WO2018119703A1 - 显示面板的制造方法 - Google Patents

显示面板的制造方法 Download PDF

Info

Publication number
WO2018119703A1
WO2018119703A1 PCT/CN2016/112470 CN2016112470W WO2018119703A1 WO 2018119703 A1 WO2018119703 A1 WO 2018119703A1 CN 2016112470 W CN2016112470 W CN 2016112470W WO 2018119703 A1 WO2018119703 A1 WO 2018119703A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
glass substrate
flexible substrate
display panel
flexible
Prior art date
Application number
PCT/CN2016/112470
Other languages
English (en)
French (fr)
Inventor
唐岳军
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/327,989 priority Critical patent/US10175514B2/en
Publication of WO2018119703A1 publication Critical patent/WO2018119703A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/851Division of substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to the field of display panel manufacturing technology, and in particular to a method for manufacturing a display panel, and more particularly to a method for manufacturing a liquid crystal display panel and an organic electroluminescence display panel.
  • a glass substrate In flat panel displays, a glass substrate is generally used as a carrier for carrying other display elements, and in a flat panel display, the glass substrate is the component having the largest weight ratio.
  • the most effective method is to reduce the thickness and weight of the glass substrate. The thinner the glass, the more flexible it is, so the thin glass substrate during production is highly prone to drooping and warping.
  • the method for reducing the thickness and weight of the glass substrate comprises: first, reducing the thickness and weight of the glass substrate by etching the glass substrate; 2. directly using the thin and light glass substrate. In the first method, after the display panel is assembled, an additional glass etching process is performed to reduce the thickness and weight of the glass substrate.
  • the disadvantage of this method is that failure occurs in the glass etching process, and the number is greatly increased. manufacturing cost.
  • even small impacts during loading and unloading can cause a light and thin glass substrate to warp rapidly during transportation of a thin glass substrate, thereby damaging the glass substrate.
  • an object of the present invention is to provide a method of manufacturing a display panel, the manufacturing method comprising the steps of: S1, providing a support substrate; S2, at the support base a glass substrate is disposed on the board; S3, a flexible substrate is disposed on the glass substrate; S4, a pad region is disposed on the flexible substrate; S5, a card forming process or a packaging process of the display panel is completed; S6, the support is peeled off a substrate; S7, cutting the glass substrate and the flexible substrate according to a predetermined display panel size, and peeling off the cut glass substrate and the flexible substrate.
  • the support substrate is made of glass, the support substrate has a thickness of between 0.5 mm and 1 mm; and the glass substrate has a thickness of between 0.05 mm and 0.4 mm.
  • the method of disposing the glass substrate on the support substrate specifically includes: attaching the support substrate and the glass substrate to each other in a vacuum state, or by using an adhesive The support substrate is adhered to the glass substrate.
  • the method of disposing the flexible substrate on the glass substrate comprises: coating a flexible material on the glass substrate by a coating process, and curing the flexible material, or The finished flexible substrate is attached to the glass substrate by an adhesive.
  • the specific method of peeling off the support substrate comprises: performing plasma treatment on the support substrate, or reducing the glass substrate by forming a protrusion pattern on the surface of the support substrate in advance
  • the adhesion force with the support substrate is peeled off by jetting air to a gap between the support substrate and the glass substrate by a predetermined air ejecting device.
  • the method of cutting the glass substrate and the flexible substrate according to a predetermined display panel size, and performing the method of peeling off the cut glass substrate and the flexible substrate comprises: according to a predetermined display panel Cutting the glass substrate by size, peeling off the glass substrate from the pad area of the flexible substrate, cutting the flexible substrate connected between two adjacent display panels; or cutting the glass substrate according to a predetermined display panel size, cutting two The flexible substrate connected between adjacent display panels respectively peels off the glass substrate of each display panel opposite to the pad region of the flexible substrate.
  • the method of peeling off the glass substrate specifically includes: when the flexible substrate and the glass substrate are adhered together by an adhesive, the adhesive can be irradiated by using a laser The flexible substrates are separated from each other or the adhesive agent and the glass substrate are separated from each other; or when the flexible substrate and the glass substrate are attached together by vacuum attachment, the vacuum paste can be attached Providing a release film layer between the flexible substrate and the glass substrate to separate the glass substrate and the flexible substrate automatically, or separating the glass substrate and the flexible substrate by using excimer laser .
  • Another object of the present invention is to provide a method for manufacturing a liquid crystal display panel, the manufacturing method comprising the steps of: S1, providing a lower supporting substrate and an upper supporting substrate; S2, providing a lower glass substrate on the lower supporting substrate, And an upper glass substrate is disposed on the upper support substrate; S3, a lower flexible substrate is disposed on the lower glass substrate; S4, an array layer and a pad region are disposed on the lower flexible substrate, and the upper glass is a color resist layer is disposed on the substrate; S5, the upper support substrate and the lower support substrate are assembled to the cartridge, and a liquid crystal layer is filled between the color resist layer and the array layer; S6, the upper support substrate is peeled off And the lower support substrate; S7, cutting the upper glass substrate, the lower glass substrate and the flexible substrate according to a predetermined display panel size, and peeling off the cut lower glass substrate and the flexible substrate.
  • Still another object of the present invention is to provide a method of fabricating an organic electroluminescence display panel, the method comprising the steps of: S1, providing a lower support substrate; S2, providing a lower glass substrate on the lower support substrate; Providing a lower flexible substrate on the lower glass substrate; S4, providing an organic light emitting layer and a pad region on the lower flexible substrate; S5, providing an encapsulation layer on the organic light emitting layer; S6, peeling off the lower layer Supporting the substrate; S7, cutting the lower glass substrate and the flexible substrate according to a predetermined display panel size, and peeling off the cut lower glass substrate and the flexible substrate.
  • the step S7 specifically includes: cutting the lower glass substrate and/or the upper glass substrate according to a predetermined display panel size, Stripping the lower glass substrate opposite to the pad region of the lower flexible substrate, cutting the lower flexible substrate connected between two adjacent display panels; or cutting the glass substrate and/or the upper portion according to a predetermined display panel size
  • the glass substrate cuts the lower flexible substrate connected between the two adjacent display panels, and then peels off the lower glass substrate of each display panel opposite to the pad region of the lower flexible substrate.
