修复效果。
综上所述,本发明提供的微发光二极管显示面板,该微发光二极管显示面板的阳极被划分为多个相互间隔的电极块,各个电极块通过连接线电性连接成一体,每一个电极块上对应设置一个微发光二极管,当其中一个微发光二极管出现不良时,可通过切断与设置该微发光二极管的电极板电性连接的连接线,将该微发光二极管单独修复为暗点,其他微发光二极管
正常发光,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。本发明提供的微发光二极管显示面板的修复方法,能够简化微发光二极管显示面板的修复过程,提升微发光二极管显示面板的修复的成功率,保证微发光二极管显示面板的修复效果。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。
Claims (13)
- 一种微发光二极管显示面板,包括:基板、以及设于所述基板上阵列排布的多个像素单元;每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接。
- 如权利要求1所述的微发光二极管显示面板,其中,每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。
- 如权利要求2所述的微发光二极管显示面板,其中,所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。
- 如权利要求1所述的微发光二极管显示面板,其中,所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。
- 如权利要求4所述的微发光二极管显示面板,其中,所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。
- 一种微发光二极管显示面板的修复方法,包括如下步骤:步骤S1、提供一微发光二极管显示面板,所述微发光二极管显示面板包括:基板、以及设于所述基板上阵列排布的多个像素单元;每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层 上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接;步骤S2、检测到多个微发光二极管中的一个出现不良,确定该出现不良的微发光二极管的位置;步骤S3、将与设置该出现不良的微发光二极管的电极板电性连接的连接线全部切断,将该出现不良的微发光二极管单独修复成暗点。
- 如权利要求6所述的微发光二极管显示面板的修复方法,其中,每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接。
- 如权利要求7所述的微发光二极管显示面板的修复方法,其中,所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。
- 如权利要求6所述的微发光二极管显示面板的修复方法,其中,所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。
- 如权利要求9所述的微发光二极管显示面板的修复方法,其中,所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。
- 一种微发光二极管显示面板的修复方法,包括如下步骤:步骤S1、提供一微发光二极管显示面板,所述微发光二极管显示面板包括:基板、以及设于所述基板上阵列排布的多个像素单元;每一个像素单元均包括:设于所述基板上的TFT层、设于所述TFT层上的平坦化层、设于所述平坦化层上并与所述TFT层电性连接的阳极、设 于所述阳极的四周边缘以及平坦化层上的像素定义层、设于所述阳极上的阴极隔离层、设于所述阳极上并嵌入所述阴极隔离层中的多个微发光二极管、以及设于所述像素定义层、阴极隔离层与多个微发光二极管上的阴极;所述阳极包括:与所述TFT层电性连接的阳极电位输入板、与阳极电位输入板间隔分布的多个电极板、以及与电极板电性连接的多条连接线;所述微发光二极管与所述电极板数量相同,每一个电极板上设置一个微发光二极管;所述阳极电位输入板通过连接线与至少两个电极板电性连接,每一个电极板通过连接线与至少两个其他的电极板电性连接或者与至少一个其他的电极板以及阳极电位输入板电性连接;步骤S2、检测到多个微发光二极管中的一个出现不良,确定该出现不良的微发光二极管的位置;步骤S3、将与设置该出现不良的微发光二极管的电极板电性连接的连接线全部切断,将该出现不良的微发光二极管单独修复成暗点;其中,每一个像素单元包括三个微发光二极管和三个电极板,其中两个电极板均通过两连接线分别与另一个电极板以及阳极电位输入板电性连接;其中,所述TFT层包括:设于所述基板上的栅极、设于所述栅极以及基板上的栅极绝缘层、设于所述栅极上的栅极绝缘层上的有源层、设于所述有源层以及栅极绝缘层上的层间绝缘层、以及间隔分布于所述层间绝缘层上并分别通过贯穿所述层间绝缘层的第一过孔及第二过孔与所述有源层的两端接触的源极和漏极。
- 如权利要求11所述的微发光二极管显示面板的修复方法,其中,所述另一个电极板还通过一连接线与所述阳极电位输入板电性连接。
- 如权利要求11所述的微发光二极管显示面板的修复方法,其中,所述阳极电位输入板通过一贯穿所述平坦化层的第三过孔与所述漏极接触。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/508,103 US10043788B1 (en) | 2017-01-06 | 2017-02-15 | Micro light emitting diode display panel and repair method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710010361.8 | 2017-01-06 | ||
