WO2022022044A1 - Led芯片封装模块、显示屏及其制作方法 - Google Patents

Led芯片封装模块、显示屏及其制作方法 Download PDF

Info

Publication number
WO2022022044A1
WO2022022044A1 PCT/CN2021/096807 CN2021096807W WO2022022044A1 WO 2022022044 A1 WO2022022044 A1 WO 2022022044A1 CN 2021096807 W CN2021096807 W CN 2021096807W WO 2022022044 A1 WO2022022044 A1 WO 2022022044A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
led chip
micro led
rdl
substrate
Prior art date
Application number
PCT/CN2021/096807
Other languages
English (en)
French (fr)
Inventor
颜玺轩
向朝
魏海标
丁见华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21851582.3A priority Critical patent/EP4181200A4/en
Publication of WO2022022044A1 publication Critical patent/WO2022022044A1/zh
Priority to US18/158,514 priority patent/US20230163111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/214Connecting portions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • H01L2224/21Structure, shape, material or disposition of high density interconnect preforms of an individual HDI interconnect
    • H01L2224/215Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/95001Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips involving a temporary auxiliary member not forming part of the bonding apparatus, e.g. removable or sacrificial coating, film or substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to an LED chip packaging module, a display screen and a manufacturing method thereof.
  • Micro LED also known as micro light emitting diode (micro light emitting diode) is an opportunity to be applied after liquid crystal display (LCD) and active-matrix organic light-emitting diode (AMOLED). Self-emissive lighting devices for next-generation display technology.
  • LCD liquid crystal display
  • AMOLED active-matrix organic light-emitting diode
  • the core technology of the Micro LED display is to combine millions to tens of millions of LED chips with a size of tens of microns to form the individual pixels required for the display. Since the LED chip is a semiconductor device, the metal electrodes and other structures on its surface can be processed by the semiconductor process. On the driving backplane such as matrix, PM) lines, processes such as mass transfer and micro bonding are required. Different from the traditional LED packaging process that only transfers a single LED chip at a time, the mass transfer technology uses transfer heads or stamps such as polydimethylsiloxane (PDMS) substrates to transfer tens of thousands to hundreds of thousands at the same time. LED chips to meet the output demand of transferring more than one million LED chips in a short time.
  • PDMS polydimethylsiloxane
  • the future mass production goal is to reduce the size of the Micro LED chip to 5-10 microns, so the size of the micro-nano solder ball (micro bump) fabricated on the Micro LED chip is And the process required for the bonding process also needs to be reduced to less than 10 microns, which makes the bonding between the micro LED chip and the drive backplane of the display screen very difficult under the existing Micro LED process technology, which is not conducive to improving the display screen.
  • Product yield is a product yield.
  • the embodiments of the present application provide an LED chip packaging module, a display screen and a manufacturing method thereof, which can reduce the difficulty of binding between the micro LED chip and the driving backplane of the display screen, and improve the yield rate of the display screen products.
  • an LED chip packaging module including:
  • the redistribution layer RDL, the lower surface of the RDL is provided with a plurality of first pads; the micro light-emitting diode Micro LED chip is arranged on the upper surface of the RDL, and the electrodes of the Micro LED chip face the RDL and are connected to the RDL; are arranged on the upper surface of the RDL and/or the micro integrated circuit Micro IC on the lower surface, the electrodes of the Micro IC face the RDL and are connected to the RDL; wherein, the first pad is electrically connected to the Micro IC through the RDL, and the Micro IC is electrically connected to the Micro LED chip through the RDL, The first pad is used to receive an external driving signal, and the Micro IC is used to control the working state of the Micro LED chip electrically connected to it according to the external driving signal.
  • the driving signal first controls the Micro IC, and then the Micro IC controls the working state of at least one Micro LED chip connected to it according to the driving signal.
  • the LED chip The package module does not need to provide pads for connecting the electrodes of the Micro LED chip to external devices such as the driving backplane, thereby reducing the number of pads between the Micro LED chip packaging module and the external devices such as the driving backplane, so that the Under the same LED chip package module and driver backplane size, the size of each pad can be larger, which greatly reduces the bonding difficulty between the LED chip package module and the driver backplane, which is beneficial to improve product yield.
  • the Micro LED chips form a plurality of pixels, and each pixel includes at least one Micro LED chip.
  • each pixel includes at least one Micro LED chip.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc.
  • each pixel is provided with a corresponding Micro IC, the Micro IC is provided adjacent to its corresponding pixel, and the Micro IC is electrically connected to the Micro LED chip in the corresponding pixel through RDL.
  • each Micro IC controls one pixel individually, forming a one-to-one control scheme.
  • a Micro IC is arranged corresponding to a plurality of pixels, the Micro IC is arranged between the corresponding plurality of pixels, and the Micro IC is electrically connected to the Micro LED chips in the corresponding plurality of pixels through the RDL.
  • each Micro IC individually controls multiple pixels, forming a one-to-many control scheme, which can reduce the number of Micro ICs.
  • the electrodes of the Micro IC are located in the same plane as the electrodes of the Micro LED chip. In this way, it is convenient to manufacture an RDL with a flat and smooth upper surface, so as to improve the display performance of the LED chip package module.
  • the LED chip packaging module further includes: a light-shielding structure disposed on the upper surface of the RDL, the light-shielding structure is distributed between adjacent pixels, and/or the light-shielding structure is distributed in adjacent Micro between the LED chips.
  • the light-blocking structure can prevent light from leaking from the gaps between the pixels and between the Micro LED chips, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chips, improve the luminous efficiency, and improve the display effect.
  • the LED chip packaging module further includes: a transparent packaging layer disposed on the upper surface of the RDL, and the transparent packaging layer covers the surface of the Micro LED and/or the Micro IC.
  • the transparent encapsulation layer can fix the positions of the Micro LED and/or the Micro IC to each other and play a protective role.
  • the transparent encapsulation layer includes an encapsulation plane parallel to the upper surface of the RDL on a side away from the RDL, and the encapsulation plane is provided with a micro-nano structure.
  • the micro-nano structure can improve the luminous efficiency of the Micro LED chip, improve the luminous field type, or achieve the effect of improving other optical properties.
  • the LED chip packaging module further includes: a color conversion material, the color conversion material is coated on a part or all of the surface of the Micro LED chip, and is used to convert the color light emitted by the Micro LED chip into other colors.
  • the color conversion material can make a single color Micro LED chip emit different colors of light, which can reduce the use of Micro LED chips of different colors when making an LED chip package module, or realize the luminous correction of the LED chip package mold in the later stage.
  • the pixel includes N main Micro LED chips, and N spare Micro LED chips corresponding to the N main Micro LED chips one-to-one, and the spare Micro LED chips are used in their corresponding main Micro LED chips.
  • N is a positive integer.
  • the Micro IC can drive a spare Micro LED chip of the same color to work instead of the failed Micro LED chip, so that the pixel can still display the color normally, thus maintaining the display integrity of the LED chip package module. improve the yield of LED chip packaging modules.
  • the pixel includes N main Micro LED chips and one spare Micro LED chip, and the spare Micro LED chip is used to replace the failed main Micro LED chip when any one of the main Micro LED chips fails.
  • N is a positive integer.
  • the transparent encapsulation layer around the spare Micro LED chip can be removed by laser first, and then the color conversion material of the same color as the failed Micro LED chip can be sprayed to make the spare Micro LED chip. After the LED chip is driven by the Micro IC, it can emit the same color light as the failed Micro LED chip, so that the pixel can still display the color normally, and the number of spare Micro LED chips is reduced.
  • the pixel includes N main Micro LED chips, and a spare Micro LED chip is also included between two adjacent pixels, and the spare Micro LED chip is used for any one of the two adjacent pixels to be used as the main chip.
  • the Micro LED chip fails, it will work instead of the failed main Micro LED chip, and N is a positive integer.
  • the transparent encapsulation layer around the spare Micro LED chip can be removed by laser first, and then the color conversion material of the same color as the failed Micro LED chip can be sprayed to make the spare Micro LED chip. After the LED chip is driven by the Micro IC, it can emit the same color light as the failed Micro LED chip, so that the pixel can still display the color normally, and the number of spare Micro LED chips is reduced.
  • the insulating flat layer of the RDL is an opaque material.
  • the RDL can absorb or reflect the light emitted by the Micro LED chip to increase the luminosity.
  • the insulating flat layer of the RDL is a transparent material. As a result, the light emitted by the Micro LED chip can efficiently pass through the RDL to increase the luminosity.
  • the embodiments of the present application provide another LED chip packaging module, including:
  • the redistribution layer RDL the lower surface of the RDL is provided with a plurality of first pads; the micro light-emitting diode Micro LED chip is arranged on the upper surface of the RDL, and the electrodes of the Micro LED chip face the RDL and are connected to the RDL; wherein, the first pads It is electrically connected to the Micro LED chip through RDL, and the first pad is used to receive an external driving signal, and the external driving signal is used to control the working state of the Micro LED chip.
  • the Micro LED chip package module provided by the embodiment of the present application is driven by an external driving signal, the driving signal is directly sent to at least one Micro LED chip through the pad and RDL, so that one or more Micro LED chips can be controlled by one driving signal.
  • the chip packaging module does not need to provide pads for the electrodes of the Micro LED chip to be directly connected to external devices such as the driving backplane, thereby reducing the number of pads between the Micro LED chip packaging module and external devices such as the driving backplane , so that under the same LED chip package module and driver backplane size, the size of each pad can be larger, thereby greatly reducing the bonding difficulty between the LED chip package module and the driver backplane, which is conducive to improving product yield. .
  • the Micro LED chips form a plurality of pixels, and each pixel includes at least one Micro LED chip.
  • each pixel includes at least one Micro LED chip.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc.
  • each first pad is electrically connected to the Micro LED chip of at least one pixel through an RDL.
  • the external driving signal can be sent to the Micro LED chip in one or more pixels through the first pad and RDL to control the display state of one or more pixels.
  • the LED chip packaging module further includes: a light-shielding structure disposed on the upper surface of the RDL, the light-shielding structure is distributed between adjacent pixels, and/or the light-shielding structure is distributed in adjacent Micro between the LED chips.
  • the light-blocking structure can prevent light from leaking from the gaps between the pixels and between the Micro LED chips, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chips, improve the luminous efficiency, and improve the display effect.
  • the LED chip packaging module further includes: a transparent packaging layer disposed on the upper surface of the RDL, and the transparent packaging layer covers the surface of the Micro LED chip.
  • the transparent encapsulation layer can fix the positions of the Micro LED and/or the Micro IC to each other and play a protective role.
  • the transparent encapsulation layer includes an encapsulation plane parallel to the upper surface of the RDL on a side away from the RDL, and the encapsulation plane is provided with a micro-nano structure.
  • the micro-nano structure can improve the luminous efficiency of the Micro LED chip, improve the luminous field type, or achieve the effect of improving other optical properties.
  • an embodiment of the present application provides a method for packaging an LED chip, including:
  • the Micro LED chip and the Micro IC are detachably arranged on the first substrate, and the electrodes of the Micro LED chip and the electrodes of the Micro IC are placed facing the first substrate; the surface of the Micro LED chip, the Micro IC and the first substrate is coated with transparent encapsulation layer; after the transparent encapsulation layer is cured, the first substrate is removed, so that the transparent encapsulation layer forms a first plane exposing the electrodes of the Micro LED chip and the electrodes of the Micro IC; RDL is fabricated on the first plane, and the Micro IC passes the RDL and the The Micro LED is electrically connected; the first pad is made on the lower surface of the RDL facing away from the transparent packaging layer, and the first pad is electrically connected to the Micro IC through the RDL.
  • the driving signal first controls the Micro IC, and then the Micro IC controls the working state of at least one Micro LED chip connected to it according to the driving signal, so that , the LED chip package module does not need to provide pads for connecting the electrodes of the Micro LED chip to external devices such as the drive backplane, which can reduce the number of pads between the Micro LED chip package module and the drive backplane and other external devices.
  • Quantity so that under the same LED chip package module and driver backplane size, the size of each pad can be larger, thereby greatly reducing the bonding difficulty between the LED chip package module and the driver backplane, which is conducive to improving product quality. Rate.
  • detachably arranging the Micro LED chips and the Micro IC on the first substrate includes: arranging a plurality of Micro LED chips on the first substrate to form a plurality of pixels, each pixel comprising at least A Micro LED chip with a Micro IC adjacent to one side of each pixel.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc., and the pixels and the Micro IC can be configured one-to-one.
  • the RDL electrically connects the Micro LED chip within each pixel to its adjacent Micro IC.
  • each Micro IC controls one pixel individually, forming a one-to-one control scheme
  • detachably arranging the Micro LED chips and the Micro IC on the first substrate includes: arranging a plurality of Micro LED chips on the first substrate to form a plurality of pixels, each pixel comprising at least A Micro LED chip, and at least one Micro IC is distributed among multiple pixels.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc., and the pixels and Micro ICs can be configured one-to-many.
  • the RDL electrically connects each Micro IC with a Micro LED chip within at least one pixel.
  • each Micro IC individually controls multiple pixels, forming a one-to-many control scheme, which can reduce the number of Micro ICs.
  • the method further includes: fabricating a light-shielding structure on the surface of the first substrate, and the light-shielding structure can be arranged between adjacent pixels. It can also be set between adjacent Micro LED chips.
  • the light-blocking structure can prevent light from leaking from the gaps between the pixels and between the Micro LED chips, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chips, improve the luminous efficiency, and improve the display effect.
  • the method further includes: coating a color conversion material on a part or all of the surfaces of the Micro LED chips, and the color conversion material is used for Convert the color light emitted by the Micro LED chip into other colors.
  • the color conversion material can make a single color Micro LED chip emit different colors of light, which can reduce the use of Micro LED chips of different colors when making an LED chip package module, or realize the luminous correction of the LED chip package mold in the later stage.
  • the method further includes: polishing a side of the transparent encapsulation layer away from the first substrate to form an encapsulation parallel to the first substrate Plane; make micro-nano structures on the package plane.
  • the micro-nano structure can improve the luminous efficiency of the Micro LED chip, improve the luminous field type, or achieve the effect of improving other optical properties.
  • the surface of the first substrate is provided with a first adhesive layer, and the first adhesive layer is used for detachably placing the Micro LED chip and the Micro IC.
  • the first adhesive layer is used for detachably placing the Micro LED chip and the Micro IC.
  • the method before detachably arranging the Micro LED chip and the Micro IC on the first substrate, the method further includes: growing a Micro LED epitaxial wafer structure on the surface of the substrate; using a standard semiconductor process to fabricate the epitaxial wafer structure into A plurality of Micro LED chips; the substrate and the Micro LED chips on it are turned over and can be detachably placed on the second substrate; the substrate is removed. In this way, multiple Micro LED chips that are set independently of each other can be obtained at one time.
  • the surface of the second substrate is provided with a second adhesive layer, and the second adhesive layer is used for detachably placing the Micro LED chips.
  • the Micro LED chip can be temporarily fixed on the second substrate.
  • detachably arranging the Micro LED chips and the Micro ICs on the first substrate includes: sticking a plurality of Micro LED chips from the second substrate at one time, and placing the sticked Micro LED chips on the first substrate On the first substrate, and from the third substrate on which the Micro IC is detachably placed, at least one Micro IC is adhered at one time, and the adhered Micro IC is placed on the first substrate.
  • the massive transfer of Micro LED chips and Micro ICs is realized, and the production efficiency of LED chip packaging modules is improved.
  • the embodiments of the present application provide another method for packaging an LED chip, including:
  • the Micro LED chips are detachably arranged on the first substrate, and the electrodes of the Micro LED chips are placed facing the first substrate; a transparent encapsulation layer is applied on the surfaces of the Micro LED chips and the first substrate; after the transparent encapsulation layer is cured, move the Remove the first substrate, so that the transparent encapsulation layer forms a first plane exposing the electrodes of the Micro LED chip; RDL is fabricated on the first plane, and the Micro IC is mounted on the lower surface of the RDL facing away from the transparent encapsulation layer, and the electrodes of the Micro IC are
  • the Micro IC is electrically connected to the Micro LED through the RDL; the first pad is made on the lower surface of the RDL, the first pad is electrically connected to the Micro IC through the RDL, and the first pad is used to receive external driving signals , Micro IC is used to control the working state of the Micro LED chip electrically connected to it according to the external drive signal.
  • the driving signal first controls the Micro IC, and then the Micro IC controls the working state of at least one Micro LED chip connected to it according to the driving signal, so that , the LED chip package module does not need to provide pads for connecting the electrodes of the Micro LED chip to external devices such as the drive backplane, which can reduce the number of pads between the Micro LED chip package module and the drive backplane and other external devices.
  • Quantity so that under the same LED chip package module and driver backplane size, the size of each pad can be larger, thereby greatly reducing the bonding difficulty between the LED chip package module and the driver backplane, which is conducive to improving product quality. Rate.
  • a plurality of Micro LED chips are arranged on the first substrate to form a plurality of pixels, and each pixel includes at least one Micro LED chip.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc.
  • the RDL electrically connects each Micro IC with a Micro LED chip within at least one pixel.
  • each Micro IC individually controls one pixel to form a one-to-one control scheme, and each Micro IC individually controls multiple pixels to form a one-to-many control scheme to reduce the number of Micro ICs.
  • coating a transparent encapsulation layer on the surface of the Micro LED chip and the first substrate further comprising: fabricating a light-shielding structure on the surface of the first substrate, and the light-shielding structure may be disposed between adjacent pixels, or may Set between adjacent Micro LED chips.
  • the light-blocking structure can prevent light from leaking from the gaps between the pixels and between the Micro LED chips, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chips, improve the luminous efficiency, and improve the display effect.
  • the method further includes: polishing a side of the transparent encapsulation layer away from the first substrate to form an encapsulation plane parallel to the first substrate;
  • the package plane is used to make micro-nano structures.
  • the micro-nano structure can improve the luminous efficiency of the Micro LED chip, improve the luminous field type, or achieve the effect of improving other optical properties.
  • the embodiments of the present application provide another method for packaging an LED chip, including:
  • the Micro LED chips are detachably arranged on the first substrate, and the electrodes of the Micro LED chips are placed facing the first substrate; a transparent encapsulation layer is applied on the surfaces of the Micro LED chips and the first substrate; after the transparent encapsulation layer is cured, move the Remove the first substrate so that the transparent encapsulation layer forms a first plane exposing the electrodes of the Micro LED chip; RDL is fabricated on the first plane, and a first pad is fabricated on the lower surface of the RDL facing away from the transparent encapsulation layer. The pad is electrically connected to the Micro LED chip through the RDL.
  • the first pad is used to receive an external driving signal, and the external driving signal is used to control the working state of the Micro LED chip that is electrically connected to it.
  • the driving signal is directly sent to at least one Micro LED chip through the pad and RDL, so that one or more Micro LED chips can be controlled by one driving signal.
  • the LED chip package module does not need to provide pads for the electrodes of the Micro LED chip to be directly connected to external devices such as the drive backplane, thereby reducing soldering between the Micro LED chip package module and the drive backplane and other external devices.
  • the number of disks makes the size of each pad larger under the same LED chip package module and driver backplane size, which greatly reduces the bonding difficulty between the LED chip package module and the driver backplane, which is conducive to improving the Product yield.
  • a plurality of Micro LED chips are arranged on the first substrate to form a plurality of pixels, and each pixel includes at least one Micro LED chip.
  • one or more Micro LED chips can flexibly form pixels with different color capabilities, such as full-color pixels, monochrome pixels, etc.
  • coating a transparent encapsulation layer on the surface of the Micro LED chip and the first substrate further comprising: fabricating a light-shielding structure on the surface of the first substrate, and the light-shielding structure can be arranged between adjacent pixels to shield light. Structures can also be placed between adjacent Micro LED chips.
  • the light-blocking structure can prevent light from leaking from the gaps between the pixels and between the Micro LED chips, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chips, improve the luminous efficiency, and improve the display effect.