  • the present invention provides a method for manufacturing a display panel by using a thin glass substrate.
  • a thin support substrate is used to support a thin glass substrate, which can avoid serious drooping (Drooping) And warping can avoid sagging and overall warpage at both ends of the thinner glass substrate, thereby improving the convenience and accuracy in the manufacturing process of the display panel.
  • Drooping serious drooping
  • warping can avoid sagging and overall warpage at both ends of the thinner glass substrate, thereby improving the convenience and accuracy in the manufacturing process of the display panel.
  • FIGS. 1A to 1G are process diagrams of a method of manufacturing a liquid crystal display panel according to a first embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a flexible substrate of a liquid crystal display panel manufactured by a method of manufacturing a liquid crystal display panel according to a first embodiment of the present invention
  • 3A to 3G are process diagrams of a method of fabricating an organic electroluminescence display panel according to a second embodiment of the present invention.
  • FIG. 4 is a schematic perspective view of a flexible substrate of an organic electroluminescence display panel manufactured by a method of manufacturing an organic electroluminescence display panel according to a second embodiment of the present invention.
  • FIGS. 1A to 1G are process diagrams of a method of fabricating a liquid crystal display panel according to a first embodiment of the present invention.
  • Step 1 Referring to FIG. 1A, a support substrate 11 and an upper support substrate 12 are provided.
  • the lower support substrate 11 and the upper support substrate 12 may be made of glass, ceramic or metal.
  • the lower support substrate 11 and the upper support substrate 12 have a thickness of between 0.5 mm and 1 mm.
  • the lower support substrate 11 and the upper support substrate 12 are preferably made of glass, and the thickness of the lower support substrate 11 and the upper support substrate 12 is preferably 0.7 mm.
  • Step 2 Referring to FIG. 1B, a glass substrate 13 is disposed on the lower supporting substrate 11, and correspondingly, an upper glass substrate 14 is disposed on the upper supporting substrate 12.
  • both the lower glass substrate 13 and the upper glass substrate 14 are relatively thin, and their thickness ranges from 0.05 mm to 0.4 mm, preferably between 0.1 mm and 0.15 mm.
  • Thinner glass substrates such as the lower glass substrate 13 and the upper glass substrate 14 are disposed on thicker support substrates such as the lower support substrate 11 and the upper support substrate 12, and a thicker support substrate can be used for thinner.
  • the glass substrate provides support to reduce sagging and overall warpage at both ends of the thinner glass substrate, thereby improving convenience and accuracy in the manufacturing process of the display panel.
  • the method of respectively providing the lower glass substrate 13 and the upper glass substrate 14 on the lower support substrate 11 and the upper support substrate 12 includes two types: one, by contacting the support substrate and the glass substrate with each other in a vacuum state. And attached together, in this case, the adhesion between the support substrate and the glass substrate is electrostatic force, vacuum force, surface tension, etc.; second, the support substrate and the substrate are adhered by an adhesive The glass substrates are adhered together.
  • Step 3 Referring to FIG. 1C, a foldable flexible substrate 15 is disposed on the lower glass substrate 13.
  • the flexible substrate 15 may be made of polyimide (PI), polycarbonate (PC), polyether sulfone (PES), polyethylene terephthalate (PET), polyethylene naphthalate. Formation of one or more of (PEN), polyarylate (PAR) or glass fiber reinforced plastic (FRP) polymer materials.
  • PI polyimide
  • PC polycarbonate
  • PES polyether sulfone
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyarylate
  • FRP glass fiber reinforced plastic
  • the arrangement of the flexible substrate 15 can be divided into two ways:
  • Method 1 Coating a flexible material (ie, a material for forming the flexible substrate 15 described above) on a lower glass substrate 13 by a coating process such as spin coating, slit coating, inkjet coating, etc., and applying the coated flexible material Cured.
  • a coating process such as spin coating, slit coating, inkjet coating, etc.
  • the flexible substrate 15 which has been made of a flexible material is attached to the lower glass substrate 13 by an adhesive.
  • the flexible substrate 15 may include more than one organic layer, and may also include two or more organic layers, and the organic layer may further include one, two or more inorganic layers.
  • the inorganic layer may be made of SiN x and/or SiO x or the like.
  • Step 4 Referring to FIG. 1D, an array layer 17 and a bonding region 19 are provided on the flexible substrate 15, and correspondingly, a color resist layer 16 is provided on the upper glass substrate 14. It should be noted that other necessary display elements may be separately disposed on the flexible substrate 15 and the upper glass substrate 14, and details are not described herein again. In addition, since the pad region 19 is generally disposed in the non-display area of the liquid crystal display panel, the pad region 19 may be equivalent to the non-display region of the liquid crystal display panel.
  • Step 5 Referring to FIG. 1E, the support substrate 12 and the lower support substrate 11 are aligned, and the liquid crystal layer LC is filled between the color resist layer 16 and the array layer 17 to complete the process of the liquid crystal display panel (or into a box). Process).
  • the upper support substrate 12 and the lower support substrate 11 not only serve to protect the display elements between the upper glass substrate 14, the lower glass substrate 13, and the upper glass substrate 14 and the lower glass substrate 13, but also can be aligned and formed into a box. Improve the convenience and alignment accuracy of the process.
  • Step 6 Referring to FIG. 1F, the upper support substrate 12 and the lower support substrate 11 are peeled off.
  • the method of peeling off the support substrate includes two types: one, performing plasma treatment on the support substrate by using fluorine or the like; and second, forming a protrusion pattern on the surface of the support substrate in advance.
  • the support substrate is peeled off by jetting air to a gap between the support substrate and the glass substrate by a predetermined air ejecting device (not shown).
  • Step 7 Referring to FIG. 1G, the upper glass substrate 14 and the lower glass substrate 13 are cut according to a predetermined liquid crystal display panel size, and after the lower glass substrate 13 opposite to the pad region 19 on the flexible substrate 15, the two adjacent liquid crystal displays are cut off.
  • the flexible substrate 15 connected between the panels obtains two independent liquid crystal display panels as shown in FIG. 1G. It should be noted that only two liquid crystal display panels are formed in FIG. 1G, and in practice, three or more liquid crystal display panels may be formed as needed.
  • the flexible substrate 15 connected between two adjacent liquid crystal display panels may be cut off, and then the liquid crystal display panel and the flexible substrate 15 are respectively peeled off.
  • the pad region 19 is opposite to the lower glass substrate 13.
  • the adhesive and the flexible substrate 15 may be separated from each other by the irradiation of the laser or the adhesive and the lower glass substrate 13 may be separated from each other;
  • a release film layer may be disposed between the lower glass substrate 13 and the flexible substrate 15 at the time of vacuum attachment, and the glass may be cut after cutting.
