WO2021243762A1 - 微型发光二极管显示装置及其制造方法 - Google Patents

微型发光二极管显示装置及其制造方法 Download PDF

Info

Publication number
WO2021243762A1
WO2021243762A1 PCT/CN2020/096972 CN2020096972W WO2021243762A1 WO 2021243762 A1 WO2021243762 A1 WO 2021243762A1 CN 2020096972 W CN2020096972 W CN 2020096972W WO 2021243762 A1 WO2021243762 A1 WO 2021243762A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
light emitting
emitting diode
micro light
Prior art date
Application number
PCT/CN2020/096972
Other languages
English (en)
French (fr)
Inventor
尹伟红
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/965,347 priority Critical patent/US20210384176A1/en
Publication of WO2021243762A1 publication Critical patent/WO2021243762A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present disclosure relates to the field of display technology, in particular to a miniature light emitting diode display device and a manufacturing method thereof.
  • micro light-emitting diode (micro LED) display device mainly includes micro The LED is directly transferred from the growth substrate to the driving substrate, so it is necessary to wait for the formation of the driving circuit layer of the driving substrate before transferring the micro light emitting diode to the driving circuit layer.
  • the size of micro LEDs is getting smaller and smaller, so that the spacing of the micro LEDs on the driving substrate can be smaller and the density can be larger and larger.
  • PPI pixel density
  • the present disclosure provides a manufacturing method of the micro-light-emitting diode display device.
  • the method includes: providing a driving substrate including a first display area, wherein the driving substrate structurally includes a first substrate and a driving circuit layer disposed on the first substrate, and is in the first display area
  • the driving circuit layer includes a first electrode and a second electrode
  • a transfer substrate including a second display area is provided, wherein the transfer substrate structurally includes a second substrate and a second substrate respectively disposed in the second display area
  • the drive substrate and the transfer substrate are attached to the drive substrate and the transfer substrate through the alignment mark, so that the The first electrode and the second electrode of the driving circuit layer are respectively electrically connected to the P electrode and the N electrode of the micro light emitting diode; and the alignment mark is removed.
  • providing the transfer substrate includes: providing a second substrate; forming the alignment mark on the first surface of the second substrate in the second display area; forming the micro light emitting diode on a growth substrate And transferring the micro light emitting diode from the growth substrate to the second surface of the second substrate in the second display area.
  • the first surface and the second surface are two opposite surfaces of the second substrate.
  • providing the transfer substrate further includes: after transferring the micro light emitting diode to the second substrate, detecting a defect of the micro light emitting diode; and when the micro light emitting diode is detected as a defective product At that time, another micro light emitting diode is transferred to replace the micro light emitting diode.
  • providing the driving substrate includes: providing the first substrate; and forming the driving circuit layer on the first substrate. Furthermore, the formation of the driving circuit layer and the transfer of the micro light emitting diode are performed synchronously.
  • the method further includes: thinning the second substrate while removing the alignment mark.
  • the micro light emitting diode is a horizontal or vertical micro light emitting diode.
  • the first display area of the driving substrate is not provided with a pair of markings for transferring the micro light emitting diode to it.
  • the present disclosure also provides a miniature light emitting diode display device, which includes a driving substrate containing a first display area and a transfer substrate containing a second display area.
  • the driving substrate structurally includes a first substrate and a driving circuit layer disposed on the first substrate.
  • the driving circuit layer in the first display area includes a first electrode and a second electrode.
  • the transfer substrate structurally includes a second substrate and a micro light emitting diode disposed on a surface of the second substrate in the second display area.
  • the micro light emitting diode includes a P electrode and an N electrode.
  • the transfer substrate is attached to the driving substrate.
  • the second display area is aligned with the first display area.
  • the P electrode and the N electrode of the micro light emitting diode are electrically connected to the first electrode and the second electrode of the driving circuit layer, respectively.
  • the micro light emitting diodes are horizontal or vertical micro light emitting diodes.
  • the first display area of the driving substrate is not provided with a pair of markings for transferring the micro light emitting diode to it.
  • the method of the present invention forms a transfer substrate by (1) respectively setting alignment marks and transferring the micro light emitting diode to two opposite surfaces of the display area of the second substrate; (2) ) Attach the drive substrate and the transfer substrate through the alignment mark, so that the P electrode and the N electrode of the micro light emitting diode are electrically connected to the first electrode and the second electrode of the drive circuit layer of the display area of the drive substrate; and (3) remove all
  • the alignment mark can achieve the following effects: (1) The formation of the drive circuit layer of the drive substrate and the transfer of the micro light-emitting diode to the second substrate can be performed simultaneously to reduce the time required for manufacturing; and (2) the transfer of the display area of the substrate The alignment mark will eventually be removed, and there is no need to set the alignment mark in the display area of the drive substrate, so the display effect of the final micro light emitting diode display device will not be affected.
  • FIG. 1 is a schematic diagram of a driving substrate according to an embodiment of the disclosure.
  • Fig. 2 is a schematic cross-sectional view of the driving substrate of Fig. 1 along the line A-A'.
  • FIG. 3 is a schematic diagram of a transfer substrate according to an embodiment of the disclosure.
  • Fig. 4 is a schematic cross-sectional view of the transfer substrate of Fig. 3 along the line B-B'.
  • FIG. 5 is a schematic diagram of the second substrate and the alignment mark of FIG. 4.
  • FIG. 6 is a schematic cross-sectional view of a growth substrate formed with micro light emitting diodes according to an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of the miniature light emitting diode of FIG. 4 having a horizontal structure.
  • FIG. 8 is a second schematic diagram of the micro light emitting diode of FIG. 4 having a vertical structure.
  • FIG. 9 is a schematic diagram of the driving substrate of FIG. 1 opposite to the transfer substrate of FIG. 3.
  • FIG. 10 is a schematic diagram of bonding the driving substrate of FIG. 1 and the transfer substrate of FIG. 3.
  • Fig. 11 is a front view of the drive substrate and the transfer substrate after being bonded in Fig. 10.
  • Fig. 12 is a schematic cross-sectional view of the drive substrate and the transfer substrate after being bonded in Fig. 11 along the line C-C'.
  • FIG. 13 is a schematic diagram showing that the alignment mark of FIG. 12 is removed and the second substrate is thinned.
  • FIG. 14 is a schematic diagram of a miniature light emitting diode display device according to an embodiment of the disclosure.
  • FIG. 15 is a schematic cross-sectional view of the miniature light emitting diode display device of FIG. 14.
  • the present disclosure provides a manufacturing method of a miniature light-emitting diode display device, which includes the following steps.
  • Step 1 Please refer to FIG. 1 and FIG. 2 to provide a driving substrate 10.
  • the driving substrate 10 includes a plurality of first display areas 11 arranged in an array.
  • the driving substrate 10 structurally includes a first substrate 12 and a driving circuit layer 13 disposed on the first substrate 12.
  • the driving circuit layer 13 in each first display area 11 includes a plurality of first electrodes 14 and a plurality of second electrodes 15.