  • the method further includes: polishing a side of the transparent encapsulation layer away from the first substrate to form an encapsulation plane parallel to the first substrate;
  • the package plane is used to make micro-nano structures.
  • the micro-nano structure can improve the luminous efficiency of the Micro LED chip, improve the luminous field type, or achieve the effect of improving other optical properties.
  • an embodiment of the present application provides a display screen, including: a driving backplane, a display driving integrated circuit DDIC for generating an external driving signal, and at least one of the aforementioned first aspect, the second aspect, and any of the above
  • the LED chip packaging module provided by the implementation; the DDIC and at least one LED chip packaging module are arranged on the driving backplane; the driving backplane includes a second pad corresponding to the position of the first pad of the at least one LED chip packaging module, The second pad is connected to the DDIC through a circuit; the first pad is used for the LED chip packaging module to receive external driving signals, and the first pad is connected to the second pad by welding.
  • the LED chip packaging module provided by the embodiment of the present application has fewer first pads, and correspondingly provided second pads on the driving backplane, it is more difficult to weld between the LED chip packaging module and the driving backplane. low, which is conducive to improving the yield of the display screen.
  • an embodiment of the present application provides an electronic device, including the display screen provided in the sixth aspect.
  • Figure 1 is a schematic flow chart of the current Micro LED mass transfer and micro-nano bonding process
  • FIG. 2 is a schematic diagram of an optical structure between pixels at present
  • FIG. 3 is a flowchart of a packaging method for an LED chip provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of each step of the packaging method for an LED chip provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a full-color pixel of a micro LED display
  • Figure 6 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs
  • Figure 7 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs
  • FIG. 8 is a schematic diagram of a light-shielding structure fabricated by a packaging method for an LED chip provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a color conversion material made by a packaging method for an LED chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of fabricating a light-shielding structure and a color conversion material by a packaging method for an LED chip provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a micro-nano structure fabricated by an LED chip packaging method provided in an embodiment of the present application;
  • FIG. 12 is a schematic structural diagram of an LED chip packaging module according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs of the LED chip packaging module according to the embodiment of the present application;
  • FIG. 14 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs of the LED chip packaging module according to the embodiment of the present application;
  • 15 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs of the LED chip packaging module according to the embodiment of the present application;
  • 16 is another schematic structural diagram of the LED chip packaging module according to the embodiment of the present application.
  • 17 is a schematic diagram of the arrangement of the main and standby Micro LED chips of the LED chip packaging module according to the embodiment of the present application;
  • FIG. 18 is a schematic diagram of the arrangement of the main and standby Micro LED chips of the LED chip packaging module according to the embodiment of the present application;
  • FIG. 19 is a schematic diagram of the arrangement of the main and standby Micro LED chips of the LED chip packaging module according to the embodiment of the present application;
  • 20 is a schematic diagram of the arrangement of the main and standby Micro LED chips of the LED chip packaging module according to the embodiment of the present application;
  • 21 is a flowchart of another method for packaging an LED chip provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of the arrangement of Micro LED chips and Micro ICs
  • FIG. 23 is another schematic structural diagram of the LED chip packaging module according to the embodiment of the present application.
  • FIG. 24 is a flowchart of another method for packaging an LED chip provided by an embodiment of the present application.
  • FIG. 25 is another schematic structural diagram of the LED chip packaging module according to the embodiment of the present application.
  • FIG. 26 is an example diagram of the pads and RDL lines of the LED chip package module
  • FIG. 27 is a schematic structural diagram of a display screen provided by an embodiment of the application.
  • FIG. 28 is a schematic diagram of splicing an LED chip packaging module of a display screen provided by an embodiment of the application.
  • Gallium nitride (gallium nitride, GaN), a compound of nitrogen and gallium, is a direct bandgap semiconductor of group III and group V, and is commonly used in light-emitting diodes.
  • MOCVD Metal-organic chemical vapor deposition
  • MOVPE metal-organic vapor-phase epitaxy
  • OMVPE organometallic vapor-phase epitaxy
  • OMCVD organometallic chemical vapor deposition
  • Re-distribution layer refers to an additional metal layer on the chip, which can make the electrodes of the chip or the input/output pads (I/O pads) rearranged to other positions on the chip to It is beneficial to connect with other integrated circuits or chips, or to connect electrodes or I/O pads of different chips together.
  • Display driver integrated circuit which can generally include microcontrollers, microprocessors and peripheral device interfaces, is used to generate appropriate voltage, current and timing signals to drive the pixels of the display, so that the display can generate corresponding image.
  • SMT Surface-mount technology
  • SMT is an electronic assembly technology that mounts electronic components, such as resistors, capacitors, transistors, integrated circuits, etc. on a printed circuit board, and forms electrical components by soldering. Therefore, there is no need to reserve corresponding through holes for the pins of the components.
  • the components it uses are also referred to as surface-mount devices (SMDs).
  • Crosstalk also known as crosstalk interference, refers to the coupling phenomenon between two signal lines in electronics. The reason is that unwanted inductive and capacitive coupling occurs between closely spaced signal lines to interfere with each other. Among them, capacitive coupling induces coupling current, while inductive coupling induces coupling voltage.
  • Epitaxy also known as epitaxial growth, refers to a technology used in the manufacturing process of semiconductor devices to grow new crystals on the original chip to form a new semiconductor layer.
  • the crystals or crystal grains grown by epitaxial technology may also be called epitaxy, or epitaxial layers or epitaxial wafers.
  • Micro-nanostructures refer to artificially designed functional structures with micron or nanoscale feature sizes and arranged in a specific manner.
  • Micro LED also known as micro light emitting diode (micro light emitting diode) is an opportunity to be applied after liquid crystal display (LCD) and active-matrix organic light-emitting diode (AMOLED).
  • LCD liquid crystal display
  • AMOLED active-matrix organic light-emitting diode
  • Self-emissive lighting devices for next-generation display technology The core technology of the Micro LED display is to combine millions to tens of millions of LED chips with a size of tens of microns to form the pixels required for the display. Therefore, the process is combined with the LED through the liquid crystal layer and the backlight layer. And AMOLED using organic material evaporation and other processes are very different.
  • the LED chip is a semiconductor device, the metal electrodes and other structures on its surface can be processed by the semiconductor process.
  • the driving backplane such as matrix, PM
  • the LED chips must be transferred and fixed on the driving backplane by mass transfer and micro bonding.
  • the mass transfer technology uses transfer heads or stamps such as polydimethylsiloxane (PDMS) substrates to transfer tens of thousands to hundreds of thousands at the same time. LED chips to meet the output demand of transferring more than one million LED chips in a short time.
  • PDMS polydimethylsiloxane
  • the future mass production goal is to reduce the size of the Micro LED chip to 5-10 microns, so the size of the micro-nano solder ball (micro bump) fabricated on the Micro LED chip is And the process required for the bonding process also needs to be reduced to less than 10 microns, making it difficult for the existing Micro LED process technology to meet such process requirements.
  • FIG 1 is a schematic flow chart of the current micro LED mass transfer and micro-nano bonding process.
  • a Micro LED chip made of GaN/InGaN material such as a blue or green Micro LED chip
  • a substrate made of a sapphire (sapphire sub) material can be used.
  • LED epitaxial wafer structures (LED epi-ayers) 020 are grown on the surface of 010; then, the epitaxial wafer structures 020 are fabricated into a large number of Micro LED chips 030 with a size of about 10 microns using a standard semiconductor process, wherein the surface of the Micro LED chip 030 is divided Including the ohmic electrode 040 made in order to reduce the current flowing into the semiconductor (the ohmic electrode 040 includes the P/N electrode of the LED chip), it is also necessary to make the micro bump 050 prepared for the subsequent bonding process, and the micro bump 050 is prepared on the ohmic electrode Above 040, in order to reduce the temperature required for the bonding process, the micro bump metal used here can be a low-temperature bonding metal alloy including indium In, tin Sn, copper Au, etc.; after the chip process is completed, the substrate 010 and The epitaxial wafer structure 020 on top of it is turned over and adhered to the substrate 1.
  • the substrate carrier 1 can be made of glass and other materials, and has an adhesive layer 061 on its surface.
  • the adhesive layer 061 is in contact with the micro bump 050 and can be
  • the epitaxial wafer structure 020 is temporarily fixed without destroying the device structure.
  • the epitaxial wafer structure 020 can be irradiated from the side of the sapphire substrate 010 with laser light.
  • the laser wavelength will not be absorbed by the sapphire substrate 010, but will react with the GaN material, causing the epitaxial wafer to react.
  • the structure 020 is separated from the sapphire substrate 010 from the interface.
  • the Micro LED chips 030 are separately attached to the substrate carrier 1.
  • a patterned transfer head can be used to selectively adhere to the substrate carrier 1. Take or absorb the required Micro LED chip 030.
  • This stamp can be made of PDMS material using van der waals force.
  • other mechanisms such as electrostatic force and magnetic force can also be used to absorb the Micro LED chip 030 ;
  • the Micro LED chip 030 can be transferred to another substrate carrier 2.
  • the surface of the substrate carrier 2 also has an adhesive layer 062 or an adhesive device, which can temporarily fix the Micro LED Chip 030.
  • the adhesive force should satisfy: the adhesive layer 061 ⁇ PDMS ⁇ adhesive layer 062, so the adhesive layer 061 and the adhesive layer 062 can be made of different materials.
  • stamp to transfer the Micro LED chips 030 from the substrate carrier 1 to the substrate carrier 2 has the following multiple purposes, including: adjusting the spacing of the Micro LED chips 030, making the Micro LED chips 030 form a full-color arrangement on the surface of the substrate carrier 2 (for example: red and green) Blue RGB arrangement), etc., or double-sided process of other chips, etc.
  • the Micro LED chips 030 are arranged on the surface of the substrate carrier 2, another stamp can be used to stick all the Micro LED chips 030 at one time and transfer them to the corresponding area of the driving backplane 070; then, use the micro bump 050 to make the Micro LED chips 030
  • the positive and negative electrodes on the surface are mechanically and electrically connected to the corresponding electrodes 080 on the driving backplane.
  • the following process flow is involved here, including: the positive and negative electrodes on the surface of the Micro LED chip 030 and the corresponding electrodes 080 on the driving backplane.
  • micro bump and bonding process as shown in Figure 1 can be used to realize the electrical connection between the positive and negative electrodes on the surface of the Micro LED chip and the corresponding electrodes on the driver backplane, due to the positive and negative size of the Micro LED chip.
  • the micro bump and bonding process shown in Figure 1 will be used in terms of process realization and production yield. There are insurmountable problems. Specifically, it can be expressed as:
  • Micro bumps generally contain solder materials such as indium In or tin Sn, which can help reduce the bonding temperature, but these materials are also prone to diffusion in the alloy.
  • solder materials such as indium In or tin Sn, which can help reduce the bonding temperature, but these materials are also prone to diffusion in the alloy.
  • it is usually necessary to thicken the thickness of the gold Au or other metal layers in the micro bump, which is not conducive to the miniaturization of the Micro LED chip.
  • the Micro LED chip and the driver backplane are connected by the bonding process, the chip and the driving backplane are mechanically and electrically connected through a micro bump, but the contact state, pressure and temperature between the stamp and the chip in the bonding process are different.
  • Micro LED chips cannot be tested before all processes are completed. Since the Micro LED chip can only be powered on and tested after being connected to the driver backplane, after all the processes in Figure 1 are completed, if it is found through the test that the Micro LED chip fails due to the problem of the Micro LED chip itself or the process. It is only possible to obtain a defect-free Micro LED display through the rework process. However, the rework process involves the removal of failed Micro LED chips, pad cleaning and resetting, and the transfer and bonding of a single Micro LED chip, which is not only technically difficult to achieve, but also consumes units per pixel. The man-hours are also far greater than the man-hours of mass transfers, making it difficult to implement in a production environment.
  • redundancy is to place twice as many backup Micro LED chips on the Micro LED display.
  • a backup chip is used to replace the original Micro LED chip to maintain full-screen lighting. Obviously, this method will increase the production cost of the display and reduce the resolution of the display.
  • each pixel on the Micro LED display needs to superimpose the thickness of the micro bump to form the total thickness of the pixel.
  • the thickness H1 of the micro bump may reach 5 to 8 microns. If the thickness of the Micro LED chip is added, the total thickness H2 of each pixel may reach 10 to 10 microns. 15 microns or even higher. In this case, the aspect ratio between the total pixel thickness H2 and the inter-pixel distance B1 will be relatively high. At this time, if you want to change the light type or reduce the cross-talk between the pixels. If the optical structure is 090, an excessively high aspect ratio will lead to a decrease in the precision and yield of semiconductor processes such as photolithography between pixels, and will also have a negative impact on the volume target of other sensing devices.
  • embodiments of the present application provide a packaging method for an LED chip.
  • the method can be applied to the packaging field of various types of LED chips, for example, packaging Micro LED chips or Mini LED chips on substrates such as TFTs to manufacture Micro LED or Mini LED chip packaging modules or display screens, etc.
  • FIG. 3 and FIG. 4 are respectively a flowchart of a packaging method for an LED chip provided by an embodiment of the present application and a schematic structural diagram formed by each step.
  • the method may include the following steps:
  • step S101 a micro LED epitaxial wafer structure 120 is grown on the surface of the substrate 110 .
  • the materials that can be used as the substrate 110 of the epitaxial wafer structure 120 may include, for example, sapphire, aluminum nitride AlN, silicon carbide SiC, GaN single crystal materials, and other materials, which are not limited in this application.
  • the epitaxial material used for growing the epitaxial wafer structure 120 can be determined according to the emission color of the micro LED chip to be prepared. For example, if a micro LED chip emitting blue light or green light is to be prepared, the epitaxial wafer structure 120 can be grown using a GaN/InGaN material; for another example, if a micro LED chip emitting red light is to be prepared, a material such as GaAsP can be used to grow Epitaxial wafer structure 120 . Other materials that can be used for growing the epitaxial wafer structure 120 may also include SiC, AlGaP, etc., which will not be further described here due to limited space.
  • each full-color pixel may be composed of multiple micro LED chips. Taking the most basic pixel structure as an example, it may include a micro LED chip R with its own epitaxial material emitting red light, a micro LED chip G with its own epitaxial material emitting green light, and a micro LED chip B with its own epitaxial material emitting blue light.
  • epitaxial wafer structures 120 capable of emitting light of different colors on different substrates 110 in actual production, for example, on a substrate
  • An epitaxial wafer structure 120 capable of emitting blue light is grown on GaN/InGaN on the substrate 110
  • an epitaxial wafer structure 120 capable of emitting green light is grown on another substrate 110 using GaN/InGaN.
  • step S102 the epitaxial wafer structure is fabricated into a plurality of Micro LED chips by using a standard semiconductor process.
  • the redundant part of the epitaxial wafer structure 120 may be removed by etching or other material removal techniques, so that the remaining epitaxial wafer structure 120 is formed on the substrate 110 with a size of about 10 microns and above the substrate 110
  • the independent structures are arranged at intervals, and then an ohmic electrode (hereinafter referred to as an electrode) 140 that can reduce the current flowing into the semiconductor is fabricated on the side of each independent structure away from the substrate, that is, a complete Micro LED chip 130 can be formed. All constitute a Micro LED chip 130 .
  • the Micro LED chip 130 fabricated in the embodiment of the present application does not need to fabricate a micro bump except for the electrodes 140 , thereby reducing the cost of the Micro LED chip. the height of.
  • microns is only an example size, and does not constitute a specific limitation on the size of the micro LED chip.
  • the size of a micro LED chip can reach between 1 and 60 ⁇ m.
  • Those skilled in the art can determine the corresponding semiconductor process according to the common size range of the micro LED chip, which is not limited in this application.
  • Step S103 the substrate 110 and the Micro LED chips 130 thereon are turned over as a whole and then detachably placed on the second substrate 150 .
  • the second substrate 150 may be made of a material such as glass or silicon wafer, and a second adhesive layer 160 is disposed on the surface thereof. After the substrate 110 and the Micro LED chips 130 thereon are turned over as a whole, the substrate 110 and the Micro LED chips 130 thereon can be moved over the second substrate 150 so that the second adhesive layer 160 faces the Micro LED chips 130 the end with the electrode 140; next, move the substrate 110 and the Micro LED chip 130 above it downwards, so that the electrode 140 of the Micro LED chip 130 is in contact with the second adhesive layer 160 and adhered to the second adhesive layer 160. on the substrate 150 .
  • the second adhesive layer 160 will not fix the Micro LED chip 130 and the second substrate 150 for a long time, but is only used to temporarily and detachably fix the Micro LED chip without destroying the device structure of the Micro LED chip 130 130, so that the Micro LED chip 130 can be separated from the second substrate 150 when needed.
  • step S104 the substrate is removed.
  • the epitaxial wafer structure of the Micro LED chip 130 can be irradiated by laser light from the side of the substrate 110.
  • the wavelength of the laser light enables it to pass through the substrate 110 without being absorbed by the substrate 110, but it will be different from the epitaxial wafer structure.
  • the GaN material reacts to separate the epitaxial wafer structure of the Micro LED chip 130 and the substrate 110 from the interface, thereby removing the substrate 110 .
  • Step S105 the Micro LED chip 130 and the Micro IC 180 are detachably arranged on the first substrate 170, wherein the electrode 140 of the Micro LED chip 130 and the electrode 230 of the Micro IC 180 are placed facing the first substrate 170.
  • a plurality of Micro LED chips 130 and the Micro IC 180 may be arranged on the first substrate 170 into a plurality of pixels, and each pixel includes at least one Micro LED chip 130 and one Micro IC 180.
  • the pixel includes a Micro LED chip B that emits blue light, a Micro LED chip G that emits green light, and a Micro LED chip R that emits red light.
  • the chips are arranged side by side in a row to form a standard RGB arrangement, each pixel contains a Micro IC 180, and the Micro IC 180 and the Micro LED chips are arranged side by side in the same row.
  • the pixel includes a Micro LED chip B that emits blue light, a Micro LED chip G that emits green light, and a Micro LED chip R that emits red light.
  • the chips are arranged side by side in a row to form a standard RGB arrangement, each pixel contains a Micro IC 180, and the Micro IC 180 is arranged above or below the three Micro LED chips.
  • Micro LED chips may be included in the pixel, such as two Micro LED chips B emitting blue light, one Micro LED chip R emitting red light, and one Micro LED chip emitting green light.
  • Micro LED chip G, the four Micro LED chips form a rectangular arrangement, the position of each Micro LED chip can be regarded as a corner of the rectangle, and the two blue-emitting Micro LED chips B are arranged diagonally, each pixel contains a Micro IC 180, Micro IC 180 can be arranged on one side of four Micro LED chips.
  • a plurality of Micro LED chips 130 may be arranged on the first substrate 170 to form a plurality of pixels, each pixel includes at least one Micro LED chip 130, and at least one Micro IC 180 is distributed among the pixels between.
  • the pixel includes a Micro LED chip B that emits blue light, a Micro LED chip G that emits green light, and a Micro LED chip R that emits red light.
  • the chips are arranged side by side in a row to form a standard RGB arrangement.
  • the pixel includes a Micro LED chip B that emits blue light, a Micro LED chip G that emits green light, and a Micro LED chip R that emits red light. These three Micro LED chips The chips are arranged side by side in a row to form a standard RGB arrangement. In the pixels of each square area, there is a Micro IC 180 for every certain number of N (N is a positive integer greater than 1) pixels, and each Micro IC 180 can be used in this area. control within N pixels.
  • N is a positive integer greater than 1
  • a plurality of second substrates 150 can be prepared in advance, and a Micro LED chip 130 of one color light can be detachably placed on each second substrate 150.
  • the Micro LED chips 130 that can draw light of different colors from different second substrates 150 are placed on the first substrate 170, and at least one chip is drawn from the third substrate on which the Micro IC 180 is placed at one time.
  • the Micro IC 180 is placed on the first substrate 170, and the third substrate is also provided with an adhesive layer, so that the Micro IC 180 can be detachably placed.
  • the above-mentioned actions of picking up and placing the Micro LED chips 130 and the Micro IC 180 can be repeated one or more times, and one or more chips can be picked up each time, so as to finally make multiple Micro LED chips and at least one Micro IC 180 on the first substrate 170 Form a preset pixel arrangement.
  • the first substrate 170 can be made of materials such as glass or silicon wafers, and a first adhesive layer 190 is disposed on its surface, which can be detachably and temporarily fixed without destroying the device structures of the Micro LED chips 130 and the Micro IC 180 .
  • a first adhesive layer 190 is disposed on its surface, which can be detachably and temporarily fixed without destroying the device structures of the Micro LED chips 130 and the Micro IC 180 .