  • the substrate 13 and the flexible substrate 15 are automatically separated, or a release film layer is not provided, and the lower glass substrate 13 and the flexible substrate 15 are directly separated by excimer laser.
  • the thin upper glass substrate 12 and the lower glass substrate 13 function to maintain a uniform cell thickness of the liquid crystal display panel, and can provide flatness, Smooth surface feel and display plane.
  • the length of the flexible substrate 15 is greater than the length of the lower glass substrate 13, so that the flexible substrate 15 can be bent so that the pad region 19 thereon is located in the backlight module ( Not shown) or under the backlight module, so as to reach and be placed inside the electronic product, thereby increasing the screen ratio of electronic products such as smart phones, tablets, smart watches and the like.
  • 3A to 3G are process diagrams of a method of fabricating an organic electroluminescence display panel according to a second embodiment of the present invention.
  • Step 1 Referring to FIG. 3A, the support substrate 21 is provided.
  • the lower support substrate 21 may be made of glass, ceramic or metal.
  • the lower support substrate 21 has a thickness of between 0.5 mm and 1 mm.
  • the lower support substrate 21 is preferably made of glass, and the thickness of the lower support substrate 21 is preferably 0.7 mm.
  • Step 2 Referring to FIG. 3B, a glass substrate 23 is placed on the lower support substrate 21.
  • the lower glass substrate 23 is thinner and has a thickness ranging from 0.05 mm to 0.4 mm, preferably between 0.1 mm and 0.15 mm.
  • the thinner lower glass substrate 23 is disposed on the thicker lower support substrate 21, and the thicker lower support substrate 21 can be used to provide the thinner lower glass substrate 23
  • the support reduces the sagging and overall warpage of the thinner lower glass substrate 23, thereby improving the convenience and accuracy in the manufacturing process of the display panel.
  • the method of disposing the lower glass substrate 23 on the lower support substrate 21 specifically includes two types: one, by attaching the lower support substrate 21 and the lower glass substrate 23 to each other in a vacuum state, in this case,
  • the adhesion force between the lower support substrate 21 and the lower glass substrate 23 is an electrostatic force, a vacuum force, a surface tension, and the like; 2.
  • the lower support substrate 21 and the lower glass substrate 23 are adhered together by an adhesive.
  • Step 3 Referring to FIG. 3C, a foldable flexible substrate 25 is disposed on the lower glass substrate 23.
  • the flexible substrate 25 may be made of polyimide (PI), polycarbonate (PC), polyether sulfone (PES), polyethylene terephthalate (PET), polyethylene naphthalate. Formation of one or more of (PEN), polyarylate (PAR) or glass fiber reinforced plastic (FRP) polymer materials.
  • PI polyimide
  • PC polycarbonate
  • PES polyether sulfone
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEN polyethylene naphthalate
  • PEN polyarylate
  • FRP glass fiber reinforced plastic
  • the arrangement of the flexible substrate 25 can be divided into two ways:
  • Method 1 Coating a flexible material (ie, a material for forming the flexible substrate 25 described above) on a lower glass substrate 23 by a coating process such as spin coating, slit coating, inkjet coating, etc., and applying the coated flexible material Cured.
  • a coating process such as spin coating, slit coating, inkjet coating, etc.
  • Method 2 A flexible substrate 25 which has been made of a flexible material is attached to the lower glass substrate 23 by an adhesive.
  • the flexible substrate 25 may include more than one organic layer, and may also include two or more organic layers, and the organic layer may further include one, two or more inorganic layers.
  • the inorganic layer may be made of SiN x and/or SiO x or the like.
  • Step 4 Referring to FIG. 3D, an organic light-emitting layer 27 and a bonding region 29 are provided on the flexible substrate 25. It should be noted that other necessary display elements may also be disposed on the flexible substrate 25, and details are not described herein again. In addition, since the pad region 29 is generally disposed in the non-display area of the organic electroluminescence display panel, the pad region 29 may also be equivalent to the non-display region of the organic electroluminescence display panel.
  • Step 5 Referring to FIG. 3E, an encapsulation layer 28 is disposed on the organic light-emitting layer 27 to achieve separation of moisture and oxygen.
  • the encapsulation layer 28 may be a glass cover or a thin film encapsulation layer.
  • Step 6 Referring to FIG. 3F, the lower support substrate 21 is peeled off.
  • the method of peeling off the lower support substrate 21 includes two types: one, plasma treatment of the lower support substrate 21 by using fluorine or the like; and second, forming a protrusion pattern on the surface of the lower support substrate 21 in advance to reduce the lower glass substrate 23
  • the adhesion force with the lower support substrate 21 is peeled off by the air jetted to the gap between the lower glass substrate 23 and the lower support substrate 21 by a predetermined air ejecting means (not shown).
  • Step 7 Referring to FIG. 3G, the glass substrate 23 is cut according to a predetermined organic electroluminescence display panel size, and after peeling off the lower glass substrate 23 opposite to the pad region 29 on the flexible substrate 25, two adjacent organic electroluminescences are cut off.
  • the flexible substrate 25 connected between the display panels provides two independent organic electroluminescent display panels as shown in FIG. 3G. It should be noted that only two organic electroluminescent display panels are formed in FIG. 3G, and in practice, three or more organic electroluminescent display panels may be formed as needed.
  • the flexible substrate 25 connected between the two adjacent organic electroluminescent display panels may be cut off, and then peeled off in each of the organic electroluminescent display panels.
  • the lower glass substrate 23 is opposed to the pad region 29 on the flexible substrate 25.
  • the method of peeling off the lower glass substrate 23 opposite to the pad region 29 on the flexible substrate 25 includes the following two methods:
  • the adhesive and the flexible substrate 25 may be separated from each other by the irradiation of the laser or the adhesive and the lower glass substrate 23 may be separated from each other;
  • a release film layer may be disposed between the lower glass substrate 23 and the flexible substrate 25 at the time of vacuum attachment, and the glass is cut after cutting.
  • the substrate 23 is automatically separated from the flexible substrate 25, or the release film layer is not provided, and the lower glass substrate 23 is directly separated from the flexible substrate 25 by excimer laser.
  • the thin and light lower glass substrate 23 can provide a flat, smooth surface touch and display plane.
  • the length of the flexible substrate 25 is greater than the length of the lower glass substrate 23, so that the flexible substrate 25 can be bent to be soldered thereon.
  • the panel 29 is located below the lower glass substrate 23 so as to extend to and be disposed inside the electronic product, thereby increasing the screen ratio of electronic products such as smart phones, tablet computers, and smart watches.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板的制造方法,包括步骤:S1、提供支撑基板(11,12);S2、在支撑基板(11,12)上设置玻璃基板(13,14);S3、在玻璃基板(13,14)上设置柔性基板(15);S4、在柔性基板(15)上设置焊盘区(19);S5、完成显示面板的成盒工艺或封装工艺;S6、剥离支撑基板(11,12);S7、按照预定显示面板尺寸切割玻璃基板(13,14)和柔性基板(15),并对切割后的玻璃基板(13,14)和柔性基板(15)进行剥离。利用轻薄的玻璃基板(13,14)制造显示面板的方法,在制造过程中,利用较厚的支撑基板(11,12)支撑轻薄的玻璃基板(13,14),可以避免极易发生严重的下垂和翘曲,可以避免较薄的玻璃基板(13,14)两端的下垂和整体的翘曲,从而提升显示面板制造过程中的便利性和精确性。