  • step 1 providing the driving substrate 10 in step 1 includes step 11 and step 12.
  • the first substrate 12 may be a rigid substrate made of a glass, such as quartz glass, high-silica glass (high-silica glass) glass), borosilicate glass, soda-lime glass and aluminosilicate glass glass).
  • the first substrate 12 may also be a flexible substrate made of a flexible insulating polymer material, such as polyimide (PI), polycarbonate (PC), polyether sulfone (polyether sulfone, etc.).
  • the first substrate 12 may be transparent, semi-transparent or opaque.
  • the driving substrate 10 may be an active matrix substrate used in a liquid crystal display device (active matrix substrate).
  • the driving circuit layer 13 includes data lines, scan lines, and active components.
  • the active device may be an oxide thin film transistor (such as indium gallium zinc oxide (indium gallium zinc oxide)). gallium zinc oxide (IGZO) thin film transistors), organic thin film transistors (Organic TFTs, OTFT), amorphous thin film transistors (hydrogenated Amorphous TFTs, referred to as a-TFT: H), low-temperature polycrystalline thin film transistors (low temperature poly TFTs, LTPS for short) or a combination thereof, but not limited thereto.
  • the active device can be a bottom-gate, top-gate or double-gate thin film transistor.
  • Step 2 Please refer to FIG. 3 and FIG. 4 to provide a transfer substrate 30.
  • the transfer substrate 30 includes a plurality of second display areas 31 arranged in an array.
  • the transfer substrate 30 structurally includes a second substrate 32 and a plurality of alignment marks 33 and a plurality of micro light emitting diodes 21 respectively disposed on two opposite surfaces of the second substrate 32 in each second display area 31.
  • Each miniature light emitting diode 21 includes a P electrode 22 and an N electrode 23.
  • step 2 of providing the transfer substrate 30 includes step 21 to step 25.
  • the second substrate 32 may be a rigid substrate made of a glass, such as quartz glass, high silica glass, borosilicate glass, soda lime glass, and aluminosilicate glass.
  • the second substrate 32 can also be a flexible substrate made of a flexible insulating polymer material, such as polyimide, polycarbonate, polyethersulfone, polyethylene terephthalate, and polyethylene naphthalate. Glycol ester and film fiber reinforced polymer.
  • the second substrate 32 may be transparent, semi-transparent or opaque.
  • the material of the second substrate 32 may be the same as or different from the material of the first substrate 12.
  • Step 22 Please refer to FIG. 5 to form the plurality of alignment marks 33 on the first surface 34 of the second substrate 32 in each second display area 31.
  • Step 23 Please refer to FIG. 6 to form the plurality of micro light emitting diodes 21 on a growth substrate 20.
  • the plurality of micro light emitting diodes 21 may include blue light micro light emitting diodes, red light micro light emitting diodes, green light micro light emitting diodes, or a combination thereof, but is not limited thereto.
  • Step 24 Referring to FIGS. 4 to 6, transfer the plurality of micro light emitting diodes 21 from the growth substrate 20 to the second surface 35 of the second substrate 32 in each second display area 31.
  • the first surface 34 and the second surface 35 are two opposite surfaces of the second substrate 32.
  • Step 25 Detect whether the plurality of miniature light-emitting diodes 21 are defective. When the micro light emitting diode 21 is detected as a defective product, another micro light emitting diode 21 is transferred to replace the micro light emitting diode 21.
  • step 1 provides the drive substrate 10 and step 2 provides the transfer substrate 30 simultaneously.
  • step 2 provides the transfer substrate 30 simultaneously.
  • the forming of the driving circuit layer 13 on the first substrate 11 in step 12 and the transferring of the micro light emitting diode 21 to the second substrate 32 in step 24 are performed simultaneously.
  • the micro light emitting diode 21 can be a lateral micro light emitting diode, which includes an N-type semiconductor layer 24, a light-emitting layer 25, a P-type semiconductor layer 26, a transparent conductive layer 27, and a P-type semiconductor layer.
  • the step 23 forming the plurality of micro light-emitting diodes 21 on a growth substrate 20 includes: sequentially forming an N-type semiconductor layer 24 on the growth substrate 20 and emitting light.
  • the micro light emitting diode 21 may be a vertical micro light emitting diode, which includes an N electrode 23, an N type semiconductor layer 24, a light emitting layer 25, a P type semiconductor layer 26, and a P electrode. twenty two.
  • forming the plurality of micro light-emitting diodes 21 on a growth substrate 20 in step 23 includes: sequentially forming an N electrode 23, an N-type semiconductor layer 24, a light-emitting layer 25, and a P on the growth substrate 20.
  • -Type semiconductor layer 26 and P electrode 22 The manufacturing process of the vertical miniature light-emitting diode is a conventional technology, and therefore will not be described in detail.
  • micro light emitting diode 21 of the present disclosure is only examples of the micro light emitting diode 21 of the present disclosure.
  • the structure and shape of the micro light emitting diode 21 of the present disclosure are not limited to the structure and shape shown in FIGS. 7 and 8.
  • the micro light emitting diode 21 of the present disclosure includes all micro light emitting diodes containing P electrodes and N electrodes. Therefore, the formation of the plurality of micro-light-emitting diodes 21 on a growth substrate 20 in step 23 is not limited to the foregoing description using the micro-light-emitting diodes 21 of FIGS. 7 and 8 as examples.
  • the N-type semiconductor layer 24 may be made of N-type nitride, such as silicon (Si)-doped gallium nitride (GaN), but is not limited thereto.
  • the light-emitting layer 25 may be a single quantum well (SQW) or a multi-quantum well (MQW) made of indium gallium nitride (InGaN) and gallium nitride (GaN), but is not limited thereto .
  • the P-type semiconductor layer 26 may be made of P-type nitride, such as gallium nitride doped with magnesium (Mg), but is not limited thereto.
  • the transparent conductive layer 27 may be made of a metal oxide, such as indium oxide, zinc oxide, titanium oxide, magnesium oxide, or indium tin oxide (Indium Tin Oxide). Tin Oxide, ITO), but not limited to this.
  • the materials of the P electrode 22 and the N electrode 23 can be gold (Au), nickel (Ni), silver (Ag), copper (Cu), platinum (Pt), chromium (Cr), zinc (Zn), palladium (Pd) , Aluminum (Al), Titanium (Ti) or their alloys, such as nickel-gold alloy, palladium-gold alloy, gold-zinc alloy, but not limited thereto.
  • the material of the P electrode 22 and the N electrode 23 can also be a metal oxide, such as indium oxide, zinc oxide, titanium oxide, magnesium oxide, and indium tin oxide.
  • the P electrode 22 and the N electrode 23 can also be composite electrodes with a multilayer structure, such as Cr/Pt/Au, Cr/Al/Pt/Au, Ti/Al/Ti/Au, Ti/Al/Ti/Pt/Au , Ti/Al/Pt/Au.
