JP5388500B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP5388500B2
JP5388500B2 JP2008204280A JP2008204280A JP5388500B2 JP 5388500 B2 JP5388500 B2 JP 5388500B2 JP 2008204280 A JP2008204280 A JP 2008204280A JP 2008204280 A JP2008204280 A JP 2008204280A JP 5388500 B2 JP5388500 B2 JP 5388500B2
Authority
JP
Japan
Prior art keywords
layer
substrate
organic compound
semiconductor
fragile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008204280A
Other languages
English (en)
Other versions
JP2009076877A (ja
JP2009076877A5 (ja
Inventor
敏行 伊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2008204280A priority Critical patent/JP5388500B2/ja
Publication of JP2009076877A publication Critical patent/JP2009076877A/ja
Publication of JP2009076877A5 publication Critical patent/JP2009076877A5/ja
Application granted granted Critical
Publication of JP5388500B2 publication Critical patent/JP5388500B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate

Description

本発明は薄膜トランジスタ、発光素子、受動素子等を含む半導体装置の作製方法に関する。また、液晶表示パネルに代表される電気光学装置や発光素子を有する発光表示装置や無線で情報の送受信が可能なICタグを部品として搭載した電子機器に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指し、電気光学装置、発光装置、半導体回路、ICタグおよび電子機器は全て半導体装置である。
近年、絶縁表面を有する基板上に形成された半導体薄層(厚さ数〜数百nm程度)を用いて薄膜トランジスタを構成する技術が注目されている。薄膜トランジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置のスイッチング素子として開発が急がれている。
このような画像表示装置を利用したアプリケーションは様々なものが期待されているが、特に携帯機器への利用が注目されている。画像表示装置にガラス基板や石英基板が多く使用されているが、割れやすく、重いという欠点がある。また、大量生産を行う上で、ガラス基板や石英基板は大型化が困難であり、不向きである。そのため、可撓性基板、代表的にはフレキシブルなプラスチックフィルムの上に薄膜トランジスタを形成することが試みられている。
そこで、ガラス基板上に形成した薄膜トランジスタを含む半導体素子を基板から剥離し、他の基材、例えばプラスチックフィルムなどに転写する技術が提案されている。
特許文献1には剥離層となる酸化珪素層をウェットエッチングで除去して剥離する技術が記載されている。また、特許文献2には剥離層となるシリコン層をドライエッチングで除去して剥離する技術が記載されている。
特許文献3には、基板に金属層(Ti、Al、Ta、W、Mo、Cu、Cr、Nd、Fe、Ni、Co、Ru、Rh、Pd、Os、Ir)を形成し、その上に酸化物層を積層形成する際、該金属層の酸化金属層を金属層と酸化物層との界面に形成し、この酸化金属層を利用して後の工程で剥離を行う技術が記載されている。
特開平8−288522号公報 特開平8−250745号公報 特開2003−174153
本発明は、比較的低温(500℃未満)のプロセスで作製される素子、代表的には非晶質半導体層、レーザ結晶化により形成された結晶性半導体層などを用いた薄膜トランジスタや、有機半導体層を用いた薄膜トランジスタや、発光素子や、受動素子(センサ素子、アンテナ、抵抗素子、容量素子など)等をガラス基板から剥離し、可撓性基板(代表的にはプラスチックフィルム)に転写する技術を開示する。
非晶質半導体層などを用いた薄膜トランジスタや有機半導体層を用いた薄膜トランジスタは、プラスチックフィルム上に直接形成することも可能であるが、プラスチックフィルムは柔らかく丸まりやすいため、取り扱う製造装置も専用の製造装置とする必要がある。
また、非晶質半導体層などを用いた薄膜トランジスタや有機半導体層を用いた薄膜トランジスタをプラスチックフィルム上に直接形成する場合、薄膜トランジスタ製造プロセスの過程で使用される溶剤やエッチングガスに曝されて、プラスチックフィルム自体が変質する恐れがある。また、ZnOを用いた薄膜トランジスタをプラスチックフィルム上に直接形成する場合、スパッタリング法などにより発生するプラズマがプラスチックフィルムに照射されると、プラスチックフィルム自体が変形してしまう。また、薄膜トランジスタ製造プロセスの過程でプラスチックフィルムが水分などを取り込み、または放出することで素子を汚染する恐れもある。また、プラスチックフィルムはガラス基板に比べ耐熱性が低く、熱に対する伸縮も大きいため、製造プロセス中の全ての処理温度を細かく制御する必要がある。
また、プラスチックフィルムを用いた半導体装置の大量生産を行う場合、ロールトゥロール方式で供給される製造装置となることが多い。しかしながら、ロールトゥロール方式の場合、既存の半導体作製装置を使うことができない。また、アライメントの位置合わせ精度が低く、微細な加工が困難である。よって、従来のガラス基板を用いた半導体装置と同等の特性を得る半導体装置を歩留まり高く作製すること困難である。
そこで、本発明は、比較的低温、代表的には有機化合物が耐えうる温度でのプロセスで作製される素子、代表的には非晶質半導体層または微結晶半導体層などを用いた薄膜トランジスタや、レーザ結晶化による結晶性半導体層を用いた薄膜トランジスタや、有機半導体層を用いた薄膜トランジスタや、発光素子や受動素子(センサ素子、アンテナ、抵抗素子、容量素子など)等を有し、且つ薄型である半導体装置の作製方法を提供する。また、可撓性を有する半導体装置の作製方法を提供する。
本発明は、ガラス基板上にシリコーン層を形成し、シリコーン層の表面をプラズマ処理し、シリコーン層の表面を脆弱化した後、シリコーン層上に有機化合物層を積層し、有機化合物層上に比較的低温、代表的には有機化合物層が耐えうる温度でのプロセスで作製される素子(非晶質半導体層または微結晶半導体層を用いた薄膜トランジスタ、レーザ結晶化による結晶性半導体層などを用いた薄膜トランジスタ、有機半導体層を用いた薄膜トランジスタ、発光素子、受動素子(センサ素子、アンテナ、抵抗素子、容量素子など)等)を形成した後、その素子をガラス基板から剥離することを特徴としている。シリコーン層は、シロキサンポリマーを含む組成物で形成される層であり、代表的には、有機基を含む酸化珪素層である。
シロキサンポリマーを含む組成物は、シロキサンポリマーを含む。シロキサンポリマーとしては、シリコンと酸素の結合で骨格構造が構成され、置換基に少なくとも有機基を含む。有機基としては、アルキル基、アリール基、フルオロアルキル基、フルオロアリール基から選ばれる少なくとも一種の有機基がある。シロキサンポリマーにおいて、複数の有機基を有する場合、有機基は同一でも、異なっていてもよい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基、フルオロメチル基、フルオロプロピル基などがあり、鎖状でも、分岐していてもよい。また、上記アルキル基、アリール基の水素がフッ素原子で置換されていてもよい。アリール基としては、フェニル基、ナフチル基、メチルフェニル基、エチルフェニル基、クロロフェニル基、ブロモフェニル基、フルオロフェニル基などがある。
また、シロキサンポリマーを含む組成物に溶媒が含まれてもよい。溶媒としては、トルエン、キシレン、ヘキサデカン等の炭化水素、クロロホルム、四塩化炭素、トリクロロエチレン、テトラクロロエチレン等のハロゲン化アルキル、メタノール、エタノール、n−プロパノール、イソプロパノール等のアルコール、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコールモノt−ブチルエーテル等のエーテル、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等のエステル等がある。
シロキサンポリマーを含む組成物を基板上に塗布し、加熱して溶媒を揮発させると共に、シロキサンポリマーの低分子成分の架橋反応を進行させて、シリコーン層を形成する。
次に、シリコーン層の表面をプラズマ処理して、脆弱層を形成する。プラズマ処理としては、酸素プラズマ処理、水素プラズマ処理、窒素プラズマ処理、一酸化二窒素プラズマ処理、二酸化窒素プラズマ処理、ハロゲンプラズマ処理、ネオン、アルゴン等の希ガスプラズマ処理等がある。シリコーン層の表面をプラズマ処理することで、シリコーン層の表面の有機基、代表的には、アルキル基、アリール基、フルオロアルキル基、フルオロアリール基から選ばれる少なくとも一種の有機基が酸化され、酸化珪素を含む脆弱層となる。
本発明では、脆弱化された層の近傍で剥離を行う。代表的には、シリコーン層、脆弱化された層、及び有機化合物層の積層構造において、脆弱化された層の近傍で剥離することが可能であり、比較的大型の基板を用いても歩留まりよく剥離を行うことができる。
また、ガラス基板上のシリコーン層に形成した有機化合物を含む素子(発光素子や有機薄膜トランジスタなど)を剥離する際、発光素子や有機薄膜トランジスタなどに含まれる有機化合物層は密着性が弱いため、シリコーン層近傍で剥離するのではなく有機化合物層内もしくは層の界面で剥離してしまい、有機化合物を含む素子を破壊する恐れがある。また、印刷法によって形成される層も密着性が弱いため、同様に層内もしくは層の界面で剥離してしまう恐れがある。しかし、シリコーン層を用いた本発明の剥離法を用いる場合、シリコーン層表面をプラズマ処理することで、シリコーン層の表面に脆弱化された層を形成することができるため、比較的弱い力でシリコーン層近傍での剥離を行うことができる。