Description

显示面板的制造方法 技术领域
本发明属于显示面板制造技术领域,具体地讲,涉及一种显示面板的制造方法,尤其涉及一种液晶显示面板和有机电致发光显示面板的制造方法。
背景技术
近年来,显示器正朝向轻薄化发展,特别是随着人们对便携式电子产品薄型化要求的不断提高,应用在便携式电子产品中的平板显示器(诸如液晶显示器(LCD)或OLED显示器等)被要求具有越来越薄的厚度以及越来越轻的重量,这样能够改善便携式电子产品的便携性。此外,在电视机等大型电子产品中,轻薄化的显示器可以减小空间占用,并能够给观众更舒适的体验。
在平板显示器中,通常使用玻璃基板作为承载其它显示元件的载体,而在平板显示器中,玻璃基板是占重比最大的元件。为了降低平板显示器的厚度和重量,最有效的方法是降低玻璃基板的厚度和重量。越薄的玻璃越易弯曲,因此生产过程中薄的玻璃基底极易发生下垂(drooping)和翘曲。降低玻璃基板厚度和重量的方法包括:一、通过蚀刻玻璃基板来降低玻璃基板厚度和重量;二、直接使用轻薄的玻璃基板。在第一种方法中,在显示面板被装配好之后,额外执行玻璃蚀刻工艺来降低玻璃基板的厚度和重量,这种方法的不足之处是在玻璃蚀刻工艺中会发生故障,且会大大增加制造成本。在第二种方法中,越轻薄的玻璃基板越容易弯曲,特别是随着玻璃基板的尺寸越来越大,在生产过程中轻薄的玻璃基板极易发生严重的下垂(Drooping)和翘曲,此外在轻薄的玻璃基板的运输过程中,当装载、卸载时即使是小的撞击也会使轻薄的玻璃基板快速翘曲,从而损伤玻璃基板。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种显示面板的制造方法,所述制造方法包括步骤:S1、提供支撑基板;S2、在所述支撑基 板上设置玻璃基板;S3、在所述玻璃基板上设置柔性基板;S4、在所述柔性基板上设置焊盘区;S5、完成显示面板的成盒工艺或封装工艺;S6、剥离所述支撑基板;S7、按照预定显示面板尺寸切割所述玻璃基板和所述柔性基板,并对切割后的所述玻璃基板和所述柔性基板进行剥离。
进一步地,所述支撑基板由玻璃制成,所述支撑基板的厚度在0.5mm至1mm之间;所述玻璃基板的厚度在0.05mm至0.4mm之间。
进一步地,所述步骤S2中,在所述支撑基板上设置玻璃基板的方法具体包括:通过在真空状态下使所述支撑基板与所述玻璃基板彼此接触而贴附,或者通过粘附剂将所述支撑基板与所述玻璃基板粘附在一起。
进一步地,所述步骤S3中,在所述玻璃基板上设置所述柔性基板的方法具体包括:利用涂布工艺在所述玻璃基板上涂覆柔性材料,并对所述柔性材料进行固化,或者将已制作完成的柔性基板通过粘附剂贴附在所述玻璃基板上。
进一步地,所述步骤S6中,剥离所述支撑基板的具体方法包括:对所述支撑基板进行等离子体处理,或者通过预先在所述支撑基板的表面形成突起图案,以减小所述玻璃基板和所述支撑基板之间的贴附力,通过由预定空气喷射装置将空气喷射到所述支撑基板与所述玻璃基板之间的空隙而剥离所述支撑基板。
进一步地,所述步骤S7中,按照预定显示面板尺寸切割所述玻璃基板和所述柔性基板,并对切割后的所述玻璃基板和所述柔性基板进行剥离的方法具体包括:按照预定显示面板尺寸切割所述玻璃基板,剥离与所述柔性基板的焊盘区相对玻璃基板,切断两相邻显示面板之间连接的所述柔性基板;或者按照预定显示面板尺寸切割所述玻璃基板,切断两相邻显示面板之间连接的所述柔性基板,再分别剥离每一显示面板的与所述柔性基板的焊盘区相对的玻璃基板。
进一步地,在所述步骤S7中,剥离玻璃基板的方法具体包括:当所述柔性基板与所述玻璃基板通过粘附剂粘附在一起时,可利用照射激光的方式使粘附剂与所述柔性基板彼此分离或者使粘附剂与所述玻璃基板彼此分离;或者当所述柔性基板与所述玻璃基板通过真空贴附的方式贴附在一起时,可在真空贴 附时在所述柔性基板与所述玻璃基板之间设置离型膜层,以使所述玻璃基板和所述柔性基板自动分离,或者利用准分子镭射使所述玻璃基板和所述柔性基板分离。
本发明的另一目的还在于提供一种液晶显示面板的制造方法,所述制造方法包括步骤:S1、提供下支撑基板和上支撑基板;S2、在所述下支撑基板上设置下玻璃基板,且在所述上支撑基板上设置上玻璃基板;S3、在所述下玻璃基板上设置下柔性基板;S4、在所述下柔性基板上设置阵列层和焊盘区,且在所述上玻璃基板上设置色阻层;S5、对盒组装所述上支撑基板和所述下支撑基板,并在所述色阻层和所述阵列层之间填充液晶层;S6、剥离所述上支撑基板和所述下支撑基板;S7、按照预定显示面板尺寸切割所述上玻璃基板、所述下玻璃基板和所述柔性基板,并对切割后的所述下玻璃基板和所述柔性基板进行剥离。
本发明的又一目的又在于提供一种有机电致发光显示面板的制造方法,所述制造方法包括步骤:S1、提供下支撑基板;S2、在所述下支撑基板上设置下玻璃基板;S3、在所述下玻璃基板上设置下柔性基板;S4、在所述下柔性基板上设置有机发光层和焊盘区;S5、在所述有机发光层上设置封装层;S6、剥离所述下支撑基板;S7、按照预定显示面板尺寸切割所述下玻璃基板和所述柔性基板,并对切割后的所述下玻璃基板和所述柔性基板进行剥离。
在上述的述的液晶显示面板或有机电致发光显示面板的制造方法中,进一步地,所述步骤S7具体包括:按照预定显示面板尺寸切割所述下玻璃基板和/或所述上玻璃基板,剥离与所述下柔性基板的焊盘区相对的下玻璃基板,切断两相邻显示面板之间连接的所述下柔性基板;或者按照预定显示面板尺寸切割所述玻璃基板和/或所述上玻璃基板,切断两相邻显示面板之间连接的所述下柔性基板,再分别剥离每一显示面板的与所述下柔性基板的焊盘区相对的下玻璃基板。
