WO2022099995A1 - 一种检测结构及检测方法 - Google Patents

一种检测结构及检测方法 Download PDF

Info

Publication number
WO2022099995A1
WO2022099995A1 PCT/CN2021/087094 CN2021087094W WO2022099995A1 WO 2022099995 A1 WO2022099995 A1 WO 2022099995A1 CN 2021087094 W CN2021087094 W CN 2021087094W WO 2022099995 A1 WO2022099995 A1 WO 2022099995A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
contact electrode
circuit board
display backplane
detection line
Prior art date
Application number
PCT/CN2021/087094
Other languages
English (en)
French (fr)
Inventor
王广
孔琴
林建宏
Original Assignee
重庆康佳光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆康佳光电技术研究院有限公司 filed Critical 重庆康佳光电技术研究院有限公司
Priority to US17/533,800 priority Critical patent/US11915985B2/en
Publication of WO2022099995A1 publication Critical patent/WO2022099995A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present application relates to the field of display technology, and in particular, to a detection structure and a detection method.
  • Micro Light-emitting diodes (Micro Light-Emitting Diode, Micro-LED) display, has the advantages of good stability, life and operating temperature, and also inherits the advantages of LED low power consumption, color saturation, fast response speed, strong contrast, etc. application prospects.
  • the miniature light-emitting diode display backplane includes several pixel areas, and each pixel area includes red LEDs, blue LEDs, and green LEDs. In the production process of the display, the red, green and blue LED chips need to be transferred from their respective growth substrates (WAFER) to the display backplane. However, if any of the LED chips is damaged/poor in contact, after transfer, a dead pixel will appear on the display backplane, which will affect the imaging effect.
  • WAFER growth substrates
  • the current way to solve the above problem is to find out where the dead spot is by detecting whether the LED chip can be lit, and the detection method is generally to light up the LED chip after a massive transfer, and detect the dead spot by detecting the outgoing beam of the LED chip. 's location.
  • the cause of the dead pixel is not the problem of the LED chip, but the display backplane is damaged and the LED chip cannot be lit.
  • the detection scheme for the display backplane before the mass transfer has not yet appeared.
  • the purpose of the present application is to provide a detection structure and a detection method, aiming at solving the problem that the display backplane cannot be detected before the mass transfer.
  • a detection structure the detection structure is used to detect a display backplane
  • the detection structure includes a detection circuit board and a detection light-emitting diode chip
  • the detection circuit board includes: a plurality of first detection lines and a second detection line, the The first detection line and the second detection line are arranged at intervals on the side of the detection circuit board facing the display backplane; a plurality of first detection electrodes and second detection electrodes, the first detection electrodes and the Two detection electrodes are arranged at intervals on the side of the detection circuit board away from the display backplane, the first detection electrode is electrically connected to the first detection line, and the second detection electrode is connected to the second detection line.
  • the electrodes are electrically connected;
  • the detection light-emitting diode includes a first electrode and a second electrode, the first electrode is electrically connected to the first detection electrode, and the second electrode is electrically connected to the second detection electrode;
  • the display back A number of contact electrode pairs are arranged in a matrix on the board, the contact electrode pairs include a first contact electrode and a second contact electrode, the first detection line is used for electrical connection with the first contact electrode, and the second detection line It is used for electrical connection with the second contact electrode; during detection, the detection circuit board is placed on the display backplane, so that the first detection line on the detection circuit board is in contact with the first The electrodes are turned on, and the second detection line on the detection circuit board is connected with the second contact electrode, and a driving signal is output to the first detection line and the second detection line through the display backplane line, if the detection LED chip is not lit, the detection LED chip corresponds to the abnormality of the contact electrode pair on the display backplane.
  • the detection circuit board connected with the detection light-emitting diode chip by placing the detection circuit board connected with the detection light-emitting diode chip on the display backplane, the first detection line on the detection circuit board is connected to the first contact electrode, and the The second detection line on the detection circuit board is connected to the second contact electrode. At this time, a driving signal is output to the first detection line and the second detection line through the display backplane. If the LED chip is lit, it means that the contact electrode pair corresponding to the detection LED chip is normal. If the detection LED chip is not lit, it means that the contact electrode pair corresponding to the detection LED chip is abnormal. After the detection is completed, the abnormality can be corrected. The contact electrode pair is ready for mass transfer after maintenance. Therefore, the present application can detect possible defects on the display backplane before the mass transfer.
  • the present application does not need a mass transfer step, and does not need to perform tedious mass transfer work to detect whether the display backplane is in time. There is a damage phenomenon, which can avoid the problem that it cannot be confirmed whether the micro light-emitting diode chip is damaged or the display backplane is damaged when there is a dead point on the display backplane after a large amount of transfer.
  • the first detection electrode and the second detection electrode are arranged between the first detection line and the second detection line; wherein, the first detection line in the same group of detection lines The distance from the second detection line is greater than the distance between the opposite sides of the first contact electrode and the second contact electrode in the same contact electrode pair, and is smaller than the first contact electrode and the second contact electrode in the same contact electrode pair.
  • the distance between the second contact electrode and the back side of the second contact electrode; the distance between the first detection line and the second detection line of the adjacent detection line group is greater than the distance between the first contact electrode and the second detection line in the same contact electrode pair. The distance between the back sides of the two contact electrodes.
  • the distance between the first detection line and the second detection line in the same detection line group is greater than or equal to the distance between the first contact electrode and the second contact electrode in the same contact electrode pair.
  • the distance from the side of the first contact electrode and the back side of the second contact electrode in the same contact electrode pair is less than or equal to the distance between the back sides of the first contact electrode and the second contact electrode, so as to ensure that the first detection line can be connected to the first contact electrode,
  • the second detection line can be conductive with the second contact electrode.
  • the distance between the first detection line and the second detection line of the adjacent detection line group is greater than the distance between the back sides of the first contact electrode and the second contact electrode in the same contact electrode pair, then The short circuit between the first detection line and the second detection line of adjacent detection line groups can be avoided.
  • the display backplane includes a substrate, a circuit layer, and a planarization layer, wherein the circuit layer is disposed on the surface of the substrate; wherein the circuit layer includes a driving circuit, the driving circuit and the first A detection line is electrically connected to the second detection line; the planarization layer covers the circuit layer, and the first contact electrode and the second contact electrode are disposed on the surface of the planarization layer.
  • the detection LED chip is a flip-chip LED chip, the detection LED chip includes a first electrode and a second electrode, the first electrode is electrically connected to the first detection electrode, the The second electrode is electrically connected to the second detection electrode.
  • the present application also provides a detection method, which is applied to the above-mentioned detection structure, and the method includes the steps of: providing the display backplane, the detection circuit board and the detection light-emitting A diode chip; the detection circuit board is placed on the display backplane, so that the first detection line on the detection circuit board is conductive with the first contact electrode, and the detection circuit board is The second detection line is conductive with the second contact electrode; the display backplane outputs a driving signal to the first detection line and the second detection line, if the detection LED chip is not lit, then The detection light-emitting diode chip corresponds to the abnormality of the contact electrode pair on the display backplane.
  • the detection method of the above-mentioned display backplane is performed by placing the detection circuit board connected with the detection light-emitting diode chip on the display backplane, so that the first detection line on the detection circuit board is connected to the first contact electrode. turn on, and make the second detection line on the detection circuit board conduct with the second contact electrode, at this time, output the driving signal to the first detection line and the second detection line through the display backplane If the detection LED chip is lit, it means that the contact electrode pair corresponding to the detection LED chip is normal; if the detection LED chip is not lit, it means that the contact electrode pair corresponding to the detection LED chip is abnormal, and the detection is completed. After the abnormal contact electrode pair can be repaired, it can be used for mass transfer.
  • the present application can detect possible defects on the display backplane before the mass transfer.
  • the present application does not need a mass transfer step, and does not need to perform tedious mass transfer work to detect whether the display backplane is in time.
  • There is a damage phenomenon which can avoid the problem that it cannot be confirmed whether the micro light-emitting diode chip is damaged or the display backplane is damaged when there is a dead point on the display backplane after a large amount of transfer.
  • the step further includes: separating the detection circuit board from the display backplane, and The abnormal contact electrode pair on the display backplane is repaired for mass transfer.
  • the detection circuit board is placed on the display backplane, so that the first detection line on the detection circuit board is conductive with the first contact electrode, and the detection circuit is made
  • the step of conducting the second detection line on the board with the second contact electrode includes: placing the detection circuit board on the display backplane, and making a first mark to align, so that the first detection line is Conduction with the first contact electrodes on the odd-numbered columns of the display backplane, and make the second detection line conduct with the second contact electrodes on the odd-numbered columns of the display backplane; after the display backplane is completed After the detection of the contact electrode pairs on the odd-numbered columns of the board, move the detection circuit board and make a second mark to align, so that the first detection line is connected to the first contact electrodes on the even-numbered columns of the display backplane , and make the second detection line conduct with the second contact electrodes on the even-numbered columns of the display backplane.
  • the area of the detection circuit board needs to be larger than the area of the display backplane.
  • the display backplane can be tested twice, that is, the display backplane is first tested. After the contact electrode pairs of the odd-numbered columns are detected, the contact electrode pairs of the even-numbered columns on the display backplane are then detected, so as to avoid that the area of the detection circuit board is larger than the area of the display backplane and the display backplane cannot be detected. board to detect the problem.
  • the detection circuit board is placed on the display backplane, so that the first detection line on the detection circuit board is conductive with the first contact electrode, and the detection circuit is made Before the step of conducting the second detection line on the board with the second contact electrode, the step further includes: forming a plurality of photoresist parts on the display backplane along the column direction of the display backplane, the light The photoresist portion is located between adjacent contact electrode pairs in every odd-numbered column of contact electrode pairs; or, the photoresist portion is located between adjacent contact electrode pairs in every even-numbered column of contact electrode pairs; wherein, after the detection is completed, the After displaying the contact electrode pairs of the odd-numbered columns on the backplane, the photoresist part between the adjacent contact electrode pairs in each odd-numbered column of contact electrode pairs is removed, and the photoresist part is fabricated on the contact electrodes of every even-numbered column.