なお、ガラス基板上にシリコーン層を形成するとしているが、ガラス基板に限定されず、石英基板、セラミックス基板、半導体基板なども用いることができる。
本発明は、既存の大型ガラス基板の製造装置を用いて薄膜トランジスタなどの素子を形成した後、剥離することができる。従って、設備コストを大幅に低減することができる。
また、シリコーン層と半導体素子との間に、厚さ5μm以上、好ましくは10μm以上100μm以下の厚さの有機化合物層を形成することで、有機化合物層を後に形成される半導体装置の支持部材として機能させることが可能である。
また、薄膜トランジスタにいては、素子構造に関係なく本発明を適用することが可能であり、例えば、トップゲート型薄膜トランジスタや、ボトムゲート型(逆スタガ型)薄膜トランジスタや、順スタガ型薄膜トランジスタを用いることが可能である。また、シングルゲート構造のトランジスタに限定されず、複数のチャネル形成領域を有するマルチゲート型トランジスタ、例えばダブルゲート型トランジスタとしてもよい。
また、本発明により、可撓性を有し、薄型で、大型の表示装置を作製することができ、パッシブマトリクス型の液晶表示装置、パッシブマトリクス型の発光装置に限らず、アクティブマトリクス型の液晶表示装置やアクティブマトリクス型の表示装置も作製することができる。
また、可撓性基板とは、フィルム状のプラスチック基板、例えば、ポリエチレンテレフタレート(PET)、ポリエーテルスルホン(PES)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ナイロン、ポリエーテルエーテルケトン(PEEK)、ポリスルホン(PSF)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリブチレンテレフタレート(PBT)などのプラスチック基板を指している。
本発明により、対角が1mを越える大面積基板を用いても剥離工程をよりスムーズに行うことができる。また、シリコーン層上に形成される脆弱層と半導体素子との間に有機化合物層を設けることで、当該有機化合物層を半導体装置の支持部材として機能させることが可能である。このため、半導体装置を支持するための支持基板を必要以上に設けなくともよく、コスト削減が可能である。
以下に、本発明の実施の形態を図面に基づいて説明する。但し、本発明は多くの異なる形態で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
ここでは液晶表示装置を作製する例を、図1を用いて説明する。
基板100上にシリコーン層101を形成する。基板100としてはガラス基板を用いる。シリコーン層101は、シロキサンポリマーを含む組成物を塗布し焼成乾燥して形成する。シリコーン層101の厚さは1nm以上2000nm以下、好ましくは1nm以上1000nm以下である。
次に、シリコーン層101の表面をプラズマ処理し、脆弱層を形成する。プラズマ処理としては、酸素プラズマ処理、水素プラズマ処理、窒素プラズマ処理、一酸化二窒素プラズマ処理、二酸化窒素プラズマ処理、ハロゲンプラズマ処理、ネオン、アルゴン等の希ガスプラズマ処理等がある。シリコーン層の表面をプラズマ処理103することで、シリコーン層の表面の有機基が酸化され、酸化珪素を含む脆弱層102となる(図1(B)参照)。
脆弱層102とは、シリコーン層101のプラズマ処理により、シリコーン層表面の有機基が酸化され、分解された層である。このため、脆弱層102は、疎な層であり、多孔質状の場合もあるため、外部からの力により容易に脆弱破壊が生じやすい。
次に、脆弱層102上に有機化合物層104を形成する。有機化合物層104としては、後のプロセス温度(180℃以上500℃以下、好ましくは200℃以上400℃以下、更に好ましくは250℃以上350℃以下)に耐えうる耐熱温度を有する材料で形成することが好ましい。さらには、曲げに強く、クラックが入りにくい弾性材料であることが好ましい。さらには、透光性を有する材料で形成することが好ましい。
有機化合物層104が透光性を有することで、透過型液晶表示装置を作製することができる。有機化合物層104は、厚さ5μm以上、好ましくは10μm以上100μm以下の厚さで形成することで、後に形成される半導体装置の支持部材として機能することが可能である。このため、半導体装置を支持するための支持基板を必要以上に設けなくともよい。有機化合物層104の作製方法は、組成物を脆弱層102上に塗布し、180℃以上500℃以下、好ましくは200℃以上400℃以下、更に好ましくは250℃以上350℃以下で焼成する。有機化合物層104の代表例としては、ポリイミド、ポリベンゾオキサゾール、シロキサンポリマー等がある。
なお、脆弱層102と有機化合物層104の間に無機絶縁層を形成してもよい。無機絶縁層としては、窒化珪素、酸化珪素、酸化窒化珪素、窒化酸化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム等を形成することができる。なお、無機絶縁層として窒化珪素または窒化酸化珪素を形成することで、外部からの水分が有機化合物層104に浸入するのを防ぐことが可能であり、素子層に含まれる素子の劣化を防止することができる。
次に、有機化合物層104上に無機絶縁層105を形成してもよい。無機絶縁層105は、下地絶縁層として機能し、ガラス基板または有機化合物からの不純物が後に形成される半導体層に混入するのを抑制するためであり、必要に応じて形成する。無機絶縁層105としては、窒化酸化珪素、酸化アルミニウム、窒化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム等を形成することができる。下地絶縁層として機能する代表的な一例は、無機絶縁層105が2層構造からなり、プラズマCVD法によりSiH、NH、及びNOを反応ガスとして形成される窒化酸化珪素層を50〜100nm、SiH、及びNOを反応ガスとして形成される酸化窒化珪素層を100〜150nmの厚さに積層形成する構造が採用される。
次に、無機絶縁層105上に第1の導電層を形成し、第1の導電層上にマスクを形成する。第1の導電層は、Ta、W、Ti、Al、Cu、Cr、Nd、Mo等から選ばれた元素、または元素を主成分とする合金材料若しくは化合物材料の単層、またはこれらの積層で形成する。また、第1の導電層の形成方法としては、スパッタリング法、蒸着法、CVD法、塗布法等を適宜用いる。次に、マスクを用いて第1の導電層をエッチングして、ゲート電極106を形成する。
次に、ゲート電極106上にゲート絶縁層107を形成する。ゲート絶縁層107としては、酸化珪素層、窒化珪素層、酸化窒化珪素層、または窒化酸化珪素層などの絶縁層を用いる。また、ゲート絶縁層107として、シロキサンポリマーを含む組成物を塗布焼成して得られる層、光硬化性有機樹脂層、熱硬化性有機樹脂層などを用いてもよい。
次に、ゲート絶縁層107上に微結晶半導体層108aを形成する。微結晶半導体層108aは非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造の半導体を含む層である。この半導体は、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質なものであり、粒径が0.5〜20nmの柱状または針状結晶が基板表面に対して法線方向に成長している。また、微結晶半導体と非晶質半導体とが混在している。微結晶半導体層108aは、シランやゲルマンに代表される半導体材料ガスを用いた気相成長法やスパッタリング法を用いて形成する。このときのシランやゲルマンに対して水素の流量比を12倍以上1000倍以下、好ましくは50倍以上200倍以下、更に好ましくは100倍以上150倍以下とする。
また、微結晶半導体層をゲート絶縁層107上に形成した後、微結晶半導体層にパルス発振のレーザビームを照射して、結晶性が改善された微結晶半導体層108aを形成することでもできる。レーザビームとしてエキシマレーザを用いる場合は、パルス発振周波数1Hz以上10MHz未満、好ましくは100Hz〜10kHzとし、レーザエネルギーを0.2〜0.35J/cm(代表的には0.2〜0.3J/cm)とする。また、固体レーザとしてYAGレーザを用いる場合には、その第3高調波を用いパルス発振周波数1Hz以上10MHz未満とし、レーザエネルギーを0.2〜0.35J/cm(代表的には0.2〜0.3J/cm)とする。このような微結晶半導体層は、層中の非晶質半導体成分が低減されるため、結晶性が高まる。
次に、微結晶半導体層108a上にバッファ層108bを形成する。バッファ層108bは、微結晶半導体層108aの酸化防止層であると共に、高抵抗領域としての機能を有する。このため、バッファ層108bは、非晶質半導体層で形成する。または、窒素、フッ素、塩素、臭素、ヨウ素を含む非晶質半導体層で形成する。
バッファ層108bは、SiH、Siなどの水素化珪素またはゲルマンを用いて、プラズマCVD法により形成することができる。また、上記水素化珪素に、ヘリウム、アルゴン、クリプトン、ネオンから選ばれた一種または複数種の希ガス元素で希釈して非晶質半導体層を形成することができる。または、上記水素化珪素に、窒素、アンモニア、ハロゲンガス、ハロゲン化合物等を混入させて、窒素、フッ素、塩素、臭素、ヨウ素を含む非晶質半導体層を形成することができる。水素化珪素の流量の1倍以上10倍以下、更に好ましくは1倍以上5倍以下の流量の水素を用いて、水素を含む非晶質半導体層を形成することができる。また、バッファ層108bは、スパッタリング法を用いて形成することができる。
バッファ層108bの厚さは、代表的には、30nm以上500nm以下、好ましくは200nm以上300nm以下の厚さで形成することが好ましい。薄膜トランジスタの印加電圧の高い(例えば15V程度)表示装置、代表的には液晶表示装置において、バッファ層108bの層厚を上記範囲に示すように厚く形成すると、ドレイン耐圧が高くなり、薄膜トランジスタに高い電圧が印加されても、薄膜トランジスタが劣化することを回避することができる。
次に、一導電型の不純物元素を含有する半導体層109として、n型を付与する不純物元素を含む半導体層109を20〜80nmの厚さで形成する。n型を付与する不純物元素を含む半導体層109は、プラズマCVD法やスパッタリング法などの公知の方法で全面に形成する。ここまでの工程が終了した段階での断面工程図を図1(B)に示す。
なお、微結晶半導体層108a、バッファ層108b、及び一導電型を付与する不純物が添加された半導体層109の代わりに、スパッタリング法やPLD(Pulse Laser Deposition)法で作製されるZnOや亜鉛ガリウムインジウムの酸化物を用いてもよいが、その場合にはゲート絶縁層をアルミニウムやチタンを含む酸化物とすることが好ましい。