  • the N-type semiconductor layer 24, the light-emitting layer 25, and the P-type semiconductor layer 26 can be deposited by metal-organic chemical vapor deposition (Metal-organic Chemical Vapor Deposition, MOCVD) or Metal-organic physical Vapor Deposition (MOPVD), but not limited to this.
  • MOCVD Metal-organic Chemical Vapor Deposition
  • MOPVD Metal-organic physical Vapor Deposition
  • the P electrode 22, the N electrode 23, and the transparent conductive layer 27 can be made by physical vapor deposition, but are not limited thereto.
  • Step 3 Referring to FIGS. 9 to 12, the driving substrate 10 and the transfer substrate 30 are pasted through the plurality of alignment marks 33, so that each first display area 11 is aligned with the corresponding second display Area 31, and each first electrode 14 and each second electrode 15 are respectively aligned and electrically connected to the corresponding P electrode 22 and N electrode 23.
  • the transfer substrate 30 is moved above the driving substrate 10. Then, each second display area 31 is aligned with the corresponding first display area 11 through the alignment mark 33, and the P electrode 22 and the N electrode 23 of each micro light emitting diode 21 are respectively aligned with the corresponding first display area.
  • the driving substrate 10 is attached to the transfer substrate 30, and the P electrode 22 and the N electrode 23 of each micro light emitting diode 21 are electrically connected to the corresponding first electrode 14 and the second electrode 15 respectively.
  • the driving substrate 10 can be moved above the transfer substrate 30. Then, through the alignment mark 33, each first display area 11 is aligned with the corresponding second display area 31, and each first electrode 14 and each second electrode 15 are aligned with the corresponding P The electrode 22 and the N electrode 23.
  • the transfer substrate 30 is attached to the driving substrate 10, and each first electrode 14 and each second electrode 15 are electrically connected to the corresponding P electrode 22 and N electrode 23, respectively.
  • electrical connection includes “direct electrical connection” and “indirect electrical connection”.
  • Direct electrical connection means that two components are electrically connected together without other components or materials, such as laser spot welding (laser spot welding). Spot welding) method to electrically connect the two components.
  • Indirect electrical connection means that two components are electrically connected to each other through other components (such as anisotropic conductive film (ACF)) or materials (such as anisotropic conductive paste (ACP)). Together.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • an insulating sealant can be applied to the periphery of each first display area 11 of the drive substrate 10 and/or each second display area 31 of the transfer substrate 30 to bond all of them.
  • the driving substrate 10 and the transfer substrate 30 are described.
  • the sealant may be thermal curing adhesive, light curing adhesive or a combination thereof.
  • the sealant may also be transparent epoxy resin or silica gel.
  • each first electrode 14 and each second electrode 15 can be directly or indirectly electrically connected to the corresponding P electrode 22 and N electrode 23, respectively.
  • the drive substrate 10 can be attached to the drive substrate 10 by coating the insulating sealant on the drive circuit layer 13 of the drive substrate 10 and/or the second surface 35 of the second substrate 32 And the transfer substrate 30.
  • each first electrode 14 and each second electrode 15 are directly electrically connected to the corresponding P electrode 22 and N electrode 23 by laser spot welding.
  • the drive substrate 10 can be bonded by coating anisotropic conductive glue on the drive circuit layer 13 of the drive substrate 10 and/or the second surface 35 of the second substrate 32 And the transfer substrate 30.
  • each first electrode 14 and each second electrode 15 are indirectly electrically connected to the corresponding P electrode 22 and N electrode 23 through anisotropic conductive glue, or directly electrically connected to the corresponding P electrode 22 and N electrode 23 through laser spot welding. Corresponding P electrode 22 and N electrode 23.
  • Step 4 Please refer to Fig. 12 and Fig. 13 to remove the alignment mark 33.
  • Step 5 Please refer to FIG. 12 and FIG. 13 to thin the second substrate 32.
  • step 5 and step 4 can be performed simultaneously.
  • step 5 can be omitted.
  • Step 5 Referring to FIGS. 10 to 15, cutting the bonded driving substrate 10 and the transfer substrate 30 to obtain a plurality of micro light emitting diode display devices 100.
  • the present disclosure also provides a miniature light emitting diode display device 100 manufactured by the aforementioned method.
  • the micro LED display device 100 includes a driving substrate 10 including a first display area 11 and a transfer substrate 30 including a second display area 31.
  • the driving substrate 10 structurally includes a first substrate 12 and a driving circuit layer 13 disposed on the first substrate 12.
  • the driving circuit layer 13 in the first display area 11 includes a plurality of first electrodes 14 and a plurality of second electrodes 15.
  • the transfer substrate 30 structurally includes a second substrate 32 and several micro light emitting diodes 21 arranged on a surface of the second substrate 32 in the second display area 31.
  • Each miniature light emitting diode 21 includes a P electrode 22 and an N electrode 23.
  • the transfer substrate 30 is attached to the driving substrate 10.
  • the second display area 31 is aligned with the first display area 11.
  • the P electrode 22 and the N electrode 23 of each micro light emitting diode 21 are electrically connected to the corresponding first electrode 14 and the second electrode 15 respectively
  • the first substrate 12 and the second substrate 32 may be rigid substrates made of a glass, such as quartz glass, high silica glass, borosilicate glass, soda lime glass, and aluminosilicate glass.
  • the first substrate 12 and the second substrate 32 can also be flexible substrates made of a flexible insulating polymer material, such as polyimide, polycarbonate, polyethersulfone, polyethylene terephthalate, Polyethylene naphthalate and film fiber reinforced polymer.
  • the material of the first substrate 12 and the material of the second substrate 32 may be the same or different.
  • the first substrate 12 and the second substrate 32 may be a rigid substrate and a flexible substrate, respectively, or a flexible substrate and a rigid substrate, respectively.
  • the first substrate 12 and the second substrate 32 may be transparent, semi-transparent or opaque.
  • the driving substrate 10 may be an active matrix substrate used in a liquid crystal display device.
  • the driving circuit layer 13 of the driving substrate 10 includes data lines, scan lines, and active components.
  • the active device may be an oxide thin film transistor, an organic thin film transistor, an amorphous thin film transistor, a low temperature polycrystalline thin film transistor, or a combination thereof, but is not limited thereto.
  • the active device can be a bottom-gate, top-gate or double-gate thin film transistor.
  • the micro light emitting diode 21 may be a lateral micro light emitting diode, which includes an N-type semiconductor layer 24, a light-emitting layer 25, a P-type semiconductor layer 26, and a transparent conductive layer stacked in sequence.
  • the micro light emitting diode 21 may be a vertical micro light emitting diode, which includes an N electrode 23, an N type semiconductor layer 24, a light emitting layer 25, and a P type semiconductor layer stacked in sequence. 26 and P electrode 22.
  • the materials of the N-type semiconductor layer 24, the light-emitting layer 25, the P-type semiconductor layer 26, the transparent conductive layer 27, the P electrode 22, and the N electrode 23 are as described above, and will not be described in detail here. 7 and 8 are only examples of the micro light emitting diode 21 of the present disclosure.