  • the detection circuit board after the detection circuit board is placed on the display backplane, the detection circuit board can be adhered to the display backplane through the photoresist part.
  • the height of the photoresist portion is less than or equal to the height of the contact electrode pair.
  • the first detection line can be connected to the first contact electrode
  • the second detection line can be connected to the display backplane.
  • the second contact electrode is turned on.
  • the detection circuit board is placed on the display backplane, so that the first detection line on the detection circuit board is conductive with the first contact electrode, and the detection circuit is made
  • the step of conducting the second detection line on the board with the second contact electrode further includes: pressing the detection circuit board on the display backplane with a heavy object.
  • the above technical solution ensures that when the detection circuit board covers the display backplane, the first detection line can be connected to the first contact electrode, and the second detection line can be connected to the first contact electrode.
  • the second contact electrode is turned on.
  • the detection circuit board connected with the detection light-emitting diode chip by placing the detection circuit board connected with the detection light-emitting diode chip on the display backplane, the first detection line on the detection circuit board is connected to the first contact electrode, and the The second detection line on the detection circuit board is connected to the second contact electrode. At this time, a driving signal is output to the first detection line and the second detection line through the display backplane. If the LED chip is lit, it means that the contact electrode pair corresponding to the detection LED chip is normal. If the detection LED chip is not lit, it means that the contact electrode pair corresponding to the detection LED chip is abnormal. After the detection is completed, the abnormality can be corrected. The contact electrode pair is ready for mass transfer after maintenance. Therefore, the present application can detect possible defects on the display backplane before the mass transfer.
  • the present application does not need a mass transfer step, and does not need to perform tedious mass transfer work to detect whether the display backplane is in time. There is a damage phenomenon, which can avoid the problem that it cannot be confirmed whether the micro light-emitting diode chip is damaged or the display backplane is damaged when there is a dead point on the display backplane after a large amount of transfer.
  • FIG. 1 is a schematic diagram of a manufacturing process of a display in the prior art.
  • FIG. 2 is a schematic flowchart of a method for detecting a display backplane in the present application.
  • FIG. 3 is a schematic structural diagram of the detection light-emitting diode chip in the present application.
  • FIG. 4 is a schematic structural diagram of a display backplane in the present application.
  • FIG. 5 is a schematic structural diagram of the circuit layer of the display backplane in the present application.
  • FIG. 6 is a schematic diagram of the display backplane before the display has undergone mass transfer in the present application.
  • FIG. 7 is a schematic diagram of the photoresist portion disposed between adjacent contact electrode pairs in each odd-numbered row of contact electrode pairs in the present application.
  • FIG. 8 is a sectional view taken along the line YY′ in FIG. 7 .
  • FIG. 9 is a schematic diagram of the side of the detection circuit board facing the display backplane in the present application.
  • FIG. 10 is a schematic diagram 1 of detecting the side of the circuit board facing away from the display backplane in the present application.
  • FIG. 11 is a schematic diagram of the distance between the first contact electrode and the second contact electrode in the same group of contact electrode pairs.
  • FIG. 12 is a schematic diagram 2 of detecting the side of the circuit board facing away from the display backplane in the present application.
  • Fig. 13 is a sectional view taken along the line XX' in Fig. 12 .
  • Fig. 14 is a cross-sectional view taken along the line YY' in Fig. 12 .
  • FIG. 15 is a schematic structural diagram of the detection circuit board in the present application.
  • FIG. 16 is a schematic diagram of the driving circuit on the display backplane outputting driving signals row by row to the detection circuit board in the present application.
  • FIG. 17 is a schematic diagram of the display back panel after the detection is completed.
  • FIG. 18 is a schematic diagram of the photoresist portion disposed between adjacent contact electrode pairs in each even-numbered row of contact electrode pairs in the present application.
  • FIG. 19 is a schematic diagram 3 of detecting the side of the circuit board facing away from the display backplane in the present application.
  • Fig. 20 is a cross-sectional view taken along the line XX' in Fig. 19 .
  • Fig. 21 is a cross-sectional view taken along the line YY' in Fig. 19 .
  • FIG. 22 is a schematic diagram of pressing the detection circuit board on the display backboard by using a heavy object in an embodiment of the present application.
  • 100 display backplane; 101, first contact electrode; 102, second contact electrode; 103, substrate; 104, circuit layer; 1041, buffer layer; 1042, gate insulating layer; 1043, interlayer Insulation layer; 105, planarization layer; 106, TFT; 107, gate line contact point; 108, signal line contact point; 109, first through hole; 110, pixel area; 200, detection circuit board; 201, first 202, the second detection line; 203, the first detection electrode; 204, the second detection electrode; 205, the second through hole; 300, the detection light-emitting diode chip; 301, the first electrode; 302, the second electrode; 303, the first semiconductor layer; 304, the second semiconductor layer; 305, the light-emitting layer; 400, the photoresist part; 500, the weight.
  • the Micro-LED display backplane 100 includes several pixel areas 110 , and each pixel area 110 includes red LED, blue LED, and green LED chips.
  • each pixel area 110 includes red LED, blue LED, and green LED chips.
  • three LED chips of red, green and blue need to be transferred from their respective growth substrates 103 (red LED growth substrate, blue LED growth substrate, and green LED growth substrate) to the display backplane 100 .
  • the position indicated by "X" in FIG. 1 will appear as a dead pixel on the display backplane 100 after being transferred, which will affect the imaging effect.
  • the detection method of the dead spot on the display backplane 100 is generally to light up the LED chip after the mass transfer, and detect the location of the dead spot by detecting the outgoing light beam of the LED chip, or to separate the growth substrate before the mass transfer.
  • the LED epitaxy on the test is carried out. But sometimes, the cause of the dead pixel is not the problem of the LED chip, but the damage of the display backplane 100, so that the LED chip cannot be lit.
  • the detection scheme for the display backplane 100 before mass transfer has not yet appeared.
  • the present application provides a detection structure for detecting the display backplane 100 .
  • the detection structure includes a detection circuit board 200 and a detection light-emitting diode chip 300 .
  • the detection circuit The board 200 includes: a number of first detection lines 201 and second detection lines 202 and a number of first detection electrodes 203 and second detection electrodes 204, the first detection lines 201 and the second detection lines 202 are arranged at intervals in the
  • the detection circuit board 200 faces the side of the display backplane 100 , the first detection electrodes 203 and the second detection electrodes 204 are arranged at intervals on the side of the detection circuit board 200 away from the display backplane 100 , That is, the first detection electrode 203, the second detection electrode 204, the first detection line 201, the second detection line 202 are disposed on both sides of the electrical measurement circuit board 200 opposite to each other, and the first detection line 201, the second detection line 202
  • the detection electrode 203 is electrically connected to the first detection line 201,
  • the contact electrode pairs include a first contact electrode 101 and a second contact electrode 102 , and the first detection line 201 is used for connecting with the first contact electrode 101 For electrical connection, the second detection line 202 is used for electrical connection with the second contact electrode 102 .
  • the detection LED chip is a flip-chip LED chip.
  • the detection LED chip 300 includes A first electrode 301 , a second electrode 302 , a first semiconductor layer 303 , a second semiconductor layer 304 and a light emitting layer 305 .
  • the first semiconductor layer 303 may be an N/P type doped GaN layer
  • the light emitting layer 305 may be a quantum well layer
  • the second semiconductor layer 304 may be a P/N type doped GaN layer
  • the electrode 302 is a conductive material such as metal.
  • Materials of the first electrode 301 and the second electrode 302 may include aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni), neodymium ( Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum, titanium (Ti), tungsten (W) or copper (Cu), etc.
  • the display backplane 100 includes a substrate 103 , a circuit layer 104 and a planarization layer 105 , wherein the circuit layer 104 is disposed on the surface of the substrate 103 ; wherein, The circuit layer 104 includes a driving circuit, and the driving circuit is electrically connected to the first detection line 201 and the second detection line 202; the planarization layer 105 covers the circuit layer 104, and the first detection line 201 The contact electrode 101 and the second contact electrode 102 are disposed on the surface of the planarization layer 105 .
  • the substrate 103 may include a transparent glass material, such as silicon dioxide (SiO 2 ).
  • the substrate 103 may also include a transparent plastic material such as: polyethersulfone (PES), polyacrylate (PAR), polyetherimide (PEI), polyethylene terephthalate (PEN), polyethylene terephthalate (PEN) Ethylene glycol dicarboxylate (PET), polyphenylene sulfide (PPS), polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC) or cellulose propionate (CAP) and other organic materials.
  • PES polyethersulfone
  • PAR polyacrylate
  • PEI polyetherimide
  • PEN polyethylene terephthalate
  • PEN polyethylene terephthalate
  • PET polyphenylene glycol dicarboxylate
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose propionate
  • the circuit layer 104 includes a driving circuit for driving and detecting the light-emitting diode chip 300 , such as a thin film transistor TFT106 , a gate line, a signal line, and the like.
  • the driving circuit is electrically connected to the first detection line 201 and the second detection line 202 on the detection circuit board 200 for applying electrical signals to the first detection line 201 and the second detection line 202 .
  • the planarization layer 105 covers the circuit layer 104, which can eliminate the step difference on the circuit layer 104 and make it planarized.
  • the planarization layer 105 may include organic materials such as: polymethyl methacrylate (PMMA) or polystyrene (PS), polymer derivatives with phenolic groups, acryl-based polymers, imide-based polymers , aryl ether-based polymers, amide-based polymers, fluorine-based polymers, para-xylylene-based polymers, vinyl alcohol-based polymers, or any combination thereof.
  • PMMA polymethyl methacrylate
  • PS polystyrene
  • polymer derivatives with phenolic groups such as: polymethyl methacrylate (PMMA) or polystyrene (PS), polymer derivatives with phenolic groups, acryl-based polymers, imide-based polymers , aryl ether-based polymers, amide-based polymers, fluorine-based polymers, para-xylylene-based poly
  • the first contact electrode 101 and the second contact electrode 102 may be disposed on the surface of the planarization layer 105 for passing the filling material in the first through hole 109 on the planarization layer 105 and the signal lines in the circuit layer 104,
  • the gate lines (the gate lines can send on/off signals to the thin film transistor TFT106) are connected.
  • the first contact electrode 101 and the second contact electrode 102 are respectively bonded to the first electrode 301 and the second electrode 302 on the detection LED chip 300 .
  • the materials of the first contact electrode 101, the second contact electrode 102, the filling material in the first through hole 109, the signal line, and the gate line may include aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag) ), magnesium (Mg), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum, titanium (Ti), tungsten (W) or copper (Cu) etc.
  • the circuit layer 104 may specifically include: a buffer layer 1041 , a gate insulating layer 1042 , an interlayer insulating layer 1043 , a TFT 106 , a gate line contact point 107 , and the like.
  • the buffer layer 1041 is disposed above the substrate 103 , which can provide a substantially flat surface above the substrate 103 , and can reduce or prevent foreign matter or moisture from penetrating the substrate 103 .
  • the buffer layer 1041 may include inorganic materials such as: silicon oxide (SiO2), silicon nitride (SiNx), silicon oxynitride (SiON), aluminum oxide (Al2O3), aluminum nitride (AlN), Titanium oxide (TiO2) or titanium nitride (TiN).
  • the buffer layer 1041 may also include organic materials such as polyimide, polyester or acryl.