  • a transparent packaging layer 210 is coated on the surfaces of the Micro LED chip 130, the Micro IC 180 and the first substrate 170.
  • the transparent encapsulation layer 210 may include epoxy resin and silicone resin materials, for example.
  • the transparent encapsulation layer 210 needs to be cured for a certain period of time after coating, and after curing, the relative positions of the Micro LED chip 130 and the Micro IC 180 can be fixed.
  • the coating height of the transparent encapsulation layer 210 on the surface of the first substrate 170 may be higher than the height of the Micro LED chip 130 and the Micro IC 180 as a whole, so that after the transparent encapsulation layer 210 is cured, the transparent encapsulation layer 210 can be cured.
  • the layer 210 is polished or ground to form a package plane 240 parallel to the first substrate 170 with good flatness.
  • step S107 after the transparent encapsulation layer 210 is cured, the first substrate 170 is removed, so that the transparent encapsulation layer 210 forms a first plane 250 exposing the electrodes 140 of the Micro LED chip 130 and the electrodes 230 of the Micro IC 180.
  • the Micro LED chip 130 and the Micro IC 180 are in contact with the first adhesive layer 190 of the first substrate 170 at the ends where the electrodes are located, after the Micro LED chip 130 and the Micro IC 180 are separated from the first substrate 170, the Micro LED chip 130 And the electrodes of the Micro IC 180 are exposed from the first plane 250 of the transparent encapsulation layer 210.
  • step S108 the RDL 220 is fabricated on the first plane 250.
  • the RDL 220 includes an insulating flat layer and a plurality of RDL lines distributed in the insulating flat layer.
  • the insulating flat layer can be made of silicon or polymer materials
  • the RDL circuit can be made of conductive materials such as copper through photolithography, evaporation, electroplating and other semiconductor process technologies.
  • the RDL circuit can be a single-layer circuit or a multi-layer circuit. The application embodiments do not limit this.
  • the RDL line can be divided into two parts.
  • the first part of the RDL line is used to connect the electrode 140 of the Micro LED chip 130 and the electrode 230 of the Micro IC 180, so that each Micro IC 180 passes through the RDL 220.
  • Step S109 forming pads 270 and solder ball bumps 330 on the lower surface 260 of the RDL 220.
  • the pad 270 is connected to the other end of the second part of the RDL circuit, so the pad 270 and the Micro IC 180 can be electrically connected through the RDL 220, and the solder ball bump 330 is fabricated on the pad 270, which is convenient for the pad 270 Connect with external devices such as drive backplane.
  • Micro LED chip package module is obtained, which can be mechanically and electrically connected to other modules or driving systems such as a driver backplane or a display driver IC (DDIC) through the pad 270. sex connection for a full display.
  • modules or driving systems such as a driver backplane or a display driver IC (DDIC) through the pad 270. sex connection for a full display.
  • DDIC display driver IC
  • the driving signal first controls the Micro IC 180, and then the Micro IC 180 controls the working state of at least one Micro LED chip 130 connected to it according to the driving signal, thereby reducing the number of Micro LED chips.
  • the number of pads between the chip packaging module and the driver backplane and other external devices makes the size of each pad larger, even much larger than that of the Micro LED chip, under the same LED chip packaging module and driver backplane size. Therefore, the bonding difficulty between the LED chip package module and the driver backplane is greatly reduced, which is beneficial to improve the product yield.
  • a transparent packaging layer is coated on the surfaces of the Micro LED chips 130 , the Micro ICs 180 and the first substrate 170
  • a black dot matrix can also be fabricated between adjacent pixels, or between the Micro LED chips 130 , or between the Micro LED chips 130 and the Micro IC 180 . (black matrix), etc., to prevent light leakage from the gap between the pixels, reduce the cross-talk between the pixels, increase or converge the viewing angle of the Micro LED chip 130 light emission, improve the luminous efficiency, etc., thereby improving the Micro LED display effect.
  • the Micro LED chips 130 and the Micro IC 180 are transferred to the first substrate After 170, and before the surface of the Micro LED chip 130, the Micro IC 180 and the first substrate 170 is coated with the transparent encapsulation layer 210, that is, between steps S105 to S106, some or all of the Micro LED chips 130 in the pixels can also be coated.
  • the color conversion material 290 is distributed, so that different Micro LED chips 130 emit different colors of light through the color conversion material.
  • the pixel when the pixel includes three Micro LED chips 130 emitting blue light, one of the Micro LED chips 130 can be coated with a red color conversion material 290, and the other Micro LED chip 130 can be coated with a green color conversion material. 290, so that the three Micro LED chips 130 in the pixel finally emit light in red, green and blue, forming an RBG full-color pixel.
  • a spacer may be formed between the pixels, or between the Micro LED chips 130 , or between the Micro LED chips 130 and the Micro IC 180
  • the light structure 280, black matrix, etc. are used to separate the color conversion materials 290 of different colors, and finally improve the display effect of the LED chip package module and the display screen formed by it.
  • the encapsulation of the transparent encapsulation layer 210 may also be performed.
  • the micro-nano structure 310 is fabricated on the plane 240 to improve the luminous efficiency of the Micro LED display screen, improve the luminous field type, or achieve other effects of improving optical properties.
  • the above-mentioned micro-nano structures 310 may be, for example, densely arranged stripe-like convex structures.
  • the embodiments of the present application further provide an LED chip packaging module, and the LED chip packaging module can be obtained by using the methods described above in the embodiments of the present application, or can be obtained by using other manufacturing methods.
  • FIG. 12 is a schematic structural diagram of an LED chip packaging module according to an embodiment of the present application.
  • the LED chip packaging module includes an RDL 220 , a plurality of Micro LED chips 130 , at least one Micro IC 180 , and a transparent packaging layer 210 .
  • each Micro LED chip 130 and at least one Micro IC 180 are distributed on the upper surface 320 of the RDL 220, and each Micro LED chip 130 is provided with at least one electrode 140 facing the upper surface 320 of the RDL 220 and connected to the RDL 220.
  • each Micro IC 180 is provided with at least one electrode 230 facing the upper surface 320 of the RDL 220 and connected to the RDL 220, and each Micro IC 180 is electrically connected with at least one Micro LED chip 130 through the RDL 220.
  • the transparent encapsulation layer 210 is coated on the upper surface 320 of the RDL 220, and the thickness of the transparent encapsulation layer 210 in the direction perpendicular to the upper surface 320 of the RDL 220 is greater than or equal to that of the Micro LED chip 130 and the Micro IC 180 perpendicular to the upper surface of the RDL 220
  • the thickness in the 320 direction enables the transparent encapsulation layer 210 to cover the Micro LED chip 130 and the Micro IC 180, and the transparent encapsulation layer 210 can also form an encapsulation plane 240 parallel to the RDL 220 by polishing.
  • the lower surface 260 of the RDL 220 is also provided with at least one pad 270, and each pad 270 is electrically connected to at least one Micro IC 180 through the RDL 220.
  • Each pad 270 can also be made into a solder ball bump 330, so as to facilitate the soldering of the pad 270 of the RDL 220 with the pad on the driving backplane of the display screen, so that the LED chip package module and the driving backplane can achieve mechanical and Electrical connection.
  • the Micro IC 180 can be set in various ways relative to the RDL 220 .
  • the Micro IC 180 can be set in various ways relative to the RDL 220 .
  • the RDL 220 For example:
  • the Micro ICs 180 can all be disposed on the upper surface 320 of the RDL 220, as shown in FIG. 12 .
  • the Micro ICs 180 may all be disposed on the lower surface 260 of the RDL 220. This arrangement allows only the Micro LED chip 130 to be arranged on the upper surface 320 of the RDL 220, and no more space is needed for the Micro IC 180, so it is beneficial to increase the pixel density of the LED chip package module and improve the display effect.
  • the Micro IC 180 can have a larger setting space and a more flexible layout on the lower surface 260 of the RDL 220, so a Micro IC 180 with a larger size and higher performance can be placed to improve the performance of the LED chip package module.
  • a part of the Micro IC 180 is arranged on the upper surface 320 of the RDL 220 , and another part of the Micro IC 180 is arranged on the lower surface 260 of the RDL 220 .
  • the Micro IC 180 on the upper surface 320 and the Micro IC 180 on the lower surface 260 can each control a portion of the Micro LED chips 130, and the Micro IC 180 on the upper surface 320 and the Micro IC 180 on the lower surface 260 control The Micro LED chips 130 can be the same or different.
  • This arrangement makes the upper surface 320 of the RDL 220 only need to leave space for a part of the Micro IC 180, which is beneficial to increase the pixel density of the LED chip package module and improve the display effect.
  • the upper surface 320 of the RDL 220 can be provided with a Micro IC 180 with a smaller size, and the lower surface 260 of the RDL 220 can be provided with a Micro IC 180 with a larger size, so that the surface space utilization of the RDL 220 is maximized.
  • the height of the Micro IC 180 in the direction perpendicular to the lower surface 260 should be less than the sum of the heights of the pads 270 and the solder balls 330, so that the Micro IC 180 will not affect the soldering of the LED chip package module to the driver backplane of the display.
  • the RDL 221 includes an insulating flat layer 221 and a plurality of RDL lines distributed in the insulating flat layer 221 .
  • the RDL line is divided into a first RDL line 222 and a second RDL line 223 according to the direction of the RDL line and different connected devices, and the two ends of the first RDL line 222 are respectively referred to as the first end 2221 and For the second end 2222, two ends of the second RDL line 223 are respectively referred to as the third end 2231 and the fourth end 2232.
  • the first end 2221 and the second end 2222 of the first RDL are located on the upper surface 320 of the RDL 220, the third end 2231 of the second RDL line 223 is located on the upper surface 320 of the RDL 220, and the fourth end of the second RDL line 223 2232 is located on the lower surface 260 of the RDL 220.
  • the fourth end 2232 of the second RDL line 223 may be provided with a pad 270 to facilitate electrical connection with other devices.
  • the first end 2221 of the first RDL line 222 is used for connecting with the electrode 140 of the Micro LED chip 130 , and each first RDL line 222 may have at least one first end 2221 for connecting with the electrode 140 of at least one Micro LED chip 130 . connect.
  • the second end 2222 of the first RDL line 222 is used for connecting with the electrode 230 of the Micro IC 180, and the electrode 230 of each Micro IC 180 can be connected with the second end 2222 of at least one first RDL line 222.
  • the third end 2231 of the second RDL line 223 is used for connecting with the electrode 230 of the Micro IC 180 , and the third end 2231 of each second RDL line 223 can be connected with the electrode 230 of at least one Micro IC 180 .
  • the electrodes 230 connected to the second end 2222 of the first RDL line 222 and the third end 2231 of the second RDL line 223 are different.
  • the fourth end 2232 of the second RDL line 223 is provided with a solder ball 330 on the pad 270 thereof, so as to be connected to an external device and receive an external driving signal.
  • the driving signal first controls the Micro IC 180, and then the Micro IC 180 controls the working state of at least one Micro LED chip 130 connected to it according to the driving signal, and is controlled by the Micro IC 180.
  • This can reduce the number of I/O pads between the Micro LED chip package module and external devices such as the driver backplane, so that under the same LED chip package module and driver backplane size, the size of each pad can be larger , even much larger than the size of the Micro LED chip, thus greatly reducing the difficulty of bonding between the LED chip packaging module and the driver backplane, which is conducive to improving product yield.
  • the Micro LED chips 130 in the LED chip packaging module can form a plurality of pixels in a certain arrangement, wherein each pixel includes at least one Micro LED chip 130 . If a full-color pixel arrangement is to be formed, each pixel may contain three Micro LED chips 130, for example: a blue-emitting Micro LED chip B, a green-emitting Micro LED chip G, and a red-emitting Micro LED chip Chip R, these three chips can be in the same row, forming a standard RGB arrangement.
  • each pixel may also include a Micro IC 180, and the Micro IC 180 is electrically connected to the three Micro LED chips 130 in the pixel through the RDL 220, for controlling the working states of the three Micro LED chips 130, such as point Bright time, intensity, etc., so that the pixels can display various colors.
  • each Micro IC 180 is only used to control the working state of one pixel.
  • each pixel may include three Micro LED chips 130 and one Micro IC 180, wherein the three Micro LED chips 130 may be located in the same row, forming a standard RGB arrangement, while the Micro IC 180 can be set separately on another line.
  • the Micro LED chips 130 may also have other arrangements, such as pentile arrangements, RGB-Delta arrangements, etc., which are not limited in the embodiments of the present application.
  • each pixel may contain three Micro LED chips 130, forming a standard RGB arrangement.
  • N is a positive integer greater than 1
  • pixels can be provided with a Micro IC 180, and each Micro IC 180 can pass RDL to its row or column.
  • Each Micro LED chip 130 in the pixel establishes an electrical connection for controlling the working state of each Micro LED chip 130 in the adjacent N pixels.
  • each Micro IC 180 when each Micro IC 180 is used to control the color rendering of N pixels, the Micro IC 180 can also use other distribution methods to set up the pixels, and each Micro IC 180 can be connected to its adjacent multi-pixel through RDL. Each pixel is electrically connected to control the color rendering of these pixels, which is not limited in this embodiment of the present application.
  • some or all of the Micro LED chips 130 in each pixel may be Micro LED chips emitting the same color, and in this case, some or all of the surfaces of the Micro LED chips 130 may be It is coated with a color conversion material, and the color conversion material is used to convert the color light emitted by the Micro LED chip 130 into other colors.
  • a color conversion material is used to convert the color light emitted by the Micro LED chip 130 into other colors.
  • a red color conversion material 290R may be coated on the surface of one of the Micro LED chips 130 to emit light. The blue light can be converted into red light, and the surface of the other Micro LED chip 130 is coated with a green color conversion material 290G to convert the blue light it emits into green light.
  • a light-blocking structure 280 may also be provided between the Micro LED chip 130 and the Micro IC 180 , and a light-blocking structure 280 may also be provided between two adjacent Micro LED chips 130 .
  • One end of the light blocking structure 280 is connected to the RDL 220 , and the other end extends away from the RDL 220 .
  • the light isolation structure 280 is beneficial to improve the luminous efficiency of the Micro LED chip 130, reduce the cross-talk between pixels, increase or converge the light emission viewing angle of the Micro LED chip 130, separate the color conversion materials 290 of different colors, and finally Improve the display effect of the LED chip package module and the display screen formed by it.
  • the LED chip packaging module may not only include the light-shielding structure 280, but also may include structures such as a black dot matrix. The example does not limit this.
  • the encapsulation plane 240 of the transparent encapsulation layer 210 has micro-nano structures 310 , and the micro-nano structures 310 may be, for example, closely-arranged stripe-like protruding structures.
  • the micro-nano structure 310 is beneficial to improve the luminous efficiency of the Micro LED display screen, improve the luminous field type, and achieve the effect of improving other optical properties.
  • each pixel of the LED chip packaging module may further include at least one backup Micro LED chip.
  • the Micro IC can The backup Micro LED chip that drives the pixel works in place of the failed Micro LED chip, so that the pixel can still display colors normally, so as to maintain the display integrity of the LED chip package module and improve the yield of the LED chip package module.
  • each main Micro LED chip in the pixel can correspond to a spare Micro LED chip with the same light emission color
  • a full-color pixel can include six Micro LED chips, that is, : Two red-emitting Micro LED chips R1 and R2, two green-emitting Micro LED chips G1 and G2, and two blue-emitting Micro LED chips B1 and B2.
  • the backup Micro LED chips do not work, and the Micro IC only drives the main chip to work; when any of the main Micro LED chips fails, the Micro IC can drive the backup Micro LED chips of the same color Works in place of failed Micro LED chips.
  • the Micro IC can directly drive the standby green light-emitting chip G1.
  • the failed green light-emitting Micro LED chip G1 or its corresponding circuit can be destroyed by laser first, so that the failed chip It becomes an open-circuit state, and then drives the spare green-emitting Micro LED chip G2.
  • each pixel may also contain only one spare Micro LED chip , so as to improve the size utilization rate of the LED chip package module, improve the pixel density and reduce the cost.
  • a full-color pixel may include four Micro LED chips, namely: a Micro LED chip R1 mainly emitting red light, a Micro LED chip G1 mainly emitting green light, and a Micro LED chip mainly emitting blue light Chip B1 and a spare Micro LED chip B2.
  • the Micro IC can directly drive the backup Micro LED chip B2, and when the main Micro LED chip R1 or G1 that emits red or green light fails At this time, the transparent encapsulation layer 210 around the spare Micro LED chip B2 can be removed by laser first, and then the color conversion material 290 with the same color as the failed Micro LED chip can be sprayed, so that the spare Micro LED chip B2 is driven by the Micro IC. It can emit the same color light as the failed Micro LED chip.
  • one spare Micro LED chip can also be used to replace the failed Micro LED chip in more than one pixel, thereby reducing the number of spare Micro LED chips, improving the size utilization rate of the LED chip packaging module, and improving the pixel density. density and lower costs.
  • a full-color pixel may include three Micro LED chips, namely: a Micro LED chip R1 emitting red light, a Micro LED chip G1 emitting green light, and a Micro LED chip emitting blue light Chip B1, these three Micro LED chips can be arranged in a triangle.
  • the red-emitting Micro LED chip R1 and the green-emitting Micro LED chip G1 are located in the same row and arranged side by side, and the blue-emitting Micro LED chip B1 is located above the other two chips.
  • the backup Micro LED chip can be a blue-emitting Micro LED chip B2, which is arranged between the blue-emitting Micro LED chips B1 of two adjacent pixels, forming a row in which the main and backup Micro LED chips are alternately arranged in the same row. cloth method.
  • the Micro IC can directly choose to drive its adjacent spare Micro LED chip B2.
  • the transparent encapsulation layer around the spare Micro LED chip B2 closest to the failed chip can be removed by laser first, and then spray the same color as the failed Micro LED chip.
  • the conversion material enables the spare Micro LED chip B2 to emit the same color light as the failed Micro LED chip after being driven by the Micro IC.
  • three Micro LED chips in a full-color pixel can form a standard RGB arrangement, and then, every two adjacent pixels in the same row or column are grouped together, and in these two A spare Micro LED chip B2 is arranged between the pixels, so that the spare Micro LED chip B2 can be used to replace the failed Micro LED chip in this group of pixels.
  • each implementation manner shown in FIG. 17-FIG. 20 is only used to illustrate the technical idea of the embodiments of the present application, and does not constitute a specific limitation to the embodiments of the present application, except for the implementation manners shown above , those skilled in the art can also adopt other implementation manners under the inspiration of this technical concept, which do not exceed the protection scope of the embodiments of the present application.
  • the insulating flat layer in the RDL can be made of an opaque material with opaque properties, enabling it to absorb or reflect the light emitted by the Micro LED chip to increase the luminosity.
  • the insulating flat layer in the RDL can be made of an opaque material, which has the characteristics of high penetration or transparency, so that the light emitted by the Micro LED chip can efficiently pass through the RDL to increase the luminosity.
  • the embodiment of the present application also provides another method for packaging an LED chip. As shown in FIG. 21 , the method may include the following steps:
  • Steps S101 to S104 are the same as steps S101 to S104 shown in FIG. 4 , and details are not repeated here.
  • step S110 the Micro LED chips 130 are detachably arranged on the first substrate 170 , wherein the electrodes 140 of the Micro LED chips 130 are placed facing the first substrate 170 .
  • step S110 The difference between step S110 and step S105 is that the Micro IC 180 is not placed on the first substrate 107 in step S110.
  • a plurality of Micro LED chips 130 may be arranged on the first substrate 170 into a plurality of pixels, and each pixel includes at least one Micro LED chip 130.
  • the pixel includes a Micro LED chip B that emits blue light, a Micro LED chip G that emits green light, and a Micro LED chip R that emits red light. These three Micro LED chips The chips are arranged side by side in a row, forming a standard RGB arrangement.
  • Micro LED chips may be included in a pixel, for example, two Micro LED chips B emitting blue light, one Micro LED chip R emitting red light, and one Micro LED chip emitting green light.
  • Micro LED chip G, the four Micro LED chips form a rectangular arrangement, the position of each Micro LED chip can be regarded as a corner of the rectangle, and the two blue-emitting Micro LED chips B are arranged diagonally.
  • a first adhesive layer 190 is provided on the surface of the first substrate 170, which can be detachably and temporarily fixed without destroying the device structure of the Micro LED chip 130.
  • the Micro LED chip is detachably placed on the first substrate 170 , the end where the electrodes of the Micro LED chip 130 are located is in contact with the first adhesive layer 190 of the first substrate 170 .
  • step S111 a transparent packaging layer 210 is coated on the surfaces of the Micro LED chip 130 and the first substrate 170.
  • the transparent encapsulation layer 210 may include epoxy resin and silicone resin materials, for example.
  • the transparent encapsulation layer 210 needs to be cured for a certain period of time after coating, and after curing, the relative positions between the Micro LED chips 130 can be fixed.
  • the coating height of the transparent encapsulation layer 210 on the surface of the first substrate 170 may be higher than the height of the Micro LED chip 130 as a whole. In this way, after the transparent encapsulation layer 210 is cured, the transparent encapsulation layer 210 can be polished. or grinding to form a package plane 240 with good flatness that is parallel to the first substrate 170 .
  • Step S112 after the transparent encapsulation layer 210 is cured, the first substrate 170 is removed, so that the transparent encapsulation layer 210 forms the first plane 250 exposing the electrodes of the Micro LED chip 130 .
  • the electrodes of the Micro LED chip 130 will be separated from the transparent packaging layer.
  • the first plane 250 of 210 is exposed.
  • step S113 the RDL 220 is fabricated on the first plane 250.
  • the RDL 220 includes an insulating planar layer and a plurality of RDL lines distributed in the insulating planar layer.
  • the insulating flat layer can be made of silicon or polymer materials