  • the structure and shape of the micro light emitting diode 21 of the present disclosure are not limited to the structure and shape shown in FIGS. 7 and 8.
  • the micro light emitting diode 21 of the present disclosure includes all micro light emitting diodes containing P electrodes and N electrodes.
  • electrical connection includes “direct electrical connection” and “indirect electrical connection”.
  • Direct electrical connection means that two components are electrically connected together without other components or materials, such as laser spot welding (laser spot welding). Spot welding) method to electrically connect the two components.
  • Indirect electrical connection refers to the electrical connection between two components through other components (such as anisotropic conductive film) or materials (such as anisotropic conductive adhesive).
  • an insulating sealant is coated between the periphery of the first display area 11 of the drive substrate 10 and the periphery of the second display area 31 of the transfer substrate 30 for bonding the drive substrate 10 And the transfer substrate 30.
  • the sealant may be thermal curing adhesive, light curing adhesive or a combination thereof.
  • the sealant may also be transparent epoxy resin or silica gel.
  • each first electrode 14 and each second electrode 15 can be directly or indirectly electrically connected to the corresponding P electrode 22 and N electrode 23, respectively.
  • an insulating sealant is coated between the drive circuit layer 13 of the drive substrate 10 and the second surface 35 of the second substrate 32 for bonding the drive substrate 10 and The transfer substrate 30.
  • each first electrode 14 and each second electrode 15 are directly electrically connected to the corresponding P electrode 22 and N electrode 23 by laser spot welding.
  • an anisotropic conductive adhesive is coated between the drive circuit layer 13 of the drive substrate 10 and the second surface 35 of the second substrate 32 for bonding the drive substrate 10 and the transfer substrate 30.
  • each first electrode 14 and each second electrode 15 are indirectly electrically connected to the corresponding P electrode 22 and N electrode 23 through the anisotropic conductive glue, or directly electrically connected through laser spot welding. Connected to the corresponding P electrode 22 and N electrode 23.
  • the first display area 11 of the driving substrate 10 is not provided with an alignment mark for transferring the micro light emitting diode 21 thereon.
  • the method of the present invention forms a transfer substrate by (1) respectively setting alignment marks and transferring the micro light emitting diode to two opposite surfaces of the display area of the second substrate; (2) ) Attach the transfer substrate to the drive substrate through the alignment mark, so that the P electrode and N electrode of the micro light emitting diode are respectively electrically connected to the first electrode and the second electrode of the drive circuit layer in the display area of the drive substrate; and (3) remove
  • the alignment mark achieves the following effects: (1) forming the driving circuit layer of the driving substrate and transferring the micro light-emitting diode to the second substrate can be performed synchronously to reduce the time required for manufacturing; and (2) transferring the display area of the substrate
  • the alignment mark will be removed eventually, and there is no need to set the alignment mark in the display area of the drive substrate, so the display effect of the final micro light emitting diode display device will not be affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

本揭示公开一种微型发光二极管显示装置的制造方法,其包含:提供驱动基板,其包含第一基板及设置在第一基板上的驱动电路层,其中驱动电路层具有第一电极及第二电极;提供转移基板,其包含第二基板及分别设置在第二基板的两相对表面的对位标记及微型发光二极管,其中微型发光二极管包含P电极及N电极;通过对位标记贴合驱动基板及转移基板,使第一电极及第二电极分别电连接P电极及N电极;去除对位标记;及薄化第二基板。本揭示还公开一种通过所述方法制成的显示装置。

Description