  • the thin film transistor TFT106 may include an active layer, a gate electrode, a source electrode and a drain electrode. As shown in FIG. 5 , the thin film transistor TFT106 is a top-gate thin film transistor (actually, the TFT 106 may also be a bottom-gate thin film transistor).
  • the active layer may include a semiconductor material such as amorphous silicon or polysilicon.
  • the active layer may also include other materials, such as organic semiconductor materials or oxide semiconductor materials.
  • the gate/source/drain may include low resistance metal materials such as: aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni) ), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W) or copper (Cu), etc.
  • low resistance metal materials such as: aluminum (Al), platinum (Pt), palladium (Pd), silver (Ag), magnesium (Mg), gold (Au), nickel (Ni) ), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W) or copper (Cu), etc.
  • the gate insulating layer 1042 is used to insulate the gate and the active layer, and may include inorganic materials, such as SiO2, SiNx, SiON, Al2O3, TiO2, tantalum oxide (Ta2O5), hafnium oxide (HfO2) or zinc oxide (ZnO2) Wait.
  • inorganic materials such as SiO2, SiNx, SiON, Al2O3, TiO2, tantalum oxide (Ta2O5), hafnium oxide (HfO2) or zinc oxide (ZnO2) Wait.
  • the interlayer insulating layer 1043 is used to insulate between the source electrode and the gate electrode and between the drain electrode and the gate electrode.
  • the interlayer insulating layer 1043 may include inorganic materials, such as: SiO2, SiNx, SiON, Al2O3, TiO2, tantalum oxide (Ta2O5), hafnium oxide (HfO2), zinc oxide (ZnO2), and the like.
  • the gate line contact point 107 may be formed on one of a plurality of insulating films arranged under the planarization layer 105 , and may be formed on the interlayer insulating layer 1043 /gate insulating layer 1042 .
  • the first detection line 201 on the detection circuit board 200 is connected to the first contact electrode 101, and all the The second detection line 202 on the detection circuit board 200 is connected to the second contact electrode 102, and the display backplane 100 outputs a driving signal to the first detection line 201 and the second detection line 202 If the detection LED chip 300 is not lit, the detection LED chip corresponds to the abnormal contact electrode pair on the display back panel. After the detection is completed, the abnormal contact electrode pair can be repaired. Available for bulk transfers.
  • the present application can detect possible defects on the display backplane 100 before the mass transfer, and the present application can detect the display backplane 100 in time without the need for a mass transfer step and without the need for tedious mass transfer work. Whether there is damage on the display panel 100 can avoid the problem that it cannot be confirmed whether the micro LED chip is damaged or the display back panel 100 is damaged when the display back panel 100 is damaged after a large amount of transfer.
  • the first detection electrode 203 and the second detection electrode 204 are disposed between the first detection line 201 and the second detection line 202 .
  • a group of detection lines includes a first detection line 201 and a second detection line 202, and the distance W2 between the first detection line 201 and the second detection line 202 in the same group of detection lines is greater than or equal to the same
  • the distance d between the opposite sides of the first contact electrode 101 and the second contact electrode 102 in the contact electrode pair is less than or equal to the distance d between the first contact electrode 101 and the second contact electrode 102 in the same contact electrode pair
  • the distance D from the side that is, the following formula is satisfied: d ⁇ W2 ⁇ D.
  • the distance W1 between the first detection line 201 and the second detection line 202 of the adjacent detection line group is greater than the back side of the first contact electrode 101 and the second contact electrode 102 in the same contact electrode pair
  • the distance D which satisfies the following formula: D ⁇ W1.
  • the distance W2 between the first detection line 201 and the second detection line 202 in the same detection line group is larger than that between the first contact electrode 101 and the second contact electrode in the same contact electrode pair.
  • the distance d on the opposite side of the contact electrode 102 is smaller than the distance D on the back side of the first contact electrode 101 and the second contact electrode 102 in the same contact electrode pair, so as to ensure that the first detection line 201 can communicate with all
  • the first contact electrode 101 is conductive, and the second detection line 202 can be conductive with the second contact electrode 102 .
  • the distance W1 between the first detection line 201 and the second detection line 202 of the adjacent detection line group is greater than the distance W1 between the first contact electrode 101 and the second contact electrode 102 in the same contact electrode pair
  • the distance D from the side can avoid the short circuit between the first detection line 201 and the second detection line 202 of the adjacent detection line group.
  • a detection method provided by the present application adopts the above-mentioned detection structure to realize the detection of the display backplane, and the method includes the steps of: S100 , providing the display backplane 100 , The circuit board 200 is detected and the LED chip 300 is detected.
  • the detection circuit board 200 with the detection LED chip 300 is placed on the display backplane 100, and the detection The first detection line 201 on the circuit board 200 is connected to the first contact electrode 101, and the second detection line 202 on the detection circuit board 200 is connected to the second contact electrode 102, so that the circuit board is detected 200 and the display backplane 100 are electrically connected together, so that the first detection line 201 and the second detection line 202 can be electrically connected with the driving circuit on the display backplane 100, and the detection light-emitting diode can be electrically connected with the display backplane 100. connected.
  • the first detection line 201 and the second detection line 202 are connected to the first detection line 201 and the second detection line 202 row by row through the driving circuit on the display backplane 100 .
  • An electrical signal is applied to drive the detection LED chip 300 to light up, if the detection LED chip 300 can be lit, it means that the contact electrode pair corresponding to the lighted LED chip is normal, otherwise, if the detection LED chip 300 If it cannot be lit, it means that the contact electrode pair corresponding to the lit LED chip is abnormal.
  • the detection circuit board 200 connected with the detection LED chip 300 is placed on the display backplane 100, so that the first detection line 201 on the detection circuit board 200 is connected with the detection circuit board 200.
  • the first contact electrode 101 is turned on, and the second detection line 202 on the detection circuit board 200 is connected with the second contact electrode 102.
  • the display back panel 100 outputs a driving signal to the For the first detection line 201 and the second detection line 202, if the detection LED chip 300 is lit, it means that the contact electrode pair corresponding to the detection LED chip 300 is normal, and if the detection LED chip 300 is not lit, it means that the The detection of the abnormality of the contact electrode pair corresponding to the light-emitting diode chip 300 is completed, and after the detection is completed, the abnormal contact electrode pair can be repaired and ready for mass transfer. Therefore, the present application can detect possible defects on the display backplane 100 before the mass transfer, and the present application can detect the display backplane 100 in time without the need for a mass transfer step and without the need for tedious mass transfer work. Whether there is damage on the display panel 100 can avoid the problem that it cannot be confirmed whether the micro LED chip is damaged or the display back panel 100 is damaged when the display back panel 100 is damaged after a large amount of transfer.
  • the method further includes: S400, connecting the detection circuit board 200 to the The display backplane 100 is separated, and the abnormal contact electrode pair on the display backplane 100 is repaired for mass transfer.
  • the detection circuit board 200 completes the detection of the display backplane 100 , the detection circuit board 200 is removed, and the original display backplane 100 is left for maintenance, and then the repaired The display backplane 100 is used for mass transfer, so that the problem of damage to the display backplane 100 can be ruled out when a bad pixel occurs subsequently.
  • step S200 includes: S201, placing the detection circuit board 200 on the display backplane 100, and aligning the first marks, In order to make the first detection line 201 conduct with the first contact electrodes 101 on the odd-numbered columns of the display backplane 100 , and make the second detection line 202 and the odd-numbered columns of the display backplane 100 conductive
  • the second contact electrodes 102 are turned on; S202 , after the detection of the contact electrode pairs on the odd-numbered columns of the display backplane 100 is completed, move the detection circuit board 200 and align the second marks to enable the first detection
  • the line 201 is connected to the first contact electrodes 101 on the even-numbered columns of the display backplane 100
  • the second detection line 202 is connected to the second contact electrodes 102 of the even-numbered columns of the display backplane 100 .
  • the area of the detection circuit board 200 needs to be larger than the area of the display backplane 100.
  • the display backplane 100 can be tested twice during the specific detection, namely First, the contact electrode pairs of the odd-numbered columns on the display backplane 100 are detected, and then the contact electrode pairs of the even-numbered columns on the display backplane 100 are detected to avoid that the area of the detection circuit board 200 is larger than the display. The problem that the backplane 100 cannot be detected due to the area of the backplane 100 cannot be displayed.
  • step S200 further includes: S203 , along the column direction of the display backplane 100 , in the display A plurality of photoresist portions 400 are fabricated on the backplane 100, and the photoresist portions 400 are located between adjacent contact electrode pairs in every odd-numbered column of contact electrode pairs; or, the photoresist portion 400 is located at every even-numbered column of contact electrode pairs.
  • the photoresist portion 400 is removed, specifically, the photoresist portion 400 may be washed off with a developing solution, and the photoresist portion 400 is formed between adjacent contact electrode pairs in each even-numbered row of contact electrode pairs.
  • the photoresist part 400 located between the adjacent contact electrode pairs in each even-numbered column of contact electrode pairs is removed, and the photoresist part 400 is removed.
  • the resist portion 400 is formed between adjacent contact electrode pairs in each odd-numbered row of contact electrode pairs.
  • a photoresist is formed on the area of the display backplane 100 between adjacent contact electrode pairs in each odd column contact electrode pair.
  • the detection circuit board 200 is separated from the display backplane 100, and the contact electrode pairs located between the adjacent contact electrode pairs in each odd-numbered column of contact electrode pairs are separated.
  • the photoresist portion 400 is washed away by the developer.
  • a photoresist part 400 is formed in the area of the display backplane 100 located between the adjacent contact electrode pairs in each even-numbered column of contact electrode pairs. After completing the contact electrode pairs of the even-numbered columns on the display backplane 100 , the detection work of the entire display backplane 100 is completed. At this time, the detection circuit board 200 is separated from the display backplane 100 , and the electrodes on the display backplane 100 are washed off. Photoresist will do.
  • the detection circuit board 200 after the detection circuit board 200 is placed on the display backplane 100 , the detection circuit board 200 can be adhered to the display backplane 100 through the photoresist portion 400 , and the odd-numbered During the column detection and the even-numbered column detection, the photoresist part 400 is fabricated separately, so as to reduce the difficulty of the detection process and ensure the normal execution of the detection work.
  • the height of the photoresist portion 400 is less than or equal to the height of the contact electrode pair, so as to ensure that when the detection circuit board 200 is adhered to the display backplane 100,
  • the first detection line 201 can be connected to the first contact electrode 101
  • the second detection line 202 can be connected to the second contact electrode 102 .
  • step S200 further includes: S204 , pressing the detection circuit board 200 on the display backplane 100 by a weight 500 .
  • the detection circuit board 200 is pressed on the display backplane 100 by placing the weight 500 on the detection circuit board 200 to ensure that the detection circuit board 200 is placed on the display backplane 100.
  • the first detection line 201 can be connected to the first contact electrode 101
  • the second detection line 202 can be in contact with the second contact electrode 101 .
  • Electrode 102 is turned on.
  • the weight 500 may be a metal block or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Automation & Control Theory (AREA)