次に、公知のフォトリソグラフィ技術を用いて形成したレジストマスクを用いて非晶質半導体層108及び一導電型の不純物元素を含有する半導体層109をエッチングして、島状の微結晶半導体層114、バッファ層、及び一導電型の不純物元素を含有する半導体層を得る。なお、公知のフォトリソグラフィ技術に代えて、液滴吐出法や印刷法(凸版、平板、凹版、スクリーンなど)を用いてマスクを形成し、選択的に上記エッチングを行ってもよい。
次に、スパッタリング法で金属層(Ta、W、Ti、Al、Cu、Cr、Nd、Moなど)を形成し、公知のフォトリソグラフィ技術を用いたレジストマスクを用いて金属層をエッチングして、ソース電極及びドレイン電極112を形成する。ここでは、ウェットエッチング法により金属層をエッチングする。なお、当該工程の代わりに、液滴吐出法により導電性材料(Ag(銀)、Au(金)、Cu(銅)、W(タングステン)、Al(アルミニウム)等)を含む組成物を選択的に吐出して、ソース電極及びドレイン電極112を形成してもよい。
次に、ソース電極及びドレイン電極112を形成したレジストマスクを用いて、島状の一導電型を付与する不純物が添加された半導体層をエッチングして、一対のソース領域及びドレイン領域113を形成する。このとき、島状のバッファ層の上部がエッチングされ、ソース領域及びドレイン領域113の間に凹部が形成されるバッファ層115が形成される。なお、微結晶半導体層114は薄膜トランジスタのチャネル形成領域として機能し、バッファ層115は高抵抗領域として機能する。
次に、微結晶半導体層114のチャネル形成領域を不純物汚染から防ぐための保護層117を形成する。保護層117としては、スパッタリング法、またはプラズマCVD法により得られる窒化珪素、または窒化酸化珪素を主成分とする材料を用いる。この後、保護層を形成した後に水素化処理を行ってもよい。こうして薄膜トランジスタ111が作製される。
次に、保護層117上に層間絶縁層118を形成する。層間絶縁層118は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂、透過性を有するポリイミド樹脂等の樹脂材料を用いる。また、層間絶縁層118としては、酸化珪素層、窒化珪素層または酸化窒化珪素層などの絶縁層を用いることもでき、これらの絶縁層と上記樹脂材料との積層を用いてもよい。
次に、公知のフォトリソグラフィ技術を用いて形成したマスクを用いて保護層117及び層間絶縁層118を選択的に除去してソース電極及びドレイン電極112の一方に達するコンタクトホールを形成する。
次に、スパッタリング法で金属層(Ag、Au、Cu、W、Al、Mo等)を形成し、公知のフォトリソグラフィ技術を用いたレジストマスクを用いて金属層をエッチングして、ソース電極及びドレイン電極112の一方と電気的に接続する第1の電極119を形成すると同時に、第1の電極119と基板面に平行な方向の電場を形成する第2の電極120を形成する。なお、第1の電極119と第2の電極120は等間隔で配置することが好ましく、電極の上面形状を櫛歯形状としてもよい。なお、第1の電極119と第2の電極120は、液晶表示装置の画素電極として機能する。また、第1の電極119及び第2の電極120を液滴吐出法により導電性材料(Ag、Au、Cu、W、Al、Mo等)を含む組成物を選択的に吐出し焼成して形成してもよい。
次に、第1の電極119と第2の電極120を覆う配向層121を形成する。ここまでの工程が終了した段階での断面工程図を図1(C)に示す。
次に、液晶材料として高分子分散型液晶を用いて、可撓性基板133を基板100に対向するように固定させる。高分子分散型液晶は、液晶と高分子材料の分散状態によって、2つのタイプに大別できる。1つは液晶の小滴が高分子材料に分散し、液晶が不連続であるタイプ(PDLCと呼ばれる)、もう一つは液晶中に高分子材料がネットワークを形成し、液晶が連続しているタイプ(PNLCと呼ばれる)である。なお、本実施の形態において、いずれのタイプを用いてもよいが、ここではPDLCを用いる。本実施の形態では、液晶132を含む高分子材料131を可撓性基板133で固定する。必要であれば高分子材料131を囲むようにシール材を配置してもよい。また、必要であれば、高分子材料131の厚さを制御する間隙材(ビーズスペーサ、カラム状スペーサ、ファイバーなど)を用いてもよい。さらには、高分子分散型液晶の代わりに、公知の液晶材料を用いてもよい。
次に、基板100から、有機化合物層104、薄膜トランジスタ111、及び可撓性基板133を含む積層体134を剥離する。脆弱層102は脆いため、比較的弱い力で剥離を行うことができる。図1(D)では積層体134が脆弱層102とシリコーン層101の界面で分離する図を示したが、分離する場所は、薄膜トランジスタが破壊されない領域であればよく、脆弱層102から基板100の間であれば、特に限定されない。例えば、脆弱層102内で分離してもよいし、脆弱層102と有機化合物層104の界面で分離してもよい。
なお、有機化合物層104、薄膜トランジスタ111、及び可撓性基板133を含む積層体に複数の液晶表示装置が含まれる場合、当該積層体を分断して、複数の液晶表示装置を切り出してもよい。このような工程により、一度の剥離工程により複数の液晶表示装置を作製することができる。
以上の工程で、図1(E)に示すように、微結晶半導体層をチャネル形成領域に用いた薄膜トランジスタを有するアクティブマトリクス型の液晶表示装置135を作製できる。液滴吐出法で形成された導電層は、密着性が弱いが、シリコーン層上に形成される脆弱層を剥離に用いた本実施の形態の剥離法を用いる場合、一部の配線に液滴吐出法で形成された導電層を用いても、脆弱層近傍(本実施の形態ではシリコーン層101と脆弱層102の界面)で剥離できる。本実施の形態の液晶表示装置は、薄型であり可撓性を有する。また、シリコーン層及び薄膜トランジスタの間に有機化合物層を設けることで、当該有機化合物層を液晶表示装置の支持部材として機能させることが可能である。このため、液晶表示装置を支持するための支持基板を必要以上に設けなくともよく、コスト削減が可能である。
なお、液晶表示装置135の表面の脆弱層102を除去してもよい。また、液晶表示装置の機械強度が低い場合には、剥離した面に接着層を用いて可撓性基板を固定してもよい。その場合は、温度変化によらず基板間隔を維持するため、可撓性基板133と同じ熱膨張係数の可撓性基板を用いることが好ましい。
また、高分子分散型液晶に代えて電子インクを用いて電気泳動ディスプレイを作製してもよい。その場合には、第1の電極119と第2の電極120を形成し、印刷法により電子インクを塗布した後焼成し、可撓性基板133で固定すればよい。そして基板を剥離してもう一枚の可撓性基板を用いて封止すればよい。
(実施の形態2)
ここでは有機薄膜トランジスタを用いたアクティブマトリクス型の発光装置を作製する例を、図2を用いて説明する。
実施の形態1と同様に、基板100上にシリコーン層101を形成し、シリコーン層101の表面をプラズマ処理し脆弱層102を形成する。次に脆弱層102上に有機化合物層104を形成する。ここまでの工程が終了した段階での断面工程図を図2(A)に示す。なお、脆弱層102と有機化合物層104の間に無機絶縁層を形成してもよい。
次に、有機化合物層104上に無機絶縁層105を形成してもよい。次に、有機化合物または無機絶縁層105上に、ゲート電極となる導電層211を形成する。導電層211に用いる材料は、窒化及び/または酸化することで絶縁性を有する金属であれば良く、特にタンタル、ニオブ、アルミニウム、銅、チタンが好ましい。その他、タングステン、クロム、ニッケル、コバルト、マグネシウム、モリブデンなどを用いることができる。導電層211の形成方法について特に限定は無く、スパッタリング法や蒸着法などにより形成した後、エッチングなどの方法により所望の形状に加工すればよい。また、導電物を含む液滴を用いてインクジェット法等により形成してもよい。
次に、導電層211を窒化及び/または酸化することで上記金属の窒化物、酸化物もしくは酸化窒化物からなるゲート絶縁層212を形成する。なお、導電層のうち絶縁化したゲート絶縁層212以外はゲート電極として機能する。
次に、ゲート絶縁層212を覆う半導体層213を形成する。半導体層213を形成する有機半導体材料はキャリア輸送性があり、かつ電界効果によりキャリア密度の変化が起こりうる有機材料であれば、低分子、高分子のいずれも用いることができ、その種類は特に限定されるものではないが、多環芳香族化合物、共役二重結合化合物、金属フタロシアニン錯体、電荷移動錯体、縮合環テトラカルボン酸ジイミド類、オリゴチオフェン類、フラーレン類、カーボンナノチューブ、などが挙げられる。例えばポリピロール、ポリチオフェン、ポリ(3アルキルチオフェン)、ポリフェニレンビニレン、ポリ(p−フェニレンビニレン)、ポリアニリン、ポリジアセチレン、ポリアズレン、ポリピレン、ポリカルバゾール、ポリセレノフェン、ポリフラン、ポリ(p−フェニレン)、ポリインドール、ポリピリダジン、ナフタセン、ヘキサセン、ヘプタセン、ピレン、クリセン、ペリレン、コロネン、テリレン、オバレン、クオテリレン、サーカムアントラセン、トリフェノジオキサジン、トリフェノジチアジン、ヘキサセン−6、15−キノン、ポリビニルカルバゾール、ポリフェニレンスルフィド、ポリビニレンスルフィド、ポリビニルピリジン、ナフタレンテトラカルボン酸ジイミド、アントラセンテトラカルボン酸ジイミド、C60、C70、C76、C78、C84及びこれらの誘導体を用いることができる。また、これらの具体例としては、一般的にP型半導体とされるテトラセン、ペンタセン、セクシチオフェン(6T)、銅フタロシアニン、ビス−(1、2、5−チアジアゾロ)−p−キノビス(1、3−ジチオール)、ルブレン、ポリ(2、5−チエニレンビニレン)(PTV)、ポリ(3−ヘキシルチオフェン−2、5−ジイル)(P3HT)、ポリ(9、9’−ジオクチルーフルオレン−co−ビチオフェン)(F8T2)、一般的にN型半導体とされる7,7,8,8,−テトラシアノキノジメタン(TCNQ)、3,4,9,10−ペリレンテトラカルボン酸二無水物(PTCDA)、1,4,5,8,−ナフタレンテトラカルボン酸二無水物(NTCDA)、N,N’−ジオクチルー3,4,9,10−ペリレンテトラカルボン酸ジイミド(PTCDI−C8H)、銅ヘキサデカフルオロフタロシアニン(F16CuPc)、N,N’−ビス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8−ペンタデカフルオロオクチル−1、4、5、8−ナフタレンテトラカルボン酸ジイミド(NTCDI−C8F)、3’,4’−ジブチル−5,5’’−ビス(ジシアノメチレン)−5、5’’−ジヒドロ−2,2’:5’,2’’−テルチオフェン)(DCMT)、メタノフラーレン[6,6]−フェニルC61酪酸メチルエステル(PCBM)等がある。なお、有機半導体においてP型やN型の特性はその物質固有のものでは無く、キャリアを注入する電極との関係や注入の際の電界の強度に依存し、どちらになりやすいという傾向はあるもののP型半導体としてもN型半導体としても使用することができる。なお、本実施の形態においては、P型半導体がより好ましい。