微型发光二极管显示装置及其制造方法 技术领域
本揭示涉及显示技术领域,特别是涉及一种微型发光二极管显示装置及其制造方法。
背景技术
现有的微型发光二极管(micro light-emitting diode,micro LED)显示装置的制备方法,主要是将micro LED从生长基板直接转移到驱动基板(driving substrate)上,因此需等待驱动基板的驱动电路层形成后再转移微型发光二极管至驱动电路层上。随着科技的发展,micro LED的尺寸越来越小,使得microLED在驱动基板上的间距可越来越小且密度可越来越大。此使micro LED显示装置的像素密度(pixels per inch,PPI)可越来越大。就500 PPI的5英寸手机屏幕而言,其包含约800万颗microLED。
技术问题
现有的巨量转移技术一般需要数次的转移,才能转移完一个手机屏幕所需的micro LED数量,因此转移微型发光二极管极为耗时。此外,现有的巨量转移技术在转移前需要先在驱动基板的显示区内设置数个对位标记,以确保转移的精确度。然而,在PPI日益增加的需求下,当对位标记的尺寸大于像素的尺寸时,将会影响显示装置的显示效果。
技术解决方案
为了解决现有显示装置中的驱动基板显示区因设有转移微型发光二极管用的对位标记而影响显示效果的技术问题,本揭示提供一种微型发光二极管显示装置的制造方法。所述方法包含:提供含第一显示区的一驱动基板,其中所述驱动基板在结构上包含第一基板及设置在第一基板上的一驱动电路层,且在所述第一显示区内的驱动电路层包含第一电极及第二电极;提供含第二显示区的一转移基板,其中所述转移基板在结构上包含第二基板及分别设置在所述第二显示区内第二基板的两相对表面的一对位标记及一微型发光二极管,其中所述微型发光二极管包含一P电极及一N电极;通过所述对位标记贴合所述驱动基板及所述转移基板,使所述驱动电路层的第一电极及第二电极分别电连接于所述微型发光二极管的P电极及N电极;以及去除所述对位标记。
在一实施例中,提供所述转移基板包含:提供第二基板;形成所述对位标记于所述第二显示区内第二基板的第一表面;形成所述微型发光二极管于一生长基板;以及将所述微型发光二极管从所述生长基板转移至所述第二显示区内第二基板的第二表面。第一表面与第二表面为第二基板的两相对面。
在一实施例中,提供所述转移基板还包含:在转移所述微型发光二极管至所述第二基板后,检测所述微型发光二极管的瑕疵;以及当所述微型发光二极管被检测为不良品时,转移另一微型发光二极管,以替换所述微型发光二极管。
在一实施例中,提供所述驱动基板包含:提供所述第一基板;及形成所述驱动电路层于所述第一基板上。再者,形成所述驱动电路层与转移所述微型发光二极管同步进行。
在一实施例中,所述方法还包含:在去除所述对位标记的同时,薄化所述第二基板。
在一实施例中,所述微型发光二极管为水平式(lateral)或垂直式(vertical)微型发光二极管。
在一实施例中,所述驱动基板的第一显示区未设有用于转移所述微型发光二极管至其上的一对位标记。
本揭示还提供一种微型发光二极管显示装置,其包含一含有第一显示区的驱动基板及一含有第二显示区的转移基板。所述驱动基板在结构上包含第一基板及设置在第一基板上的一驱动电路层。所述第一显示区内的驱动电路层包含第一电极及第二电极。所述转移基板在结构上包含第二基板及设置在所述第二显示区内第二基板的一表面的一微型发光二极管。所述微型发光二极管包含一P电极及一N电极。所述转移基板贴合于所述驱动基板。第二显示区对准第一显示区。所述微型发光二极管的P电极及N电极分别电连接于所述驱动电路层的第一电极及第二电极。
在一实施例中,所述微型发光二极管为水平式或垂直式微型发光二极管。
在一实施例中,所述驱动基板的第一显示区未设有用于转移所述微型发光二极管至其上的一对位标记。
有益效果
相较于现有的微型发光二极管显示装置的制造方法,本发明方法通过(1) 分别设置对位标记及转移微型发光二极管至第二基板显示区的两相对表面,以形成转移基板;(2) 通过对位标记贴合驱动基板及转移基板,使微型发光二极管的P电极及N电极分别电连接于驱动基板显示区的驱动电路层的第一电极及第二电极;以及(3)去除所述对位标记,来达到下列功效:(1)形成驱动基板的驱动电路层与转移微型发光二极管至第二基板可同步进行,以减少制造所需的时间;以及(2)转移基板显示区的对位标记最终会去除,且无需在驱动基板的显示区设置对位标记,因此不会影响最终制成的微型发光二极管显示装置的显示效果。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示实施例的驱动基板的示意图。
图2为图1的驱动基板沿A-A’线的剖面示意图。
图3为本揭示实施例的转移基板的示意图。
图4为图3的转移基板沿B-B’线的剖面示意图。
图5为图4的第二基板与对位标记的示意图。
图6为本揭示实施例的形成有微型发光二极管的生长基板的剖面示意图。
图7为图4的微型发光二极管具有水平结构的示意图。
图8为图4的微型发光二极管具有垂直结构的第二种示意图。
图9为图1的驱动基板与图3的转移基板相对的示意图。
图10为图1的驱动基板与图3的转移基板贴合的示意图。
图11为图10中经贴合后的驱动基板及转移基板的正视图。
图12为图11中经贴合后的驱动基板及转移基板沿C-C’线的剖面示意图。
图13为图12的对位标记经去除且第二基板经薄化的示意图。
图14为本揭示实施例的微型发光二极管显示装置的示意图。
图15为图14的微型发光二极管显示装置的剖面示意图。
本发明的实施方式
本揭示提供一种微型发光二极管显示装置的制造方法,其包含下列步骤。
步骤1:请参阅图1及图2,提供一驱动基板10。所述驱动基板10包含数个以阵列排列的第一显示区11。所述驱动基板10在结构上包含第一基板12及设置在第一基板12上的一驱动电路层13。在每一第一显示区11内的驱动电路层13包含数个第一电极14及数个第二电极15。
具体地,步骤1的提供所述驱动基板10包含步骤11及步骤12。
步骤11:提供所述第一基板12。第一基板12可为由一玻璃所制成的刚性基板,例如石英玻璃、高硅氧玻璃(high-silica glass)、硼硅酸玻璃(borosilicate glass)、钠钙玻璃(soda-lime glass)及铝硅酸盐玻璃(aluminosilicate glass)。第一基板12亦可为由一柔性绝缘聚合物材料所制成的柔性基板,诸如聚酰亚胺(polyimide,PI)、聚碳酸酯(polycarbonate,PC)、聚醚砜(polyether sulfone,PES)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、及薄膜纤维增强聚合物(fiber-reinforced polymer,FRP)。第一基板12可为透明的、半透明的或不透明的。
步骤12:形成所述驱动电路层13于所述第一基板11上,以得到所述驱动基板10。驱动基板10可为用于液晶显示装置中的主动式矩阵基板(active matrix substrate)。所述驱动电路层13包含数据线、扫描线及主动元件。所述主动元件可为氧化物薄膜晶体管(诸如铟镓锌氧化物(indium gallium zinc oxide,IGZO)薄膜晶体管)、有机薄膜晶体管(Organic TFTs,OTFT)、非晶态薄膜晶体管 (hydrogenated amorphous TFTs,简称a-TFT:H)、低温复晶态薄膜晶体管 (low temperature poly TFTs,简称LTPS)或其组合,但不限于此。所述主动元件可为底栅型、顶栅型或双栅型薄膜晶体管。
步骤2:请参阅图3及图4,提供一转移基板30。所述转移基板30包含数个以阵列排列的第二显示区31。所述转移基板30在结构上包含第二基板32及分别设置在每一第二显示区31内第二基板32的两相对表面的数个对位标记33及数个微型发光二极管21。每一微型发光二极管21包含一P电极22及一N电极23。
具体地,步骤2的提供所述转移基板30包含包含步骤21至步骤25。
步骤21:请参阅图5,提供第二基板32。第二基板32可为由一玻璃所制成的刚性基板,例如石英玻璃、高硅氧玻璃、硼硅酸玻璃、钠钙玻璃及铝硅酸盐玻璃。第二基板32亦可为由一柔性绝缘聚合物材料所制成的柔性基板,诸如聚酰亚胺、聚碳酸酯、聚醚砜、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯及薄膜纤维增强聚合物。第二基板32可为透明的、半透明的或不透明的。第二基板32的材料可与第一基板12的材料相同或不同。
步骤22:请参阅图5,形成所述数个对位标记33于每一第二显示区31内第二基板32的第一表面34。
步骤23:请参阅图6,形成所述数个微型发光二极管21于一生长基板20。所述数个微型发光二极管21可包含蓝光微型发光二极管、红光微型发光二极管、绿光微型发光二极管或其组合,但不限于此。
步骤24:请参阅图4至图6,将所述数个微型发光二极管21从所述生长基板20转移至每一第二显示区31内的第二基板32的第二表面35。第一表面34与第二表面35为第二基板32的两相对面。
步骤25:检测所述数个微型发光二极管21是否有瑕疵。当所述微型发光二极管21被检测为不良品时,转移另一微型发光二极管21,以替换所述微型发光二极管21。