Abstract

本申请涉及一种检测结构及检测方法,该方法包括步骤:提供显示背板、检测电路板和检测发光二极管芯片;将检测电路板置于显示背板上,以使检测电路板上的第一检测线与第一接触电极导通,并使检测电路板上的第二检测线与第二接触电极导通;通过显示背板输出驱动信号至第一检测线和第二检测线,若检测发光二极管芯片未点亮,则检测发光二极管芯片对应显示背板上的接触电极对异常。

Description

一种检测结构及检测方法
本申请要求于2020年11月11日提交中国专利局、申请号为202011253675.9、申请名称为“一种检测结构及检测方法”的中国专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本申请涉及显示技术领域,尤其涉及一种检测结构及检测方法。
背景技术
微型发光二极管(Micro Light-Emitting Diode,Micro-LED)显示器, 具有良好的稳定性、寿命以及运行温度上的优势,同时也承继了LED低功耗、色彩饱和度、反应速度快、对比度强等优点, 具有极大的应用前景。微型发光二极管显示背板上包括了若干像素区域,每个像素区域包括红光LED、蓝光LED、绿光LED。在显示器的制作过程中,需要将红绿蓝三种LED芯片从各自的生长基板(WAFER)转移到显示背板上。但是,如果任一LED芯片出现损坏/接触不良的情况,经转移后,将会在显示背板上呈现一个坏点,影响成像效果。
目前解决上述问题的方式是通过检测LED芯片是否能够点亮来找到坏点在哪里,且该检测方式一般是在巨量转移之后点亮LED芯片,通过检测LED芯片的出射光束来检测出坏点的所在位置。但是,有些时候坏点出现的原因不是LED芯片的问题,而是显示背板存在损坏而导致LED芯片无法点亮,然而,目前针对巨量转移之前的显示背板的检测方案还未出现。
因此,如何对巨量转移之前的显示背板进行检测是亟需解决的问题。
技术问题
鉴于上述现有技术的不足,本申请的目的在于提供一种检测结构及检测方法,旨在解决在巨量转移之前的显示背板无法进行检测的问题。
技术解决方案
一种检测结构,所述检测结构用于检测显示背板,所述检测结构包括检测电路板和检测发光二极管芯片,所述检测电路板包括:若干第一检测线和第二检测线,所述第一检测线和所述第二检测线间隔设置在所述检测电路板朝向所述显示背板的一侧;若干第一检测电极和第二检测电极,所述第一检测电极和所述第二检测电极间隔设置在所述检测电路板背离所述显示背板的一侧,且所述第一检测电极与所述第一检测线电连接,所述第二检测电极与所述第二检测电极电连接;所述检测发光二极管包括第一电极和第二电极,所述第一电极与所述第一检测电极电连接,所述第二电极与第二检测电极电连接;所述显示背板上矩阵排列有若干接触电极对,所述接触电极对包括第一接触电极和第二接触电极,所述第一检测线用于与所述第一接触电极电连接,所述第二检测线用于与所述第二接触电极电连接;检测时,通过将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通,并通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若所述检测发光二极管芯片未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常。
上述检测结构,通过将连接有检测发光二极管芯片的检测电路板放置在所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通,此时,通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若检测发光二极管芯片点亮,则说明该检测发光二极管芯片对应的接触电极对正常,若检测发光二极管芯片未点亮,则说明该检测发光二极管芯片所对应的接触电极对异常,检测完成后可以对异常的接触电极对进行维修处理后即可备用于巨量转移。因此,本申请能够在巨量转移之前对显示背板上可能存在的缺陷进行检测,本申请检测时无需巨量转移步骤,不必进行繁琐的巨量转移工作即可及时检测出显示背板上是否存在损坏现象,能够避免经巨量转移后,当显示背板上呈现坏点时无法确认是微型发光二极管芯片存在损坏还是显示背板存在损坏的问题。可选地,所述第一检测电极和所述第二检测电极设置在所述第一检测线和所述第二检测线之间;其中,同一组检测线组中的所述第一检测线与所述第二检测线之间的间距大于同一接触电极对中所述第一接触电极与所述第二接触电极相对侧的距离,且小于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离;相邻检测线组的所述第一检测线与所述第二检测线之间的距离大于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离。
通过上述技术方案,同一组检测线组中的所述第一检测线与所述第二检测线之间的间距大于等于同一接触电极对中所述第一接触电极与所述第二接触电极相对侧的距离,且小于等于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离,以保证所述第一检测线能够与所述第一接触电极导通,所述第二检测线能够与所述第二接触电极导通。而相邻检测线组的所述第一检测线与所述第二检测线之间的距离大于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离,则能够避免相邻检测线组的所述第一检测线与所述第二检测线发生短路。
可选地,所述显示背板包括基板、电路层和平坦化层,其中,所述电路层设置在所述基板表面;其中,所述电路层包括驱动电路,所述驱动电路与所述第一检测线和所述第二检测线电连接;所述平坦化层覆盖于所述电路层,所述第一接触电极和所述第二接触电极设置在所述平坦化层表面。
可选地,所述检测发光二极管芯片为倒装型发光二极管芯片,所述检测发光二极管芯片包括第一电极和第二电极,所述第一电极与所述第一检测电极电连接,所述第二电极与所述第二检测电极电连接。
基于同样地发明构思,本申请还提供了一种检测方法,所述检测方法应用于上述的检测结构,所述方法包括步骤:提供所述显示背板、所述检测电路板和所述检测发光二极管芯片;将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通;通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若所述检测发光二极管芯片未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常。
上述显示背板的检测方法,通过将连接有检测发光二极管芯片的检测电路板放置在所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通,此时,通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若检测发光二极管芯片点亮,则说明该检测发光二极管芯片对应的接触电极对正常,若检测发光二极管芯片未点亮,则说明该检测发光二极管芯片所对应的接触电极对异常,检测完成后可以对异常的接触电极对进行维修处理后即可备用于巨量转移。因此,本申请能够在巨量转移之前对显示背板上可能存在的缺陷进行检测,本申请检测时无需巨量转移步骤,不必进行繁琐的巨量转移工作即可及时检测出显示背板上是否存在损坏现象,能够避免经巨量转移后,当显示背板上呈现坏点时无法确认是微型发光二极管芯片存在损坏还是显示背板存在损坏的问题。
可选地,所述通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线的步骤之后还包括:将所述检测电路板与所述显示背板分离,并将所述显示背板上的异常的接触电极对进行修复之后用于巨量转移。
可选地,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤包括:将所述检测电路板置于所述显示背板上,并做第一标记对齐,以使所述第一检测线与所述显示背板的奇数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的奇数列上的第二接触电极导通;在完成所述显示背板奇数列上接触电极对的检测之后,移动所述检测电路板,并做第二标记对齐,以使所述第一检测线与所述显示背板的偶数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的偶数列上的第二接触电极导通。
因工艺要求,所述检测电路板的面积需要大于所述显示背板的面积,通过上述技术方案,在具体检测时,可以对所述显示背板进行两次检测,即首先对显示背板上的奇数列的接触电极对进行检测之后,再对显示背板上的偶数列的接触电极对进行检测,以避免因所述检测电路板的面积大于所述显示背板的面积而无法对显示背板进行检测的问题。
可选地,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤之前还包括:沿所述显示背板的列方向,在所述显示背板上制作多个光刻胶部分,所述光刻胶部分位于每奇数列接触电极对中相邻接触电极对之间;或者,所述光刻胶部分位于每偶数列接触电极对中相邻接触电极对之间;其中,在检测完成所述显示背板上的奇数列的接触电极对之后,将位于每奇数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每偶数列接触电极对中相邻接触电极对之间;或者,在检测完成所述显示背板上的偶数列的接触电极对之后,将位于每偶数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每奇数列接触电极对中相邻接触电极对之间。
通过上述技术方案,在将所述检测电路板置于所述显示背板上后,所述检测电路板可通过所述光刻胶部分黏附于所述显示背板上。
可选地,所述光刻胶部分的高度小于或等于所述接触电极对的高度。