CN201710010361.8A CN106684098B (zh) | 2017-01-06 | 2017-01-06 | 微发光二极管显示面板及其修复方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018126513A1 true WO2018126513A1 (zh) | 2018-07-12 |
Family
ID=58849268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073606 WO2018126513A1 (zh) | 2017-01-06 | 2017-02-15 | 微发光二极管显示面板及其修复方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10043788B1 (zh) |
CN (1) | CN106684098B (zh) |
WO (1) | WO2018126513A1 (zh) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018102044A1 (de) | 2018-01-30 | 2019-08-01 | Osram Opto Semiconductors Gmbh | Optoelektronische schaltungsanordnung und verfahren zur reparatur einer optoelektronischen schaltungsanordnung |
CN108646476B (zh) * | 2018-03-22 | 2020-12-25 | 南京中电熊猫液晶显示科技有限公司 | 一种液晶面板的断线修复方法 |
CN208014703U (zh) | 2018-03-29 | 2018-10-26 | 昆山工研院新型平板显示技术中心有限公司 | 驱动背板、微发光二极管显示面板及显示器 |
CN108878468B (zh) * | 2018-06-26 | 2021-02-26 | 京东方科技集团股份有限公司 | 一种显示基板及其制作方法、显示面板、显示装置 |
CN109003996B (zh) * | 2018-07-27 | 2021-07-09 | 上海天马微电子有限公司 | 显示面板、显示面板的检修方法及显示装置 |
TWI668856B (zh) | 2018-12-12 | 2019-08-11 | 友達光電股份有限公司 | 發光二極體面板 |
CN109741684B (zh) * | 2019-01-07 | 2021-03-12 | 京东方科技集团股份有限公司 | 一种电路基板、显示面板及制作方法 |
TWI690757B (zh) | 2019-01-07 | 2020-04-11 | 友達光電股份有限公司 | 畫素結構及其修補方法 |
WO2020153767A1 (en) | 2019-01-22 | 2020-07-30 | Samsung Electronics Co., Ltd. | Display module and repairing method of the same |
KR20200091347A (ko) * | 2019-01-22 | 2020-07-30 | 삼성전자주식회사 | 디스플레이 모듈 및 디스플레이 모듈의 리페어 방법 |
KR20200104060A (ko) * | 2019-02-26 | 2020-09-03 | (주)포인트엔지니어링 | 마이크로 led 전사 방법 및 이를 이용한 디스플레이 장치 |
CN110136637B (zh) | 2019-05-14 | 2023-05-16 | 京东方科技集团股份有限公司 | 一种像素电路及其驱动方法、显示装置 |
US11152540B2 (en) * | 2019-07-29 | 2021-10-19 | Lextar Electronics Corporation | Light emitting diode structure and method of manufacturing thereof |
KR20210017674A (ko) | 2019-08-09 | 2021-02-17 | 삼성전자주식회사 | 디스플레이 장치 및 그 제조방법 |
JP2021043378A (ja) * | 2019-09-12 | 2021-03-18 | 株式会社ジャパンディスプレイ | 表示装置及び表示装置の製造方法 |
JP2021051150A (ja) * | 2019-09-24 | 2021-04-01 | 株式会社ジャパンディスプレイ | 表示装置の補修方法及び表示装置 |
CN111081697A (zh) * | 2019-12-31 | 2020-04-28 | 广东晶科电子股份有限公司 | 微发光二极管模组及其显示模组及其修复方法 |
CN111180499A (zh) * | 2020-02-17 | 2020-05-19 | 京东方科技集团股份有限公司 | 像素结构、显示面板及其修复方法 |
CN111403372B (zh) * | 2020-03-31 | 2022-05-10 | 湖北长江新型显示产业创新中心有限公司 | Micro LED显示面板及其制备方法、显示装置 |