これらの有機半導体材料は、蒸着法やスピンコート法、液滴吐出法などの方法により形成することができる。
次に、半導体層213の上に密着性や界面の化学安定性を向上させるためバッファ層214を形成する。バッファ層214としては導電性を有する有機材料(電子受容性を示す有機化合物、例えば7,7,8,8−テトラシアノキノジメタン(TCNQ)、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F−TCNQ)等)、または有機化合物と金属酸化物の複合材料を用いればよい。なお、バッファ層214は必要がなければなくともよい。
次に、バッファ層214上にソース電極及びドレイン電極215を形成する。ソース電極及びドレイン電極215に使用する材料は、特に限定されるものではないが、金、白金、アルミニウム、タングステン、チタン、銅、タンタル、ニオブ、クロム、ニッケル、コバルト、マグネシウムなどの金属及びそれらを含む合金を用いることができる。また、ソース電極及びドレイン電極215に使用する他の材料としては、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレンなどの導電性高分子化合物等がある。なお、ソース電極及びドレイン電極215の形成方法は半導体層213が分解しないようなものであれば特に限定は無く、スパッタリング法や蒸着法などにより形成した後、エッチングするなどの方法により所望の形状に加工し作製すればよい。また、導電物を含む液滴を用いてインクジェット法等によってソース電極及びドレイン電極215を形成してもよい。以上の工程で有機薄膜トランジスタ227が作製できる。
また、半導体層213の下面に接して、ポリイミド、ポリアミック酸、ポリビニルフェニールなど有機絶縁材料を形成しても良い。このような構成により、有機半導体材料の配向をさらに高めるほか、ゲート絶縁層212と半導体層213との密着性をさらに向上することができる。
続いて、有機薄膜トランジスタ227を用いた発光装置の作製方法について説明する。
次に、有機薄膜トランジスタ227を覆う層間絶縁層228を形成する。次に、層間絶縁層228を選択的にエッチングしてソース電極及びドレイン電極215の一方に達するコンタクトホールを形成する。次に、ソース電極及びドレイン電極215の一方に電気的に接続する第1の電極210を形成する。次に、第1の電極210の端部を覆う隔壁221を形成する。隔壁221は絶縁材料を用いて形成されており、隣接して複数配置される第1の電極210の間を絶縁する機能を果たしている。
次に、第1の電極210のうち、隔壁221と接していない領域上に発光層222を形成する。発光層222に用いる材料として、有機化合物の単層もしくは積層、或いは無機化合物の単層もしくは積層で用いる場合が多いが、本明細書においては、有機化合物からなる層の一部に無機化合物を用いる構成も含めることとする。発光素子中の各層については積層法を限定するものではない。積層が可能ならば、真空蒸着法やスピンコート法、インクジェット法、ディップコート法など、どの様な手法を選んでも良いものとする。
次に、発光層222上に第2の電極223を形成する。第1の電極210と、第2の電極223と、発光層222とが重なる箇所で発光素子を構成する。なお、この発光素子は、電場を加えることで発生するルミネッセンス(Electro Luminescence)が得られる有機化合物を含む層或いは無機化合物を含む層(以下、発光層と記す)と、陽極と、陰極とを有している。特にZnS:Mn等の無機薄層を用いた無機ELと、有機蒸着薄層を用いた有機ELは、それぞれ明るく、高効率のEL発光を示しディスプレイへの応用に適している。なお、発光素子の構成について特に限定はない。
次に、第2の電極223上に保護層224を形成する。なお、必要でなければ、保護層224はなくともよい。
次に、保護層224上に接着層226で可撓性基板225を固定する。封止を強化するために接着層226を囲むようにシール材を配置してもよい。ここまでの工程が終了した段階での断面工程図を図2(B)に示す。
次に、基板100から、有機化合物層104、有機薄膜トランジスタ227、発光素子、及び可撓性基板225を含む積層体229を剥離する。図2(C)ではシリコーン層101と脆弱層102の界面で分離する図を示している。
なお、有機化合物層104、有機薄膜トランジスタ227、及び可撓性基板225を含む積層体229に複数の発光装置が含まれる場合、当該積層体229を分断して、複数の発光装置を切り出してもよい。このような工程により、一度の剥離工程により複数の発光装置230を作製することができる。
以上の工程で有機薄膜トランジスタを用いたアクティブマトリクス型の発光装置230を作製できる(図2(D)参照。)。例えば、蒸着法で形成された発光層は密着性が弱いが、シリコーン層上に形成される脆弱層近傍を用いた本発明の剥離法を用いる場合、蒸着法で形成された選択的に発光層を用いても、脆弱層近傍(本実施の形態ではシリコーン層101と脆弱層の界面)で剥離できる。本実施の形態の発光装置は、薄型であり可撓性を有する。また、脆弱層及び薄膜トランジスタの間に有機化合物層を設けることで、当該有機化合物層を発光装置の支持部材として機能させることが可能である。このため、発光装置を支持するための支持基板を必要以上に設けなくともよく、コスト削減が可能である。
また、図2(C)に示した有機薄膜トランジスタ227の構造に限定されず、図3(A)、または図3(B)に示す構造としてもよい。
図3(A)はボトムコンタクト型と呼ばれる構造である。なお、図2と共通の部分には同じ符号を用いる。ボトムコンタクト型構造を用いた場合、ソース配線及びドレイン配線の微細加工を施すためにフォトリソグラフィなどの工程を容易に用いることができる。そのため、有機薄膜トランジスタの構造はその長所、短所に合わせて適宜選択すれば良い。
基板100上には、シリコーン層101、脆弱層102、有機化合物層104、及び無機絶縁層105を積層する。無機絶縁層105にゲート電極251を形成する。ゲート電極251に用いる材料は、特に限定は無く、たとえば、金、白金、アルミニウム、タングステン、チタン、銅、モリブデン、タンタル、ニオブ、クロム、ニッケル、コバルト、マグネシウムなどの金属及びそれらを含む合金、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン、不純物をドープしたポリシリコンなどの導電性高分子化合物等が挙げられる。ゲート電極251の形成方法は特に限定は無く、スパッタリング法や蒸着法などにより形成した後、エッチングするなどの方法により所望の形状に加工し作製すればよい。また、導電物を含む液滴を用いてインクジェット法等により形成してもよい。
次に、ゲート電極251を覆うゲート絶縁層252を形成する。ゲート絶縁層252は、酸化珪素、窒化珪素、酸窒化珪素などの無機絶縁材料を用いる。なお、これらのゲート絶縁層252はディップ法、スピンコート法、液滴吐出法などの塗布法や、CVD法、スパッタリング法などの方法によって形成することができる。このゲート絶縁層252に対し、高密度プラズマを用いて窒化及び/または酸化処理を行ってもよい。高密度プラズマ窒化を行うことで、より高い濃度の窒素を含有する窒化珪素層を得ることも可能である。高密度プラズマは、高い周波数のマイクロ波、たとえば2.45GHzを使うことによって生成される。このような高密度プラズマを用い、酸素(もしくは酸素を含むガス)や窒素(もしくは窒素を含むガス)などをプラズマ励起によって活性化し、これらを絶縁層と反応させる。低電子温度が特徴である高密度プラズマは、活性種の運動エネルギーが低いため、従来のプラズマ処理に比べプラズマダメージが少なく欠陥が少ない層を形成することができる。また、高密度プラズマを用いると、ゲート絶縁層252の表面の粗さが小さくできるため、キャリア移動度を大きくすることができる。さらに、ゲート絶縁層252上に形成される半導体層を構成する有機半導体材料の配向がそろいやすくなる。
次に、ゲート絶縁層252上にソース電極及びドレイン電極215を形成する。次に、ソース電極及びドレイン電極215の間に半導体層213を形成する。半導体層213は、上述した図2(B)に示した半導体層213と同じ材料を用いることができる。
また、図3(B)の構造について説明する。図3(B)はトップゲート型構造と呼ばれる構造である。
基板100上には、シリコーン層101、脆弱層102、有機化合物層104、及び無機絶縁層105を積層する。無機絶縁層105上にソース電極及びドレイン電極414、415を形成する。次に、ソース電極及びドレイン電極414、415の間に半導体層413を形成する。次に、半導体層413とソース電極及びドレイン電極414、415とを覆うゲート絶縁層442を形成する。次に、ゲート絶縁層442上にゲート電極441を形成する。ゲート電極441は、ゲート絶縁層442を介して半導体層413と重なる。
このように様々な有機薄膜トランジスタの構造としても、本実施の形態により、剥離を行うことができる。例えば、塗布法で形成された半導体層は、密着性が弱いが、脆弱層102近傍を用いた本実施の形態の剥離法を用いる場合、塗布法で形成された半導体層を用いても、脆弱層102近傍(本実施の形態ではシリコーン層101及び脆弱層102の界面)で剥離できる。
また、有機薄膜トランジスタに代えて、スパッタリング法やPLD法で作製されるZnOや亜鉛ガリウムインジウムの酸化物を半導体層に用いたトランジスタを用いることもできる。その場合、図3(A)や図3(B)の構造を適用することができる。また、ZnOや亜鉛ガリウムインジウムの酸化物を半導体層に用いる場合にはゲート絶縁層をアルミニウムやチタンを含む酸化物とすることが好ましい。このようにプラズマが基板に照射されるプロセスを有するトランジスタを形成する際にも本発明は有用であり、プラズマに耐えうる基板上にトランジスタを形成した後、プラズマへの耐久性の低い可撓性基板を貼り付け、剥離することで発光装置を作製することができる。
なお、発光装置の表面の脆弱層102を除去してもよい。また、発光装置の機械強度が低い場合には、剥離した面に接着層用いて可撓性基板を固定してもよい。その場合は、温度変化によらず基板間隔を維持するため、可撓性基板225と同じ熱膨張係数の可撓性基板を用いることが好ましい。