在一实施例中,步骤1的提供所述驱动基板10与步骤2的提供所述转移基板30,同步进行。在一实施例中,步骤12的形成所述驱动电路层13于所述第一基板11上与步骤24的转移所述微型发光二极管21至第二基板32上,同步进行。
在一实施例中,请参阅图7,微型发光二极管21可为水平式(lateral)微型发光二极管,其包含N型半导体层24、发光层25、P型半导体层26、透明导电层27、P电极22及N电极23。在此实施例中,请参阅图6及图7,步骤23的形成所述数个微型发光二极管21于一生长基板20包含:在所述生长基板20上依序形成N型半导体层24、发光层25、P型半导体层26、透明导电层27及P电极22;图案化P电极22;蚀刻发光层25、P型半导体层26及透明导电层27,以曝露出N型半导体层24的一部分;以及在经曝露的N型半导体层24上形成N电极23。
在一实施例中,请参阅图8,微型发光二极管21可为垂直式(vertical)微型发光二极管,其包含N电极23、N型半导体层24、发光层25、P型半导体层26及P电极22。在此实施例中,步骤23的形成所述数个微型发光二极管21于一生长基板20包含:在所述生长基板20上依序形成N电极23、N型半导体层24、发光层25、P型半导体层26及P电极22。垂直式(vertical)微型发光二极管的制程为习知技术,因此不再作详细描述。
图7及图8仅为本揭示的微型发光二极管21的示例。本揭示的微型发光二极管21的结构及形状不以图7及图8所示的结构及形状为限。本揭示的微型发光二极管21包含所有含P电极及N电极的微型发光二极管。因此,步骤23的形成所述数个微型发光二极管21于一生长基板20,不限于前述以图7及图8的微型发光二极管21为例所做的说明。
请参阅图7及图8,N型半导体层24可由N型氮化物所制成,诸如经硅(Si)掺杂的氮化镓(GaN),但不限于此。发光层25可为由氮化铟镓(InGaN)及氮化镓(GaN)制成的单量子阱(single quantum well,SQW)或多量子阱(multi-quantum well,MQW),但不限于此。P型半导体层26可由P型氮化物所制成,诸如经镁(Mg)掺杂的氮化镓,但不限于此。透明导电层27可由一金属氧化物所制成,例如氧化铟、氧化锌、氧化钛、氧化镁或氧化铟锡(Indium Tin Oxide,ITO),但不限于此。P电极22及N电极23的材料可为金(Au)、镍(Ni)、银(Ag)、铜(Cu)、铂(Pt)、铬(Cr)、锌(Zn)、钯(Pd)、铝(Al)、钛(Ti)或其合金,例如镍金合金、钯金合金、金锌合金,但不限于此。P电极22及N电极23的材料亦可为一金属氧化物,例如氧化铟、氧化锌、氧化钛、氧化镁及氧化铟锡。P电极22及N电极23亦可为具有多层结构的复合电极,例如Cr/Pt/Au、Cr/Al/Pt/Au、Ti/Al/Ti/Au、Ti/Al/Ti/Pt/Au、Ti/Al/Pt/Au。N型半导体层24、发光层25及P型半导体层26可通过金属有机化学气相沉积(Metal-organic Chemical Vapor Deposition,MOCVD)或金属有机物理气相沉积(Metal-organic physical Vapor Deposition,MOPVD)制成,但不限于此。P电极22、N电极23及透明导电层27可通过物理气相沉积制成,但不限于此。
步骤3:请参阅图9至图12,通过所述数个对位标记33贴合所述驱动基板10及所述转移基板30,使每一第一显示区11对准相对应的第二显示区31,且每一第一电极14及每一第二电极15分别对准并电连接于相对应的P电极22及N电极23。在一实施例中,如图9至图12所示,将所述转移基板30移至所述驱动基板10的上方。接着,通过所述对位标记33使每一第二显示区31对准相对应的第一显示区11,且每一微型发光二极管21的P电极22及N电极23分别对准相对应的第一电极14及第二电极15。最后,将所述驱动基板10贴合于所述转移基板30,且将每一微型发光二极管21的P电极22及N电极23分别电连接于相对应的第一电极14及第二电极15。在一实施例中,所述驱动基板10可移至所述转移基板30的上方。接着,通过所述对位标记33,使每一第一显示区11对准相对应的第二显示区31,且每一第一电极14及每一第二电极15分别对准相对应的P电极22及N电极23。最后,将所述转移基板30贴合于所述驱动基板10,且将每一第一电极14及每一第二电极15分别电连接于相对应的P电极22及N电极23。
用语「电连接」包含「直接电连接」与「间接电连接」。「直接电连接」是指两元件不通过其他元件或材料而电连接在一起,例如以激光点焊(laser spot welding)方式电连接两元件。「间接电连接」是指两元件之间通过其他元件(例如各向异性导电薄膜(anisotropic conductive film,ACF))或材料(例如各向异性导电胶(anisotropic conductive paste,ACP))而电连接在一起。
在一实施例中,可通过在所述驱动基板10的每一第一显示区11外围及/或所述转移基板30的每一第二显示区31外围涂布一绝缘框胶来贴合所述驱动基板10及所述转移基板30。所述框胶可为热固化胶、光固化胶或其组合。所述框胶亦可为透光的环氧树脂或硅胶。在此实施例中,每一第一电极14及每一第二电极15可分别直接或间接电连接于相对应的P电极22及N电极23。
在一实施例中,可通过在所述驱动基板10的所述驱动电路层13及/或所述第二基板32的第二表面35涂布所述绝缘框胶来贴合所述驱动基板10及所述转移基板30。在此实施例中,每一第一电极14及每一第二电极15通过激光点焊直接电连接于相对应的P电极22及N电极23。
在一实施例中,可通过在所述驱动基板10的所述驱动电路层13及/或所述第二基板32的第二表面35涂布各向异性导电胶来贴合所述驱动基板10及所述转移基板30。在此实施例中,每一第一电极14及每一第二电极15通过各向异性导电胶分别间接电连接于相对应的P电极22及N电极23,或通过激光点焊直接电连接于相对应的P电极22及N电极23。
步骤4:请参阅图12及图13,去除所述对位标记33。
步骤5:请参阅图12及图13,薄化所述第二基板32。在一实施例中,步骤5可与步骤4同时进行。在一实施例中,步骤5可省略。
步骤5:请参阅图10至图15,切割经贴合的驱动基板10及转移基板30,以获得数个微型发光二极管显示装置100。
在所述方法中,所述驱动基板10的第一显示区11内无需设置用于转移所述微型发光二极管21至其上的对位标记。
请参阅图14及图15,本揭示还提供一种通过前述方法制成的微型发光二极管显示装置100。所述微型发光二极管显示装置100包含一含有第一显示区11的驱动基板10及一含有第二显示区31的转移基板30。所述驱动基板10在结构上包含第一基板12及设置在第一基板12上的一驱动电路层13。所述第一显示区11内的驱动电路层13包含数个第一电极14及数个第二电极15。所述转移基板30在结构上包含第二基板32及设置在所述第二显示区31内第二基板32的一表面的数个微型发光二极管21。每一微型发光二极管21包含一P电极22及一N电极23。所述转移基板30贴合于所述驱动基板10。第二显示区31对准第一显示区11。每一微型发光二极管21的P电极22及N电极23分别电连接于相对应的第一电极14及第二电极15。
第一基板12及第二基板32可为由一玻璃所制成的刚性基板,例如石英玻璃、高硅氧玻璃、硼硅酸玻璃、钠钙玻璃及铝硅酸盐玻璃。第一基板12及第二基板32亦可为由一柔性绝缘聚合物材料所制成的柔性基板,诸如聚酰亚胺、聚碳酸酯、聚醚砜、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯及薄膜纤维增强聚合物。第一基板12的材料及第二基板32的材料可相同或不同。第一基板12及第二基板32可分别为刚性基板及柔性基板,或是分别为柔性基板及刚性基板。第一基板12及第二基板32可为透明的、半透明的或不透明的。
所述驱动基板10可为用于液晶显示装置中的主动式矩阵基板。所述驱动基板10的驱动电路层13包含数据线、扫描线及主动元件。所述主动元件可为氧化物薄膜晶体管、有机薄膜晶体管、非晶态薄膜晶体管、低温复晶态薄膜晶体管或其组合,但不限于此。所述主动元件可为底栅型、顶栅型或双栅型薄膜晶体管。
在一实施例中,请参阅图7,微型发光二极管21可为水平式(lateral)微型发光二极管,其包含依序堆叠的N型半导体层24、发光层25、P型半导体层26、透明导电层27及P电极22,以及设置在N型半导体层24上的N电极23。在一实施例中,请参阅图8,微型发光二极管21可为垂直式(vertical)微型发光二极管,其包含依序堆叠的N电极23、N型半导体层24、发光层25、P型半导体层26及P电极22。N型半导体层24、发光层25、P型半导体层26、透明导电层27、P电极22及N电极23的材料如前所述,在此不再详细描述。图7及图8仅为本揭示的微型发光二极管21的示例。本揭示的微型发光二极管21的结构及形状不以图7及图8所示的结构及形状为限。本揭示的微型发光二极管21包含所有含P电极及N电极的微型发光二极管。
用语「电连接」包含「直接电连接」与「间接电连接」。「直接电连接」是指两元件不通过其他元件或材料而电连接在一起,例如以激光点焊(laser spot welding)方式电连接两元件。「间接电连接」是指两元件之间通过其他元件(例如各向异性导电薄膜)或材料(例如各向异性导电胶)而电连接在一起。