  • the RDL circuit can be made of conductive materials such as copper through photolithography, evaporation, electroplating and other semiconductor process technologies.
  • the RDL circuit can be a single-layer circuit or a multi-layer circuit. The application embodiments do not limit this.
  • the RDL line can be divided into two parts. One end of the first part of the RDL line is connected to the electrode of the Micro LED chip 130, and the other end is exposed on the lower surface 260 of the RDL 220. The two ends of the second part of the RDL line Both are exposed on the lower surface 260 of the RDL 220.
  • Step S114 at least one Micro IC 180 is mounted on the lower surface 260 of the RDL.
  • a part of the electrodes of the Micro IC 180 is connected to the first part of the RDL line to realize the electrical connection between the Micro IC 180 and at least one Micro LED chip 130 through the RDL 221; another part of the Micro IC 180 is connected to one end of the second part of the RDL line connected, then if the other end of the RDL line of the second part introduces an external driving signal, the driving signal can be transmitted to the Micro IC 180.
  • Step S115 forming pads 270 and solder ball bumps 330 on the lower surface 260 of the RDL 220.
  • the pad 270 is connected to the other end of the second part of the RDL line, so the pad 270 and the Micro IC 180 can be electrically connected through RDL, and the solder ball bump 330 is fabricated on the pad 270, which is convenient for the pad 270 to be connected to the Micro IC 180.
  • External device connection such as drive backplane.
  • Micro LED chip package module is obtained, which can be mechanically and electrically connected to the driver backplane or display driver IC (Display driver IC, DDIC) and other modules or driver systems through the solder balls 330. connection for a full display.
  • driver backplane or display driver IC Display driver IC, DDIC
  • other modules or driver systems through the solder balls 330. connection for a full display.
  • the driving signal first controls the Micro IC 180, and then the Micro IC 180 controls the working state of at least one Micro LED chip 130 connected to it according to the driving signal, thereby reducing the number of Micro LED chips.
  • the number of I/O pads between the chip packaging module and the driver backplane and other external devices makes the size of each pad larger, even much larger than that of Micro, under the same LED chip packaging module and driver backplane size.
  • the size of the LED chip greatly reduces the bonding difficulty between the LED chip packaging module and the driver backplane, which is beneficial to improve product yield.
  • the Micro LED chip package module made according to the method in Fig. 21 can also add the structure shown in Fig. 8-11 to realize the corresponding characteristics. Due to the limitation of space, it will not be repeated here.
  • the embodiment of the present application further provides an LED chip packaging module, and the LED chip packaging module can be obtained by using the method shown in the embodiment of the present application as shown in FIG. 21 , or can be obtained by using other manufacturing methods.
  • FIG. 23 is another schematic structural diagram of the LED chip packaging module according to the embodiment of the present application.
  • the LED chip packaging module includes an RDL 220 , a plurality of Micro LED chips 130 , at least one Micro IC 180 , and a transparent packaging layer 210 .
  • the above-mentioned multiple Micro LED chips 130 are distributed on the upper surface 320 of the RDL 220, and each Micro LED chip 130 is provided with at least one electrode 140 facing the upper surface 320 of the RDL 220 and connected to the RDL 220; the above-mentioned at least one Micro IC 180 are distributed on the lower surface 260 of the RDL 220, each Micro IC 180 is provided with at least one electrode 230 facing the lower surface 260 of the RDL 220 and connected to the RDL 220, and each Micro IC 180 passes through at least one Micro LED chip 130 The RDL 220 establishes an electrical connection.
  • the transparent encapsulation layer 210 is coated on the upper surface 320 of the RDL 220, and the thickness of the transparent encapsulation layer 210 in the direction perpendicular to the upper surface 320 of the RDL 220 is greater than or equal to the thickness of the Micro LED chip 130 in the direction perpendicular to the upper surface 320 of the RDL 220.
  • the thickness of the transparent encapsulation layer 210 can cover the above-mentioned Micro LED chip 130, and the transparent encapsulation layer 210 can also form an encapsulation plane 240 parallel to the RDL 220 by polishing.
  • the lower surface 260 of the RDL 220 is further provided with at least one pad 270 , and each pad 270 is electrically connected to at least one Micro IC 180 through the RDL 220 .
  • Each pad 270 can also be made into a solder ball bump 330, so as to facilitate the soldering of the pad 270 of the RDL 220 with the pad on the driving backplane of the display screen, so that the LED chip package module and the driving backplane can achieve mechanical and Electrical connection.
  • the RDL 221 includes an insulating flat layer 221 and a plurality of RDL lines distributed in the insulating flat layer 221 .
  • the RDL line is divided into a first RDL line 222 and a second RDL line 223 according to the direction of the RDL line and different connected devices, and the two ends of the first RDL line 222 are respectively referred to as the first end 2221 and For the second end 2222, two ends of the second RDL line 223 are respectively referred to as the third end 2231 and the fourth end 2232.
  • first end 2221 of the first RDL line 222 is located on the upper surface 320 of the RDL 220
  • the second end 2222 of the first RDL line 222 is located on the lower surface 360 of the RDL 220
  • the third end 2231 of the second RDL line 223 and the The four ends 2232 are all located on the lower surface 260 of the RDL 220.
  • the fourth end 2232 of the second RDL line 223 may be provided with a pad to facilitate electrical connection with other devices.
  • the first end 2221 of the first RDL line 222 is used for connecting with the electrode 140 of the Micro LED chip 130
  • each first RDL line 222 may have at least one first end 2221 for connecting with the electrode 140 of at least one Micro LED chip 130 . connect.
  • the second end 2222 of the first RDL line 222 is used for connecting with the electrode 230 of the Micro IC 180, and the electrode 230 of each Micro IC 180 can be connected with the second end 2222 of at least one first RDL line 222.
  • the third end 2231 of the second RDL line 223 is used for connecting with the electrode 230 of the Micro IC 180 , and the third end 2231 of each second RDL line 223 can be connected with the electrode 230 of at least one Micro IC 180 .
  • the electrodes 230 connected to the second end 2222 of the first RDL line 222 and the third end 2231 of the second RDL line 223 are different.
  • the fourth end 2232 of the second RDL line 223 is provided with a solder ball 330 on the pad 270 thereof, so as to be connected to an external device and receive an external driving signal.
  • the driving signal first controls the Micro IC 180, and then the Micro IC 180 controls the working state of at least one Micro LED chip 130 connected to it according to the driving signal, and is controlled by the Micro IC 180.
  • This can reduce the number of I/O pads between the Micro LED chip package module and external devices such as the driver backplane, so that under the same LED chip package module and driver backplane size, the size of each pad can be larger , even much larger than the size of the Micro LED chip, thus greatly reducing the difficulty of bonding between the LED chip packaging module and the driver backplane, which is conducive to improving product yield.
  • the Micro LED chips 130 may form a standard RGB arrangement, a pentile arrangement, an RGB-Delta arrangement, and an arrangement as shown in FIGS. 17-20 or other arrangements, which will not be repeated here.
  • the embodiment of the present application also provides another method for packaging an LED chip, as shown in FIG. 24 , the method includes the same steps S101-S104, S110-S112 as in FIG. 21, and:
  • step S116 the RDL 220 is fabricated on the first plane 250.
  • the RDL 220 includes an insulating flat layer and a plurality of RDL lines distributed in the insulating flat layer. One end of each RDL line is connected to the electrode 140 of at least one Micro LED chip, and the other end is exposed on the lower surface 260.
  • step S117 the pads 270 connected to the RDL lines are formed on the lower surface 260 .
  • each pad 270 may be connected with one or more RDL lines.
  • the pads 270 may have irregular shapes according to the exposed positions of the RDL lines connected to each pad 270 on the lower surface 260 .
  • Micro LED chip package module is obtained, which can be mechanically and electrically connected to other modules or driving systems such as a driver backplane or a display driver IC (DDIC) through the pad 270. sex connection for a full display.
  • modules or driving systems such as a driver backplane or a display driver IC (DDIC) through the pad 270. sex connection for a full display.
  • DDIC display driver IC
  • the driving signal is directly sent to at least one Micro LED chip 130 through the pad 270 and the RDL 220, so that one or more Micro LED chips 130 can be controlled by one driving signal, thereby reducing
  • the number of pads between the package module and external devices such as the driver backplane makes the size of each pad larger, even much larger than the size of the Micro LED chip, under the same LED chip package module and driver backplane size , so the bonding difficulty between the LED chip package module and the driver backplane is greatly reduced, which is beneficial to improve product yield.
  • the embodiment of the present application also provides an LED chip packaging module, and the LED chip packaging module can be obtained by using the method shown in FIG. 24 in the embodiment of the present application, or can be obtained by using other manufacturing methods.
  • FIG. 25 is another schematic structural diagram of the LED chip packaging module according to the embodiment of the present application.
  • the LED chip packaging module includes an RDL 220 , a plurality of Micro LED chips 130 , and a transparent packaging layer 210 .
  • the above-mentioned multiple Micro LED chips 130 are distributed on the upper surface 320 of the RDL 220, and each Micro LED chip 130 is provided with at least one electrode 140 facing the upper surface 320 of the RDL 220 and connected to the RDL 220; the transparent packaging layer 210 is coated with Distributed on the upper surface 320 of the RDL 220, the thickness of the transparent packaging layer 210 in the direction perpendicular to the upper surface 320 of the RDL 220 is greater than or equal to the thickness of the Micro LED chip 130 in the direction perpendicular to the upper surface 320 of the RDL 220, so that the transparent packaging
  • the layer 210 can cover the above-mentioned Micro LED chip 130, and the transparent encapsulation layer 210 can also form an encapsulation plane 240 parallel to the RDL 220 by polishing.
  • the lower surface 260 of the RDL 220 is further provided with at least one pad 270 , and each pad 270 is electrically connected to at least one Micro LED chip 130 through the RDL 220 .
  • the above-mentioned at least one pad 270 can be welded together with the pad 340 on the driving backplane 300 of the display screen, so that the LED chip package module and the driving backplane are mechanically and electrically connected.
  • FIG. 26 is an example diagram of pads and RDL lines of an LED chip package module.
  • the corresponding number of pads 270 may be four.
  • the p-type ohmic electrode of each Micro LED chip may correspond to a pad 270 respectively, and each p-type ohmic electrode and its corresponding pad 270 are respectively connected through an RDL line 224 .
  • another pad 270 can be additionally connected to the three n-type ohmic electrodes of the three Micro LED chips through an RDL line 225 .
  • the LED chip package module provided by the embodiment of the present application can reduce external I// Number of O pads.
  • the size of the pads 270 can be enlarged, and the size of the bonding pads on the driving backplane 300 can be enlarged under the condition that the size of the LED chip packaging module remains unchanged.
  • the size of the pads 340 aligned with the disk 270 reduces the difficulty of bonding between the LED chip package module and the driving backplane 300 and improves the product yield.
  • the driving signal is directly sent to at least one Micro LED chip 130 through the pad 270 and the RDL 220, so that one or more Micro LED chips 130 can be controlled by one driving signal.
  • the size of each pad can be larger, even much larger than The size of the Micro LED chip greatly reduces the bonding difficulty between the LED chip package module and the driver backplane, which is beneficial to improve product yield.
  • the Micro LED chips 130 may form a standard RGB arrangement, a pentile arrangement, an RGB-Delta arrangement, and an arrangement as shown in FIGS. 17-20 or other arrangements, which will not be repeated here.
  • the embodiment of the present application also provides a Micro LED display screen.
  • the display screen may include a driving backplane 300, a DDIC 400 and at least one LED chip packaging module 200 provided in the foregoing embodiments of the present application.
  • the driving backplane 300 may be, for example, a glass backplane, a film substrate, a plastic backplane, a TFT backplane, or the like.
  • the DDIC 400 can be packaged on a plastic substrate by packaging technology such as chip on plastic (COP), chip on film (COF) or glass substrate packaging (chip on glass, COG). above the drive backplane 300 .
  • COP chip on plastic
  • COF chip on film
  • COG glass substrate packaging
  • a plurality of pads 340 are disposed on the driving backplane 300 , and the pads 340 correspond to the positions of the pads 270 of the LED chip packaging module 200 one-to-one.
  • the LED chip packaging module 200 and the driving backplane 300 can be packaged together using packaging technologies such as SMT, so that the pads 340 on the driving backplane 300 and the pads 270 of the LED chip packaging module 200 are welded together in a one-to-one correspondence to form Electrical and mechanical connections.
  • the pads 340 on the driving backplane 300 are also connected to the DDIC 400 through lines, so that the driving signals of the DDIC 400 can be sent to the LED chip packaging module 200 .
  • the Micro LED display screen may only include one LED chip packaging module 200, and this type of display screen may be applied to, for example, electronic devices with smaller-sized display screens, such as smart bracelets, smart watches, and the like.
  • the number of pads 340 of the driving backplane 300 may be the same as the number of pads 270 of one LED chip packaging module 200 , or the number of pads 340 may be no less than that of one LED chip packaging module 200 .
  • the number of pads 270 may be the same as the number of pads 270 of one LED chip packaging module 200 , or the number of pads 340 may be no less than that of one LED chip packaging module 200 .
  • the number of pads 270 may be the number of pads 270 .
  • the LED chip packaging module 200 when the Micro LED display screen includes an LED chip packaging module 200 and the LED chip packaging module 200 includes X (columns) ⁇ Y (rows) pixels, the LED chip packaging module 200 is externally welded
  • the number of disks 270 may range from X+Y to X ⁇ Y ⁇ Z, where Z is the number of external I/Os per pixel.
  • the number of the pads 340 of the driving backplane 300 may also be between X+Y and X ⁇ Y ⁇ Z.
  • the number of external pads 270 of the LED chip packaging module 200 may be only X+Y+M, Among them, M is a few necessary clock signal clock and ground signal ground corresponding pads.
  • the number of pads 340 for driving the backplane may also be X+Y+M.
  • the Micro LED display screen may only include a plurality of LED chip packaging modules 200, and the plurality of LED chip packaging modules 200 are spliced on the driving backplane 300 to form a completed display area.
  • a display screen may be applied, for example, in In electronic devices with small size and large size, such as: smart bracelets, smart watches, mobile phones, tablet computers, e-readers, TV sets, monitors, virtual/mixed/augmented reality devices, etc.
  • the number of the pads 340 of the driving backplane 300 may be the same as the total number of the pads 270 of the above-mentioned multiple LED chip packaging module 200, or the number of the pads 340 may not be less than the above-mentioned multiple LEDs The total number of pads 270 of the chip package module 200 .
  • the K LED chip packaging modules 200 when the Micro LED display screen includes K LED chip packaging modules 200, and each LED chip packaging module 200 includes X (column) ⁇ Y (row) pixels, the K LED chip packaging modules
  • the total number of external pads 270 of the module 200 may range from (X+Y) ⁇ K to X ⁇ Y ⁇ Z ⁇ K, where Z is the number of external I/Os per pixel.
  • the number of the pads 340 of the driving backplane 300 may also be between (X+Y) ⁇ K to X ⁇ Y ⁇ Z ⁇ K.
  • the number of the external pads 270 of each LED chip packaging module 200 can be only X+Y+ M, where M is a small number of necessary clock signals clock and ground signals corresponding to equal pads.
  • the number of the pads 340 of the driving backplane 300 may also be (X+Y+M) ⁇ K.
  • adjacent The spacing Y1 of two adjacent Micro LED pixels between the two LED chip packaging modules 200 may be within a certain range, preferably between 0.5-2 times the pixel spacing Y0 in the LED chip packaging module 200; and adjacent The angle deviation ⁇ between the two LED chip packaging modules 200 is less than a certain angle threshold, preferably the threshold is 5°, thereby achieving the effect of seamless splicing of two adjacent LED chip packaging modules 200 from the user's perception.
  • a black matrix or other light-blocking structure may be arranged between pixels, and the width of the light-blocking structure constitutes a part of the pixel pitch.
  • the edges of the two LED chip packaging modules 200 to be spliced are all pixels, the two LED chip packaging modules 200 can be spliced first, and then a light-shielding structure is fabricated at the splicing place.
  • the edge chip (Micro LED chip or Micro IC) of one LED chip package module 200 and the edge chip (Micro IC or Micro IC) of another LED chip package module 200 The distance between Micro LED chips) may be smaller than the width of the light-blocking structure. At this time, the distance between two adjacent Micro LED pixels at the splicing part of the module will be smaller than the pixel distance in the LED chip packaging module 200 .
  • the pixel pitch can be 80 ⁇ m. If the size of the Micro LED chip is 10 ⁇ m and the spacing between RGB chips is 5 ⁇ m, it can be calculated The distance between the red-emitting Micro LED chip on the far right of one pixel and the blue-emitting Micro LED chip on the far left of the adjacent pixel is 30 ⁇ m. Therefore, as long as the edges of the two LED chip package modules 200 to be spliced do not contain The light-blocking structure, and the distance when splicing is less than 40 ⁇ m, can make the distance between two adjacent Micro LED pixels at the splicing point of the module less than 80 ⁇ m, and the limit can reach 40 ⁇ m.
  • the embodiment of the present application also provides an electronic device, and the electronic device includes any one of the display screens or LED chip packaging modules provided by the above-mentioned embodiments of the present application.
  • the electronic device may include: mobile phone, tablet computer, smart bracelet, smart watch, e-reader, television, display, virtual/mixed/augmented reality device, smart home device with display screen (such as : smart speakers, smart cat eyes), household appliances with display screens (such as refrigerators, air purifiers, washing machines, water heaters, etc.), transportation equipment with display screens (for example: vehicle-mounted systems of vehicles, autonomous driving platforms , driving recorder, etc.).
  • the electronic device provided in the embodiments of the present application may further include other components such as a processor, a memory, a battery, a speaker, an earpiece, a camera, etc., which are not specifically limited here.
  • the technical solutions provided in the embodiments of the present application do not use the micro-nano bonding process in the process of manufacturing the LED chip packaging module, and do not need to make micro bumps on the electrodes of the Micro LED chips, thus avoiding the need for solder materials due to the micro bumps.
  • the problem of diffusion to the ohmic metal layer and affecting the device characteristics is conducive to improving the production yield, and at the same time, it also avoids the difficulty of the high PPI LED chip packaging process caused by the limitations of the micro-nano bonding process itself.
  • the micro-nano bonding process is not used, the total thickness of the pixel is reduced, and the aspect ratio between the total thickness of the pixel and the distance between the pixels is reduced, so that the optical or other The volume process of components becomes easier, which is beneficial to improve the production yield.
  • the technical solutions provided by the embodiments of the present application significantly reduce the number of I/O pads on the LED chip packaging module and the driver backplane, so that the same LED chip packaging can be used in the same LED chip packaging.
  • the size of each pad can be larger, even much larger than the size of the Micro LED chip, thus greatly reducing the difficulty of bonding between the LED chip packaging module and the driver backplane, which is conducive to improving product quality. Rate.
  • each pixel of the LED chip package module contains three Micro LED chips, and the pixel-to-pixel spacing is 0.1mm, if a module contains 100x100 pixels totaling 10,000 pixels, the size of the entire module is 10mmx10mm, and a total of There are 30,000 Micro LED chips; in order to make this module, if the traditional micro-nano bonding process is used, since each Micro LED chip contains at least two electrodes, positive and negative, at least 60,000 pads need to be placed in the 10mmx10mm area. In the case of fan-shaped package design, the maximum area and diameter of each pad will be about 0.00167mm 2 and 0.04mm, the size is small, and the process is very difficult.
  • the DDIC driving the backplane only needs to perform I/O with the Micro IC.
  • Communication such as telling each Micro IC to control the color and brightness of the Micro LED chip by scanning, so the LED chip packaging module only needs to set pads for I/O communication with the DDIC.
  • the signals sent from the DDIC to the Micro IC are programmable, and only need to meet a specific display structure. For example, the scan line and data line structure are used to sequentially operate each group of pixels in the LED chip packaging module.
  • the LED chip packaging The I/Os required by the module for receiving external input signals or currents will only include 100 I/Os corresponding to the scan line, 100 I/Os corresponding to the data line, and a few necessary clock signals clock and ground signals, etc. , so the external pads of the LED chip package module as a whole can be reduced to less than 300, and can reach 200 pads in the limit, no more than 100 ⁇ 100 ⁇ Z pads at most, where Z is the external pads of each pixel Number of I/Os.
  • the maximum area and diameter of each pad can reach 0.33mm 2 and 0.577mm, so the size of the external pad of the LED chip package module can be much larger than the size of the Micro LED chip, which greatly reduces the size of the LED chip.
  • the bonding difficulty between the chip package module and the driver backplane can even be achieved by using a simpler SMT process.
  • the LED chip packaging module already contains a Micro IC that can drive a small number of Micro LED chips, and the Micro IC of the Micro LED chip has formed a drivable loop through RDL, it is possible to use a probe from the LED chip packaging module.
  • the /O pad inputs the driving signal to directly test the display effect of the LED chip package module, so as to select the LED chip package module with no defects or close to the optoelectronic characteristics and combine it into a display screen, so as to improve the process yield and utilization rate.
  • the Micro LED chips of the LED chip packaging module are fixed by a transparent packaging layer, and the surface of the electrodes of each Micro LED chip is on the same plane, so that the height and tilt angle of all Micro LED chips can be kept the same, which is conducive to improving the display screen. uniformity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请提供了一种LED芯片封装模块、显示屏及其制作方法。该LED芯片封装模块包括:重布线层RDL,RDL的下表面设置有多个第一焊盘;设置于RDL的上表面的微发光二极管Micro LED芯片,Micro LED芯片的电极面向RDL的上表面并且与RDL连接;设置于RDL的上表面的微集成电路Micro IC,Micro IC的电极面向RDL的上表面并且与RDL连接;其中,第一焊盘与Micro IC通过RDL电性连接,Micro IC与Micro LED芯片通过RDL电性连接,第一焊盘用于接收外部驱动信号。本申请提供的技术方案与传统制程工艺相比,LED芯片封装模块之上的焊盘的数量明显减少,每一个焊盘的尺寸可以更大,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。