本发明的有益效果:本发明提供了一种利用轻薄的玻璃基板制造显示面板的方法,在制造过程中,利用较厚的支撑基板支撑轻薄的玻璃基板,可以避免极易发生严重的下垂(Drooping)和翘曲可以避免较薄的玻璃基板两端的下垂和整体的翘曲,从而提升显示面板制造过程中的便利性和精确性。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1A至图1G是根据本发明的第一实施例的液晶显示面板的制造方法的制程图;
图2是由根据本发明的第一实施例的液晶显示面板的制造方法制造出的液晶显示面板的柔性基板的弯折示意图;
图3A至图3G是根据本发明的第二实施例的有机电致发光显示面板的制造方法的制程图;
图4是由根据本发明的第二实施例的有机电致发光显示面板的制造方法制造出的有机电致发光显示面板的柔性基板的弯折示意图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
在附图中,为了清楚器件,夸大了层和区域的厚度。相同的标号在附图中始终表示相同的元件。
图1A至图1G是根据本发明的第一实施例的液晶显示面板的制作方法的制程图。
根据本发明的第一实施例的液晶显示面板的制作方法包括:
步骤一:参照图1A,提供一下支撑基板11和一上支撑基板12。
这里,下支撑基板11和上支撑基板12可以采用玻璃、陶瓷或金属制成。下支撑基板11和上支撑基板12厚度介于0.5mm至1mm之间。在本实施例中, 下支撑基板11和上支撑基板12优选地采用玻璃制成,并且下支撑基板11和上支撑基板12的厚度优选为0.7mm。
步骤二:参照图1B,在下支撑基板11上设置一下玻璃基板13,对应地,在上支撑基板12上设置一上玻璃基板14。
这里,下玻璃基板13和上玻璃基板14都较薄,它们的厚度范围介于0.05mm至0.4mm之间,优选地介于0.1mm至0.15mm之间。将较薄的玻璃基板(诸如下玻璃基板13和上玻璃基板14)设置在较厚的支撑基板(诸如下支撑基板11和上支撑基板12)上,可以利用较厚的支撑基板为较薄的玻璃基板提供支撑,减小较薄的玻璃基板两端的下垂和整体的翘曲,从而提升显示面板制造过程中的便利性和精确性。
具体地,在下支撑基板11和上支撑基板12上分别设置下玻璃基板13和上玻璃基板14的方法具体包括两种:一、通过在真空状态下使所述支撑基板与所述玻璃基板彼此接触而贴附在一起,这种情况下,所述支撑基板与所述玻璃基板之间的贴附力为静电力、真空力、表面张力等;二、通过粘附剂将所述支撑基板与所述玻璃基板粘附在一起。
步骤三:参照图1C,在下玻璃基板13上设置一可折叠的柔性基板15。
这里,柔性基板15可以采用聚酰亚胺(PI)、聚碳酸酯(PC)、聚醚砜(PES)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、多芳基化合物(PAR)或玻璃纤维增强塑料(FRP)等聚合物材料中的一种或几种形成。
具体地,柔性基板15的设置可以分为两种方式:
方式一:在下玻璃基板13上通过诸如旋涂、狭缝涂覆、喷墨涂覆等涂布工艺涂覆柔性材料(即上述制成柔性基板15的材料),并对涂覆的柔性材料进行固化。
方式二:将已由柔性材料制成的柔性基板15通过粘附剂贴附于下玻璃基板13上。在一些实施方式中,柔性基板15中可以不止包括一层有机物层,还可以包括两层或者更多层有机物层,同时有机物层中还可以包括一层、两层或 更多层无机物层,其中无机物层可以由SiNx和/或SiOx等制成。
步骤四:参照图1D,在柔性基板15上设置阵列层17和焊盘区(bonding区)19,对应地,在上玻璃基板14上设置色阻层16。需要说明的是,还可以在柔性基板15和上玻璃基板14上分别设置其它必需的显示元件,这里不再赘述。另外,由于焊盘区19通常被设置于液晶显示面板的非显示区,这里也可以将焊盘区19与液晶显示面板的非显示区等同。
步骤五:参照图1E,对位上支撑基板12和下支撑基板11,并在色阻层16和阵列层17之间填充液晶层LC,以完成液晶显示面板的对盒工艺(或称成盒工艺)。
这里,上支撑基板12和下支撑基板11不仅起到保护上玻璃基板14、下玻璃基板13以及上玻璃基板14、下玻璃基板13之间的显示元件的作用,还能在对位和成盒工艺中提升操作的便利性和对位准确度。
步骤六:参照图1F,剥离上支撑基板12和下支撑基板11。
具体地,剥离支撑基板(即上支撑基板12和下支撑基板11)的方法包括两种:一、通过使用氟等对支撑基板进行等离子体处理;二、通过预先在支撑基板的表面形成突起图案以减小玻璃基板和支撑基板之间的贴附力,通过由预定空气喷射装置(图未示)将空气喷射到支撑基板与玻璃基板之间的空隙而剥离支撑基板。
步骤七:参照图1G,按照预定液晶显示面板尺寸切割上玻璃基板14和下玻璃基板13,在剥离与柔性基板15上的焊盘区19相对的下玻璃基板13后,切断两相邻液晶显示面板之间连接的柔性基板15,得到图1G所示的两个独立的液晶显示面板。需要说明的是,图1G中仅示出了形成的两个液晶显示面板,而在实际中,可以根据需求形成三个或者更多个液晶显示面板。
可以理解的是,在步骤七中,作为另一种实施方式,也可以先切断两相邻液晶显示面板之间连接的柔性基板15,再分别剥离每一液晶显示面板中与柔性基板15上的焊盘区19相对的下玻璃基板13。
具体地,剥离与柔性基板15上的焊盘区19相对的下玻璃基板13的方法 包括以下两种方式:
一、当柔性基板15与下玻璃基板13通过粘附剂粘附在一起时,可利用照射激光的方式使粘附剂与柔性基板15彼此分离或者使粘附剂与下玻璃基板13彼此分离;