通过上述技术方案,以保证在所述检测电路板黏附于所述显示背板时,所述第一检测线能够与所述第一接触电极导通,并使所述第二检测线与所述第二接触电极导通。
可选地,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤还包括:通过重物将所述检测电路板压制于所述显示背板上。
通过上述技术方案,以保证在所述检测电路板覆盖于所述显示背板时,所述第一检测线能够与所述第一接触电极导通,并使所述第二检测线与所述第二接触电极导通。
有益效果
上述检测结构,通过将连接有检测发光二极管芯片的检测电路板放置在所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通,此时,通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若检测发光二极管芯片点亮,则说明该检测发光二极管芯片对应的接触电极对正常,若检测发光二极管芯片未点亮,则说明该检测发光二极管芯片所对应的接触电极对异常,检测完成后可以对异常的接触电极对进行维修处理后即可备用于巨量转移。因此,本申请能够在巨量转移之前对显示背板上可能存在的缺陷进行检测,本申请检测时无需巨量转移步骤,不必进行繁琐的巨量转移工作即可及时检测出显示背板上是否存在损坏现象,能够避免经巨量转移后,当显示背板上呈现坏点时无法确认是微型发光二极管芯片存在损坏还是显示背板存在损坏的问题。
附图说明
图1为现有技术中显示器的制作过程示意图。
图2为本申请中一种显示背板的检测方法的流程示意图。
图3为本申请中检测发光二极管芯片的结构示意图。
图4为本申请中显示背板的结构示意图。
图5为本申请中显示背板的电路层的结构示意图。
图6为本申请中显示器还未进行巨量转移前的显示背板的示意图。
图7为本申请中光刻胶部分设置于每奇数列接触电极对中相邻接触电极对之间的示意图。
图8为图7中的YY'向剖面图。
图9为本申请中检测电路板朝向显示背板的一侧的示意图。
图10为本申请中检测电路板背离显示背板的一侧的示意图1。
图11是同组接触电极对中第一接触电极和第二接触电极的距离示意图。
图12为本申请中检测电路板背离显示背板的一侧的示意图2。
图13是图12中的XX'向剖面图。
图14是图12中的YY'向剖面图。
图15是本申请中检测电路板的结构示意图。
图16是本申请中显示背板上的驱动电路逐行向检测电路板输出驱动信号的示意图。
图17是检测完毕后的显示背板的示意图。
图18是本申请中光刻胶部分设置于每偶数列接触电极对中相邻接触电极对之间的示意图。
图19为本申请中检测电路板背离显示背板的一侧的示意图3。
图20是图19中的XX'向剖面图。
图21是图19中的YY'向剖面图。
图22是本申请一种实施例中采用重物将检测电路板压制于显示背板上的示意图。
附图标记说明:100、显示背板;101、第一接触电极;102、第二接触电极;103、基板;104、电路层;1041、缓冲层;1042、栅极绝缘层;1043、层间绝缘层;105、平坦化层;106、TFT;107、栅极线接触点;108、信号线接触点;109、第一通孔;110、像素区域;200、检测电路板;201、第一检测线;202、第二检测线;203、第一检测电极;204、第二检测电极;205、第二通孔;300、检测发光二极管芯片;301、第一电极;302、第二电极;303、第一半导体层;304、第二半导体层;305、发光层;400、光刻胶部分;500、重物。
本发明的实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。
如图1所示,Micro-LED显示背板100上包括了若干像素区域110,每个像素区域110包括红光LED、蓝光LED、绿光LED芯片。在显示器的制作过程中,需要将红绿蓝三种LED芯片从各自的生长基板103(红光LED生长基板、蓝光LED生长基板、绿光LED生长基板)转移到显示背板100上。但是,如果任一LED芯片出现损坏/接触不良的情况,如图1中“×”所示位置,经转移后,将会在显示背板100上呈现一个坏点,影响成像效果。
目前显示背板100上坏点的检测方式一般是等巨量转移之后点亮LED芯片,通过检测LED芯片的出射光束来检测出坏点的所在位置,或者是在巨量转移之前单独对生长基板上的LED磊晶进行检测。但是有些时候,坏点出现的原因不是LED芯片的问题,而是显示背板100存在损坏,导致LED芯片无法点亮,目前针对巨量转移之前的显示背板100的检测方案还未出现。
基于此,本申请希望提供一种能够解决上述技术问题的方案,其详细内容将在后续实施例中得以阐述。
如图3至图15所示,本申请提供了一种检测结构,所述检测结构用于检测显示背板100,所述检测结构包括检测电路板200和检测发光二极管芯片300,所述检测电路板200包括:若干第一检测线201和第二检测线202以及若干第一检测电极203和第二检测电极204,所述第一检测线201和所述第二检测线202间隔设置在所述检测电路板200朝向所述显示背板100的一侧,所述第一检测电极203和所述第二检测电极204间隔设置在所述检测电路板200背离所述显示背板100的一侧,即所述第一检测电极203、所述第二检测电极204与所述第一检测线201、所述第二检测线202相对设置在所述电测电路板200两侧,且所述第一检测电极203与所述第一检测线201电连接,所述第二检测电极204与所述第二检测线202电连接,所述检测发光二极管300包括第一电极301和第二电极302,所述第一电极301与所述第一检测电极203电连接,所述第二电极302与第二检测电极204电连接,其中,所述第一检测电极204、所述第二电极302分别通过第二通孔205与所述第一检测线201、所述第二检测线202电连接。所述显示背板100上矩阵排列有若干接触电极对,所述接触电极对包括第一接触电极101和第二接触电极102,所述第一检测线201用于与所述第一接触电极101电连接,所述第二检测线202用于与所述第二接触电极102电连接。
具体地,因微型发光二极管显示器一般采用倒装型LED芯片,所述检测发光二极管芯片为倒装型LED芯片,如图3所示,在一种实现方式中,所述检测发光二极管芯片300包括第一电极301、第二电极302、第一半导体层303、第二半导体层304和发光层305。其中,第一半导体层303可以是N/P型掺杂GaN层,发光层305可以是量子阱层;第二半导体层304可以是P/N型掺杂GaN层;第一电极301和第二电极302为金属等导电材料。向第一电极301和第二电极302施加电信号时,N型半导体内的电子与P型半导体内的空穴在发光层305剧烈地碰撞复合产生光子,以光子的形式发出能量。第一电极301和第二电极302的材料可包括铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钼、钛(Ti)、钨(W)或铜(Cu)等。
请参阅图4至图6,在一个实施例中,所述显示背板100包括基板103、电路层104和平坦化层105,其中,所述电路层104设置在所述基板103表面;其中,所述电路层104包括驱动电路,所述驱动电路与所述第一检测线201和所述第二检测线202电连接;所述平坦化层105覆盖于所述电路层104,所述第一接触电极101和所述第二接触电极102设置在所述平坦化层105表面。
其中,基板103可以包括透明玻璃材料,如:二氧化硅(SiO2)。基板103也可以包括透明塑料材料,如:聚醚砜(PES)、聚丙烯酸酯(PAR)、聚醚酰亚胺(PEI)、聚对苯二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚芳酯、聚酰亚胺、聚碳酸酯(PC)、三醋酸纤维素(TAC)或丙酸纤维素酯(CAP)等有机材料。
其中,电路层104包括有用于驱动检测发光二极管芯片300的驱动电路,比如:薄膜晶体管TFT106、栅极线、信号线等。其中,所述驱动电路与所述检测电路板200上的第一检测线201和第二检测线202电连接,用于为所述第一检测线201和所述第二检测线202施加电信号。
其中,平坦化层105覆盖电路层104,可以消除电路层104上的阶跃差,使之平坦化。平坦化层105可以包括有机材料,如:聚甲基丙烯酸甲酯(PMMA)或聚苯乙烯(PS),具有酚基基团的聚合物衍生物,丙烯基聚合物,酰亚胺基聚合物,芳醚基聚合物,酰胺基聚合物,氟基聚合物,对二甲苯基聚合物,乙烯醇基聚合物,或其任何组合。
其中,第一接触电极101和第二接触电极102,可以设置于平坦化层105表面,用于通过平坦化层105上的第一通孔109内的填充材料与电路层104中的信号线、栅极线(栅极线可以向薄膜晶体管TFT106发送开/关信号)连结。第一接触电极101和第二接触电极102,分别与检测发光二极管芯片300上的第一电极301、第二电极302键合。第一接触电极101、第二接触电极102、第一通孔109内的填充材料、信号线、栅极线的材料可包括铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钼、钛(Ti)、钨(W)或铜(Cu)等。
更具体地,请参阅图5,所述电路层104具体可以包括:缓冲层1041、栅极绝缘层1042、层间绝缘层1043、TFT106以及栅极线接触点107等。
其中,缓冲层1041设置在基板103上方,可在基板103上方提供基本平坦的表面,可以减少或防止异物或湿气穿透基板103。在一种实现方式中,缓冲层1041可以包括无机材料,如:氧化硅(SiO2)、氮化硅(SiNx)、氮氧化硅(SiON)、氧化铝(Al2O3)、氮化铝(AlN)、氧化钛(TiO2)或氮化钛(TiN)。缓冲层1041也可以包括有机材料,如:聚酰亚胺、聚酯或丙烯。
其中,薄膜晶体管TFT106可以包括有源层、栅极、源极和漏极。如图5所示,薄膜晶体管TFT106是顶栅型薄膜晶体管(实际上TFT106也可以是底栅型薄膜晶体管)。有源层可以包括半导体材料,如非晶硅或多晶硅。有源层也可以包括其他材料,如:有机半导体材料或氧化物半导体材料。栅极/源极/漏极可以包括低电阻金属材料,如:铝(Al)、铂(Pt)、钯(Pd)、银(Ag)、镁(Mg)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)、钼(Mo)、钛(Ti)、钨(W)或铜(Cu)等。