Description

LED芯片封装模块、显示屏及其制作方法
本申请要求于2020年07月28日提交到国家知识产权局、申请号为202010736548.8、发明名称为“LED芯片封装模块、显示屏及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,尤其涉及一种LED芯片封装模块、显示屏及其制作方法。
背景技术
Micro LED又称为微发光二极管(micro light emitting diode),是继液晶显示屏(liquid crystal display,LCD)、主动矩阵有机发光二极管(active-matrix organic light-emitting diode,AMOLED)之后,有机会应用于下一代显示屏技术的自发光照明器件。
Micro LED显示屏的核心技术是将数百万至数千万个尺寸为数十微米的LED芯片组合排列形成显示屏所需的各个像素。由于LED芯片是一种半导体器件,因此其表面的金属电极等结构均可利用半导体制程加工,如果要将LED芯片按设计依序排在薄膜晶体管(thin film transistor,TFT)或无源矩阵(passive matrix,PM)线路等驱动背板之上,则须要采用巨量转移(mass transfer)及微纳邦定(micro bonding)等工艺。有别于传统LED封装工艺一次仅转移单一LED芯片,巨量转移技术使用聚二甲基矽氧烷(polydimethylsiloxane,PDMS)基材等转印头或图章(stamp)同时转移数万至数十万个LED芯片,以达成于短时间内转移百万个以上LED芯片的产出需求。
但是,由于Micro LED芯片的尺寸仅数十微米,未来量产目标更是希望将Micro LED芯片尺寸缩小至5~10微米,因此制作于Micro LED芯片上的微纳焊球(micro bump)的尺寸以及邦定制程所需的工艺也需要缩小至10微米以下,使得在现有Micro LED制程技术下,micro LED芯片与显示屏的驱动背板之间的绑定难度很大,不利于提高显示屏产品的生产良率。
发明内容
本申请实施例提供了一种LED芯片封装模块、显示屏及其制作方法,能够降低micro LED芯片与显示屏的驱动背板之间的绑定难度,提高显示屏产品的良率。
为达到上述目的,本申请实施例提供了以下技术方案:
第一方面,本申请实施例提供了一种LED芯片封装模块,包括:
重布线层RDL,RDL的下表面设置有多个第一焊盘;设置于RDL的上表面的微发光二极管Micro LED芯片,Micro LED芯片的电极面向RDL并且与RDL连接;设置于RDL的上表面和/或下表面的微集成电路Micro IC,Micro IC的电极面向RDL并且与RDL连接;其中,第一焊盘通过RDL与Micro IC电性连接,Micro IC通过RDL与Micro LED芯片电性连接,第一焊盘用于接收外部驱动信号,Micro IC用于根据外部驱动信号控制与其电性连接的Micro LED芯片的工作状态。本申请实施例提供的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC,然后再由Micro IC根据驱动信号控制其连接的至少一 个Micro LED芯片的工作状态,这样,LED芯片封装模块就不需要设置用于Micro LED芯片的电极与驱动背板等外部器件连接的焊盘,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,从而大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一种实现方式中,Micro LED芯片组成多个像素,每个像素包括至少一个Micro LED芯片。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等。
在一种实现方式中,每个像素对应设置一个Micro IC,Micro IC与其对应的像素相邻设置,Micro IC通过RDL与其对应的像素内的Micro LED芯片电性连接。这样,每个Micro IC单独控制一个像素,形成一对一控制方案。
在一种实现方式中,多个像素对应设置一个Micro IC,Micro IC设置在其对应的多个像素之间,Micro IC通过RDL与其对应的多个像素内的Micro LED芯片电性连接。这样,每个Micro IC单独控制多个像素,形成一对多控制方案,可以减少Micro IC的数量。
在一种实现方式中,当Micro IC位于RDL的上表面时,Micro IC的电极与Micro LED芯片的电极位于同一平面内。这样,便于制作上表面平整光滑的RDL,以提高LED芯片封装模块的显示性能。
在一种实现方式中,LED芯片封装模块还包括:设置于RDL的上表面的隔光结构,隔光结构分布于相邻的像素之间,和/或者,隔光结构分布于相邻的Micro LED芯片之间。隔光结构可以防止光线从像素之间、Micro LED芯片之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片发光的可视角度、提升发光效率,改善显示效果。
在一种实现方式中,LED芯片封装模块还包括:设置于RDL的上表面的透明封装层,透明封装层覆盖在Micro LED和/或Micro IC的表面。透明封装层可以将Micro LED和/或Micro IC的位置相互固定,并起到保护作用。
在一种实现方式中,透明封装层在远离RDL的一侧包括与RDL的上表面平行的封装平面,封装平面设置有微纳结构。微纳结构能够提升Micro LED芯片的发光效率、改善发光场型、或达成其他光学特性改善的效果。
在一种实现方式中,LED芯片封装模块还包括:色彩转换材料,色彩转换材料涂布于部分或者全部的Micro LED芯片的表面,用于将Micro LED芯片发出的色光转换成其他颜色。色彩转换材料能够使得单一颜色Micro LED芯片发出不同的色光,能够实现在制作LED芯片封装模块时减少不同颜色的Micro LED芯片的使用,或者实现后期对LED芯片封装模的发光矫正。
在一种实现方式中,像素包括N个主用Micro LED芯片,以及与N个主用Micro LED芯片一一对应的N个备用Micro LED芯片,备用Micro LED芯片用于在其对应的主用Micro LED芯片失效时,代替其对应的主用Micro LED芯片工作,N为正整数。这样,当任意一个主用Micro LED芯片失效时,Micro IC可以驱动相同颜色的备用Micro LED芯片代替失效的Micro LED芯片工作,使该像素依然可以正常显示色彩,从而维持LED芯片封装模块的显示完整性,提高LED芯片封装模块的良率。
在一种实现方式中,像素包括N个主用Micro LED芯片,以及一个备用Micro LED芯片,备用Micro LED芯片用于在任意一个主用Micro LED芯片失效时,代替失效的主用Micro  LED芯片工作,N为正整数。这样,当任意一个主用Micro LED芯片失效时,可以首先利用激光将这个备用Micro LED芯片周围的透明封装层去除,然后再喷涂与失效的Micro LED芯片颜色相同的色彩转换材料,使得这个备用Micro LED芯片被Micro IC驱动后能够发出与失效的Micro LED芯片颜色相同的色光,使该像素依然可以正常显示色彩,并且减少备用Micro LED芯片的数量。
在一种实现方式中,像素包括N个主用Micro LED芯片,相邻两个像素之间还包括一个备用Micro LED芯片,备用Micro LED芯片用于在相邻两个像素中的任意一个主用Micro LED芯片失效时,代替失效的主用Micro LED芯片工作,N为正整数。这样,当任意一个主用Micro LED芯片失效时,可以首先利用激光将这个备用Micro LED芯片周围的透明封装层去除,然后再喷涂与失效的Micro LED芯片颜色相同的色彩转换材料,使得这个备用Micro LED芯片被Micro IC驱动后能够发出与失效的Micro LED芯片颜色相同的色光,使该像素依然可以正常显示色彩,并且减少备用Micro LED芯片的数量。
在一种实现方式中,当Micro LED芯片发出的光线至外部环境不通过RDL时,RDL的绝缘平坦层为不透明材料。由此,RDL能够吸收或者反射Micro LED芯片发出的光线,以增加出光度。
在一种实现方式中,当Micro LED芯片发出的光线至外部环境通过RDL时,RDL的绝缘平坦层为透明材料。由此,Micro LED芯片发出的光线能够高效率地穿过RDL,以增加出光度。
第二方面,本申请实施例提供了另一种LED芯片封装模块,包括:
重布线层RDL,RDL的下表面设置有多个第一焊盘;设置于RDL的上表面的微发光二极管Micro LED芯片,Micro LED芯片的电极面向RDL并且与RDL连接;其中,第一焊盘通过RDL与Micro LED芯片电性连接,第一焊盘用于接收外部驱动信号,外部驱动信号用于控制Micro LED芯片的工作状态。本申请实施例提供的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号直接通过焊盘和RDL发送给至少一个Micro LED芯片,实现一路驱动信号控制一个或者多个Micro LED芯片,这样,LED芯片封装模块就不需要设置用于Micro LED芯片的电极直接与驱动背板等外部器件连接的焊盘,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,从而大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一种实现方式中,Micro LED芯片组成多个像素,每个像素包括至少一个Micro LED芯片。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等。
在一种实现方式中,每个第一焊盘通过RDL与至少一个像素的Micro LED芯片电性连接。由此,外部驱动信号可以通过第一焊盘和RDL发送给一个或者多个像素内的Micro LED芯片,控制一个或者多个像素的显示状态。
在一种实现方式中,LED芯片封装模块还包括:设置于RDL的上表面的隔光结构,隔光结构分布于相邻的像素之间,和/或者,隔光结构分布于相邻的Micro LED芯片之间。隔光结构可以防止光线从像素之间、Micro LED芯片之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片发光的可视角度、提升发光效率,改善显示效果。
在一种实现方式中,LED芯片封装模块还包括:设置于RDL的上表面的透明封装层, 透明封装层覆盖在Micro LED芯片的表面。透明封装层可以将Micro LED和/或Micro IC的位置相互固定,并起到保护作用。
在一种实现方式中,透明封装层在远离RDL的一侧包括与RDL的上表面平行的封装平面,封装平面设置有微纳结构。微纳结构能够提升Micro LED芯片的发光效率、改善发光场型、或达成其他光学特性改善的效果。
第三方面,本申请实施例提供了一种LED芯片的封装方法,包括:
将Micro LED芯片和Micro IC可分离地排布在第一基板上,Micro LED芯片的电极和Micro IC的电极面向于第一基板放置;在Micro LED芯片、Micro IC和第一基板表面涂布透明封装层;待透明封装层固化之后,移除第一基板,以使透明封装层形成露出Micro LED芯片的电极和Micro IC的电极的第一平面;在第一平面制作RDL,Micro IC通过RDL与Micro LED电性连接;在RDL的背对于透明封装层的下表面制作第一焊盘,第一焊盘通过RDL与Micro IC电性连接,第一焊盘用于接收外部驱动信号,Micro IC用于根据外部驱动信号控制与其电性连接的Micro LED芯片的工作状态。根据本申请实施例提供方法制作的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC,然后再由Micro IC根据驱动信号控制其连接的至少一个Micro LED芯片的工作状态,这样,LED芯片封装模块就不需要设置用于Micro LED芯片的电极与驱动背板等外部器件连接的焊盘,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,从而大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一种实现方式中,将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:将多个Micro LED芯片在第一基板上排布组成多个像素,每个像素包括至少一个Micro LED芯片,每个像素的一侧相邻设置一个Micro IC。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等,并且像素与Micro IC实现一对一配置。
在一种实现方式中,RDL将每个像素内的Micro LED芯片与其相邻的Micro IC电性连接。由此,每个Micro IC单独控制一个像素,形成一对一控制方案
在一种实现方式中,将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:将多个Micro LED芯片在第一基板上排布组成多个像素,每个像素包括至少一个Micro LED芯片,并且将至少一个Micro IC分布在多个像素之间。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等,并且像素与Micro IC实现一对多配置。
在一种实现方式中,RDL将每个Micro IC与至少一个像素内的Micro LED芯片电性连接。这样,每个Micro IC单独控制多个像素,形成一对多控制方案,可以减少Micro IC的数量。
在一种实现方式中,在Micro LED芯片、Micro IC和第一基板表面涂布透明封装层之前,还包括:在第一基板表面制作隔光结构,隔光结构可以设置于相邻的像素之间,也可以设置于相邻的Micro LED芯片之间。隔光结构可以防止光线从像素之间、Micro LED芯片之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片发光的可视角度、提升发光效率,改善显示效果。
在一种实现方式中,在Micro LED芯片、Micro IC和第一基板表面涂布透明封装层之前, 还包括:在部分或者全部的Micro LED芯片的表面涂布色彩转换材料,色彩转换材料用于将Micro LED芯片发出的色光转换成其他颜色。色彩转换材料能够使得单一颜色Micro LED芯片发出不同的色光,能够实现在制作LED芯片封装模块时减少不同颜色的Micro LED芯片的使用,或者实现后期对LED芯片封装模的发光矫正。
在一种实现方式中,在Micro LED芯片、Micro IC和第一基板表面涂布透明封装层之后,还包括:在透明封装层的远离第一基板的一侧抛光形成与第一基板平行的封装平面;在封装平面制作微纳结构。微纳结构能够提升Micro LED芯片的发光效率、改善发光场型、或达成其他光学特性改善的效果。
在一种实现方式中,第一基板的表面设置有第一黏着层,第一黏着层用于可分离地放置Micro LED芯片和Micro IC。这样,利用第一黏着层,可以将Micro LED芯片和Micro IC暂时固定于第一基板之上。
在一种实现方式中,将Micro LED芯片和Micro IC可分离地排布在第一基板上之前,还包括:在衬底表面生长Micro LED外延片结构;利用标准半导体制程将外延片结构制作成多个Micro LED芯片;将衬底及其之上的Micro LED芯片整体翻转后可分离地放置于第二基板之上;移除衬底。由此,可以一次性得到相互独立设置的多个Micro LED芯片。
在一种实现方式中,第二基板的表面设置有第二黏着层,第二黏着层用于可分离地放置Micro LED芯片。这样,利用第一黏着层,可以将Micro LED芯片暂时固定于第二基板之上。
在一种实现方式中,将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:从第二基板上一次性粘取多个Micro LED芯片,将粘取的Micro LED芯片放置于第一基板上,以及,从可分离地放置有Micro IC的第三基板上一次性粘取至少一个Micro IC,将粘取的Micro IC放置于第一基板上。由此,实现了Micro LED芯片和Micro IC的巨量转移,提高LED芯片封装模块的制作效率。
第四方面,本申请实施例提供了另一种LED芯片的封装方法,包括:
将Micro LED芯片可分离地排布在第一基板上,Micro LED芯片的电极面向于第一基板放置;在Micro LED芯片和第一基板表面涂布透明封装层;待透明封装层固化之后,移除第一基板,以使透明封装层形成露出Micro LED芯片的电极的第一平面;在第一平面制作RDL,以及将Micro IC安装在RDL的背对于透明封装层的下表面,Micro IC的电极面向于RDL设置,Micro IC通过RDL与Micro LED电性连接;在RDL的下表面制作第一焊盘,第一焊盘通过RDL与Micro IC电性连接,第一焊盘用于接收外部驱动信号,Micro IC用于根据外部驱动信号控制与其电性连接的Micro LED芯片的工作状态。根据本申请实施例提供方法制作的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC,然后再由Micro IC根据驱动信号控制其连接的至少一个Micro LED芯片的工作状态,这样,LED芯片封装模块就不需要设置用于Micro LED芯片的电极与驱动背板等外部器件连接的焊盘,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,从而大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一种实现方式中,多个Micro LED芯片在第一基板上排布组成多个像素,每个像素包括至少一个Micro LED芯片。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等。
在一种实现方式中,RDL将每个Micro IC与至少一个像素内的Micro LED芯片电性连 接。由此,每个Micro IC单独控制一个像素,形成一对一控制方案,每个Micro IC单独控制多个像素,形成一对多控制方案,以减少Micro IC的数量。
在一种实现方式中,在Micro LED芯片和第一基板表面涂布透明封装层,还包括:在第一基板表面制作隔光结构,隔光结构可以设置于相邻的像素之间,也可以设置于相邻的Micro LED芯片之间。隔光结构可以防止光线从像素之间、Micro LED芯片之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片发光的可视角度、提升发光效率,改善显示效果。
在一种实现方式中,在Micro LED芯片和第一基板表面涂布透明封装层之后,还包括:在透明封装层的远离第一基板的一侧抛光形成与第一基板平行的封装平面;在封装平面制作微纳结构。微纳结构能够提升Micro LED芯片的发光效率、改善发光场型、或达成其他光学特性改善的效果。
第五方面,本申请实施例提供了另一种LED芯片的封装方法,包括:
将Micro LED芯片可分离地排布在第一基板上,Micro LED芯片的电极面向于第一基板放置;在Micro LED芯片和第一基板表面涂布透明封装层;待透明封装层固化之后,移除第一基板,以使透明封装层形成露出Micro LED芯片的电极的第一平面;在第一平面制作RDL,以及在RDL的背对于透明封装层的下表面制作与第一焊盘,第一焊盘通过RDL与Micro LED芯片电性连接第一焊盘用于接收外部驱动信号,外部驱动信号用于控制与其电性连接的Micro LED芯片的工作状态。根据本申请实施例提供方法制作的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号直接通过焊盘和RDL发送给至少一个Micro LED芯片,实现一路驱动信号控制一个或者多个Micro LED芯片,这样,LED芯片封装模块就不需要设置用于Micro LED芯片的电极直接与驱动背板等外部器件连接的焊盘,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,从而大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一种实现方式中,多个Micro LED芯片在第一基板上排布组成多个像素,每个像素包括至少一个Micro LED芯片。由此,一个或者多个Micro LED芯片可以灵活组成不同色彩能力的像素,例如全彩像素,单色像素等。
在一种实现方式中,在Micro LED芯片和第一基板表面涂布透明封装层,还包括:在第一基板表面制作隔光结构,隔光结构可以设置于相邻的像素之间,隔光结构也可以设置于相邻的Micro LED芯片之间。隔光结构可以防止光线从像素之间、Micro LED芯片之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片发光的可视角度、提升发光效率,改善显示效果。
在一种实现方式中,在Micro LED芯片和第一基板表面涂布透明封装层之后,还包括:在透明封装层的远离第一基板的一侧抛光形成与第一基板平行的封装平面;在封装平面制作微纳结构。微纳结构能够提升Micro LED芯片的发光效率、改善发光场型、或达成其他光学特性改善的效果。
第六方面,本申请实施例提供了一种显示屏,包括:驱动背板、用于产生外部驱动信号的显示器驱动集成电路DDIC,以及至少一个如前述第一方面、第二方面,及其任意实现方式提供的LED芯片封装模块;DDIC和至少一个LED芯片封装模块设置于驱动背板之上;驱动背板包括与至少一个LED芯片封装模块的第一焊盘位置相对应的第二焊盘,第二焊盘通过 线路连接至DDIC;第一焊盘用于LED芯片封装模块接收外部驱动信号,第一焊盘与第二焊盘焊接连接。由于本申请实施例提供的LED芯片封装模块的第一焊盘数量更少,驱动背板相应设置的第二焊盘也可以更少,因此LED芯片封装模块与驱动背板之间的焊接难度更低,有利于提高显示屏的良率。
第七方面,本申请实施例提供了一种电子设备,包括前述第六方面提供的显示屏。
附图说明
图1是目前Micro LED的巨量转移和微纳绑定工艺的流程示意图;
图2是目前像素间的光学结构的示意图;
图3是本申请实施例提供的LED芯片的封装方法的流程图;
图4是本申请实施例提供的LED芯片的封装方法的各个步骤形成的结构示意图;
图5是micro LED显示屏的全彩像素示意图;
图6是Micro LED芯片和Micro IC的排列方式示意图;
图7是Micro LED芯片和Micro IC的排列方式示意图;
图8是本申请实施例提供的LED芯片的封装方法制作隔光结构的示意图;
图9是本申请实施例提供的LED芯片的封装方法制作色彩转换材料的示意图;
图10是本申请实施例提供的LED芯片的封装方法制作隔光结构和色彩转换材料的示意图;
图11是本申请实施例提供的LED芯片的封装方法制作微纳结构的示意图;
图12是本申请实施例的LED芯片封装模块的一种结构示意图;
图13是本申请实施例的LED芯片封装模块的Micro LED芯片和Micro IC的排列方式示意图;
图14是本申请实施例的LED芯片封装模块的Micro LED芯片和Micro IC的排列方式示意图;
图15是本申请实施例的LED芯片封装模块的Micro LED芯片和Micro IC的排列方式示意图;
图16是本申请实施例的LED芯片封装模块的另一种结构示意图;
图17是本申请实施例的LED芯片封装模块的主用和备用Micro LED芯片的排列方式示意图;
图18是本申请实施例的LED芯片封装模块的主用和备用Micro LED芯片的排列方式示意图;
图19是本申请实施例的LED芯片封装模块的主用和备用Micro LED芯片的排列方式示意图;
图20是本申请实施例的LED芯片封装模块的主用和备用Micro LED芯片的排列方式示意图;
图21是本申请实施例提供的另一种LED芯片的封装方法的流程图;
图22是Micro LED芯片和Micro IC的排列方式示意图;
图23是本申请实施例的LED芯片封装模块的另一种结构示意图;
图24是本申请实施例提供的另一种LED芯片的封装方法的流程图;
图25是本申请实施例的LED芯片封装模块的另一种结构示意图;
图26是LED芯片封装模块的焊盘与RDL线路的示例图;
图27是申请实施例提供的显示屏的结构示意图;
图28是申请实施例提供的显示屏的LED芯片封装模块拼接示意图。
具体实施方式
为便于理解本申请实施例的技术方案,在对本申请实施例的具体实施方式进行阐述说明之前,首先对本申请实施例所属技术领域的一些技术术语进行简单解释说明。其中:
氮化镓(gallium nitride,GaN),是指氮和镓的化合物,是一种III族和V族的直接能隙(direct bandgap)的半导体,常用在发光二极管中。
金属有机物化学气相沉积法(metal-organic chemical vapor deposition,MOCVD),是一种在基板上成长半导体薄膜的方法,该方法的其他类似名称如:MOVPE(metal-organic vapor-phase epitaxy)、OMVPE(organometallic vapor-phase epitaxy)以及OMCVD(organometallic chemical vapor deposition)等。其中,“MO”或者“OM”指的是半导体薄膜成长过程中所采用的反应源(precusor)为金属化合物“metal-organic”或者有机金属化合物;而后面三个字母“CVD”或者“VPE”指的是所成长的半导体薄膜的特性是属于非晶形薄膜或者具有晶形的薄膜。
重配线层(re-distribution layer,RDL),是指在芯片上额外设置的金属层,可以使芯片的电极或者输入/输出焊盘(I/O pad)重新布置至芯片的其他位置,以有利于与其他集成电路或者芯片连接,或者将不同芯片的电极或者I/O pad连接在一起。
显示器驱动集成电路(display driver integrated circuit,DDIC),一般可以包含微控制器、微处理器和外围设备接口,用于产生适当的电压、电流和时序信号等驱动显示屏的像素,使显示屏产生相应的图像。
表面安装技术(surface-mount technology,SMT),是一种电子装联技术,此技术是将电子元件,如电阻、电容、晶体管、集成电路等安装到印刷电路板上,并通过钎焊形成电气联结,因此不需为元件的针脚预留对应的贯穿孔。其使用的元件又被简称为表面安装元件(surface-mount devices,SMD)。
串扰(crosstalk),又称串音干扰,在电子学上是指两条信号线之间的耦合现象。成因是由于空间距离近的信号线之间会出现不希望的电感性和电容性耦合从而互相干扰。其中,电容性耦合会引发耦合电流,而电感性耦合则引发耦合电压。
外延(epitaxy),又称外延成长(epitaxial growth)是指一种用于半导体器件制造过程中,在原有芯片上长出新结晶以制成新半导体层的技术。通过外延技术成长出的结晶或晶粒也可称作外延,或者外延层、外延片。
微纳结构,是指人为设计的、具有微米或纳米尺度特征尺寸、按照特定方式排布的功能结构。
Micro LED又称为微发光二极管(micro light emitting diode),是继液晶显示屏(liquid crystal display,LCD)、主动矩阵有机发光二极管(active-matrix organic light-emitting diode,AMOLED)之后,有机会应用于下一代显示屏技术的自发光照明器件。Micro LED显示屏的核心技术是将数百万至数千万个尺寸为数十微米的LED芯片组合排列形成显示屏所需的各个像素,因此其工艺与LED通过液晶层和背光层的结合,以及AMOLED利用有机材料蒸镀等工艺大不相同。
由于LED芯片是一种半导体器件,因此其表面的金属电极等结构均可利用半导体制程加工,如果要将LED芯片按设计依序排在薄膜晶体管(thin film transistor,TFT)或无源矩阵(passive matrix,PM)线路等驱动背板之上,则须采用巨量转移(mass transfer)及微纳邦定(micro bonding)等工艺将LED芯片转移并固定在驱动背板上。有别于传统LED封装工艺一次仅转移单一LED芯片,巨量转移技术使用聚二甲基矽氧烷(polydimethylsiloxane,PDMS)基材等转印头或图章(stamp)同时转移数万至数十万个LED芯片,以达成于短时间内转移百万个以上LED芯片的产出需求。然而,由于Micro LED芯片的尺寸仅数十微米,未来量产目标更是希望将Micro LED芯片尺寸缩小至5~10微米,因此制作于Micro LED芯片上的微纳焊球(micro bump)的尺寸以及邦定制程所需的工艺也需要缩小至10微米以下,使得现有Micro LED制程技术难以满足这样的工艺需求。
下面结合一些附图对目前Micro LED的巨量转移和微纳绑定工艺进行简单说明,以便于本领域技术人员理解本申请实施例的技术场景和巨量转移和微纳绑定工艺在Micro LED应用时的不足。