二、当柔性基板15与下玻璃基板13通过真空贴附的方式贴附在一起时,可在真空贴附时在下玻璃基板13与柔性基板15之间设置离型膜层,在切割之后下玻璃基板13与柔性基板15自动分离,或者不设置离型膜层,直接利用准分子镭射使下玻璃基板13与柔性基板15分离。
在由根据本发明的第一实施例所述的制造方法制造的液晶显示面板中,轻薄的上玻璃基板12和下玻璃基板13起到维持液晶显示面板均匀盒厚的作用,并且能够提供平整、光滑的表面触感和显示平面。
此外,参照图2,在制作完成的每个液晶显示面板中,柔性基板15的长度大于下玻璃基板13的长度,这样柔性基板15可以弯折而使其上的焊盘区19位于背光模块(未示出)或者背光模块的下方,从而伸至并设置于电子产品的内部,进而提高诸如智能手机、平板电脑、智能手表等电子产品的屏占比。
图3A至图3G是根据本发明的第二实施例的有机电致发光显示面板的制作方法的制程图。
根据本发明的第二实施例的有机电致发光显示面板的制作方法包括:
步骤一:参照图3A,提供一下支撑基板21。
这里,下支撑基板21可以采用玻璃、陶瓷或金属制成。下支撑基板21厚度介于0.5mm至1mm之间。在本实施例中,下支撑基板21优选地采用玻璃制成,并且下支撑基板21的厚度优选为0.7mm。
步骤二:参照图3B,在下支撑基板21上设置一下玻璃基板23。
这里,下玻璃基板23都较薄,其厚度范围介于0.05mm至0.4mm之间,优选地介于0.1mm至0.15mm之间。将较薄的下玻璃基板23设置在较厚的下支撑基板21上,可以利用较厚的下支撑基板21为较薄的下玻璃基板23提供 支撑,减小较薄的下玻璃基板23两端的下垂和整体的翘曲,从而提升显示面板制造过程中的便利性和精确性。
具体地,在下支撑基板21上设置下玻璃基板23的方法具体包括两种:一、通过在真空状态下使下支撑基板21与下玻璃基板23彼此接触而贴附在一起,这种情况下,下支撑基板21与下玻璃基板23之间的贴附力为静电力、真空力、表面张力等;二、通过粘附剂将下支撑基板21与下玻璃基板23粘附在一起。
步骤三:参照图3C,在下玻璃基板23上设置一可折叠的柔性基板25。
这里,柔性基板25可以采用聚酰亚胺(PI)、聚碳酸酯(PC)、聚醚砜(PES)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、多芳基化合物(PAR)或玻璃纤维增强塑料(FRP)等聚合物材料中的一种或几种形成。
具体地,柔性基板25的设置可以分为两种方式:
方式一:在下玻璃基板23上通过诸如旋涂、狭缝涂覆、喷墨涂覆等涂布工艺涂覆柔性材料(即上述制成柔性基板25的材料),并对涂覆的柔性材料进行固化。
方式二:将已由柔性材料制成的柔性基板25通过粘附剂贴附于下玻璃基板23上。在一些实施方式中,柔性基板25中可以不止包括一层有机物层,还可以包括两层或者更多层有机物层,同时有机物层中还可以包括一层、两层或更多层无机物层,其中无机物层可以由SiNx和/或SiOx等制成。
步骤四:参照图3D,在柔性基板25上设置有机发光层27和焊盘区(bonding区)29。需要说明的是,还可以在柔性基板25上设置其它必需的显示元件,这里不再赘述。另外,由于焊盘区29通常被设置于有机电致发光显示面板的非显示区,这里也可以将焊盘区29与有机电致发光显示面板的非显示区等同。
步骤五:参照图3E,在有机发光层27上设置封装层28,以实现水汽和氧气的隔离。这里,封装层28可以是玻璃盖板,也可以是薄膜封装层。
步骤六:参照图3F,剥离下支撑基板21。
具体地,剥离下支撑基板21的方法包括两种:一、通过使用氟等对下支撑基板21进行等离子体处理;二、通过预先在下支撑基板21的表面形成突起图案以减小下玻璃基板23和下支撑基板21之间的贴附力,通过由预定空气喷射装置(图未示)将空气喷射到下玻璃基板23和下支撑基板21之间的空隙而剥离下支撑基板21。
步骤七:参照图3G,按照预定有机电致发光显示面板尺寸切割下玻璃基板23,在剥离与柔性基板25上的焊盘区29相对的下玻璃基板23后,切断两相邻有机电致发光显示面板之间连接的柔性基板25,得到图3G所示的两个独立的有机电致发光显示面板。需要说明的是,图3G中仅示出了形成的两个有机电致发光显示面板,而在实际中,可以根据需求形成三个或者更多个有机电致发光显示面板。
可以理解的是,在步骤七中,作为另一种实施方式,也可以先切断两相邻有机电致发光显示面板之间连接的柔性基板25,再分别剥离每一有机电致发光显示面板中与柔性基板25上的焊盘区29相对的下玻璃基板23。
具体地,剥离与柔性基板25上的焊盘区29相对的下玻璃基板23的方法包括以下两种方式:
一、当柔性基板25与下玻璃基板23通过粘附剂粘附在一起时,可利用照射激光的方式使粘附剂与柔性基板25彼此分离或者使粘附剂与下玻璃基板23彼此分离;
二、当柔性基板25与下玻璃基板23通过真空贴附的方式贴附在一起时,可在真空贴附时在下玻璃基板23与柔性基板25之间设置离型膜层,在切割之后下玻璃基板23与柔性基板25自动分离,或者不设置离型膜层,直接利用准分子镭射使下玻璃基板23与柔性基板25分离。
在由根据本发明的第二实施例所述的制造方法制造的有机电致发光显示面板中,轻薄的下玻璃基板23能够提供平整、光滑的表面触感和显示平面。
此外,参照图4,在制作完成的每个有机电致发光显示面板中,柔性基板25的长度大于下玻璃基板23的长度,这样柔性基板25可以弯折而使其上的焊 盘区29位于下玻璃基板23的下方,从而伸至并设置于电子产品的内部,进而提高诸如智能手机、平板电脑、智能手表等电子产品的屏占比。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (11)