CN111668233B (zh) * | 2020-06-08 | 2023-06-30 | Tcl华星光电技术有限公司 | 显示面板及其制备方法 |
CN111798764B (zh) * | 2020-06-12 | 2022-07-05 | 福州大学 | 一种μLED像素单元结构及显示器件 |
CN111710655B (zh) * | 2020-06-18 | 2022-06-10 | 昆山梦显电子科技有限公司 | 基于生物识别技术的显示面板及其制造方法、显示装置 |
KR20220014743A (ko) * | 2020-07-29 | 2022-02-07 | 삼성전자주식회사 | 디스플레이 모듈 |
FR3113768B1 (fr) * | 2020-08-28 | 2022-09-09 | Aledia | Procédé de traitement d'un dispositif optoélectronique |
CN112435594A (zh) * | 2020-11-30 | 2021-03-02 | 南京中电熊猫液晶显示科技有限公司 | 一种Micro LED背板及其修补方法 |
CN112599713A (zh) * | 2020-12-17 | 2021-04-02 | 安徽熙泰智能科技有限公司 | 一种高分辨率微显示器缺陷修复方法 |
CN112802942A (zh) * | 2020-12-31 | 2021-05-14 | 厦门天马微电子有限公司 | 一种显示面板、制备方法及显示装置 |
US20220352236A1 (en) * | 2021-04-30 | 2022-11-03 | Samsung Display Co., Ltd. | Display device |
CN113327530B (zh) * | 2021-05-27 | 2022-06-03 | 武汉天马微电子有限公司 | 一种显示面板及其修复方法、显示装置 |
KR20230067009A (ko) * | 2021-11-08 | 2023-05-16 | 삼성전자주식회사 | 디스플레이 패널, 이의 제조 방법 및 이를 포함하는 전자 장치 |
CN115440873A (zh) * | 2022-09-01 | 2022-12-06 | 闻泰通讯股份有限公司 | 微发光二极管显示面板及电子设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105144387A (zh) * | 2013-03-15 | 2015-12-09 | 勒克斯维科技公司 | 具有冗余方案的发光二极管显示器和利用集成的缺陷检测测试来制造发光二极管显示器的方法 |
CN105324858A (zh) * | 2013-06-17 | 2016-02-10 | 勒克斯维科技公司 | 用于集成光发射设备的反射堤结构和方法 |
CN105339996A (zh) * | 2013-06-18 | 2016-02-17 | 勒克斯维科技公司 | 具有波长转换层的led显示器 |
CN106170849A (zh) * | 2015-10-20 | 2016-11-30 | 歌尔股份有限公司 | 微发光二极管的转移方法、制造方法、装置和电子设备 |
CN106206651A (zh) * | 2015-05-28 | 2016-12-07 | 美科米尚技术有限公司 | 发光二极管显示装置及其制造方法 |
WO2016200635A1 (en) * | 2015-06-10 | 2016-12-15 | Sxaymiq Technologies Llc | Display panel redundancy schemes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8791474B1 (en) * | 2013-03-15 | 2014-07-29 | LuxVue Technology Corporation | Light emitting diode display with redundancy scheme |
WO2017041253A1 (en) * | 2015-09-09 | 2017-03-16 | Goertek. Inc | Repairing method, manufacturing method, device and electronics apparatus of micro-led |
TWI657563B (zh) * | 2015-12-15 | 2019-04-21 | 優顯科技股份有限公司 | 光電裝置及其製造方法 |
CN106098697B (zh) * | 2016-06-15 | 2019-04-02 | 深圳市华星光电技术有限公司 | 微发光二极管显示面板及其制作方法 |
-
2017
- 2017-01-06 CN CN201710010361.8A patent/CN106684098B/zh active Active
- 2017-02-15 US US15/508,103 patent/US10043788B1/en active Active
- 2017-02-15 WO PCT/CN2017/073606 patent/WO2018126513A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105144387A (zh) * | 2013-03-15 | 2015-12-09 | 勒克斯维科技公司 | 具有冗余方案的发光二极管显示器和利用集成的缺陷检测测试来制造发光二极管显示器的方法 |