在一实施例中,在所述驱动基板10的第一显示区11外围及所述转移基板30的第二显示区31外围之间涂布有一绝缘框胶,用以贴合所述驱动基板10及所述转移基板30。所述框胶可为热固化胶、光固化胶或其组合。所述框胶亦可为透光的环氧树脂或硅胶。在此实施例中,每一第一电极14及每一第二电极15可分别直接或间接电连接于相对应的P电极22及N电极23。
在一实施例中,在所述驱动基板10的所述驱动电路层13及所述第二基板32的第二表面35之间涂布有一绝缘框胶,用以贴合所述驱动基板10及所述转移基板30。在此实施例中,每一第一电极14及每一第二电极15通过激光点焊直接电连接于相对应的P电极22及N电极23。
在一实施例中,在所述驱动基板10的所述驱动电路层13及所述第二基板32的第二表面35之间涂布有一各向异性导电胶,用以贴合所述驱动基板10及所述转移基板30。在此实施例中,每一第一电极14及每一第二电极15通过所述各向异性导电胶分别间接电连接于相对应的P电极22及N电极23,或通过激光点焊直接电连接于相对应的P电极22及N电极23。
在所述微型发光二极管显示装置100中,所述驱动基板10的第一显示区11未设有用于转移所述微型发光二极管21至其上的对位标记。
相较于现有的微型发光二极管显示装置的制造方法,本发明方法通过(1)分别设置对位标记及转移微型发光二极管至第二基板显示区的两相对表面,以形成转移基板;(2)通过对位标记将转移基板贴合于驱动基板,使微型发光二极管的P电极及N电极分别电连接于驱动基板显示区的驱动电路层的第一电极及第二电极;以及(3)去除所述对位标记,来达到下列功效:(1)形成驱动基板的驱动电路层与转移微型发光二极管至第二基板可同步进行,以减少制造所需的时间;以及(2)转移基板显示区的对位标记最终会去除,且无需在驱动基板的显示区设置对位标记,因此不会影响最终制成的微型发光二极管显示装置的显示效果。
虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种微型发光二极管显示装置的制造方法,其包含:
    提供含有第一显示区的一驱动基板,其中所述驱动基板在结构上包含第一基板及设置在第一基板上的一驱动电路层,且在所述第一显示区内的驱动电路层包含第一电极及第二电极;
    提供含有第二显示区的一转移基板,其中所述转移基板在结构上包含第二基板及分别设置在所述第二显示区内第二基板的两相对表面的一对位标记及一微型发光二极管,其中所述微型发光二极管包含一P电极及一N电极;
    通过所述对位标记贴合所述驱动基板及所述转移基板,使所述驱动电路层的第一电极及第二电极分别电连接于所述微型发光二极管的P电极及N电极;以及
    去除所述对位标记。
  2. 根据权利要求1所述的方法,其中提供所述转移基板包含:
    提供第二基板;
    形成所述对位标记于所述第二显示区内第二基板的第一表面;
    形成所述微型发光二极管于一生长基板;以及
    将所述微型发光二极管从所述生长基板转移至所述第二显示区内第二基板的第二表面,其中第一表面与第二表面为第二基板的两相对面。
  3. 根据权利要求2所述的方法,其中提供所述转移基板还包含:
    在转移所述微型发光二极管至所述第二基板后,检测所述微型发光二极管的瑕疵;以及
    当所述微型发光二极管被检测为不良品时,转移另一微型发光二极管,以替换所述微型发光二极管。
  4. 根据权利要求2所述的方法,其中提供所述驱动基板包含:
    提供所述第一基板;及
    形成所述驱动电路层于所述第一基板上;
    其中,形成所述驱动电路层与转移所述微型发光二极管同步进行。
  5. 根据权利要求1所述的方法,其还包含:在去除所述对位标记的同时,薄化所述第二基板。
  6. 根据权利要求1所述的方法,其中所述微型发光二极管为水平式(lateral)或垂直式(vertical)微型发光二极管。
  7. 根据权利要求1所述的方法,其中所述驱动基板的第一显示区未设有用于转移所述微型发光二极管至其上的一对位标记。
  8. 一种微型发光二极管显示装置,其包含:
    一含有第一显示区的驱动基板,其结构包含第一基板及设置在第一基板上的一驱动电路层,其中所述第一显示区内的驱动电路层包含第一电极及第二电极;以及
    一含有第二显示区的转移基板,其结构包含第二基板及设置在所述第二显示区内第二基板的一表面的一微型发光二极管,其中所述微型发光二极管包含一P电极及一N电极;
    其中所述转移基板贴合于所述驱动基板,第二显示区对准第一显示区,且所述微型发光二极管的P电极及N电极分别电连接于所述驱动电路层的第一电极及第二电极。
  9. 根据权利要求8所述的阵列基板,其中所述微型发光二极管为水平式(lateral)或垂直式(vertical)微型发光二极管。
  10. 根据权利要求8所述的阵列基板,其中所述驱动基板的第一显示区未设有用于转移所述微型发光二极管至其上的一对位标记。
PCT/CN2020/096972 2020-06-05 2020-06-19 微型发光二极管显示装置及其制造方法 WO2021243762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/965,347 US20210384176A1 (en) 2020-06-05 2020-06-19 Micro light-emitting diode display device and method for fabricating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010507355.5A CN111584538A (zh) 2020-06-05 2020-06-05 微型发光二极管显示装置及其制造方法
CN202010507355.5 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021243762A1 true WO2021243762A1 (zh) 2021-12-09

Family

ID=72111074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096972 WO2021243762A1 (zh) 2020-06-05 2020-06-19 微型发光二极管显示装置及其制造方法

Country Status (2)

Country Link
CN (1) CN111584538A (zh)
WO (1) WO2021243762A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117832343B (zh) * 2024-03-04 2024-05-28 惠科股份有限公司 巨量转移组件、显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208512A (zh) * 2010-03-24 2011-10-05 日立电线株式会社 发光二极管
CN107017319A (zh) * 2017-05-23 2017-08-04 深圳市华星光电技术有限公司 彩色微发光二极管阵列基板的制作方法
US20170288102A1 (en) * 2016-04-04 2017-10-05 Glo Ab Through backplane laser irradiation for die transfer
CN110034224A (zh) * 2019-04-26 2019-07-19 中国科学院长春光学精密机械与物理研究所 一种基于条形Micro-LED的转印方法
CN110838503A (zh) * 2019-11-20 2020-02-25 广东省半导体产业技术研究院 微型led芯片制作方法、微型led显示器件制作方法和微型led显示器件
CN110970537A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 Led、驱动电路基板、显示面板及制作方法、显示装置
CN111146131A (zh) * 2018-11-06 2020-05-12 昆山工研院新型平板显示技术中心有限公司 一种微元件的转移装置及转移方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683524A (zh) * 2012-05-25 2012-09-19 杭州士兰明芯科技有限公司 倒装led芯片结构及其制备方法
EP4178317A1 (en) * 2015-07-23 2023-05-10 Seoul Semiconductor Co., Ltd. Display apparatus
US10177016B2 (en) * 2015-08-18 2019-01-08 Goertek Inc. Pre-screening method, manufacturing method, device and electronic apparatus of micro-LED