また、実施の形態1及び実施の形態2をそれぞれ自由に組み合わせることができる。例えば、実施の形態1に示した微結晶半導体膜を用いた薄膜トランジスタに代えて実施の形態2に示した有機薄膜トランジスタを用いて液晶表示装置を作製することができる。また、実施の形態2に示した有機薄膜トランジスタに代えて実施の形態1に示した微結晶半導体膜を用いた薄膜トランジスタを用いて発光装置を作製することもできる。
さらには、実施の形態1に示す液晶表示装置のバックライトに本実施の形態に示す発光装置を用いることができる。本実施の形態に示す発光装置は、可撓性があり、また薄型であるため、薄型の液晶表示装置を作製することができる。
(実施の形態3)
ここではパッシブマトリクス型の発光装置を作製する例を図4乃至図8を用いて説明する。
パッシブマトリクス型(単純マトリクス型)発光装置は、ストライプ状(帯状)に並列された複数の陽極と、ストライプ状に並列された複数の陰極とが互いに直交するように設けられており、その交差部に発光層或いは蛍光層が挟まれた構造となっている。従って、選択された(電圧が印加された)陽極と選択された陰極との交点にあたる画素が点灯することになる。
図4(A)は、発光素子の第2の電極516に可撓性基板を貼り付ける前における画素部の上面図を示す図であり、図4(A)中の鎖線A−A’で切断した断面図が図4(B)であり、鎖線B−B’で切断した断面図が図4(C)である。
基板100上には、実施の形態2と同様に、シリコーン層101、脆弱層102、有機化合物層104、及び無機絶縁層105を積層する。無機絶縁層105上には、ストライプ状に複数の第1の電極513が等間隔で配置されている。また、第1の電極513上には、各画素に対応する開口部を有する隔壁514が設けられ、開口部を有する隔壁514は絶縁材料(感光性または非感光性の有機材料(ポリイミド、アクリル、ポリアミド、ポリイミドアミド、またはベンゾシクロブテン)、またはシリコーン樹脂(例えば、アルキル基を含む酸化珪素層))で構成されている。なお、各画素に対応する開口部が発光領域521となる。
開口部を有する隔壁514上に、第1の電極513と交差する互いに平行な複数の逆テーパ状の隔壁522が設けられる。逆テーパ状の隔壁522はフォトリソグラフィ法に従い、未露光部分がパターンとして残存するポジ型感光性樹脂を用い、パターンの下部がより多くエッチングされるように露光量または現像時間を調節することによって形成する。
また、平行な複数の逆テーパ状の隔壁522を形成した直後における斜視図を図5に示す。
逆テーパ状の隔壁522の高さは、発光層を含む積層層及び導電層の層厚より大きく設定する。図5に示す構成を有する基板に対して発光層を含む積層層と、導電層とを積層形成すると、図4に示すように電気的に独立した複数の領域に分離され、発光層を含む積層層515R、515G、515Bと、第2の電極516とが形成される。第2の電極516は、第1の電極513と交差する方向に伸長する互いに平行なストライプ状の電極である。なお、逆テーパ状の隔壁522上にも発光層を含む積層層及び導電層が形成されるが、発光層を含む積層層515R、515G、515B、及び第2の電極516とは分断されている。
ここでは、発光層を含む積層層515R、515G、515Bを選択的に形成し、3種類(R、G、B)の発光が得られるフルカラー表示可能な発光装置を形成する例を示している。発光層を含む積層層515R、515G、515Bはそれぞれ互いに平行なストライプパターンで形成されている。
また、全面に同じ発光色を発光する発光層を含む積層層を形成し、単色の発光素子を設けてもよく、モノクロ表示可能な発光装置、或いはエリアカラー表示可能な発光装置としてもよい。また、白色発光が得られる発光装置と、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。
次に、FPCなどを実装した発光モジュールの上面図を図6に示す。
なお、本明細書中における発光装置とは、画像表示デバイス、発光デバイス、もしくは光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible printed circuit)もしくはTAB(Tape Automated Bonding)テープもしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
図6に示すように画像表示を構成する画素部は、走査線群とデータ線群が互いに直交するように交差している。
図4における第1の電極513が図6の走査線602に相当し、図4における第2の電極516がデータ線603に相当し、逆テーパ状の隔壁522が隔壁604に相当する。データ線603と走査線602の間には発光層が挟まれており、領域605で示される交差部が画素1つ分となる。
なお、データ線603は配線端で接続配線608と電気的に接続され、接続配線608が入力端子607を介してFPC609bに接続される。また、走査線は入力端子606を介してFPC609aに接続される。
次に、接着層を用いて可撓性基板を固定する。
次に、基板100から発光素子を剥離する。この後、脆弱層102を除去する。なお、脆弱層102を除去せず残存させてもよい。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよい。また、偏光板又は円偏光板に反射防止層を設けてもよい。例えば、表面の凹凸により反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
以上の工程でフレキシブルなパッシブマトリクス型の発光装置を作製できる。FPCを実装する際には熱圧着を行うため、硬い基板上で行うことが好ましい。本発明により、FPCを実装した後に剥離を行うことで、可撓性を有し、薄型の発光装置を作製することができる。
また、図6では、駆動回路を基板上に設けていない例を示したが、以下に駆動回路を有するICチップを実装させた発光モジュールの作製方法の一例を、図7を用いて説明する。
まず、基板100上に、実施の形態1と同様に、シリコーン層、脆弱層、有機化合物層を積層する。この有機化合物層上に、下層は反射性を有する金属層、上層は透明な酸化物導電層とした積層構造を有する走査線602(陽極としても機能する)を形成する。同時に接続配線608、709a、709b、および入力端子も形成する。
次に、各画素に対応する開口部を有する隔壁を設ける。次に、開口部を有する隔壁(図示しない。)上に、走査線602と交差する互いに平行な複数の逆テーパ状の隔壁604を設ける。以上に示す工程を終えた段階での上面図を図7(A)に示す。
次に、発光層を含む積層層と、透明導電層とを積層形成すると、図7(B)に示すように電気的に独立した複数の領域に分離され、発光層を含む積層層と、透明導電層からなるデータ線603とが形成される。透明導電層からなるデータ線603は、走査線602と交差する方向に伸長する互いに平行なストライプ状の電極である。
次に、画素部の周辺(外側)の領域に、画素部へ各信号を伝送する駆動回路が形成された走査線側IC706、データ線側IC707をCOG方式によりそれぞれ実装する。COG方式以外の実装技術としてTCPやワイヤボンディング方式を用いて実装してもよい。TCPはTABテープにICを実装したものであり、TABテープを素子形成基板上の配線に接続してICを実装する。走査線側IC706、およびデータ線側IC707は、シリコン基板を用いたものであってもよいし、ガラス基板、石英基板もしくはプラスチック基板上に薄膜トランジスタで駆動回路を形成したものであってもよい。また、片側に一つのICを設けた例を示しているが、片側に複数個に分割して設けても構わない。
なお、データ線603は配線端で接続配線608と電気的に接続され、接続配線608がデータ線側IC707と接続される。これはデータ線側IC707を逆テーパ状の隔壁604上に設けることが困難だからである。
以上のような構成で設けられた走査線側IC706は接続配線709aを介してFPC711aに接続される。また、データ線側IC707は接続配線709bを介してFPC711bに接続される。
さらに、ICチップ712(メモリチップ、CPUチップ、電源回路チップなど)を実装して集積化を図っている。
次に、ICチップ712を覆うように、接着層を用いて可撓性基板を固定する。
次に、基板100から発光素子を剥離する。このときの図7(B)の鎖線C−Dで切断した断面構造の一例を図8に示す。
走査線602は2層の積層構造であり、下層812は反射性を有する金属層であり、上層813は透明な酸化物導電層である。上層813は仕事関数の高い導電層を用いることが好ましく、インジウム錫酸化物(ITO)の他、例えば、Si元素を含むインジウム錫酸化物や酸化インジウムに酸化亜鉛を混合したIZOなどの透明導電材料、もしくはこれらを組み合わせた化合物を含む層を用いることができる。また、下層812は、Ag、Al、またはAl合金層を用いる。
隣り合うデータ線同士を絶縁化するための隔壁604は樹脂であり、隔壁で囲まれた領域が発光領域と対応して同一面積になっている。
データ線603(陰極)は、走査線(陽極)と交差するように形成されている。走査線602(陰極)は、ITOや、Si元素を含むインジウム錫酸化物や、IZOなどの透明導電層を用いる。本実施の形態では、発光が可撓性基板820を通過する上方射出型の発光装置の例であるので走査線816は透明であることが重要である。
また、発光層を有する積層層815を挟んで走査線とデータ線の交点に位置する発光素子を複数配置した画素部、端子部、及び周辺部には、接着層817で可撓性基板820が貼り付けられる。接着層817としては、紫外線硬化樹脂、熱硬化樹脂、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、PVC(ポリビニルクロライド)、PVB(ポリビニルブチラル)またはEVA(エチレンビニルアセテート)を用いることが可能である。
端子部には接続配線709bが形成され、この部分で外部回路と接続するFPC711b(フレキシブルプリント配線板)を貼り合わせる。接続配線709bは、反射性を有する金属層826と、第2の電極から延在した透明な酸化物導電層827との積層で構成しているが、特に限定されない。
FPC711bを実装する方法は異方導電性材料もしくはメタルバンプを用いた接続方法またはワイヤボンディング方式を採用することができる。図8では異方性導電接着材831を用いて接続を行っている。
また、画素部の周辺には、画素部へ各信号を伝送する駆動回路が形成されたデータ線側ICを異方導電性材料824、825により電気的に接続している。また、カラー表示に対応した画素部を形成するためには、XGAクラスでデータ線の本数が3072本であり走査線側が768本必要となる。このような数で形成されたデータ線及び走査線は画素部の端部で数ブロック毎に区分して引出線を形成し、ICの出力端子のピッチに合わせて集める。