CN105324858A (zh) * | 2013-06-17 | 2016-02-10 | 勒克斯维科技公司 | 用于集成光发射设备的反射堤结构和方法 |
CN105339996A (zh) * | 2013-06-18 | 2016-02-17 | 勒克斯维科技公司 | 具有波长转换层的led显示器 |
CN106206651A (zh) * | 2015-05-28 | 2016-12-07 | 美科米尚技术有限公司 | 发光二极管显示装置及其制造方法 |
WO2016200635A1 (en) * | 2015-06-10 | 2016-12-15 | Sxaymiq Technologies Llc | Display panel redundancy schemes |
CN106170849A (zh) * | 2015-10-20 | 2016-11-30 | 歌尔股份有限公司 | 微发光二极管的转移方法、制造方法、装置和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN106684098A (zh) | 2017-05-17 |
US20180226388A1 (en) | 2018-08-09 |
US10043788B1 (en) | 2018-08-07 |
CN106684098B (zh) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018126513A1 (zh) | 微发光二极管显示面板及其修复方法 | |
KR102341625B1 (ko) | 마이크로 발광다이오드 디스플레이 패널 및 그 제조방법 | |
US10504934B2 (en) | Array substrate, method for manufacturing array substrate, and display panel | |
KR102597071B1 (ko) | 발광 다이오드 표시 장치 | |
US11710431B2 (en) | Manufacturing method of display apparatus, interposer substrate, and computer program stored in readable medium | |
KR20230117303A (ko) | 표시 장치 및 이의 제조 방법 | |
TWI591818B (zh) | 有機發光二極體顯示裝置及其製造方法 | |
KR100884455B1 (ko) | 유기전계발광 표시장치 및 그 모기판 | |
TWI506773B (zh) | 有機電致發光式觸控顯示面板 | |
US11462523B2 (en) | Display module having LED packages including connection substrate | |
KR102102353B1 (ko) | 유기발광 표시패널의 검사방법, 원장기판 검사장치 및 검사방법 | |
TW200723941A (en) | Organic electroluminescent device, method of manufacturing organic electroluminescent device, and electronic apparatus | |
WO2014121550A1 (zh) | 阵列基板及oled显示装置 | |
US11705440B2 (en) | Micro LED display panel | |
CN113380849A (zh) | 一种显示面板的制作方法及显示面板 | |
KR20150067609A (ko) | 플렉시블 표시 장치 및 이의 제조 방법 | |
WO2022099995A1 (zh) | 一种检测结构及检测方法 | |
US20220320462A1 (en) | Display panel, method for manufacturing same, and display device | |
TW200740282A (en) | Organic light emitting device and method of fabricating the same | |
KR100766895B1 (ko) | 표시 장치 | |
CN113451165B (zh) | 一种显示背板的检测方法及其检测结构 | |
WO2022099994A1 (zh) | 一种显示背板的检测方法及检测结构 | |
JP2009157288A (ja) | 多数個取り基板及びその製造方法 | |
KR20150074383A (ko) | 점등 패드부 및 이를 포함하는 유기발광표시장치 | |
KR100719705B1 (ko) | 발광표시장치 및 그의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 15508103 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890297 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17890297 Country of ref document: EP Kind code of ref document: A1 |