图1是目前Micro LED的巨量转移和微纳绑定工艺的流程示意图。如图1所示,以GaN/InGaN材料制作的Micro LED芯片(例如蓝色或者绿色的Micro LED芯片)为例,为得到Micro LED芯片结构,首先可以在例如蓝宝石(sapphire sub)材质的衬底010表面生长出LED外延片结构(LED epi-ayers)020;然后,利用标准半导体制程将外延片结构020制作为大量的尺寸约为10微米的Micro LED芯片030,其中,Micro LED芯片030表面除包含为了降低电流流入半导体所制作之欧姆电极040外(欧姆电极040包括LED芯片的P/N电极),还需要制作为了后续邦定制程所准备的micro bump 050,并且micro bump 050制备于欧姆电极040之上,为了降低邦定制程所需温度,此处所使用的micro bump金属可以是包含铟In、锡Sn、铜Au等低温键结金属合金;在芯片制程完成之后,可以将衬底010及其之上的外延片结构020整体翻转并黏贴至基板1之上,基板carrier 1可为玻璃等材料,且其表面具有一层黏着层061,该黏着层061与micro bump 050相接触,可以在不破坏器件结构前提下暂时固定外延片结构020。接下来,为了去除蓝宝石衬底010,可以利用激光从蓝宝石衬底010侧照射外延片结构020,此激光波长不会被蓝宝石衬底010所吸收,但却会和GaN材料产生反应,使外延片结构020与蓝宝石衬底010从交界面分离。
在外延片结构020与蓝宝石衬底010分离之后,Micro LED芯片030便分别独立地黏贴与基板carrier 1之上,此时,可以利用图案化转印头(stamp)选择性从基板carrier 1黏取或吸取所需要的Micro LED芯片030,此stamp可为利用凡范德华力(van der waals force)的PDMS材质制作,除此之外,也可利用静电力与磁力等其他机制吸取Micro LED芯片030;在利用stamp黏取Micro LED芯片030之后,便可以将Micro LED芯片030转移到另一个基板carrier 2,基板carrier 2的表面同样具有一层黏着层062或黏着装置,可以暂时性地固定Micro LED芯片030。一般来说,为了使PDMS的stamp能够顺利从基板carrier 1之上黏取Micro LED芯片030,并且能够顺利地将Micro LED芯片030暂时固定于基板carrier 2之上,黏着力应满足:黏着层061<PDMS<黏着层062,因此黏着层061和黏着层062可以为不同的材料。利用stamp将Micro LED芯片030从基板carrier 1转移至基板carrier 2具有以下多重目的,包括:调整Micro LED芯片030的间距、使Micro LED芯片030在基板carrier 2表面形成全彩排列(例如:红绿蓝RGB排列)等、或者进行其他芯片的双面制程等。
在Micro LED芯片030在基板carrier 2表面排列完成之后,可以使用另一个stamp一次 性黏取全部Micro LED芯片030并转移至驱动背板070的对应区域;然后,利用micro bump 050使Micro LED芯片030表面的正负极与驱动背板上对应的电极080完成机械和电性连接,这里一般会涉及到以下工艺流程,包括:Micro LED芯片030表面的正负极与驱动背板上对应的电极080的对位、Micro LED芯片030下压、加热以软化micro bump 050的焊锡材料使得Micro LED芯片030表面的正负极与驱动背板上对应的电极080形成共金连接、以及降温等。
可以理解的是,采用如图1所示的micro bump和邦定制程虽然能够实现Micro LED芯片表面的正负极与驱动背板上对应的电极的电性连接,但是由于Micro LED芯片的尺寸正朝着持续微小化的方向发展,当Micro LED芯片的尺寸缩小到一定程度,例如10~15微米及以下时,如图1所示的micro bump和邦定制程在工艺实现和生产良率等方面都存在难以克服的问题。具体可以表现为:
1、micro bump一般包含铟In或锡Sn等焊锡材料,可以帮助降低邦定温度,但是这些材料在合金中也容易发生扩散。为了避免焊锡材料扩散至欧姆金属层,进而影响到器件特性和良率,通常需要加厚micro bump中的金Au或其他金属层的厚度,不利于Micro LED芯片实现小型化。另外,以邦定制程连接Micro LED芯片与驱动背板时,芯片与驱动背板间是通过micro bump达成机械与电性连接,但邦定制程中的stamp与芯片的接触状态、压力和温度的均匀度以及降温冷却等工艺参数的变化均可能导致芯片与背板间接合距离、角度、方向产生变化,导致每个Micro LED芯片所发出的场型将产生微小差异,使用者在观察显示屏时将会有像素凌乱的感受。
2、所有制程完成之前无法对Micro LED芯片进行检测。由于Micro LED芯片只有在连接至驱动背板后才能通电并进行特性分析测试,因此在图1的所有制程完成之后,如果通过测试发现因为Micro LED芯片自身问题或者制程问题导致Micro LED芯片失效时,只有通过返修工艺才有可能获得一块无缺陷的Micro LED显示屏。然而,返修工艺涉及到失效Micro LED芯片的去除、焊盘清洁与重置、以及单一Micro LED芯片的转移和邦定等工艺及工序,不仅技术上难以实现,而且消耗在每个像素上的单位工时也远大于巨量转移的工时,难以在生产环境中实施。此外,如果要避免返修工艺,一种可能的方式是备份芯片(redundancy),redundancy方式简而言之就是在Micro LED显示屏上多放置一倍数量的备份Micro LED芯片,当原本的Micro LED芯片发生故障无法操作时,便启用备份芯片替补原本的Micro LED芯片以维持全屏完整发光,显然,这种方式会增加显示屏的生产升本并且降低显示屏的解析度。
3、Micro LED芯片之间的光学或其他元件的体积化制程困难。如图2所示,Micro LED显示屏上的每一个像素除了Micro LED芯片的厚度之外,还需要叠加micro bump的厚度,才能构成这个像素的总厚度。一般而言,为了提升邦定制成的容错度和良率,micro bump的厚度H1可能达到5~8微米,如果再加上Micro LED芯片的厚度,那么每一个像素的总厚度H2可能会达到10~15微米甚至更高,在这种情况下,像素的总厚度H2与像素间距离B1之间的深宽比会比较高,此时如果要在像素间制作例如改变光型或者降低cross-talk的光学结构090,那么过高的深宽比会导致像素间的光刻等半导体工艺的精度和良率下降,也会对其他感测器件的体积化目标产生负面影响。
为解决上述技术问题,本申请实施例提供了一种LED芯片的封装方法。该方法可以应用于各类LED芯片的封装领域,例如在TFT等基板之上封装Micro LED芯片或者Mini LED芯片以制作Micro LED或者Mini LED的芯片封装模块或者显示屏等。
下面以封装Micro LED芯片以制作Micro LED芯片封装模块为例,对本申请实施例提供的方法进行具体说明,可以理解的是,以下方法步骤同样适用于Mini LED芯片或者其他LED芯片的封装工艺中。
图3和图4分别是本申请实施例提供的LED芯片的封装方法的流程图和各个步骤形成的结构示意图。
如图3和图4所示,该方法可以包括以下步骤:
步骤S101,在衬底110表面生长micro LED外延片结构120。
其中,可用作外延片结构120的衬底110的材料例如可以包括蓝宝石、氮化铝AlN、碳化硅SiC、GaN单晶材料以及其他材料等,本申请不做限定。
具体实现中,用于生长外延片结构120的外延材料可以根据期望制备的micro LED芯片的发光颜色确定。例如,如果要制备发蓝色光或者绿色光的micro LED芯片,则可以使用GaN/InGaN材料生长外延片结构120;又例如,如果要制备发出红色光的micro LED芯片,则可以使用GaAsP等材料生长外延片结构120。其他可以用于生长外延片结构120的材料还可以包括SiC、AlGaP等,因篇幅有限,此处不做进一步地展开说明。
这里需要补充说明的是,如图5所示,在micro LED显示屏100中,每一个全彩的像素pixel可以由多个micro LED芯片组成。以最基本的像素结构为例,其可以包括一个自身外延材料发红色光的micro LED芯片R、一个自身外延材料发绿色光的micro LED芯片G和一个自身外延材料蓝色光的micro LED芯片B。由此可见,为了得到全彩像素所需的micro LED芯片,实际生产中可能需要使用不同的外延材料在不同的衬底110之上生长能够发出不同色光的外延片结构120,例如在一块衬底110之上使用GaN/InGaN生长能够发出蓝色光的外延片结构120,在另一块衬底110之上使用GaN/InGaN生长能够发出绿色光的外延片结构120等。
步骤S102,利用标准半导体制程将外延片结构制作成多个Micro LED芯片。
具体实现中,可以通过刻蚀或者其他去除材料技术去除外延片结构120的多余部分,使得剩余的外延片结构120在衬底110之上形成多个尺寸约为10微米并且在衬底110之上间隔排布的独立结构,然后在每个独立结构远离衬底的一侧制作能够降低电流流入半导体的欧姆电极(以下简称电极)140,即可以构成完整的Micro LED芯片130,每个独立结构最终都会构成一个Micro LED芯片130。
与采用图1所示的micro bump和焊接工艺的Micro LED芯片封装结构相比,本申请实施例制作的Micro LED芯片130除了包含电极140之外,不需要制作micro bump,从而降低了Micro LED芯片的高度。
需要补充说明的是,上述尺寸“10微米”仅作为示例尺寸,不构成对micro LED芯片尺寸的具体限定。一般来说,micro LED芯片的尺寸可以达到1~60μm之间,本领域技术人员可以根据micro LED芯片常见的尺寸范围确定相应的半导体制程,本申请对此不做限定。
步骤S103,将衬底110及其之上的Micro LED芯片130整体翻转后可分离地放置于第二基板150之上。
第二基板150可以采用玻璃或矽晶圆等材料制成,其表面设置有一层第二粘着层160。在衬底110及其之上的Micro LED芯片130整体翻转之后,可以将衬底110及其之上的Micro LED芯片130移动至第二基板150上方,使得第二粘着层160面向Micro LED芯片130的带有电极140的一端;接下来,将衬底110及其之上的Micro LED芯片130向下移动,使得 Micro LED芯片130的电极140与第二粘着层160相接触并黏贴于第二基板150之上。其中,第二粘着层160不会使得Micro LED芯片130和第二基板150形成用久固定,而是仅用于在不破坏Micro LED芯片130的器件结构的情况下暂时可分离地固定Micro LED芯片130,使得Micro LED芯片130可以在需要时与第二基板150分离。
步骤S104,移除衬底。
具体实现中,可以利用激光从衬底110侧照射Micro LED芯片130的外延片结构,此激光的波长使其能够透过衬底110而不被衬底110所吸收,但却会和外延片结构的GaN材料产生反应,使Micro LED芯片130的外延片结构与衬底110从交界面分离,从而移除衬底110。
另外,本领域技术人员也可以采用其他的半导体制程工艺将衬底110与Micro LED芯片130分离,本申请对此不做限定。
步骤S105,将Micro LED芯片130和Micro IC 180可分离地排布在第一基板170上,其中,Micro LED芯片130的电极140和Micro IC 180的电极230面向于第一基板170放置。
在一个实施例中,多个Micro LED芯片130和所述Micro IC 180可以在第一基板170上排布成多个像素,每个像素包括至少一个Micro LED芯片130和一个Micro IC 180。
示例地,如图6的a排列所示,像素内包含一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个Micro LED芯片并列成一行设置,形成标准RGB排列,每个像素包含一个Micro IC 180,并且Micro IC 180与Micro LED芯片并列设置于同一行。
示例地,如图6的b排列所示,像素内包含一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个Micro LED芯片并列成一行设置,形成标准RGB排列,每个像素包含一个Micro IC 180,并且Micro IC 180设置于三个Micro LED芯片的上方或者下方。
示例地,如图6的c排列所示,像素内可以包含四个Micro LED芯片,例如两个发蓝色光的Micro LED芯片B、一个发红色光的Micro LED芯R片和一个发绿色光的Micro LED芯片G,这四个Micro LED芯片形成矩形布置,每一个Micro LED芯片的位置可视作矩形的一个角点,两个发蓝色光的Micro LED芯片B对角设置,每个像素包含一个Micro IC 180,Micro IC 180可以设置于四个Micro LED芯片的其中一侧。
在另一个实施例中,多个Micro LED芯片130可以在第一基板170上排布成多个像素,每个像素包括至少一个Micro LED芯片130,另外还有至少一个Micro IC 180分布在这些像素之间。
示例地,如图7的d排列所示,像素内包含一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个Micro LED芯片并列成一行设置,形成标准RGB排列,在每一行或者一列像素中,每隔一定数量N(N为大于1的正整数)的像素设置有一个Micro IC 180,每个Micro IC 180可以控制N个像素。
示例地,如图7的e排列所示,像素内包含一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个Micro LED芯片并列成一行设置,形成标准RGB排列,在每一块平方区域的像素中,每一定数量N(N为大于1的正整数)的像素设置有一个Micro IC 180,每个Micro IC 180可以该区域内的控制N个像素。
为实现上述排布方式,可以预先准备多个第二基板150,每个第二基板150上可分离地 放置一种色光的Micro LED芯片130。然后,在步骤S105中,可以分别从不同的第二基板150上吸取不同色光的Micro LED芯片130放置于第一基板170上,并且从放置有Micro IC 180的第三基板上一次性吸取至少一个Micro IC 180放置于第一基板170上,第三基板同样设置有粘着层,能够可分离地放置Micro IC 180。上述吸取和放置Micro LED芯片130和Micro IC 180的动作可以重复一次或者多次,每次可以吸取一个或者多个芯片,最终使得使多个Micro LED芯片和至少一个Micro IC 180在第一基板170形成预设的像素排列。
第一基板170可以采用玻璃或矽晶圆等材料制成,其表面设置第一粘着层190,能够在不破坏Micro LED芯片130和Micro IC 180的器件结构的情况下将它们可分离地暂时固定。当Micro LED芯片和Micro IC 180的器件可分离地放置于第一基板170之上时,Micro LED芯片130和Micro IC 180均以它们的电极所在端与第一基板170的第一粘着层190接触。
步骤S106,在Micro LED芯片130、Micro IC 180和第一基板170表面涂布透明封装层210。
其中,透明封装层210例如可以包括环氧树脂和有机硅树脂材料。透明封装层210在涂布之后需要经过一定的时间固化,在固化之后就能够将Micro LED芯片130和Micro IC 180的相对位置固定。作为优选的方式,透明封装层210在第一基板170表面的涂布高度可以整体上高于Micro LED芯片130和Micro IC 180的高度,这样,在透明封装层210固化之后,便可以对透明封装层210进行抛光或打磨,以形成一个具有良好平整度的与第一基板170平行的封装平面240。
步骤S107,待透明封装层210固化之后,移除第一基板170,以使透明封装层210形成露出Micro LED芯片130的电极140和Micro IC 180的电极230的第一平面250。
由于Micro LED芯片130和Micro IC 180是以其电极所在端与第一基板170的第一粘着层190接触,因此当Micro LED芯片130和Micro IC 180与第一基板170分离之后,Micro LED芯片130和Micro IC 180的电极就会从透明封装层210的第一平面250裸露出来。
步骤S108,在第一平面250制作RDL 220。
RDL220包括绝缘平坦层以及分布于绝缘平坦层内的多条RDL线路。绝缘平坦层可以采用硅或者高分子聚合材料制成,RDL线路可以采用铜等导电材料通过光刻、蒸镀、电镀等半导体制程技术制成,RDL线路可以是单层线路或者多层线路,本申请实施例对此不做限定。
其中,其中,根据RDL线路的走向不同,RDL线路可以分为两部分,第一部分RDL线路用于连接Micro LED芯片130的电极140和Micro IC 180的电极230,使得每个Micro IC 180通过RDL 220与至少一个Micro LED芯片130建立电性连接;第二部分RDL线路的一端与Micro IC 180的电极230连接,另一端裸露在RDL 220的下表面260,那么如果第二部分RDL线路的另一端引入了外部驱动信号,则驱动信号就可以被传输至Micro IC 180。
步骤S109,在RDL 220的下表面260制作焊盘270和焊球bump 330。
其中,其中焊盘270与第二部分RDL线路的另一端连接,因此焊盘270与Micro IC 180能够通过RDL 220电性连接,焊球bump 330则制作于焊盘270之上,便于焊盘270与驱动背板等外部器件连接。
该步骤完成之后,即得到了完整的Micro LED芯片封装模块,该模块可以通过焊盘270与其他驱动背板或者显示器驱动集成电路(Display driver IC,DDIC)等模组或者驱动系统进行机械与电性连接,以得到完整的显示屏。
该Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC 180, 然后再由Micro IC 180根据驱动信号控制其连接的至少一个Micro LED芯片130的工作状态,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一个实施例中,如图8所示,在Micro LED芯片130和Micro IC 180转移至第一基板170之后,以及在Micro LED芯片130、Micro IC 180和第一基板170表面涂布透明封装层210之前,即步骤S105~步骤S106之间,还可以在相邻的像素之间、或者Micro LED芯片130之间、或者Micro LED芯片130与Micro IC 180之间制作隔光结构280、黑点矩阵(black matrix)等,以防止光线从像素之间的缝隙泄露、降低像素间的cross-talk、增大或收敛Micro LED芯片130发光的可视角度、提升发光效率等,由此来改善Micro LED显示屏的显示效果。
在一个实施例中,如图9所示,当一个像素包含了多个发相同色光的Micro LED芯片130时,为了得到全彩的像素,在Micro LED芯片130和Micro IC 180转移至第一基板170之后,以及在Micro LED芯片130、Micro IC 180和第一基板170表面涂布透明封装层210之前,即步骤S105~步骤S106之间,还可以为像素中的部分或者全部Micro LED芯片130涂布色彩转换材料290,以使不同的Micro LED芯片130透过色彩转换材料发出不同的色光。示例地,当像素中包含三个发蓝色光的Micro LED芯片130时,可以将其中一个Micro LED芯片130涂布红色的色彩转换材料290,将另一个Micro LED芯片130涂布绿色的色彩转换材料290,使像素内的三个Micro LED芯片130最终发光为红绿蓝,形成一个RBG的全彩像素。
在一个实施例中,如图10所示,在涂布色彩转换材料290之前,还可以先行在像素之间、或者Micro LED芯片130之间、或者Micro LED芯片130与Micro IC 180之间制作隔光结构280、黑点矩阵(black matrix)等,以利于将不同颜色的色彩转换材料290隔开,最终改善LED芯片封装模块及其构成的显示屏的显示效果。
在一个实施例中,如图11所示,在Micro LED芯片130、Micro IC 180和第一基板170表面涂布透明封装层210之后(即步骤S106之后),还可以在透明封装层210的封装平面240制作微纳结构310以提升Micro LED显示屏的发光效率、改善发光场型、或达成其他光学特性改善的效果。示例地,上述微纳结构310例如可以是密集排列的条纹状的凸起结构。
本申请实施例还提供了一种LED芯片封装模块,该LED芯片封装模块可以使用本申请实施例以上描述的方法得到,也可以使用其他的制作方法得到。
图12是本申请实施例的LED芯片封装模块的一种结构示意图。如图12所示,该LED芯片封装模块包括RDL 220、多个Micro LED芯片130、至少一个Micro IC180、透明封装层210。
其中,上述多个Micro LED芯片130和至少一个Micro IC 180分布设置于RDL 220的上表面320,每个Micro LED芯片130设置有至少一个面向RDL 220的上表面320并且与RDL 220连接的电极140,每个Micro IC 180设置有至少一个面向RDL 220的上表面320并且与RDL 220连接的电极230,并且每个Micro IC 180与至少一个Micro LED芯片130通过RDL 220建立电连接。透明封装层210涂布于RDL 220的上表面320,透明封装层210在垂直于RDL 220的上表面320方向上的厚度大于或者等于Micro LED芯片130和Micro IC 180在垂直于RDL 220的上表面320方向上的厚度,使得透明封装层210能够覆盖上述Micro LED芯片130和Micro IC 180,透明封装层210通过抛光还可以形成与RDL 220平行的封装平面240。 RDL 220的下表面260还设置有至少一个焊盘270,每个焊盘270与至少一个Micro IC 180通过RDL 220建立电连接。每个焊盘270还可以制作焊球bump 330,以利于将RDL 220的焊盘270与显示屏的驱动背板之上的焊盘焊接在一起,使得LED芯片封装模块与驱动背板实现机械和电性连接。
本申请实施中,Micro IC 180相对于RDL 220可以有多种设置方式。例如:
(1)Micro IC 180可以全部设置在RDL 220的上表面320,如图12所示。
(2)Micro IC 180可以全部设置在RDL 220的下表面260。这种设置方式使得RDL 220的上表面320只需设置Micro LED芯片130,不需要再为Micro IC 180留出空间,因此有利于提升LED芯片封装模块的像素密度,提升显示效果。并且,Micro IC 180在RDL 220的下表面260可以有更大的设置空间和更灵活的布局方式,因此可以放置尺寸更大、性能更强的Micro IC 180,提升LED芯片封装模块的性能。
(3)一部分Micro IC 180设置在RDL 220的上表面320,而另一部分Micro IC 180设置在RDL 220的下表面260。在这种设置方式中,位于上表面320的Micro IC 180和下表面260的Micro IC 180可以各控制一部分Micro LED芯片130,并且位于上表面320的Micro IC 180和下表面260的Micro IC 180控制的Micro LED芯片130可以相同也可以不同。这种置方式使得RDL 220的上表面320只需要为一部分Micro IC 180留出空间,因此有利于提升LED芯片封装模块的像素密度,提升显示效果。在一种实现方式中,RDL 220的上表面320可以设置尺寸较小的Micro IC 180,而RDL 220的下表面260可以设置尺寸较大的Micro IC 180,使得RDL 220的表面空间利用最大化。
需要注意的是,当RDL 220的下表面260设置有Micro IC 180时,Micro IC 180在垂直于下表面260方向上的高度应该小于焊盘270和焊球330的高度之和,以使得Micro IC 180不会影响LED芯片封装模块焊接到显示屏的驱动背板之上。
在一个实施例中,如图12所示,RDL221包括绝缘平坦层221以及分布于绝缘平坦层221内的多条RDL线路。为便于描述,这里根据RDL线路的走向及其连接的器件不同将RDL线路分为第一RDL线路222和第二RDL线路223,将第一RDL线路222的两端分别称作第一端2221和第二端2222,将第二RDL线路223的两端分别称作第三端2231和第四端2232。其中,第一RDL的第一端2221和第二端2222位于RDL 220的上表面320,第二RDL线路223的第三端2231位于RDL 220的上表面320,第二RDL线路223的第四端2232位于RDL 220的下表面260。第二RDL线路223的第四端2232可以设置有焊盘270,以便于与其他器件电性连接。第一RDL线路222的第一端2221用于与Micro LED芯片130的电极140连接,每一条第一RDL线路222可以具有至少一个第一端2221,用于与至少一个Micro LED芯片130的电极140连接。第一RDL线路222的第二端2222用于与Micro IC 180的电极230连接,每个Micro IC 180的电极230可以与至少一条第一RDL线路222的第二端2222连接。第二RDL线路223的第三端2231用于与Micro IC 180的电极230连接,每一条第二RDL线路223的第三端2231可以与至少一个Micro IC 180的电极230连接。第一RDL线路222的第二端2222与第二RDL线路223的第三端2231连接的电极230不同。第二RDL线路223的第四端2232在其焊盘270之上设置有焊球330,以便于与外部器件连接,接收外部驱动信号。
本申请实施例提供的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC 180,然后再由Micro IC 180根据驱动信号控制其连接的至少一个Micro LED芯 片130的工作状态,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的I/O焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
在一个实施例中,如图13所示,LED芯片封装模块中的Micro LED芯片130可以按照一定的排列方式构成多个像素pixel,其中,每个像素包括至少一个Micro LED芯片130。如果要形成全彩像素排列,则每个像素可以包含三个Micro LED芯片130,例如:一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个芯片可以位于同一行,形成标准RGB排列。另外,每一个像素还可以包括一个Micro IC 180,该Micro IC 180通过RDL 220与这个像素内的三个Micro LED芯片130电连接,用于控制这三个Micro LED芯片130的工作状态,例如点亮的时间、强度等,从而使得像素能够显示出各种颜色,此时,每一个Micro IC 180仅用于控制一个像素的工作状态。
在一个实施例中,如图14所示,每个像素可以包含三个Micro LED芯片130和一个Micro IC 180,其中,三个Micro LED芯片130可以位于同一行,形成标准RGB排列,而Micro IC 180可以在另一行单独设置。
可以理解的是,除了本申请实施例示出的排列方式以外,Micro LED芯片130还可以具有其他的排列方式,例如:pentile排列、RGB-Delta排列等,本申请实施例对此不做限定。
在一个实施例中,如图15所示,每个像素可以包含三个Micro LED芯片130,形成标准RGB排列。在每一行或者一列像素中,每隔一定数量N(N为大于1的正整数)的像素可以设置有一个Micro IC 180,每个Micro IC 180可以通过RDL与其所在行或列的邻近的N个像素中的个Micro LED芯片130建立电连接,用于控制这邻近的N个像素中的个Micro LED芯片130的工作状态。
可以理解的是,当每一个Micro IC 180用于控制N个像素的显色时,Micro IC 180还可以采用其他的分布方式设置像素之间,并且每个Micro IC 180可以通过RDL与其邻近的多个像素建立电连接,用于控制这些像素的显色,本申请实施例对此不做限定。
在一个实施例中,如图16所示,每个像素中的部分或者全部的Micro LED芯片130可以是发相同色光的Micro LED芯片,这时部分或者全部的所述Micro LED芯片130的表面可以涂布有色彩转换材料,色彩转换材料用于将Micro LED芯片130发出的色光转换成其他颜色。示例地,当一个像素中包含有三个发蓝色光的Micro LED芯片130时,为了得到全彩像素,可以在其中一个Micro LED芯片130的表面涂布有红色的色彩转换材料290R,以将其发出的蓝光能够转换成红光,在另一个Micro LED芯片130的表面涂布有绿色的色彩转换材料290G,以将其发出的蓝光转换成绿光。
在一个实施例中,如图16所示,Micro LED芯片130与Micro IC 180之间还可以设置有隔光结构280,两个相邻的Micro LED芯片130之间也可以设置有隔光结构280。隔光结构280的一端与RDL 220连接,另一端向远离RDL 220的方向延伸。隔光结构280有利于提升Micro LED芯片130的发光效率、降低像素之间的cross-talk、增大或者收敛Micro LED芯片130的发光可视角度、将不同颜色的色彩转换材料290隔开,最终改善LED芯片封装模块及其构成的显示屏的显示效果。