以上の工程で有機化合物層104と可撓性基板820で封止され、ICチップが実装された発光モジュールを作製できる。ICチップを実装する際には熱圧着を行うため、硬い基板上で行うことが好ましく、本発明により、ICチップを実装した後に剥離を行って、発光装置を作製することができる。
(実施の形態4)
本実施の形態では、無線チップとして機能する半導体装置を作製する例を示す。本実施の形態で示す半導体装置は、非接触でデータの読み出しと書き込みが可能であることを特徴としており、データの伝送形式は、一対のコイルを対向に配置して相互誘導によって交信を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式の3つに大別されるが、いずれの方式を用いてもよい。
また、データの伝送に用いるアンテナは2通りの設け方があり、1つは複数の半導体素子が設けられた半導体部品(以下、素子基板と示す。)に端子部を設け、当該端子部に別の基板に設けられたアンテナを接続して設ける場合、もう1つは複数の半導体素子、受動素子等が設けられた素子基板上にアンテナを作りこむ場合がある。
はじめに、別の基板に設けられたアンテナを素子基板の端子部に接続して、アンテナを設ける場合の作製方法を以下に示す。
まず、実施の形態1と同様に、基板100上にシリコーン層101を形成し、シリコーン層101の表面をプラズマ処理して脆弱層102を形成し、脆弱層102上に有機化合物層104を形成する。なお、必要であれば、実施の形態1に示すように、有機化合物層104上に無機絶縁層105を形成してもよい。
次に、図9(B)に示すように、有機化合物層104上にアンテナとして機能する導電層904を形成する。アンテナとして機能する導電層904は、金、銀、銅等の導電体を有する液滴やペーストを液滴吐出法(インクジェット法、ディスペンス法など)により吐出し、乾燥焼成して形成する。液滴吐出法によりアンテナを形成することで、工程数の削減が可能であり、それに伴うコスト削減が可能である。また、スクリーン印刷法を用いて導電層904を形成してもよい。スクリーン印刷法を用いる場合、アンテナとして機能する導電層904の材料としては、粒径が数nmから数十μmの導電体粒子を有機樹脂に溶解または分散させた導電性のペーストを選択的に印刷する。導電体粒子としては、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)、白金(Pt)、パラジウム(Pd)、タンタル(Ta)、モリブデン(Mo)およびチタン(Ti)等のいずれか一つ以上の金属粒子やハロゲン化銀の微粒子、または分散性ナノ粒子を用いることができる。また、導電性ペーストに含まれる有機樹脂は、金属粒子のバインダー、溶媒、分散剤および被覆材として機能する有機樹脂から選ばれた一つまたは複数を用いることができる。代表的には、エポキシ樹脂、シリコーン樹脂等の有機樹脂が挙げられる。また、導電層の形成にあたり、導電性のペーストを押し出した後に焼成することが好ましい。また、はんだや鉛フリーのはんだを主成分とする微粒子を用いてもよく、この場合は粒径20μm以下の微粒子を用いることが好ましい。はんだや鉛フリーはんだは、低コストであるといった利点を有している。また、上述した材料以外にも、セラミックスやフェライト等をアンテナに適用してもよい。
スクリーン印刷法や液滴吐出法を用いてアンテナを作製する場合、導電層を所望の形状に形成した後、焼成を行う。この焼成温度は、200℃〜300℃である。200℃未満でも焼成は可能であるが、200℃未満の場合、アンテナの導電性が確保できないばかりかアンテナの通信距離までも短くなってしまう恐れがある。これらの点を考慮するとアンテナは、別の基板、即ち耐熱性を有する基板上に形成した後、剥離して素子基板と接続することが好ましい。
また、アンテナは、スクリーン印刷法の他にもグラビア印刷等を用いてもよいし、メッキ法等を用いて、導電性材料により形成することができる。メッキ材料やメッキの条件によってはメッキ法で形成されたアンテナは密着性が弱いことがあるため、実施の形態1乃至3に示すようなシリコーン層101を用いた剥離方法を用いることが有効である。
次に、図9(C)に示すように剥離を行って、基板100から、有機化合物層104を分離する。本発明の脆弱層を用いた剥離方法は比較的弱い力を加えるだけで剥離を行うことができるため、歩留まりが向上する。また、本発明の脆弱層近傍を用いた剥離方法は比較的弱い力を加えるだけなので、剥離の際に有機化合物層104の変形が抑えられ、導電層904へのダメージも少なくすることができる。なお、脆弱層102を除去してもよい。
次に、図9(D)に示すように有機化合物層104において導電層904が設けられている面に素子基板907を配置する。異方性導電材料を用いて圧着することで素子基板の端子部と導電層904との電気的な導通をとる。
なお、図9においては、基板100から導電層904を含む積層体を剥離した後、導電層904と素子基板907とを接続したが、その代わりに、導電層904を焼成し、導電層904に素子基板907を接続した後、基板100から導電層904を含む積層体を剥離してもよい。
また、導電層904を含む積層体に複数のアンテナとして機能する導電層が形成される場合、当該積層体を分断し、アンテナとして機能する導電層904を有する複数の積層体を形成した後、当該導電層904に素子基板を接続してもよい。
また、図9(D)では有機化合物層104に比較して小さい面積の素子基板907を設けた例を示したが、特に限定されず、有機化合物層104とほぼ同じ面積の素子基板を設けてもよいし、有機化合物層104よりも大きな面積の素子基板を設けてもよい。
以上の工程により、無線チップとして機能する半導体装置が完成する。上記半導体装置は、薄型であり可撓性を有する。また、脆弱層及び薄膜トランジスタの間に有機化合物層を設けることで、当該有機化合物層を半導体装置の支持部材として機能させることが可能である。このため、半導体装置を支持するための支持基板を必要以上に設けなくともよく、コスト削減が可能である。
なお、最後に、保護のため、素子基板907を覆うように、有機化合物層104と、もう一枚の可撓性基板を貼り付けてもよい。
次に、1つまたは複数の半導体素子が設けられた素子基板上にアンテナを形成して、無線チップとして機能する半導体装置を作製する方法について、図10を用いて説明する。
実施の形態1と同様に、図10(A)に示すように、基板100上にシリコーン層101を形成した後シリコーン層101の表面をプラズマ処理して脆弱層102を形成し、脆弱層102上に有機化合物層104を形成し、有機化合物層104上に無機絶縁層105を形成する。
次に、無機絶縁層105上に非晶質半導体層301を形成する。非晶質半導体層はSiH、Siなどの水素化珪素またはゲルマンを用いて、プラズマCVD法により形成する。ここでは、プラズマCVD法により、厚さ10nm以上100nm以下、好ましくは20nm以上80nm以下の非晶質珪素層を形成する。
次に、非晶質半導体層301にレーザビーム302を走査して、結晶性半導体層を形成する。図10(A)においては、非晶質半導体層301にレーザビームを走査するレーザーアニール法により結晶性半導体層303を形成する例を示している。
結晶化をレーザーアニール法にて行う場合には、パルス発振型のレーザを用いることができる。また、半導体膜に効率よくレーザビームが吸収されるように可視〜紫外領域(800nm以下)、好ましくは紫外領域(400nm以下)とする。レーザ発振器としては、KrF、ArF、XeCl、XeF等のエキシマレーザ発振器、N、He、He−Cd、Ar、He−Ne、HF等の気体レーザ発振器、YAG、GdVO、YVO、YLF、YAlO、ScO、Lu、Yなどの結晶にCr、Nd、Er、Ho、Ce、Co、Ti、Yb、又はTmをドープした結晶を使った固体レーザ発振器、ヘリウムカドミウムレーザ等の金属蒸気レーザ発振器等を用いることができる。なお、固体レーザ発振器においては、基本波の第3高調波〜第5高調波を適用するのが好ましい。レーザ光は光学系により集光して利用するが、例えば線状に加工してレーザーアニールを行う。レーザーアニール条件は実施者が適宣選択するものであるが、その一例としてレーザーパルス発振周波数30Hzとし、レーザエネルギー密度を100〜500mJ/cm(代表的には300〜400mJ/cm)とする。そして線状ビームを基板全面に渡って照射し、この時の線状ビームの重ね合わせ率(オーバーラップ率)を80〜98%として行う。このようにして結晶性半導体層を形成することができる。
ここでは、エキシマレーザビームを非晶質珪素層に照射して結晶性珪素層を形成する。
なお、非晶質珪素層にレーザビームを照射する前に、非晶質珪素層から水素が噴出するのを防ぐため、結晶化するためのレーザビームより弱いエネルギーのレーザビームを照射して、非晶質珪素層中の水素を除去することが好ましい。
次に、結晶性半導体層303を選択的にエッチングして半導体層321、322を形成する。ここでは、結晶性半導体層のエッチング方法としては、ドライエッチング、ウェットエッチング等を用いることができる。ここでは、結晶性半導体層上にレジストを塗布した後、露光及び現像を行ってレジストマスクを形成する。次に、レジストマスクを用いてSF:Oの流量比を4:15としたドライエッチング法により、結晶性半導体層を選択的にエッチングする。この後、レジストマスクを除去する。
次に、半導体層321、322上にゲート絶縁層323を形成する。ゲート絶縁層323は、窒化珪素、酸素を含む窒化珪素、酸化珪素、窒素を含む酸化珪素等の単層又は積層構造で形成する。ここでは、厚さ115nmの窒素を含む酸化珪素をプラズマCVD法により形成する。
次にゲート電極324、325を形成する。ゲート電極324、325は、金属又は一導電型の不純物を添加した多結晶半導体で形成することができる。金属を用いる場合は、タングステン(W)、モリブデン(Mo)、チタン(Ti)、タンタル(Ta)、アルミニウム(Al)などを用いることができる。また、金属を窒化させた金属窒化物を用いることができる。或いは、当該金属窒化物からなる第1の層と当該金属から成る第2の層との積層構造としても良い。また、液滴吐出法を用いて微粒子を含むペーストをゲート絶縁層上に吐出し、乾燥・焼成して形成することができる。また、ゲート絶縁層上に、微粒子を含むペーストを印刷法により印刷し、乾燥・焼成して形成することができる。微粒子の代表例としては、金、銀、銅、金と銀の合金、金と銅の合金、銀と銅の合金、金と銀と銅の合金のいずれかを主成分とする微粒子でもよい。ここでは、ゲート絶縁層323上に、層厚30nmmの窒化タンタル層及び、層厚170nmのタングステン層をスパッタリング法により形成した後、フォトリソグラフィ工程により形成したレジストマスクを用いて窒化タンタル層、及びタングステン層を選択的にエッチングして、窒化タンタル層の端部がタングステン層の端部より外側に突き出した形状のゲート電極324、325を形成する。