其中,栅极绝缘层1042用于绝缘栅极和有源层,可以包括无机材料,例如SiO2、SiNx、SiON、Al2O3、TiO2、氧化钽(Ta2O5)、氧化铪(HfO2)或氧化锌(ZnO2)等。
其中,层间绝缘层1043用于绝缘源电极与栅极电极之间以及漏极与栅极电极之间。层间绝缘层1043可以包括无机材料,如:SiO2、SiNx、SiON、Al2O3、TiO2、氧化钽(Ta2O5)、氧化铪(HfO2)或氧化锌(ZnO2)等。
其中,栅极线接触点107可以形成在布置在平坦化层105下方的多个绝缘膜中的一个上面,且可以形成在层间绝缘层1043/栅极绝缘层1042之上。
检测时,通过将所述检测电路板200置于所述显示背板100上,以使所述检测电路板200上的第一检测线201与所述第一接触电极101导通,并使所述检测电路板200上的第二检测线202与所述第二接触电极102导通,并通过所述显示背板100输出驱动信号至所述第一检测线201和所述第二检测线202,若所述检测发光二极管芯片300未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常,检测完成后可以对异常的接触电极对进行维修处理后即可备用于巨量转移。因此,本申请能够在巨量转移之前对显示背板100上可能存在的缺陷进行检测,本申请检测时无需巨量转移步骤,不必进行繁琐的巨量转移工作即可及时检测出显示背板100上是否存在损坏现象,能够避免经巨量转移后,当显示背板100上呈现坏点时无法确认是微型发光二极管芯片存在损坏还是显示背板100存在损坏的问题。
在一个实施例的进一步地实施方式中,所述第一检测电极203和所述第二检测电极204设置在所述第一检测线201和所述第二检测线202之间。具体地,一组检测线包括第一检测线201和第二检测线202,同一组检测线组中的所述第一检测线201与所述第二检测线202之间的间距W2大于等于同一接触电极对中所述第一接触电极101与所述第二接触电极102相对侧的距离d,且小于等于同一接触电极对中所述第一接触电极101与所述第二接触电极102相背侧的距离D,即满足下式:d≤W2≤D。相邻检测线组的所述第一检测线201与所述第二检测线202之间的距离W1大于同一接触电极对中所述第一接触电极101与所述第二接触电极102相背侧的距离D,即满足下式:D<W1。
通过上述技术方案,同一组检测线组中的所述第一检测线201与所述第二检测线202之间的间距W2大于同一接触电极对中所述第一接触电极101与所述第二接触电极102相对侧的距离d,且小于同一接触电极对中所述第一接触电极101与所述第二接触电极102相背侧的距离D,以保证所述第一检测线201能够与所述第一接触电极101导通,所述第二检测线202能够与所述第二接触电极102导通。而相邻检测线组的所述第一检测线201与所述第二检测线202之间的距离W1大于同一接触电极对中所述第一接触电极101与所述第二接触电极102相背侧的距离D,则能够避免相邻检测线组的所述第一检测线201与所述第二检测线202发生短路。
如图2至图15所示,本申请提供的一种检测方法,所述检测方法采用上述的检测结构来实现对显示背板的检测,所述方法包括步骤:S100、提供显示背板100、检测电路板200和检测发光二极管芯片300。
S200、将所述检测电路板200置于所述显示背板100上,以使所述检测电路板200上的第一检测线201与所述第一接触电极101导通,并使所述检测电路板200上的第二检测线202与所述第二接触电极102导通。
具体地,请参阅图12至图15,当检测发光二极管芯片300焊接与检测电路板200上后,将带有检测发光二极管芯片300的检测电路板200放置在显示背板100上,并使得检测电路板200上的第一检测线201与所述第一接触电极101导通,以及使得检测电路板200上的第二检测线202与所述第二接触电极102导通,从而将检测电路板200与显示背板100电连接在一起,既能够将第一检测线201与第二检测线202与显示背板100上的驱动电路电连接在一起,同时将检测发光二极管与显示背板100电连接在一起。
S300、通过所述显示背板100输出驱动信号至所述第一检测线201和所述第二检测线202,若所述检测发光二极管芯片300未点亮,则所述检测发光二极管芯片300对应所述显示背板100上的所述接触电极对异常。
具体地,请参阅图16,当将所述检测电路板200置于所述显示背板100上后,通过显示背板100上的驱动电路逐行向第一检测线201和第二检测线202施加电信号,以驱动检测发光二极管芯片300点亮,若检测发光二极管芯片300能够被点亮,则说明该点亮的发光二极管芯片所对应的接触电极对正常,反之,若检测发光二极管芯片300未能够被点亮,则说明该点亮的发光二极管芯片所对应的接触电极对异常。
上述显示背板的检测方法,通过将连接有检测发光二极管芯片300的检测电路板200放置在所述显示背板100上,以使所述检测电路板200上的第一检测线201与所述第一接触电极101导通,并使所述检测电路板200上的第二检测线202与所述第二接触电极102导通,此时,通过所述显示背板100输出驱动信号至所述第一检测线201和所述第二检测线202,若检测发光二极管芯片300点亮,则说明该检测发光二极管芯片300对应的接触电极对正常,若检测发光二极管芯片300未点亮,则说明该检测发光二极管芯片300所对应的接触电极对异常,检测完成后可以对异常的接触电极对进行维修处理后即可备用于巨量转移。因此,本申请能够在巨量转移之前对显示背板100上可能存在的缺陷进行检测,本申请检测时无需巨量转移步骤,不必进行繁琐的巨量转移工作即可及时检测出显示背板100上是否存在损坏现象,能够避免经巨量转移后,当显示背板100上呈现坏点时无法确认是微型发光二极管芯片存在损坏还是显示背板100存在损坏的问题。
在一个实施例中,在通过所述显示背板100输出驱动信号至所述第一检测线201和所述第二检测线202的步骤之后还包括:S400、将所述检测电路板200与所述显示背板100分离,并将所述显示背板100上的异常的接触电极对进行修复之后用于巨量转移。
具体地,请参阅图16与图17,当检测电路板200对显示背板100检测完成之后,取下检测电路板200,并留下原来的显示背板100进行维修之后,再将修复好的显示背板100备用于巨量转移,这样在后续出现坏点时,便可以排除是显示背板100存在损坏的问题了。
请参阅图2至图21,在一个实施例的进一步地的实施方式中,步骤S200包括:S201、将所述检测电路板200置于所述显示背板100上,并做第一标记对齐,以使所述第一检测线201与所述显示背板100的奇数列上的第一接触电极101导通,并使所述第二检测线202与所述显示背板100的奇数列上的第二接触电极102导通;S202、在完成所述显示背板100奇数列上接触电极对的检测之后,移动所述检测电路板200,并做第二标记对齐,以使所述第一检测线201与所述显示背板100的偶数列上的第一接触电极101导通,并使所述第二检测线202与所述显示背板100的偶数列上的第二接触电极102导通。
具体地,因工艺要求,所述检测电路板200的面积需要大于所述显示背板100的面积,通过上述技术方案,在具体检测时,可以对所述显示背板100进行两次检测,即首先对显示背板100上的奇数列的接触电极对进行检测之后,再对显示背板100上的偶数列的接触电极对进行检测,以避免因所述检测电路板200的面积大于所述显示背板100的面积而无法对显示背板100进行检测的问题。
请参阅图2、图7、图8、图18与图20,在一个实施例的进一步地实施方式中,步骤S200还包括:S203、沿所述显示背板100的列方向,在所述显示背板100上制作多个光刻胶部分400,所述光刻胶部分400位于每奇数列接触电极对中相邻接触电极对之间;或者,所述光刻胶部分400位于每偶数列接触电极对中相邻接触电极对之间;其中,在检测完成所述显示背板100上的奇数列的接触电极对之后,将位于每奇数列接触电极对中相邻接触电极对之间的光刻胶部分400去除,具体可以采用显影液洗掉光刻胶部分400,并将所述光刻胶部分400制作于每偶数列接触电极对中相邻接触电极对之间。或者,在检测完成所述显示背板100上的偶数列的接触电极对之后,将位于每偶数列接触电极对中相邻接触电极对之间的光刻胶部分400去除,并将所述光刻胶部分400制作于每奇数列接触电极对中相邻接触电极对之间。
通过上述技术方案,当对显示背板100上的奇数列的接触电极对进行检测时,通过在位于每奇数列接触电极对中相邻接触电极对之间显示背板100区域上制作光刻胶部分400,在检测完成显示背板100上的奇数列的接触电极对之后,将检测电路板200与显示背板100分离,并将位于每奇数列接触电极对中相邻接触电极对之间的光刻胶部分400通过显影液洗掉后。当对显示背板100上的偶数列的接触电极对进行检测时,再在位于每偶数列接触电极对中相邻接触电极对之间的显示背板100区域制作光刻胶部分400,在检测完成显示背板100上的偶数列的接触电极对之后,则整个显示背板100的检测工作全部完成,此时将检测电路板200与显示背板100分离,并洗掉显示背板100上的光刻胶即可。本申请在将所述检测电路板200置于所述显示背板100上后,所述检测电路板200可通过所述光刻胶部分400黏附于所述显示背板100上,而在进行奇数列检测和偶数列检测时,光刻胶部分400采取分别制作的方式,以降低检测工艺的难度,保证检测工作的正常进行。
在一个实施例的进一步地实施方式中,所述光刻胶部分400的高度小于或等于所述接触电极对的高度,以保证在所述检测电路板200黏附于所述显示背板100时,所述第一检测线201能够与所述第一接触电极101导通,并使所述第二检测线202与所述第二接触电极102导通。