可以理解的是,为达到改善LED芯片封装模块及其构成的显示屏的显示效果的目的,LED芯片封装模块除可以包含隔光结构280之外,也可以包含黑点矩阵等结构,本申请实施例对 此不作限定。
在一些实施例中,透明封装层210的封装平面240具有微纳结构310,该微纳结构310例如可以是密集排列的条纹状的凸起结构。微纳结构310有利于提升Micro LED显示屏的发光效率、改善发光场型、以及达成其他光学特性改善的效果。
在一个实施例中,LED芯片封装模块的每个像素还可以包括至少一个备份Micro LED芯片,在对LED芯片封装模块进行检测而发现某个像素中主用Micro LED芯片发生失效时,Micro IC可以驱动该像素的备份Micro LED芯片以代替失效的Micro LED芯片工作,使该像素依然可以正常显示色彩,从而维持LED芯片封装模块的显示完整性,提高LED芯片封装模块的良率。
在一个实施例中,如图17所示,像素中的每一个主用Micro LED芯片都可以对应一个与其发光颜色相同的备用Micro LED芯片,则一个全彩像素可以包括六个Micro LED芯片,即:两个发红色光的Micro LED芯片R1和R2、两个发绿色光的Micro LED芯片G1和G2和两个发蓝色光的Micro LED芯片B1和B2。当所有的主用Micro LED芯片正常时,备用Micro LED芯片均不工作,Micro IC只驱动主用芯片工作;当任意一个主用Micro LED芯片失效时,Micro IC可以驱动相同颜色的备用Micro LED芯片代替失效的Micro LED芯片工作。
示例地,当主用发绿色光的Micro LED芯片G1失效,但是处于开路状态或者漏电电流低于阈值时(该阈值例如可以是正常驱动电流的1%),Micro IC可以直接驱动备用发绿色光的Micro LED芯片G2。当主用发绿色光的Micro LED芯片G1失效,但是处于通路状态或者漏电电流高于阈值时,可以先用激光将失效的发绿色光的Micro LED芯片G1或者其对应的线路破坏,使该失效芯片成为开路状态,然后再驱动备用发绿色光的Micro LED芯片G2。
在一个实施例中,如图18所示,由于像素中两个Micro LED芯片发生失效的概率要远低于一个Micro LED芯片发生失效的概率,因此每一个像素也可以只包含一个备用Micro LED芯片,以此提高LED芯片封装模块的尺寸利用率,提高像素密度,降低成本。
示例地,一个全彩像素可以包含四个Micro LED芯片,即:一个主用发红色光的Micro LED芯片R1、一个主用发绿色光的Micro LED芯片G1、一个主用发蓝色光的Micro LED芯片B1以及一个备用Micro LED芯片B2。假设备用Micro LED芯片发蓝色光,那么,当主用发蓝色光的Micro LED芯片B1失效时,Micro IC可以直接驱动这个备用Micro LED芯片B2,当主用发红色或者绿色的Micro LED芯片R1或G1失效时,可以首先利用激光将这个备用Micro LED芯片B2周围的透明封装层210去除,然后再喷涂与失效的Micro LED芯片颜色相同的色彩转换材料290,使得这个备用Micro LED芯片B2被Micro IC驱动后能够发出与失效的Micro LED芯片颜色相同的色光。
在另一些实施例中,一个备用Micro LED芯片还可以用于代替一个以上像素中失效的Micro LED芯片,由此可以减少备用Micro LED芯片的数量,提高LED芯片封装模块的尺寸利用率,提高像素密度,降低成本。
示例地,如图19所示,一个全彩像素可以包含三个Micro LED芯片,即:一个发红色光的Micro LED芯片R1、一个发绿色光的Micro LED芯片G1和一个发蓝色光的Micro LED芯片B1,这三个Micro LED芯片可以呈三角形排列。其中,发红色光的Micro LED芯片R1和发绿色光的Micro LED芯片G1位于同一行并列设置,发蓝色光的Micro LED芯片B1则位于另外两个芯片的上方。备用Micro LED芯片可以是发蓝色光的Micro LED芯片B2,设 置在相邻的两个像素的发蓝色光的Micro LED芯片B1之间,形成主用和备用Micro LED芯片在同一行交替设置的排布方式。在这种排布方式下,当某个像素的发蓝色光的Micro LED芯片B1失效时,Micro IC可以直接选择驱动其相邻的一个备用Micro LED芯片B2,当某个像素的发红色光或者发绿色光的Micro LED芯片R1或G1失效时,可以首先利用激光将最邻近这个失效芯片的一个备用Micro LED芯片B2周围的透明封装层去除,然后再喷涂与失效的Micro LED芯片颜色相同的色彩转换材料,使得这个备用Micro LED芯片B2被Micro IC驱动后能够发出与失效的Micro LED芯片颜色相同的色光。
示例地,如图20所示,全彩像素中的三个Micro LED芯片可以形成标准的RGB排列,然后,将同一行或者同一列的每两个相邻的像素为一组,在这两个像素之间设置一个备用Micro LED芯片B2,使得这个备用Micro LED芯片B2可以用于代替这一组像素中失效的Micro LED芯片。
可以理解的是,图17-图20示出的各个实现方式仅用于示例性地阐述本申请实施例的技术构思,不构成对本申请实施例的具体限定,除以上示出的实现方式之外,本领域技术人员在此技术构思的启示下还可以采用其他的市实现方式,这些都没有超出本申请实施例的保护范围。
需要补充说明的是,目前Micro LED芯片的发光方向可以有两种,一种是背面发光,即Micro LED芯片发出的光线至外部环境不通过RDL,另一种是正面发光,即Micro LED芯片发出的光线至外部环境之间需要通过RDL。当Micro LED芯片为背面发光时,RDL中的绝缘平坦层可以为不透明材料制成,具有不透明的特性,使其能够吸收或者反射Micro LED芯片发出的光线,以增加出光度。当Micro LED芯片为正面发光时,RDL中的绝缘平坦层可以不透明材料制成,具有高穿透或者透明的特性,使Micro LED芯片发出的光线能够高效率地穿过RDL,以增加出光度。
本申请实施例还提供了另一种LED芯片的封装方法,如图21所示,该方法可以包括以下步骤:
步骤S101-步骤S104,与图4示出的步骤S101-步骤S104相同,此处不再赘述。
步骤S110,将Micro LED芯片130可分离地排布在第一基板170上,其中,Micro LED芯片130的电极140面向于第一基板170放置。
步骤S110与步骤S105的区别在于:步骤S110未在第一基板107之上放置Micro IC 180。
在一个实施例中,多个Micro LED芯片130可以在第一基板170上排布成多个像素,每个像素包括至少一个Micro LED芯片130。
示例地,如图22的a排列所示,像素内包含一个发蓝色光的Micro LED芯片B、一个发绿色光的Micro LED芯片G和一个发红色光的Micro LED芯片R,这三个Micro LED芯片并列成一行设置,形成标准RGB排列。
示例地,如图22的b排列所示,像素内可以包含四个Micro LED芯片,例如两个发蓝色光的Micro LED芯片B、一个发红色光的Micro LED芯R片和一个发绿色光的Micro LED芯片G,这四个Micro LED芯片形成矩形布置,每一个Micro LED芯片的位置可视作矩形的一个角点,两个发蓝色光的Micro LED芯片B对角设置。
第一基板170表面设置第一粘着层190,能够在不破坏Micro LED芯片130的器件结构的情况下将其可分离地暂时固定。当Micro LED芯片可分离地放置于第一基板170之上时,Micro LED芯片130的电极所在端与第一基板170的第一粘着层190接触。
步骤S111,在Micro LED芯片130和第一基板170表面涂布透明封装层210。
其中,透明封装层210例如可以包括环氧树脂和有机硅树脂材料。透明封装层210在涂布之后需要经过一定的时间固化,在固化之后就能够将Micro LED芯片130之间的相对位置固定。作为优选的方式,透明封装层210在第一基板170表面的涂布高度可以整体上高于Micro LED芯片130的高度,这样,在透明封装层210固化之后,便可以对透明封装层210进行抛光或打磨,以形成一个具有良好平整度的与第一基板170平行的封装平面240。
步骤S112,待透明封装层210固化之后,移除第一基板170,以使透明封装层210形成露出Micro LED芯片130的电极的第一平面250。
由于Micro LED芯片130是以其电极所在端与第一基板170的第一粘着层190接触,因此当Micro LED芯片130与第一基板170分离之后,Micro LED芯片130的电极就会从透明封装层210的第一平面250裸露出来。
步骤S113,在第一平面250制作RDL 220。
RDL 220包括绝缘平坦层以及分布于绝缘平坦层内的多条RDL线路。绝缘平坦层可以采用硅或者高分子聚合材料制成,RDL线路可以采用铜等导电材料通过光刻、蒸镀、电镀等半导体制程技术制成,RDL线路可以是单层线路或者多层线路,本申请实施例对此不做限定。
其中,根据RDL线路的走向不同,RDL线路可以分为两部分,第一部分RDL线路的一端与Micro LED芯片130的电极连接,另一端裸露在RDL 220下表面260,第二部分RDL线路的两端均裸露在RDL 220下表面260。
步骤S114,将至少一个Micro IC 180安装于RDL的下表面260。
其中,Micro IC 180的一部分电极与第一部分RDL线路连接,以实现Micro IC 180和至少一个Micro LED芯片130通过RDL 221的电性连接;Micro IC 180的另一部分与第二部分RDL线路的其中一端连接,那么如果第二部分RDL线路的另一端引入了外部驱动信号,则驱动信号就可以被传输至Micro IC 180。
步骤S115,在RDL 220的下表面260制作焊盘270和焊球bump 330。
其中,其中焊盘270与第二部分RDL线路的另一端连接,因此焊盘270与Micro IC 180能够通过RDL电性连接,焊球bump 330则制作于焊盘270之上,便于焊盘270与驱动背板等外部器件连接。
该步骤完成之后,即得到了完整的Micro LED芯片封装模块,该模块可以通过焊球330与驱动背板或者显示器驱动集成电路(Display driver IC,DDIC)等模组或者驱动系统进行机械与电性连接,以得到完整的显示屏。
该Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC 180,然后再由Micro IC 180根据驱动信号控制其连接的至少一个Micro LED芯片130的工作状态,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的I/O焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
根据图21的方法制作的Micro LED芯片封装模块也可以增加如图8-11所示的结构,以实现相应的特性,因篇幅所限,此处不再赘述。
本申请实施例还提供了一种LED芯片封装模块,该LED芯片封装模块可以使用本申请实施例如图21示出的方法得到,也可以使用其他的制作方法得到。
图23是本申请实施例的LED芯片封装模块的另一种结构示意图。如图24所示,该LED芯片封装模块包括RDL 220、多个Micro LED芯片130、至少一个Micro IC180、透明封装层210。
其中,上述多个Micro LED芯片130分布设置于RDL 220的上表面320,每个Micro LED芯片130设置有至少一个面向RDL 220的上表面320并且与RDL 220连接的电极140;上述至少一个Micro IC 180分布设置于RDL 220的下表面260,每个Micro IC 180设置有至少一个面向RDL 220的下表面260并且与RDL 220连接的电极230,并且每个Micro IC 180与至少一个Micro LED芯片130通过RDL 220建立电性连接。透明封装层210涂布于RDL 220的上表面320,透明封装层210在垂直于RDL 220的上表面320方向上的厚度大于或者等于Micro LED芯片130在垂直于RDL 220的上表面320方向上的厚度,使得透明封装层210能够覆盖上述Micro LED芯片130,透明封装层210通过抛光还可以形成与RDL 220平行的封装平面240。RDL 220的下表面260还设置有至少一个焊盘270,每个焊盘270与至少一个Micro IC 180通过RDL 220建立电性连接。每个焊盘270还可以制作焊球bump 330,以利于将RDL 220的焊盘270与显示屏的驱动背板之上的焊盘焊接在一起,使得LED芯片封装模块与驱动背板实现机械和电性连接。
进一步如图23所示,RDL221包括绝缘平坦层221以及分布于绝缘平坦层221内的多条RDL线路。为便于描述,这里根据RDL线路的走向及其连接的器件不同将RDL线路分为第一RDL线路222和第二RDL线路223,将第一RDL线路222的两端分别称作第一端2221和第二端2222,将第二RDL线路223的两端分别称作第三端2231和第四端2232。其中,第一RDL线路222的第一端2221位于RDL 220的上表面320,第一RDL线路222的第二端2222位于RDL 220的下表面360,第二RDL线路223的第三端2231和第四端2232均位于RDL 220的下表面260。第二RDL线路223的第四端2232可以设置有焊盘,以便于与其他器件电性连接。第一RDL线路222的第一端2221用于与Micro LED芯片130的电极140连接,每一条第一RDL线路222可以具有至少一个第一端2221,用于与至少一个Micro LED芯片130的电极140连接。第一RDL线路222的第二端2222用于与Micro IC 180的电极230连接,每个Micro IC 180的电极230可以与至少一条第一RDL线路222的第二端2222连接。第二RDL线路223的第三端2231用于与Micro IC 180的电极230连接,每一条第二RDL线路223的第三端2231可以与至少一个Micro IC 180的电极230连接。第一RDL线路222的第二端2222与第二RDL线路223的第三端2231连接的电极230不同。第二RDL线路223的第四端2232在其焊盘270之上设置有焊球330,以便于与外部器件连接,接收外部驱动信号。
本申请实施例提供的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号首先控制Micro IC 180,然后再由Micro IC 180根据驱动信号控制其连接的至少一个Micro LED芯片130的工作状态,由此可以减少Micro LED芯片封装模块与驱动背板等外部器件之间的I/O焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
本申请实施例中,Micro LED芯片130可以形成标准RGB排列、pentile排列、RGB-Delta排列、以及如图17-图20示出的排列方式或者其他排列方式,此处不再赘述。
本申请实施例还提供了另一种LED芯片的封装方法,如图24所示,该方法包括与图21 相同的步骤S101-步骤S104、步骤S110-步骤S112,以及:
步骤S116,在第一平面250制作RDL 220。
RDL 220包括绝缘平坦层以及分布于绝缘平坦层内的多条RDL线路,每条RDL线路的一端与至少一个Micro LED芯片的电极140连接,另一端裸露在下表面260。
步骤S117,在下表面260制作与RDL线路连接的焊盘270。
其中,每个焊盘270可以与一条或者多条RDL线路连接。当每个焊盘连接多条RDL线路时,根据每个焊盘270连接的RDL线路的在下表面260裸露的位置不同,焊盘270可以是不规则的形状。
该步骤完成之后,即得到了完整的Micro LED芯片封装模块,该模块可以通过焊盘270与其他驱动背板或者显示器驱动集成电路(Display driver IC,DDIC)等模组或者驱动系统进行机械与电性连接,以得到完整的显示屏。
该Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号直接通过焊盘270和RDL 220发送给至少一个Micro LED芯片130,实现一路驱动信号控制一个或者多个Micro LED芯片130,由此可以减少封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
本申请实施例还提供了一种LED芯片封装模块,该LED芯片封装模块可以使用本申请实施例如图24示出的方法得到,也可以使用其他的制作方法得到。
图25是本申请实施例的LED芯片封装模块的另一种结构示意图。如图25所示,该LED芯片封装模块包括RDL 220、多个Micro LED芯片130、透明封装层210。
其中,上述多个Micro LED芯片130分布设置于RDL 220的上表面320,每个Micro LED芯片130设置有至少一个面向RDL 220的上表面320并且与RDL 220连接的电极140;透明封装层210涂布于RDL 220的上表面320,透明封装层210在垂直于RDL 220的上表面320方向上的厚度大于或者等于Micro LED芯片130在垂直于RDL 220的上表面320方向上的厚度,使得透明封装层210能够覆盖上述Micro LED芯片130,透明封装层210通过抛光还可以形成与RDL 220平行的封装平面240。RDL 220的下表面260还设置有至少一个焊盘270,每个焊盘270与至少一个Micro LED芯片130通过RDL 220建立电性连接。上述至少一个焊盘270可以与显示屏的驱动背板300之上的焊盘340焊接在一起,使得LED芯片封装模块与驱动背板实现机械和电性连接。
图26是LED芯片封装模块的焊盘与RDL线路的示例图。如图26所示,当一个像素包含三个Micro LED芯片,每个Micro LED芯片包含一个p型欧姆电极和一个n型欧姆电极时,其对应的焊盘270的数量可以为4个。其中,每个Micro LED芯片的p型欧姆电极可以分别对应一个焊盘270,每一个p型欧姆电极与其对应的焊盘270分别通过一条RDL线路224连接。除此之外,另外一个焊盘270可以额外通过一条RDL线路225与三个Micro LED芯片的三个n型欧姆电极连接。由此一个像素对外仅需要四个焊盘270,而如果使用图1示出的方法,一个像素对外则需要有六个焊盘,可见本申请实施例提供的LED芯片封装模块能够减少对外I/O焊盘的数量。另外,由于LED芯片封装模块对外的I/O焊盘的数量减少,因此在LED芯片封装模块尺寸不变的情况下,可以放大焊盘270的尺寸,以及放大驱动背板300之上的与焊盘270对位的焊盘340的尺寸(如图25),进而降低LED芯片封装模块与驱动背 板300之间的绑定难度,提高产品良率。
本申请实施例提供的Micro LED芯片封装模块被外部驱动信号驱动时,驱动信号直接通过焊盘270和RDL 220发送给至少一个Micro LED芯片130,实现一路驱动信号控制一个或者多个Micro LED芯片130,由此可以减少封装模块与驱动背板等外部器件之间的焊盘的数量,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。
本申请实施例中,Micro LED芯片130可以形成标准RGB排列、pentile排列、RGB-Delta排列、以及如图17-图20示出的排列方式或者其他排列方式,此处不再赘述。
可以理解的是,基于本申请提供的LED芯片封装模块的各个实施例,如图12、图23和图25所示出的结构中的其中两种结构或者三种结构也可以同时出现在一个LED芯片封装模块中,因篇幅限制,本申请实施例中对此不做进一步的展开说明。
本申请实施例还提供了一种Micro LED显示屏,如图27所示,该显示屏可以包括驱动背板300、DDIC 400和至少一个本申请前述各实施例提供的LED芯片封装模块200。
其中,驱动背板300例如可以是玻璃背板、薄膜基板、塑料背板、TFT背板等。相应地,DDIC 400可以采用塑料基板覆晶封装技术(chip on plastic,COP)、薄膜覆晶封装技术(chip on film,COF)或者玻璃基板封装技术(chip on glass,COG)等封装技术封装于驱动背板300之上。
驱动背板300之上设置有多个焊盘340,这些焊盘340与LED芯片封装模块200的焊盘270的位置一一对应。LED芯片封装模块200和驱动背板300可以采用SMT等封装技术封装在一起,使得驱动背板300之上的焊盘340与LED芯片封装模块200的焊盘270一一对应的焊接在一起,形成电性和机械连接。驱动背板300之上的焊盘340还通过线路连接至DDIC 400,使得DDIC 400的驱动信号能够送达至LED芯片封装模块200。
在一个实施例中,Micro LED显示屏可以仅包括一个LED芯片封装模块200,这类显示屏例如可以应用于具有较小尺寸显示屏的电子设备中,如:智能手环、智能手表等。在这种情况下,驱动背板300的焊盘340的数量可以与一块LED芯片封装模块200的焊盘270的数量相同,或者焊盘340的数量也可以不少于一块LED芯片封装模块200的焊盘270的数量。
根据本申请实施例的技术方案,当Micro LED显示屏包括一个LED芯片封装模块200,并且这个LED芯片封装模块200包含X(列)×Y(行)个像素时,LED芯片封装模块200对外焊盘270的数量范围可以在X+Y至X×Y×Z之间,其中,Z为每个像素对外的I/O数量。相应地,驱动背板300的焊盘340的数量也可以在X+Y至X×Y×Z之间。
示例地,当DDIC 400利用扫描线scan line及数据线data line架构驱动LED芯片封装模块200中的各个像素时,LED芯片封装模块200对外焊盘270的数量可以仅为X+Y+M个,其中M为少数必要的时钟信号clock和接地信号ground对应等焊盘。相应地,驱动背板的焊盘340的数量也可以为X+Y+M个。
在一个实施例中,Micro LED显示屏可以仅包括多块LED芯片封装模块200,多块LED芯片封装模块200在驱动背板300之上拼接成完成的显示区域,这类显示屏例如可以应用在具有较小尺寸以及大尺寸的电子设备中,如:智能手环、智能手表、手机、平板电脑、电子阅读器、电视机、显示器、虚拟/混合/增强现实设备等。在这种情况下,驱动背板300的焊盘340的数量可以与上述多块LED芯片封装模块200的焊盘270的总数量相同,或者焊盘340 的数量也可以不少于上述多块LED芯片封装模块200的焊盘270的总数量。
根据本申请实施例的技术方案,当Micro LED显示屏包括K个LED芯片封装模块200,并且每个LED芯片封装模块200包含X(列)×Y(行)个像素时,K个LED芯片封装模块200对外焊盘270的总数量范围可以在(X+Y)×K至X×Y×Z×K之间,其中,其中,Z为每个像素对外的I/O数量。相应地,驱动背板300的焊盘340的数量也可以在(X+Y)×K至X×Y×Z×K之间。
示例地,当DDIC 400利用扫描线scan line及数据线data line架构驱动LED芯片封装模块200中的各个像素时,每一个LED芯片封装模块200对外的焊盘270的数量可以仅为X+Y+M个,其中M为少数必要的时钟信号clock和接地信号ground对应等焊盘。相应地,驱动背板300的焊盘340的数量也可以为(X+Y+M)×K个。
进一步如图28所示,需要补充说明的是,在相邻两个LED芯片封装模块200进行拼接时,为避免两个LED芯片封装模块200之间的拼接间隙或偏移被用户察觉,相邻两个LED芯片封装模块200间的相邻两个Micro LED像素的间距Y1可以在一定的范围内,优选介于LED芯片封装模块200内的像素间距Y0的0.5-2倍之间;并且相邻两个LED芯片封装模块200间的角度偏差Δθ小于一定的角度阈值,优选该阈值为5°,由此从用户观感上达到相邻两个LED芯片封装模块200无缝拼接的效果。
示例地,对于一般的显示屏而言,像素之间可以设置有black matrix或者其他的隔光结构,隔光结构的宽度构成了像素间距的一部分。然而,当两个LED芯片封装模块200待拼接的边缘均为像素时,可以首先将两个LED芯片封装模块200拼接,然后再于拼接处制作隔光结构。那么,在拼接时,受对位公差等因素的影响,其中一个LED芯片封装模块200最边缘的芯片(Micro LED芯片或者Micro IC)与另一个LED芯片封装模块200最边缘的芯片(Micro IC或者Micro LED芯片)之间的距离可能会小于隔光结构的宽度。这时,模块拼接处相邻两个Micro LED像素的间距就会小于LED芯片封装模块200内的像素间距。
示例地,对于像素密度为300ppi(pixels per inch,每英寸像素)的显示屏而言,像素间距可以为80μm,如果Micro LED芯片的尺寸为10μm,RGB芯片之间的间距为5μm,则可以推算出一个像素最右侧的发红光的Micro LED芯片与隔壁像素最左侧的发蓝光的Micro LED芯片之间的距离为30μm,因此,只要两个LED芯片封装模块200待拼接的边缘不含隔光结构,并且拼接时的距离小于40μm,就能够使得模块拼接处相邻两个Micro LED像素的间距小于80μm,极限可以达到40μm。
本申请实施例还提供了一种电子设备,该电子设备包含本申请上述实施例提供的任意一种显示屏或者LED芯片封装模块。在一些实施例中,该电子设备可以包括:手机、平板电脑、智能手环、智能手表、电子阅读器、电视机、显示器、虚拟/混合/增强现实设备、带有显示屏智能家居设备(如:智能音箱、智能猫眼)、带有显示屏的家用电器设备(如:冰箱、空气净化器、洗衣机、热水器等)、带有显示屏的交通设备(例如:车辆的车机系统、自动驾驶平台、行车记录仪等)。
除此之外,本申请实施例提供的电子设备还可以包括处理器、存储器、电池、扬声器、听筒、摄像头等其他部件,此处不做具体限定。
本申请实施例提供的技术方案具有以下有益效果:
首先,本申请实施例提供的技术方案在制作LED芯片封装模块的过程中未使用微纳邦定制程,不需要在Micro LED芯片的电极之上制作micro bump,因此避免了由于micro bump 的焊锡材料扩散至欧姆金属层,而影响到器件特性的问题,有利于提升生产良率,同时也避免了微纳邦定制程自身的限制导致高PPI的LED芯片封装工艺难度较高的问题。此外,由于未使用微纳邦定制程,像素的总厚度得以降低,减小了像素的总厚度与像素间距离之间的深宽比,使得Micro LED芯片之间或者像素之间的光学或其他元件的体积化制程变得更容易,有利于提升生产良率。
另外,本申请实施例提供的技术方案与传统的微纳邦定制程工艺相比,LED芯片封装模块和驱动背板之上的I/O焊盘的数量明显减少,使得在同样的LED芯片封装模块和驱动背板尺寸下,每一个焊盘的尺寸可以更大,甚至远大于Micro LED芯片的尺寸,因此大幅降低LED芯片封装模块与驱动背板之间的邦定难度,有利于提高产品良率。示例地,假设LED芯片封装模块的每个像素包含三个Micro LED芯片,像素与像素之间的间距为0.1mm,如果一个模块包含100x100共10000个像素,那么整个模块的尺寸为10mmx10mm,并且共具有30000个Micro LED芯片;为了制作此模块,如果使用传统的微纳邦定制程,由于每个Micro LED芯片至少包含正、负极两个电极,因此10mmx10mm区域内需放置至少60000个焊盘,因此在使用扇形封装设计的情况下每一个焊盘的最大面积和直径将约为0.00167mm 2和0.04mm,尺寸很小,工艺难度很高。而如果采用本申请实施例提供的方法,以每个像素中的三个Micro LED芯片由一个Micro IC控制点亮的时间或强度为例,驱动背板的DDIC只需要与Micro IC进行I/O通信,例如以扫描的方式告诉每个Micro IC需控制Micro LED芯片点亮的颜色和亮度等,因此LED芯片封装模块仅需要设置用于与DDIC进行I/O通信的焊盘。DDIC传送给Micro IC的信号可编程,并且仅需满足特定的显示架构,如利用扫描线scan line及数据线data line架构依序操作LED芯片封装模块中每一组像素,则此时LED芯片封装模块所需的用于接收外部输入信号或电流的I/O将仅包括scan line对应的100个I/O、data line对应的100个I/O和少数必要的时钟信号clock和接地信号ground等,因此LED芯片封装模块整体上对外的焊盘可减少至300个以下,极限情况下可以达到200个焊盘,最多不超过100×100×Z个焊盘,其中,Z为每个像素对外的I/O数量。由此可见,在10mmx10mm的区域中,每一个焊盘的最大面积及直径可达到0.33mm 2和0.577mm,因此LED芯片封装模块对外焊盘的尺寸可远大于Micro LED芯片的尺寸,大幅降低LED芯片封装模块与驱动背板之间的邦定难度,甚至可以采用更简单的SMT工艺实现邦定。
另外,由于LED芯片封装模块中已含有可驱动少量Micro LED芯片的Micro IC,且Micro LED芯片的Micro IC之间通过RDL已经构成可驱动的回路,因此可以使用探针从LED芯片封装模块的I/O焊盘输入驱动信号以直接对LED芯片封装模块进行显示效果检测,以挑选出无缺陷或光电特性接近的LED芯片封装模块组合成显示屏,提升制程良率及利用率。
另外,LED芯片封装模块的Micro LED芯片通过透明封装层固定,每一个Micro LED芯片的电极所在表面都处于同一平面,使得所有Micro LED芯片的高度和倾斜角都可以保持一致,有利于提升显示屏的均匀度。