  1. 一种显示面板的制造方法,其中,所述制造方法包括步骤:
    S1、提供支撑基板;
    S2、在所述支撑基板上设置玻璃基板;
    S3、在所述玻璃基板上设置柔性基板;
    S4、在所述柔性基板上设置焊盘区;
    S5、完成显示面板的成盒工艺或封装工艺;
    S6、剥离所述支撑基板;
    S7、按照预定显示面板尺寸切割所述玻璃基板和所述柔性基板,并对切割后的所述玻璃基板和所述柔性基板进行剥离。
  2. 根据权利要求1所述的制造方法,其中,所述支撑基板由玻璃制成,所述支撑基板的厚度在0.5mm至1mm之间;所述玻璃基板的厚度在0.05mm至0.4mm之间。
  3. 根据权利要求1所述的制造方法,其中,所述步骤S2中,在所述支撑基板上设置玻璃基板的方法具体包括:
    通过在真空状态下使所述支撑基板与所述玻璃基板彼此接触而贴附,或者通过粘附剂将所述支撑基板与所述玻璃基板粘附在一起。
  4. 根据权利要求1所述的制造方法,其中,所述步骤S3中,在所述玻璃基板上设置所述柔性基板的方法具体包括:
    利用涂布工艺在所述玻璃基板上涂覆柔性材料,并对所述柔性材料进行固化,或者将已制作完成的柔性基板通过粘附剂贴附在所述玻璃基板上。
  5. 根据权利要求1所述的制造方法,其中,所述步骤S6中,剥离所述支 撑基板的具体方法包括:对所述支撑基板进行等离子体处理,或者通过预先在所述支撑基板的表面形成突起图案,以减小所述玻璃基板和所述支撑基板之间的贴附力,通过由预定空气喷射装置将空气喷射到所述支撑基板与所述玻璃基板之间的空隙而剥离所述支撑基板。
  6. 根据权利要求1所述的制造方法,其中,所述步骤S7中,按照预定显示面板尺寸切割所述玻璃基板和所述柔性基板,并对切割后的所述玻璃基板和所述柔性基板进行剥离的方法具体包括:
    按照预定显示面板尺寸切割所述玻璃基板,剥离与所述柔性基板的焊盘区相对玻璃基板,切断两相邻显示面板之间连接的所述柔性基板;或者
    按照预定显示面板尺寸切割所述玻璃基板,切断两相邻显示面板之间连接的所述柔性基板,再分别剥离每一显示面板的与所述柔性基板的焊盘区相对的玻璃基板。
  7. 根据权利要求6所述的制造方法,其中,在所述步骤S7中,剥离玻璃基板的方法具体包括:
    当所述柔性基板与所述玻璃基板通过粘附剂粘附在一起时,可利用照射激光的方式使粘附剂与所述柔性基板彼此分离或者使粘附剂与所述玻璃基板彼此分离;或者
    当所述柔性基板与所述玻璃基板通过真空贴附的方式贴附在一起时,可在真空贴附时在所述柔性基板与所述玻璃基板之间设置离型膜层,以使所述玻璃基板和所述柔性基板自动分离,或者利用准分子镭射使所述玻璃基板和所述柔性基板分离。
  8. 一种液晶显示面板的制造方法,其中,所述制造方法包括步骤:
    S1、提供下支撑基板和上支撑基板;
    S2、在所述下支撑基板上设置下玻璃基板,且在所述上支撑基板上设置上玻璃基板;
    S3、在所述下玻璃基板上设置下柔性基板;
    S4、在所述下柔性基板上设置阵列层和焊盘区,且在所述上玻璃基板上设置色阻层;
    S5、对盒组装所述上支撑基板和所述下支撑基板,并在所述色阻层和所述阵列层之间填充液晶层;
    S6、剥离所述上支撑基板和所述下支撑基板;
    S7、按照预定显示面板尺寸切割所述上玻璃基板、所述下玻璃基板和所述柔性基板,并对切割后的所述下玻璃基板和所述柔性基板进行剥离。
  9. 根据权利要求8所述的制造方法,其中,所述步骤S7具体包括:
    按照预定显示面板尺寸切割所述下玻璃基板和所述上玻璃基板,剥离与所述下柔性基板的焊盘区相对的下玻璃基板,切断两相邻液晶显示面板之间连接的所述下柔性基板;或者
    按照预定显示面板尺寸切割所述下玻璃基板和所述上玻璃基板,切断两相邻显示面板之间连接的所述下柔性基板,再分别剥离每一液晶显示面板的与所述下柔性基板的焊盘区相对的下玻璃基板。
  10. 一种有机电致发光显示面板的制造方法,其中,所述制造方法包括步骤:
    S1、提供下支撑基板;
    S2、在所述下支撑基板上设置下玻璃基板;
    S3、在所述下玻璃基板上设置下柔性基板;
    S4、在所述下柔性基板上设置有机发光层和焊盘区;
    S5、在所述有机发光层上设置封装层;
    S6、剥离所述下支撑基板;
    S7、按照预定显示面板尺寸切割所述下玻璃基板和所述柔性基板,并对切割后的所述下玻璃基板和所述柔性基板进行剥离。
  11. 根据权利要求10所述的制造方法,其中,所述步骤S7具体包括:
    按照预定显示面板尺寸切割所述下玻璃基板,剥离与所述下柔性基板的焊盘区相对的下玻璃基板,切断两相邻有机发光显示面板之间连接的所述下柔性基板;或者
    按照预定显示面板尺寸切割所述下玻璃基板,切断两相邻显示面板之间连接的所述下柔性基板,再分别剥离每一有机发光显示面板的与所述下柔性基板的焊盘区相对的下玻璃基板。
PCT/CN2016/112470 2016-12-26 2016-12-27 显示面板的制造方法 WO2018119703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/327,989 US10175514B2 (en) 2016-12-26 2016-12-27 Method for manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611220722.3A CN106773206B (zh) 2016-12-26 2016-12-26 显示面板的制造方法
CN201611220722.3 2016-12-26