在一个实施例的另一种实施方式中,步骤S200还包括:S204、通过重物500将所述检测电路板200压制于所述显示背板100上。
通过上述技术方案,在检测电路板200放置于所述显示背板100上后,采用在检测电路板200上放置重物500的方式将检测电路板200压制于显示背板100上,以保证在所述检测电路板200覆盖于所述显示背板100时,所述第一检测线201能够与所述第一接触电极101导通,并使所述第二检测线202与所述第二接触电极102导通。在一种实现方式中,所述重物500可以是金属块等。
应当理解的是,本申请的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种检测结构,用于检测显示背板,其特征在于,所述检测结构包括检测电路板和检测发光二极管芯片,所述检测电路板包括:
    若干第一检测线和第二检测线,所述第一检测线和所述第二检测线间隔设置在所述检测电路板朝向所述显示背板的一侧;
    若干第一检测电极和第二检测电极,所述第一检测电极和所述第二检测电极间隔设置在所述检测电路板背离所述显示背板的一侧,且所述第一检测电极与所述第一检测线电连接,所述第二检测电极与所述第二检测电极电连接;
    所述检测发光二极管包括第一电极和第二电极,所述第一电极与所述第一检测电极电连接,所述第二电极与第二检测电极电连接;
    所述显示背板上矩阵排列有若干接触电极对,所述接触电极对包括第一接触电极和第二接触电极,所述第一检测线用于与所述第一接触电极电连接,所述第二检测线用于与所述第二接触电极电连接;
    检测时,通过将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通,并通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若所述检测发光二极管芯片未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常。
  2. 如权利要求1所述的检测结构,其特征在于,所述第一检测电极和所述第二检测电极设置在所述第一检测线和所述第二检测线之间;其中,同一组检测线组中的所述第一检测线与所述第二检测线之间的间距大于等于同一接触电极对中所述第一接触电极与所述第二接触电极相对侧的距离,且小于等于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离;相邻检测线组的所述第一检测线与所述第二检测线之间的距离大于同一接触电极对中所述第一接触电极与所述第二接触电极相背侧的距离。
  3. 如权利要求1所述的检测结构,其特征在于,所述显示背板包括基板、电路层和平坦化层,其中,
    所述电路层设置在所述基板表面;其中,所述电路层包括驱动电路,所述驱动电路与所述第一检测线和所述第二检测线电连接;
    所述平坦化层覆盖于所述电路层,所述第一接触电极和所述第二接触电极设置在所述平坦化层表面。
  4. 如权利要求1所述的检测结构,其特征在于,所述检测发光二极管芯片为倒装型发光二极管芯片。
  5. 一种检测方法,所述检测方法应用于如权利要求1所述的检测结构,其特征在于,所述方法包括步骤:
    提供所述显示背板、所述检测电路板和所述检测发光二极管芯片;
    将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通;
    通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,若所述检测发光二极管芯片未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常。
  6. 如权利要求5所述的检测方法,其特征在于,所述通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线的步骤之后还包括:
    将所述检测电路板与所述显示背板分离,并将所述显示背板上的异常的接触电极对进行修复之后用于巨量转移。
  7. 如权利要求5所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤包括:
    将所述检测电路板置于所述显示背板上,并做第一标记对齐,以使所述第一检测线与所述显示背板的奇数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的奇数列上的第二接触电极导通;
    在完成所述显示背板奇数列上接触电极对的检测之后,移动所述检测电路板,并做第二标记对齐,以使所述第一检测线与所述显示背板的偶数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的偶数列上的第二接触电极导通。
  8. 如权利要求7所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤之前还包括:
    沿所述显示背板的列方向,在所述显示背板上制作多个光刻胶部分,所述光刻胶部分位于每奇数列接触电极对中相邻接触电极对之间;或者,所述光刻胶部分位于每偶数列接触电极对中相邻接触电极对之间;
    其中,在检测完成所述显示背板上的奇数列的接触电极对之后,将位于每奇数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每偶数列接触电极对中相邻接触电极对之间;或者,在检测完成所述显示背板上的偶数列的接触电极对之后,将位于每偶数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每奇数列接触电极对中相邻接触电极对之间。
  9. 如权利要求8所述的检测方法,其特征在于,所述光刻胶部分的高度小于或等于所述接触电极对的高度。
  10. 如权利要求7所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤还包括:
    通过重物将所述检测电路板压制于所述显示背板上。
  11. 一种检测方法,所述检测方法应用于如权利要求1所述的检测结构,其特征在于,所述方法包括步骤:
    提供所述显示背板、所述检测电路板和所述检测发光二极管芯片;
    将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通;
    通过所述显示背板输出驱动信号至所述第一检测线和所述第二检测线,所述显示背板上的驱动电路逐行向所述第一检测线和所述第二检测线施加电信号;若所述检测发光二极管芯片未点亮,则所述检测发光二极管芯片对应所述显示背板上的所述接触电极对异常;
    将所述检测电路板与所述显示背板分离,并将所述显示背板上的异常的接触电极对进行修复之后用于巨量转移。
  12. 如权利要求11所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤包括:
    将所述检测电路板置于所述显示背板上,并做第一标记对齐,以使所述第一检测线与所述显示背板的奇数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的奇数列上的第二接触电极导通;
    在完成所述显示背板奇数列上接触电极对的检测之后,移动所述检测电路板,并做第二标记对齐,以使所述第一检测线与所述显示背板的偶数列上的第一接触电极导通,并使所述第二检测线与所述显示背板的偶数列上的第二接触电极导通。
  13. 如权利要求12所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤之前还包括:
    沿所述显示背板的列方向,在所述显示背板上制作多个光刻胶部分,所述光刻胶部分位于每奇数列接触电极对中相邻接触电极对之间;或者,所述光刻胶部分位于每偶数列接触电极对中相邻接触电极对之间;
    其中,在检测完成所述显示背板上的奇数列的接触电极对之后,将位于每奇数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每偶数列接触电极对中相邻接触电极对之间;或者,在检测完成所述显示背板上的偶数列的接触电极对之后,将位于每偶数列接触电极对中相邻接触电极对之间的光刻胶部分去除,并将所述光刻胶部分制作于每奇数列接触电极对中相邻接触电极对之间。
  14. 如权利要求13所述的检测方法,其特征在于,所述光刻胶部分的高度小于或等于所述接触电极对的高度。
  15. 如权利要求13所述的检测方法,其特征在于,所述将所述检测电路板置于所述显示背板上,以使所述检测电路板上的第一检测线与所述第一接触电极导通,并使所述检测电路板上的第二检测线与所述第二接触电极导通的步骤还包括:
    通过重物将所述检测电路板压制于所述显示背板上。
PCT/CN2021/087094 2020-11-11 2021-04-14 一种检测结构及检测方法 WO2022099995A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/533,800 US11915985B2 (en) 2020-11-11 2021-11-23 Detection structure and detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011253675.9A CN113451163B (zh) 2020-11-11 2020-11-11 一种检测结构及检测方法
CN202011253675.9 2020-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/533,800 Continuation US11915985B2 (en) 2020-11-11 2021-11-23 Detection structure and detection method