EP3262694B1 (en) * 2015-10-20 2019-08-21 Goertek. Inc Method for transferring micro-leds and method for manufacturing micro-led device
CN107644927B (zh) * 2017-10-20 2020-01-31 上海天马微电子有限公司 微发光二极管的生长和转运设备及转运方法
CN109786307B (zh) * 2017-11-15 2021-02-05 鸿富锦精密工业(深圳)有限公司 微型led显示面板的制备方法
KR101900925B1 (ko) * 2017-11-20 2018-09-21 엘지디스플레이 주식회사 마이크로 발광 다이오드 칩을 갖는 성장 기판, 및 이를 이용한 발광 다이오드 표시장치 제조 방법
CN107731864B (zh) * 2017-11-20 2020-06-12 开发晶照明(厦门)有限公司 微发光二极管显示器和制作方法
WO2019172707A1 (ko) * 2018-03-09 2019-09-12 주식회사 나노엑스 Led 검사 장치 및 이송 장치
KR20190114334A (ko) * 2018-03-29 2019-10-10 (주)포인트엔지니어링 마이크로 led 검사 및 리페어 방법
TWI667643B (zh) * 2018-04-18 2019-08-01 英屬開曼群島商錼創科技股份有限公司 微型發光二極體顯示面板
US10665573B2 (en) * 2018-04-28 2020-05-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. Manufacturing method of micro light-emitting diode display panel having elastic conductive layer filled between pixel electrode and micro light-emitting diode and micro light-emitting diode display panel manufactured with the same
CN110546751A (zh) * 2018-06-11 2019-12-06 厦门三安光电有限公司 发光组件
US10985046B2 (en) * 2018-06-22 2021-04-20 Veeco Instruments Inc. Micro-LED transfer methods using light-based debonding
CN109148506B (zh) * 2018-08-24 2021-04-13 上海天马微电子有限公司 Micro LED转移方法及显示面板、显示装置
CN109326549B (zh) * 2018-09-19 2020-07-28 京东方科技集团股份有限公司 一种微发光二极管的转移方法、显示面板及其制备方法
CN109449259B (zh) * 2018-10-31 2020-07-10 海信视像科技股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN109927403B (zh) * 2019-04-19 2021-06-29 成都辰显光电有限公司 一种转印装置、转印装置的制作方法和转印方法
CN110311029B (zh) * 2019-07-02 2020-09-04 厦门乾照光电股份有限公司 一种Micro LED阵列基板及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102208512A (zh) * 2010-03-24 2011-10-05 日立电线株式会社 发光二极管
US20170288102A1 (en) * 2016-04-04 2017-10-05 Glo Ab Through backplane laser irradiation for die transfer
CN107017319A (zh) * 2017-05-23 2017-08-04 深圳市华星光电技术有限公司 彩色微发光二极管阵列基板的制作方法
CN111146131A (zh) * 2018-11-06 2020-05-12 昆山工研院新型平板显示技术中心有限公司 一种微元件的转移装置及转移方法
CN110034224A (zh) * 2019-04-26 2019-07-19 中国科学院长春光学精密机械与物理研究所 一种基于条形Micro-LED的转印方法
CN110838503A (zh) * 2019-11-20 2020-02-25 广东省半导体产业技术研究院 微型led芯片制作方法、微型led显示器件制作方法和微型led显示器件
CN110970537A (zh) * 2019-12-19 2020-04-07 京东方科技集团股份有限公司 Led、驱动电路基板、显示面板及制作方法、显示装置

Also Published As

Publication number Publication date
CN111584538A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US10424569B2 (en) Micro light-emitting-diode display panel and manufacturing method thereof
US11424227B2 (en) Display panel, display module, and display device
CN109449259B (zh) 微型发光二极管灯板、其制作方法、背光模组及显示装置
WO2022022044A1 (zh) Led芯片封装模块、显示屏及其制作方法
US20210384176A1 (en) Micro light-emitting diode display device and method for fabricating same
WO2021160090A1 (zh) 显示面板以及显示装置
US11386837B2 (en) Display substrate and manufacturing method thereof, and display apparatus
US8044426B2 (en) Light emitting device capable of removing height difference between contact region and pixel region and method for fabricating the same
KR101508544B1 (ko) 플렉서블 표시장치의 제조 방법
WO2021160089A1 (zh) 显示面板以及显示装置
US11239214B2 (en) Display panel and manufacturing method thereof, and display device
CN112531092B (zh) 微型发光二极管显示面板及制作方法、显示设备
CN112310252B (zh) Micro LED晶粒、Micro LED基板及其制备方法
CN111883553A (zh) 无需巨量转移操作的Micro LED显示面板制备方法
KR20180120527A (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조 방법
WO2021243762A1 (zh) 微型发光二极管显示装置及其制造方法
JP4581664B2 (ja) 半導体基板の製造方法、半導体素子の製造方法及び電気光学装置の製造方法
WO2024000653A1 (zh) 显示面板
US20220416127A1 (en) Display apparatus using semiconductor light emitting device and method for manufacturing same
WO2023097727A1 (zh) 柔性双面显示屏及其制作方法
US20230216015A1 (en) Image display device and method for manufacturing image display device
WO2023070369A1 (zh) 一种微发光二极管显示器及其制作方法
US20240105759A1 (en) Apparatus and method for fabricating display panel
US20240072027A1 (en) Method of fabricating display panel
WO2023245352A1 (zh) 芯片结构及其制备方法、显示基板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939128

Country of ref document: EP

Kind code of ref document: A1