次に、ゲート電極324、325をマスクとして、半導体層321、322にn型を付与する不純物元素又はp型を付与する不純物元素を添加して、ソース領域及びドレイン領域326〜329を形成する。ここでは、ソース領域及びドレイン領域326〜329に、n型を付与する不純物元素であるリンをドーピングする。
この後、半導体層に添加した不純物元素を活性化してもよい。ここでは、レーザビームを照射して不純物の活性化をしてもよい。以上の工程により、薄膜トランジスタ320a、320bを形成する。なお、薄膜トランジスタ320a、320bとしてはnチャネル型の薄膜トランジスタを形成する。また、図示しないが、pチャネル型の薄膜トランジスタ及びnチャネル型の薄膜トランジスタにより駆動回路を構成する。
次に、薄膜トランジスタ320a、320bのゲート電極及び配線を絶縁化する層間絶縁層を形成する。ここでは、層間絶縁層として酸化珪素層333、窒化珪素層334、及び酸化珪素層335を積層して形成する。また、層間絶縁層の一部である酸化珪素層335上に薄膜トランジスタ320a、320bのソース領域及びドレイン領域に接続する配線336〜339を形成する。ここでは、スパッタリング法により、Ti層100nm、Al層333nm、Ti層100nmを連続した後、フォトリソグラフィ工程によって形成したレジストマスクを用いて選択的にエッチングして、配線336〜339を形成する。その後、レジストマスクを除去する。
次に、薄膜トランジスタ332に接続する配線339上にアンテナとして機能する導電層313を形成する。アンテナとして機能する導電層313は、図9に示すアンテナとして機能する導電層904と同様に形成することができる。また、スパッタリング法により導電層を形成した後、フォトリソグラフィ工程により形成したマスクで選択的に導電層をエッチングして、アンテナとして機能する導電層313を形成することができる。
この後、アンテナとして機能する導電層313及び層間絶縁層上にパッシベーション層314を形成してもよい。パッシベーション層314を形成することで、アンテナとして機能する導電層313や薄膜トランジスタ320a、320bが外部の水分や酸素、不純物により汚染されるのを回避することができる。パッシベーション層314としては、窒化珪素、酸化珪素、窒化酸化珪素、酸化窒化珪素、DLC(ダイヤモンドライクカーボン)、炭化窒素等で形成する。ここまでの工程が終了した段階での断面工程図を図10(B)に示す。
次に、図10(C)に示すように、パッシベーション層314上に接着層341を用いて可撓性基板342を固定する。
次に、基板100から、有機化合物層104、薄膜トランジスタ320a、320b、アンテナとして機能する導電層313、接着層341、及び可撓性基板342を含む積層体343を剥離する。ここでは脆弱層102で剥離する。脆弱層102は脆いため、比較的弱い力で積層体を基板から剥離することができる。なお、脆弱層102を除去してもよい。
なお、有機化合物層104、薄膜トランジスタ320a、320b、アンテナとして機能する導電層313、接着層341、及び可撓性基板342を含む積層体343に複数の半導体装置が含まれる場合、当該積層体を分断して、複数の半導体装置を切り出してもよい。このような工程により、一度の剥離工程により複数の半導体装置を作製することができる。
以上の工程により、無線チップとして機能する半導体装置344が完成する。本実施の形態の半導体装置は、薄型であり可撓性を有する。また、脆弱層及び薄膜トランジスタの間に有機化合物層を設けることで、当該有機化合物層を半導体装置の支持部材として機能させることが可能である。このため、半導体装置を支持するための支持基板を必要以上に設けなくともよく、コスト削減が可能である。
なお、半導体装置における信号の伝送方式として、電磁結合方式または電磁誘導方式(例えば13.56MHz帯)を適用することができる。電磁結合方式または電磁誘導方式は、磁界密度の変化による電磁誘導を利用するため、アンテナとして機能する導電層の上面形状を輪状(例えば、ループアンテナ)、らせん状(例えば、スパイラルアンテナ)に形成することが好ましい。
また、半導体装置における信号の伝送方式として、マイクロ波方式(例えば、UHF帯(860〜960MHz帯)、2.45GHz帯等)を適用することもできる。その場合には、信号の伝送に用いる電磁波の波長を考慮してアンテナとして機能する導電層の長さ等の形状を適宜設定すればよい。有機化合物層104上に形成された、アンテナとして機能する導電層912、集積回路を有するチップ状の半導体装置913の例を図11(A)〜(D)に一例を示す。例えば、アンテナとして機能する導電層の上面形状を線状(例えば、ダイポールアンテナ(図11(A)参照))、平坦な形状(例えば、パッチアンテナ(図11(B)参照))またはリボン型の形状(図11(C)、(D)参照)等に形成することができる。また、アンテナとして機能する導電層の形状は線状に限られず、電磁波の波長を考慮して曲線状や蛇行形状またはこれらを組み合わせた形状で設けてもよい。
また、以上の工程により得られた半導体装置の構成について、図12(A)を参照して説明する。図12(A)に示すように、本発明で得られる半導体装置1120は、非接触でデータを交信する機能を有し、電源回路1111、クロック発生回路1112、データ復調又は変調回路1113、他の回路を制御する制御回路1114、インターフェイス回路1115、記憶回路1116、データバス1117、アンテナ1118、センサ1121、センサ回路1122を有する。
電源回路1111は、アンテナ1118から入力された交流信号を基に、半導体装置1120の内部の各回路に供給する各種電源を生成する回路である。クロック発生回路1112は、アンテナ1118から入力された交流信号を基に、半導体装置1120の内部の各回路に供給する各種クロック信号を生成する回路である。データ復調又は変調回路1113は、通信機1119と交信するデータを復調又は変調する機能を有する。制御回路1114は、記憶回路1116を制御する機能を有する。アンテナ1118は、電波の送受信を行う機能を有する。通信機1119は、半導体装置との交信、制御及びそのデータに関する処理を制御する。なお、半導体装置は上記構成に制約されず、例えば、電源電圧のリミッタ回路や暗号処理専用ハードウエアといった他の要素を追加した構成であってもよい。
記憶回路1116は、一対の導電層間に、無機化合物層、有機化合物層、又は相変化層が挟まれた記憶素子を有することを特徴とする。なお、記憶回路1116は、一対の導電層間に無機化合物層、有機化合物層、又は相変化層が挟まれた記憶素子のみを有していてもよいし、他の構成の記憶回路を有していてもよい。他の構成の記憶回路とは、例えば、DRAM、SRAM、FeRAM、マスクROM、PROM、EPROM、EEPROM及びフラッシュメモリから選択される1つ又は複数に相当する。
センサ1121は抵抗素子、容量結合素子、誘導結合素子、光起電力素子、光電変換素子、熱起電力素子を設けることが可能であり、トランジスタ、サーミスタ、ダイオードなどの半導体素子で形成される。センサ回路1122はインピーダンス、リアクタンス、インダクタンス、電圧又は電流の変化を検出し、アナログ/デジタル変換(A/D変換)して制御回路1114に信号を出力する。
本実施の形態は、実施の形態1乃至実施の形態3と自由に組み合わせることができる。例えば、実施の形態2で示した剥離方法を用いてアンテナが設けられた可撓性基板を形成することができる。また、実施の形態1乃至実施の形態3で得られる薄膜トランジスタを用いて集積回路を形成し、剥離を行った素子基板と、本実施の形態で得られるアンテナが設けられた可撓性基板とを貼り合わせて電気的な導通を行うことができる。
本発明によりプロセッサ回路を有する無線チップ(以下、ICチップ、ICタグ、プロセッサチップ、無線チップ、無線プロセッサ、無線メモリ、無線タグともよぶ)として機能する半導体装置を形成することができる。本発明で得られる半導体装置の用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、証書類、無記名債券類、包装用容器類、書籍類、記録媒体、身の回り品、乗物類、食品類、衣類、保健用品類、生活用品類、薬品類及び電子機器等に設けて使用することができる。
紙幣、硬貨とは、市場に流通する金銭であり、特定の地域で貨幣と同じように通用するもの(金券)、記念コイン等を含む。有価証券類とは、小切手、証券、約束手形等を指し、プロセッサ回路を有するICタグ90を設けることができる(図13(A)参照)。証書類とは、運転免許証、住民票等を指し、ICタグ91を設けることができる(図13(B)参照)。身の回り品とは、鞄、眼鏡等を指し、プロセッサ回路を有するチップ96を設けることができる(図13(C)参照)。無記名債券類とは、切手、おこめ券、各種ギフト券等を指す。包装用容器類とは、お弁当等の包装紙、ペットボトル等を指し、ICタグ93を設けることができる(図13(D)参照)。書籍類とは、書物、本等を指し、ICタグ94を設けることができる(図13(E)参照)。記録媒体とは、DVDソフト、ビデオテープ等を指し、ICタグ95を設けることができる(図13(F)参照)。乗物類とは、自転車等の車両、船舶等を指し、ICタグ97を設けることができる(図13(G)参照)。食品類とは、食料品、飲料等を指す。衣類とは、衣服、履物等を指す。保健用品類とは、医療器具、健康器具等を指す。生活用品類とは、家具、照明器具等を指す。薬品類とは、医薬品、農薬等を指す。電子機器とは、液晶表示装置、EL表示装置、テレビジョン装置(テレビ受像機、薄型テレビ受像機)、携帯電話等を指す。
本発明で得られる半導体装置は、プリント基板への実装、表面への貼着、埋め込み等により、物品に固定される。例えば、本なら紙に埋め込み、有機樹脂からなるパッケージなら当該有機樹脂に埋め込むことにより、各物品に固定される。本発明の半導体装置は、小型、薄型、軽量を実現するため、物品に固定した後も、その物品自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、証書類等に本発明で得られる半導体装置を設けることにより、認証機能を設けることができ、この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、電子機器等に本発明で得られる半導体装置を設けることにより、検品システム等のシステムの効率化を図ることができる。