Publications (1)

Publication Number Publication Date
WO2022099995A1 true WO2022099995A1 (zh) 2022-05-19

Family

ID=77808495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/087094 WO2022099995A1 (zh) 2020-11-11 2021-04-14 一种检测结构及检测方法

Country Status (2)

Country Link
CN (1) CN113451163B (zh)
WO (1) WO2022099995A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116165523B (zh) * 2023-04-26 2023-07-14 上海聚跃检测技术有限公司 一种集成电路多芯片联合测试方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304517A (zh) * 2015-10-23 2016-02-03 信利(惠州)智能显示有限公司 一种有机发光二极管显示基板、检测电路及其隔离电路
US10396137B2 (en) * 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
CN110265348A (zh) * 2019-06-17 2019-09-20 上海天马微电子有限公司 一种转运基板、发光二极管的转运方法及转运设备
US20200013318A1 (en) * 2018-07-03 2020-01-09 Facebook Technologies, Llc Testing of micro light emitting diodes (leds) using probe pads
CN111524936A (zh) * 2020-04-16 2020-08-11 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN111596476A (zh) * 2020-06-29 2020-08-28 厦门天马微电子有限公司 阵列基板、显示面板以及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10825743B2 (en) * 2018-07-06 2020-11-03 Innolux Corporation Electronic device and method for repairing electronic device
CN109119356B (zh) * 2018-08-22 2021-01-22 京东方科技集团股份有限公司 阵列基板的检测设备及检测方法
CN111199700B (zh) * 2020-02-25 2022-10-04 Tcl华星光电技术有限公司 显示背板检测设备及其检测方法、装置
CN111463230A (zh) * 2020-04-13 2020-07-28 深圳市华星光电半导体显示技术有限公司 Micro LED阵列基板的修补装置以及micro LED阵列基板的修补方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105304517A (zh) * 2015-10-23 2016-02-03 信利(惠州)智能显示有限公司 一种有机发光二极管显示基板、检测电路及其隔离电路
US10396137B2 (en) * 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US20200013318A1 (en) * 2018-07-03 2020-01-09 Facebook Technologies, Llc Testing of micro light emitting diodes (leds) using probe pads
CN110265348A (zh) * 2019-06-17 2019-09-20 上海天马微电子有限公司 一种转运基板、发光二极管的转运方法及转运设备
CN111524936A (zh) * 2020-04-16 2020-08-11 武汉华星光电半导体显示技术有限公司 一种显示面板及显示装置
CN111596476A (zh) * 2020-06-29 2020-08-28 厦门天马微电子有限公司 阵列基板、显示面板以及显示装置

Also Published As

Publication number Publication date
CN113451163A (zh) 2021-09-28
CN113451163B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
KR102341625B1 (ko) 마이크로 발광다이오드 디스플레이 패널 및 그 제조방법
US20220293637A1 (en) Array substrate and display panel
US10468394B1 (en) Display device
WO2018126513A1 (zh) 微发光二极管显示面板及其修复方法
CN110571234B (zh) 一种背板、显示面板以及异常发光二极管的修复方法
US10964612B2 (en) Display device
TWI690757B (zh) 畫素結構及其修補方法
TW202006383A (zh) 顯示面板及發光元件基板的檢測方法
TWI658578B (zh) 微型化發光裝置
US11619605B2 (en) Display apparatus
US20210384176A1 (en) Micro light-emitting diode display device and method for fabricating same
WO2022099995A1 (zh) 一种检测结构及检测方法
TW202215652A (zh) 顯示面板及其製造方法
CN108648614B (zh) 电子装置
KR20210083680A (ko) Led 표시장치
US11915985B2 (en) Detection structure and detection method
CN115440747A (zh) 显示基板及其制备方法、显示装置
US11664358B2 (en) Display apparatus
WO2021189486A1 (zh) 显示面板及显示装置
US20220148928A1 (en) Detection method and detection structure for display backplane
WO2022099993A1 (zh) 一种显示背板的检测方法及其检测结构
WO2022099994A1 (zh) 一种显示背板的检测方法及检测结构
WO2021243762A1 (zh) 微型发光二极管显示装置及其制造方法
US20220148929A1 (en) Detection method and detection structure for display backplane
WO2022252230A1 (zh) 显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21890530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21890530

Country of ref document: EP

Kind code of ref document: A1