Publications (1)

Publication Number Publication Date
WO2018119703A1 true WO2018119703A1 (zh) 2018-07-05

Family

ID=58926612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112470 WO2018119703A1 (zh) 2016-12-26 2016-12-27 显示面板的制造方法

Country Status (3)

Country Link
US (1) US10175514B2 (zh)
CN (1) CN106773206B (zh)
WO (1) WO2018119703A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018151445A (ja) * 2017-03-10 2018-09-27 株式会社ジャパンディスプレイ 表示装置
CN110021234B (zh) * 2018-01-08 2022-03-08 上海和辉光电股份有限公司 一种阵列基板及其制作方法、柔性显示面板
CN108333819B (zh) * 2018-01-31 2021-03-23 武汉华星光电技术有限公司 显示面板及其制造方法
CN110308579B (zh) * 2018-03-22 2022-04-12 上海和辉光电股份有限公司 一种刚性显示面板及其制作方法
CN108803103A (zh) * 2018-05-30 2018-11-13 上海中航光电子有限公司 一种液晶显示装置及其制作方法
CN109509776A (zh) * 2018-11-22 2019-03-22 武汉华星光电技术有限公司 一种oled显示器
CN112297546A (zh) * 2019-07-24 2021-02-02 东旭光电科技股份有限公司 显示面板的制备方法
CN110910762B (zh) * 2019-11-06 2022-04-05 深圳市华星光电半导体显示技术有限公司 柔性显示面板的制作方法
CN110910756A (zh) * 2019-12-02 2020-03-24 联想(北京)有限公司 显示面板的制备方法和电子设备
CN111210730B (zh) * 2020-03-06 2023-05-26 昆山国显光电有限公司 显示面板以及显示装置
CN111489654B (zh) * 2020-05-28 2022-07-19 京东方科技集团股份有限公司 一种支撑膜及形成方法、显示面板及制作方法
CN112068343B (zh) * 2020-09-11 2022-12-06 深圳市华星光电半导体显示技术有限公司 液晶显示屏单元及其制造方法、以及液晶显示屏幕墙
KR20220073968A (ko) * 2020-11-27 2022-06-03 (주)솔잎기술 플렉시블 복합체 커버 윈도우, 이의 제조방법 및 이를 이용한 디스플레이 디바이스

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095215A1 (ja) * 2009-02-17 2010-08-26 信越エンジニアリング株式会社 ワーク搬送装置及び真空貼り合わせ方法
CN103337478A (zh) * 2013-06-26 2013-10-02 青岛海信电器股份有限公司 柔性有机电致发光二极管显示器的制作方法
CN103928398A (zh) * 2013-12-25 2014-07-16 厦门天马微电子有限公司 一种柔性显示面板及其制备方法、柔性显示装置
CN104349894A (zh) * 2012-05-29 2015-02-11 旭硝子株式会社 玻璃层叠体和电子器件的制造方法
CN105118844A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种柔性显示面板的制备方法及柔性显示面板
CN105974626A (zh) * 2015-03-11 2016-09-28 三星显示有限公司 显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388500B2 (ja) * 2007-08-30 2014-01-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101907593B1 (ko) * 2013-08-13 2018-10-15 삼성디스플레이 주식회사 가요성 표시 장치
US9544994B2 (en) * 2014-08-30 2017-01-10 Lg Display Co., Ltd. Flexible display device with side crack protection structure and manufacturing method for the same
KR102400871B1 (ko) * 2015-07-31 2022-05-23 엘지디스플레이 주식회사 플렉서블 표시 장치 및 그의 제조 방법
US10586817B2 (en) * 2016-03-24 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010095215A1 (ja) * 2009-02-17 2010-08-26 信越エンジニアリング株式会社 ワーク搬送装置及び真空貼り合わせ方法
CN104349894A (zh) * 2012-05-29 2015-02-11 旭硝子株式会社 玻璃层叠体和电子器件的制造方法
CN103337478A (zh) * 2013-06-26 2013-10-02 青岛海信电器股份有限公司 柔性有机电致发光二极管显示器的制作方法
CN103928398A (zh) * 2013-12-25 2014-07-16 厦门天马微电子有限公司 一种柔性显示面板及其制备方法、柔性显示装置
CN105974626A (zh) * 2015-03-11 2016-09-28 三星显示有限公司 显示装置
CN105118844A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种柔性显示面板的制备方法及柔性显示面板

Also Published As

Publication number Publication date
CN106773206B (zh) 2019-03-19
US10175514B2 (en) 2019-01-08
US20180210263A1 (en) 2018-07-26
CN106773206A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018119703A1 (zh) 显示面板的制造方法
WO2018119937A1 (zh) 显示面板的制造方法
US11360611B2 (en) Flexible touch substrate, preparation method thereof and touch display device
US10749139B2 (en) Display device and method of manufacturing the same
EP2685516B1 (en) Method of manufacturing a display panel
TWI428243B (zh) 可撓式元件的取下方法
US11476420B2 (en) Method of fabricating flexible OLED display panel and flexible OLED display panel
KR101456382B1 (ko) 전자 장치 및 그 제조 방법
US10515885B2 (en) Method of fabricating a flexible display screen having substrate with a plurality of pins inserted in the through holes of lamination plate
KR20140009920A (ko) 표시 패널 제조 방법
US9036125B2 (en) Liquid crystal display panel and manufacturing method thereof
US10338708B2 (en) Flexible touch screen, method for manufacturing the same and touch device
CN109449114B (zh) 一种显示面板及显示装置的制备方法
WO2021017198A1 (zh) 柔性发光面板、柔性发光面板的制备方法及显示设备
WO2016192337A1 (zh) 显示面板的制备方法及显示面板、显示装置
WO2018119752A1 (zh) 显示面板的制造方法
CN110320713B (zh) 一种液晶盒及其制作方法、液晶装置
KR101023732B1 (ko) 반송용 플렉시블 기판의 제조방법
US20230032393A1 (en) Display device and method for manufacturing the same
CN112002666A (zh) 一种柔性oled显示面板的制备方法及柔性oled显示面板
US10247973B2 (en) Liquid crystal display, liquid crystal display panel and manufacture method thereof
KR20160005983A (ko) 플렉서블 유기 발광 표시 장치 및 이의 제조 방법
KR102268164B1 (ko) 유연 디바이스 제조 장치 및 이를 이용한 유연 디바이스의 제조 방법
KR20210083546A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15327989

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925121

Country of ref document: EP

Kind code of ref document: A1