Claims (49)

  1. 一种LED芯片封装模块,其特征在于,包括:
    重布线层RDL,所述RDL的下表面设置有多个第一焊盘;
    设置于所述RDL的上表面的微发光二极管Micro LED芯片,所述Micro LED芯片的电极面向所述RDL并且与所述RDL连接;
    设置于所述RDL的上表面和/或下表面的微集成电路Micro IC,所述Micro IC的电极面向所述RDL并且与所述RDL连接;
    其中,所述第一焊盘通过所述RDL与所述Micro IC电性连接,所述Micro IC通过所述RDL与所述Micro LED芯片电性连接,所述第一焊盘用于接收外部驱动信号,所述Micro IC用于根据所述外部驱动信号控制与其电性连接的所述Micro LED芯片的工作状态。
  2. 根据权利要求1所述的LED芯片封装模块,其特征在于,
    所述Micro LED芯片组成多个像素,每个所述像素包括至少一个所述Micro LED芯片。
  3. 根据权利要求2所述的LED芯片封装模块,其特征在于,
    每个所述像素对应一个所述Micro IC,所述Micro IC与其对应的所述像素相邻设置,所述Micro IC通过所述RDL与其对应的所述像素内的所述Micro LED芯片电性连接。
  4. 根据权利要求2或3所述的LED芯片封装模块,其特征在于,
    多个所述像素对应一个所述Micro IC,所述Micro IC设置在其对应的多个所述像素之间,所述Micro IC通过所述RDL与其对应的多个所述像素内的所述Micro LED芯片电性连接。
  5. 根据权利要求1-4任一项所述的LED芯片封装模块,其特征在于,
    当所述Micro IC位于所述RDL的上表面时,所述Micro IC的电极与所述Micro LED芯片的电极位于所述同一平面内。
  6. 根据权利要求2-4任一项所述的LED芯片封装模块,其特征在于,还包括:
    设置于所述RDL的上表面的隔光结构,所述隔光结构分布于相邻的所述像素之间,和/或者,所述隔光结构分布于相邻的所述Micro LED芯片之间。
  7. 根据权利要求2-5任一项所述的LED芯片封装模块,其特征在于,还包括:
    设置于所述RDL的上表面的透明封装层,所述透明封装层覆盖在所述Micro LED芯片和/或所述Micro IC的表面。
  8. 根据权利要求7所述的LED芯片封装模块,其特征在于,所述透明封装层在远离所述RDL的一侧包括与所述RDL的上表面平行的封装平面,所述封装平面设置有微纳结构。
  9. 根据权利要求2-8任一项所述的LED芯片封装模块,其特征在于,还包括:
    色彩转换材料,所述色彩转换材料涂布于部分或者全部的所述Micro LED芯片的表面,用于将所述Micro LED芯片发出的色光转换成其他颜色。
  10. 根据权利要求2-9任一项所述的LED芯片封装模块,其特征在于,
    所述像素包括N个主用Micro LED芯片,以及与N个所述主用Micro LED芯片一一对应的N个备用Micro LED芯片,所述备用Micro LED芯片用于在其对应的所述主用Micro LED芯片失效时,代替其对应的所述主用Micro LED芯片工作,N为正整数。
  11. 根据权利要求2-9任一项所述的LED芯片封装模块,其特征在于,
    所述像素包括N个主用Micro LED芯片,以及一个备用Micro LED芯片,所述备用Micro LED芯片用于在任意一个所述主用Micro LED芯片失效时,代替失效的所述主用Micro LED 芯片工作,N为正整数。
  12. 根据权利要求2-9任一项所述的LED芯片封装模块,其特征在于,
    所述像素包括N个主用Micro LED芯片,相邻两个所述像素之间还包括一个备用Micro LED芯片,所述备用Micro LED芯片用于在相邻两个所述像素中的任意一个所述主用Micro LED芯片失效时,代替失效的所述主用Micro LED芯片工作,N为正整数。
  13. 根据权利要求2-12任一项所述的LED芯片封装模块,其特征在于,当所述Micro LED芯片发出的光线至外部环境不通过所述RDL时,所述RDL的绝缘平坦层为不透明材料。
  14. 根据权利要求2-12任一项所述的LED芯片封装模块,其特征在于,当所述Micro LED芯片发出的光线至外部环境通过所述RDL时,所述RDL的绝缘平坦层为透明材料。
  15. 一种LED芯片封装模块,其特征在于,包括:
    重布线层RDL,所述RDL的下表面设置有多个第一焊盘;
    设置于所述RDL的上表面的微发光二极管Micro LED芯片,所述Micro LED芯片的电极面向所述RDL并且与所述RDL连接;
    其中,所述第一焊盘通过所述RDL与所述Micro LED芯片电性连接,所述第一焊盘用于接收外部驱动信号,所述外部驱动信号用于控制所述Micro LED芯片的工作状态。
  16. 根据权利要求15所述的芯片封装模块,其特征在于,
    所述Micro LED芯片组成多个像素,每个所述像素包括至少一个所述Micro LED芯片。
  17. 根据权利要求16所述的芯片封装模块,其特征在于,
    每个所述第一焊盘通过所述RDL与至少一个所述像素的所述Micro LED芯片电性连接。
  18. 根据权利要求16或17所述的芯片封装模块,其特征在于,还包括:
    设置于所述RDL的上表面的隔光结构,所述隔光结构分布于相邻的所述像素之间,和/或者,所述隔光结构分布于相邻的所述Micro LED芯片之间。
  19. 根据权利要求15-18任一项所述的芯片封装模块,其特征在于,还包括:
    设置于所述RDL的上表面的透明封装层,所述透明封装层覆盖在所述Micro LED芯片的表面。
  20. 根据权利要求19所述的芯片封装模块,其特征在于,所述透明封装层在远离所述RDL的一侧包括与所述RDL的上表面平行的封装平面,所述封装平面设置有微纳结构。
  21. 一种LED芯片的封装方法,其特征在于,包括:
    将Micro LED芯片和Micro IC可分离地排布在第一基板上,所述Micro LED芯片的电极和所述Micro IC的电极面向于所述第一基板放置;
    在所述Micro LED芯片、所述Micro IC和所述第一基板表面涂布透明封装层;
    待所述透明封装层固化之后,移除所述第一基板,以使所述透明封装层形成露出所述Micro LED芯片的电极和所述Micro IC的电极的第一平面;
    在所述第一平面制作RDL,所述Micro IC通过所述RDL与所述Micro LED电性连接;
    在所述RDL的背对于所述透明封装层的下表面制作第一焊盘,所述第一焊盘通过所述RDL与所述Micro IC电性连接,所述第一焊盘用于接收所述外部驱动信号,所述Micro IC用于根据所述外部驱动信号控制与其电性连接的所述Micro LED芯片的工作状态。
  22. 根据权利要求21所述的方法,其特征在于,所述将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:将多个所述Micro LED芯片在所述第一基板上排布组成多个像素,每个所述像素包括至少一个所述Micro LED芯片,每个所述像素的一侧相邻设置一 个所述Micro IC。
  23. 根据权利要求22所述的方法,其特征在于,所述RDL将每个所述像素内的所述Micro LED芯片与其相邻的所述Micro IC电性连接。
  24. 根据权利要求21所述的方法,其特征在于,所述将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:将多个所述Micro LED芯片在所述第一基板上排布组成多个像素,每个所述像素包括至少一个所述Micro LED芯片,并且将至少一个所述Micro IC分布在多个所述像素之间。
  25. 根据权利要求24所述的方法,其特征在于,所述RDL将每个所述Micro IC与至少一个所述像素内的所述Micro LED芯片电性连接。
  26. 根据权利要求22-25任一项所述的方法,其特征在于,所述在所述Micro LED芯片、所述Micro IC和所述第一基板表面涂布透明封装层之前,还包括:在所述第一基板表面制作隔光结构。
  27. 根据权利要求26所述的方法,其特征在于,所述隔光结构设置于相邻的所述像素之间。
  28. 根据权利要求26所述的方法,其特征在于,所述隔光结构设置于相邻的所述Micro LED芯片之间。
  29. 根据权利要求22-25任一项所述的方法,其特征在于,所述在所述Micro LED芯片、所述Micro IC和所述第一基板表面涂布透明封装层之前,还包括:在部分或者全部的所述Micro LED芯片的表面涂布色彩转换材料,所述色彩转换材料用于将所述Micro LED芯片发出的色光转换成其他颜色。
  30. 根据权利要求21-29任一项所述的方法,其特征在于,所述在所述Micro LED芯片、所述Micro IC和所述第一基板表面涂布透明封装层之后,还包括:
    在所述透明封装层的远离所述第一基板的一侧抛光形成与所述第一基板平行的封装平面;
    在所述封装平面制作微纳结构。
  31. 根据权利要求21-30任一项所述的方法,其特征在于,所述第一基板的表面设置有第一黏着层,所述第一黏着层用于可分离地放置所述Micro LED芯片和所述Micro IC。
  32. 根据权利要求21-31任一项所述的方法,其特征在于,所述将Micro LED芯片和Micro IC可分离地排布在第一基板上之前,还包括:
    在衬底表面生长Micro LED外延片结构;
    利用标准半导体制程将所述外延片结构制作成多个所述Micro LED芯片;
    将所述衬底及其之上的所述Micro LED芯片整体翻转后可分离地放置于第二基板之上;
    移除所述衬底。
  33. 根据权利要求32所述的方法,其特征在于,所述第二基板的表面设置有第二黏着层,所述第二黏着层用于可分离地放置所述Micro LED芯片。
  34. 根据权利要求32或33所述的方法,其特征在于,所述将Micro LED芯片和Micro IC可分离地排布在第一基板上,包括:从所述第二基板上一次性粘取多个所述Micro LED芯片,将粘取的所述Micro LED芯片放置于所述第一基板上,以及,从可分离地放置有所述Micro IC的第三基板上一次性粘取至少一个所述Micro IC,将粘取的所述Micro IC放置于所述第一基板上。
  35. 一种LED芯片的封装方法,其特征在于,包括:
    将Micro LED芯片可分离地排布在第一基板上,所述Micro LED芯片的电极面向于所述第一基板放置;
    在所述Micro LED芯片和所述第一基板表面涂布透明封装层;
    待所述透明封装层固化之后,移除所述第一基板,以使所述透明封装层形成露出所述Micro LED芯片的电极的第一平面;
    在所述第一平面制作RDL,以及将所述Micro IC安装在所述RDL的背对于所述透明封装层的下表面,所述Micro IC的电极面向于所述RDL设置,所述Micro IC通过所述RDL与所述Micro LED电性连接;
    在所述RDL的下表面制作第一焊盘,所述第一焊盘通过所述RDL与所述Micro IC电性连接,所述第一焊盘用于接收外部驱动信号,所述Micro IC用于根据所述外部驱动信号控制与其电性连接的所述Micro LED芯片的工作状态。
  36. 根据权利要求35所述的方法,其特征在于,多个所述Micro LED芯片在所述第一基板上排布组成多个像素,每个所述像素包括至少一个所述Micro LED芯片。
  37. 根据权利要求36所述的方法,其特征在于,所述RDL将每个所述Micro IC与至少一个所述像素内的所述Micro LED芯片电性连接。
  38. 根据权利要求35-37任一项所述的方法,其特征在于,所述在所述Micro LED芯片和所述第一基板表面涂布透明封装层,还包括:在所述第一基板表面制作隔光结构。
  39. 根据权利要求38所述的方法,其特征在于,所述隔光结构设置于相邻的所述像素之间。
  40. 根据权利要求38所述的方法,其特征在于,所述隔光结构设置于相邻的所述Micro LED芯片之间。
  41. 根据权利要求35-40任一项所述的方法,其特征在于,所述在所述Micro LED芯片和所述第一基板表面涂布透明封装层之后,还包括:
    在所述透明封装层的远离所述第一基板的一侧抛光形成与所述第一基板平行的封装平面;
    在所述封装平面制作微纳结构。
  42. 一种LED芯片的封装方法,其特征在于,包括:
    将Micro LED芯片可分离地排布在第一基板上,所述Micro LED芯片的电极面向于所述第一基板放置;
    在所述Micro LED芯片和所述第一基板表面涂布透明封装层;
    待所述透明封装层固化之后,移除所述第一基板,以使所述透明封装层形成露出所述Micro LED芯片的电极的第一平面;
    在所述第一平面制作RDL,以及在所述RDL的背对于所述透明封装层的下表面制作与第一焊盘,所述第一焊盘通过所述RDL与Micro LED芯片电性连接所述第一焊盘用于接收外部驱动信号,所述外部驱动信号用于控制与其电性连接的所述Micro LED芯片的工作状态。
  43. 根据权利要求42所述的方法,其特征在于,多个所述Micro LED芯片在所述第一基板上排布组成多个像素,每个所述像素包括至少一个所述Micro LED芯片。
  44. 根据权利要求42或43所述的方法,其特征在于,所述在所述Micro LED芯片和所述第一基板表面涂布透明封装层,还包括:在所述第一基板表面制作隔光结构。
  45. 根据权利要求44所述的方法,其特征在于,所述隔光结构设置于相邻的所述像素之间。
  46. 根据权利要求44所述的方法,其特征在于,所述隔光结构设置于相邻的所述Micro LED芯片之间。
  47. 根据权利要求42-46任一项所述的方法,其特征在于,所述在所述Micro LED芯片和所述第一基板表面涂布透明封装层之后,还包括:
    在所述透明封装层的远离所述第一基板的一侧抛光形成与所述第一基板平行的封装平面;
    在所述封装平面制作微纳结构。
  48. 一种显示屏,其特征在于,包括:驱动背板、用于产生外部驱动信号的显示器驱动集成电路DDIC,以及至少一个如权利要求1-20任一项所述的LED芯片封装模块;
    所述DDIC和至少一个所述LED芯片封装模块设置于所述驱动背板之上;
    所述驱动背板包括与至少一个所述LED芯片封装模块的第一焊盘位置相对应的第二焊盘,所述第二焊盘通过线路连接至所述DDIC;
    所述第一焊盘用于所述LED芯片封装模块接收所述外部驱动信号,所述第一焊盘与所述第二焊盘焊接连接。
  49. 一种电子设备,其特征在于,包括权利要求48所述的显示屏。
PCT/CN2021/096807 2020-07-28 2021-05-28 Led芯片封装模块、显示屏及其制作方法 WO2022022044A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21851582.3A EP4181200A4 (en) 2020-07-28 2021-05-28 LED CHIP PACKAGING MODULE, AND DISPLAY SCREEN AND MANUFACTURING METHOD THEREFOR
US18/158,514 US20230163111A1 (en) 2020-07-28 2023-01-24 Led chip packaging module, fabrication method thereof, and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010736548.8 2020-07-28
CN202010736548.8A CN111933630A (zh) 2020-07-28 2020-07-28 Led芯片封装模块、显示屏及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,514 Continuation US20230163111A1 (en) 2020-07-28 2023-01-24 Led chip packaging module, fabrication method thereof, and display

Publications (1)

Publication Number Publication Date
WO2022022044A1 true WO2022022044A1 (zh) 2022-02-03

Family

ID=73315803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096807 WO2022022044A1 (zh) 2020-07-28 2021-05-28 Led芯片封装模块、显示屏及其制作方法

Country Status (4)

Country Link
US (1) US20230163111A1 (zh)
EP (1) EP4181200A4 (zh)
CN (1) CN111933630A (zh)
WO (1) WO2022022044A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933630A (zh) * 2020-07-28 2020-11-13 华为技术有限公司 Led芯片封装模块、显示屏及其制作方法
CN112864146B (zh) * 2021-01-05 2023-04-18 錼创显示科技股份有限公司 半导体结构、显示面板及电子元件模块的制造方法
TWI747697B (zh) 2021-01-05 2021-11-21 錼創顯示科技股份有限公司 半導體結構、顯示面板及電子元件模組的製造方法
EP4199095A4 (en) 2021-02-04 2024-04-24 Samsung Electronics Co., Ltd. DISPLAY DEVICE AND METHOD FOR MANUFACTURING SAME
CN113035765B (zh) * 2021-02-22 2024-06-25 京东方科技集团股份有限公司 芯片转移方法及装置、显示基板及显示装置
CN113284883A (zh) * 2021-03-31 2021-08-20 华为技术有限公司 显示模组及电子设备
CN113611787B (zh) * 2021-08-02 2023-03-14 东莞市中麒光电技术有限公司 芯片转移结构及Micro LED显示模块返修方法
CN113764546A (zh) * 2021-08-30 2021-12-07 东莞市中麒光电技术有限公司 一种Mini-LED器件、LED显示模块及其制作方法
CN113782553A (zh) * 2021-09-01 2021-12-10 吉安市木林森显示器件有限公司 巨量转移Micro LED模块、显示屏及制造方法
US20230104979A1 (en) * 2021-10-05 2023-04-06 Prilit Optronics, Inc. Micro-light-emitting diode display panel
CN118053865A (zh) * 2022-11-10 2024-05-17 华为技术有限公司 电子设备及其制作方法
CN116995157B (zh) * 2023-09-25 2024-01-02 苏州芯聚半导体有限公司 微led芯片封装结构的制作方法和封装结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793795A (zh) * 2013-12-17 2016-07-20 勒克斯维科技公司 显示模块和系统应用
CN109314105A (zh) * 2017-01-02 2019-02-05 株式会社流明斯 Led显示装置
US20190096864A1 (en) * 2015-09-24 2019-03-28 Apple Inc. Display with embedded pixel driver chips
KR20190035319A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 발광 칩들을 포함하는 디스플레이 및 그 제조 방법
CN111028697A (zh) * 2018-10-09 2020-04-17 财团法人工业技术研究院 拼接显示装置
CN210403726U (zh) * 2019-09-18 2020-04-24 厦门三安光电有限公司 发光二极管封装组件
CN111933630A (zh) * 2020-07-28 2020-11-13 华为技术有限公司 Led芯片封装模块、显示屏及其制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477592B (zh) * 2015-01-29 2023-10-10 索尼半导体解决方案公司 显示装置
US10153257B2 (en) * 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
KR102631260B1 (ko) * 2016-04-08 2024-01-31 삼성디스플레이 주식회사 표시장치 및 표시장치 제조방법
US10333623B1 (en) * 2018-06-25 2019-06-25 Taiwan Semiconductor Manufacturing Co., Ltd. Optical transceiver
TWI680593B (zh) * 2018-10-12 2019-12-21 欣興電子股份有限公司 發光元件封裝結構及其製造方法
KR102622421B1 (ko) * 2018-12-31 2024-01-05 엘지디스플레이 주식회사 발광 다이오드 디스플레이 장치 및 이를 이용한 멀티 스크린 디스플레이 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105793795A (zh) * 2013-12-17 2016-07-20 勒克斯维科技公司 显示模块和系统应用
US20190096864A1 (en) * 2015-09-24 2019-03-28 Apple Inc. Display with embedded pixel driver chips
CN109314105A (zh) * 2017-01-02 2019-02-05 株式会社流明斯 Led显示装置
KR20190035319A (ko) * 2017-09-26 2019-04-03 삼성전자주식회사 발광 칩들을 포함하는 디스플레이 및 그 제조 방법
CN111028697A (zh) * 2018-10-09 2020-04-17 财团法人工业技术研究院 拼接显示装置
CN210403726U (zh) * 2019-09-18 2020-04-24 厦门三安光电有限公司 发光二极管封装组件
CN111933630A (zh) * 2020-07-28 2020-11-13 华为技术有限公司 Led芯片封装模块、显示屏及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4181200A4

Also Published As

Publication number Publication date
CN111933630A (zh) 2020-11-13
EP4181200A1 (en) 2023-05-17
EP4181200A4 (en) 2024-01-10
US20230163111A1 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
WO2022022044A1 (zh) Led芯片封装模块、显示屏及其制作方法
JP7170809B2 (ja) 発光装置
EP3422827B1 (en) Display device and method for fabricating the same
US10886257B2 (en) Micro LED display device and method for manufacturing same
KR102675598B1 (ko) 발광 소자 및 이를 이용한 표시 장치
JP2023088953A (ja) シリコン上のカラーiledディスプレイ
US10403613B2 (en) Micro LED display module having light transmissive substrate
US10403614B2 (en) Micro LED display module
KR102527303B1 (ko) 발광 표시 장치
KR102616407B1 (ko) 발광 소자 및 이를 이용한 표시 장치
KR101888857B1 (ko) 발광 소자 및 이를 이용한 표시 장치
US20180358343A1 (en) Manufacturing method of micro led display module
KR20210078766A (ko) 마이크로 엘이디 표시 장치 및 이의 제조방법
KR101895600B1 (ko) 표시 장치 및 이의 제조방법
JP2022088340A (ja) Ledの転写方法及びそれを用いた表示装置の製造方法
US20220416127A1 (en) Display apparatus using semiconductor light emitting device and method for manufacturing same
CN215988763U (zh) 一种Micro LED显示屏模块
TWI771248B (zh) 顯示面板
KR20240093420A (ko) 발광 소자 및 이를 이용한 표시 장치
US20180358507A1 (en) Manufacturing method of micro led display module
CN118263235A (zh) 发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021851582

Country of ref document: EP

Effective date: 20230213

NENP Non-entry into the national phase

Ref country code: DE