次に、本実施の形態で得られる半導体装置を実装した電子機器の一態様について図面を参照して説明する。ここで例示する電子機器は携帯電話機であり、筐体2700、2706、パネル2701、ハウジング2702、プリント配線基板2703、操作ボタン2704、バッテリー2705を有する(図12(B)参照)。パネル2701はハウジング2702に脱着自在に組み込まれ、ハウジング2702はプリント配線基板2703に嵌着される。ハウジング2702はパネル2701が組み込まれる電子機器に合わせて、形状や寸法が適宜変更される。プリント配線基板2703には、パッケージングされた複数の半導体装置が実装されており、このうちの1つとして、本実施の形態で得られる半導体装置を用いることができる。プリント配線基板2703に実装される複数の半導体装置2710は、コントローラ、中央処理ユニット(CPU、Central Processing Unit)、メモリ、電源回路、音声処理回路、送受信回路等のいずれかの機能を有する。
パネル2701は、接続フィルム2708を介して、プリント配線基板2703と接続される。上記のパネル2701、ハウジング2702、プリント配線基板2703は、操作ボタン2704やバッテリー2705と共に、筐体2700、2706の内部に収納される。パネル2701が含む画素領域2709は、筐体2700に設けられた開口窓から視認できるように配置されている。
上記の通り、本実施の形態で得られる半導体装置は、可撓性基板を用いるため、薄型、軽量であることを特徴としており、上記特徴により、電子機器の筐体2700、2706内部の限られた空間を有効に利用することができる。
なお、筐体2700、2706は、携帯電話機の外観形状を一例として示したものであり、本実施の形態に係る電子機器は、その機能や用途に応じて様々な態様に変容しうる。
(実施の形態5)
ここでは非晶質半導体層を用いた半導体素子を有する半導体装置を作製する例を、図14を用いて説明する。非晶質半導体層を用いた半導体素子としては、薄膜トランジスタ、ダイオード、抵抗素子等がある。ここでは、非晶質半導体層を用いた半導体素子としてダイオードを用いた光電変換素子の例を用いて示す。
実施の形態1と同様に、基板100上にシリコーン層101を形成し、シリコーン層101の表面をプラズマ処理して脆弱層102を形成し、脆弱層102上に有機化合物層104を形成する。ここまでの工程が終了した段階での断面工程図を図14(A)に示す。
次に、有機化合物層104上に無機絶縁層105を形成し、無機絶縁層105上に第一の導電層242a〜242cを形成する。次に、第1の導電層242a〜242cの一部を露出させるように光電変換層243a〜243cを形成する。次に、光電変換層243a〜243c上であり、且つ第1の導電層242a〜242cの露出部の一部に第2の導電層244a〜244cを形成する。ここでは、第1の導電層242a、光電変換層243a、及び第2の導電層244aにより光電変換素子241aを構成する。また、第1の導電層242b、光電変換層243b、及び第2の導電層244bにより光電変換素子241bを構成する。また、第1の導電層242c、光電変換層243c、及び第2の導電層244cにより光電変換素子241cを構成する。なお、光電変換素子241a〜241cが直列接続となるように、光電変換素子241aの第2の導電層244aは、第2の光電変換素子241bの第1の導電層242aと接するように形成する。また、光電変換素子241bの第2の導電層244bは、第3の光電変換素子241cの第1の導電層242cと接するように形成する。光電変換素子241cの第2の導電層244cは、第4の光電変換素子の第1の導電層と接するように形成する。
有機化合物層104側から光が入射する場合は、第1の導電層242a〜242cを、非晶質半導体層で形成される光電変換層243a〜243cとオーム接触が可能であり、且つ透光性を有する導電層を用いる。代表的には、ITO、IZO、酸化亜鉛、酸化珪素を含む酸化インジウムスズ等を用いることができる。また、第2の導電層244a〜244cとしては、非晶質半導体層で形成される光電変換層243a〜243cとオーム接触が可能な金属層で形成する。この代表例としては、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、ニッケル(Ni)、モリブデン(Mo)、パラジウム(Pd)、タンタル(Ta)、タングステン(W)、白金(Pt)、金(Au)から選ばれた一元素、又は該元素を50%以上含む合金材料で形成されている。
一方、可撓性基板246側から光が入射する場合、第1の導電層242a〜242cに、非晶質半導体層で形成される光電変換層243a〜243cとオーム接触が可能な金属層を用い、第2の導電層244a〜244cに非晶質半導体層で形成される光電変換層243a〜243cとオーム接触が可能であり、且つ透光性を有する電極を用いる。
光電変換層243a〜243cとしては、非晶質半導体層を有する半導体層で形成することができる。この代表例としては、非晶質珪素層、非晶質シリコンゲルマニウム層、炭化シリコン層、又はこれらのPN接合層、PIN接合層が挙げられる。本実施形態では、PIN接合のアモルファスシリコンで光電変換層243a〜243cが形成されている。
第2の導電層244a〜244c上に接着材245を用いて可撓性基板246を貼り付けても良い。
次に、基板100から、有機化合物層104、光電変換素子241a〜241c、接着材245、及び可撓性基板246を含む積層体247を剥離する。ここでは脆弱層102で剥離する。脆弱層102は脆いため、比較的弱い力で剥離を行うことができる。なお、基板100から積層体247を剥離した後、脆弱層102を除去してもよい。
なお、有機化合物層104、光電変換素子241a〜241c、接着材245、及び可撓性基板246を含む積層体247に複数の半導体装置が含まれる場合、当該積層体を分断して、複数の半導体装置を切り出してもよい。このような工程により、一度の剥離工程により複数の半導体装置248を作製することができる。
以上の工程で可撓性を有し、薄型な半導体装置を作製することができる。
また、本実施の形態により作製される半導体装置を組み込むことによって、様々な電子機器を作製することができる。電子機器としては、携帯電話、ノート型パーソナルコンピュータ、ゲーム機、カーナビゲーション、携帯オーディオ機器、ハンディAV機器、デジタルカメラ、フィルムカメラ、インスタントカメラ、室内用エアコン、カーエアコン、換気・空調設備、電気ポット、CRT式プロジェクションTV、照明機器、照明設備などが挙げられる。それらの電子機器の具体例を以下に示す。
本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、ディスプレイ輝度、バックライト照度の最適調整及びバッテリーセーブ用のセンサとして、携帯電話、ノート型パーソナルコンピュータ、デジタルカメラ、ゲーム機、カーナビゲーション、携帯オーディオ機器などに用いることができる。また、本実施の形態の光電変換素子を太陽電池として機能させ、当該太陽電池をバッテリーとしてこれらの電子機器に設けることができる。これらの半導体装置は、小型であり、高集積することが可能であるため、電子機器の小型化を図ることが可能である。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、バックライト用LEDや冷陰極管のON/OFF制御、バッテリーセーブ用のセンサとして、携帯電話キースイッチ、ハンディAV機器に搭載することができる。光センサを搭載することにより、明るい環境ではスイッチをOFFにして、長時間ボタン操作によるバッテリー消耗を軽減することが可能である。本発明の半導体装置は、小型であり、高集積することが可能であるため、電子機器の小型化、及び省消費電力化を図ることが可能である。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、フラッシュ調光、絞り制御用センサとして、デジタルカメラ、フィルムカメラ、インスタントカメラに搭載することが可能である。また、本実施の形態の光電変換素子を太陽電池として機能させ、当該太陽電池をバッテリーとしてこれらの電子機器に設けることができる。これらの半導体装置は、小型であり、高集積することが可能であるため、電子機器の小型化を図ることが可能である。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、風量、温度制御用のセンサとして、室内用エアコン、カーエアコン、換気・空調設備に搭載することが可能である。本発明の半導体装置は、小型であり、高集積することが可能であるため、電子機器の小型化を図ることが可能である。省電力化を図ることが可能である。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、保温温度制御用のセンサとして電気ポットに搭載することが可能である。本実施の形態の光センサにより、室内消灯後は、保温温度を低く設定することが可能である。また、小型かつ薄型であるため、任意の場所に搭載することが可能であり、この結果省電力化をはかることが可能である。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、走査線位置調整用(RGB走査線の位置あわせ(Digital Auto Convergence))センサとして、CRT式プロジェクションTVのディスプレイに搭載することが可能である。本発明の半導体装置は、小型であり、高集積することが可能であるため、電子機器の小型化を図ることが可能であり、かつ任意の領域にセンサを搭載することが可能である。また、CRT式プロジェクションTVの高速自動制御が可能となる。
また、本実施の形態の光電変換素子を光センサとして機能させ、当該光センサを、各種照明機器、照明設備のON/OFF制御用センサとして、家庭用各種照明器具、屋外灯、街路灯、無人公共設備、競技場、自動車、電卓等に用いることができる。本発明のセンサにより、省電力化が可能である。また、本実施の形態の光電変換素子を太陽電池として機能させ、当該太陽電池をバッテリーとしてこれらの電子機器に設けることで、バッテリーの大きさを薄型化することが可能となり、電子機器の小型化を図ることが可能である。
(実施の形態6)
本実施の形態では、機能層を有する基板を歩留まり高く作製する方法を提供する。なお、図20は、機能層を有する基板を形成する工程の断面図を示す。また、本実施の形態では、機能層として、着色層、色変換フィルター、フォログラムカラーフィルター等光学的に機能する層がある。ここでは、光学的に機能する層として、着色層を用いて説明する。
図20(A)に示すように、実施の形態1と同様に、基板100上にシリコーン層101を形成し、シリコーン層101の表面をプラズマ処理し脆弱層102を形成する。次に脆弱層102上に有機化合物層104を形成する。ここまでの工程が終了した段階での断面工程図を図20(A)に示す。なお、脆弱層102と有機化合物層104の間に無機絶縁層を形成してもよい。
次に、有機化合物層104上に着色層、及び当該着色層を覆う絶縁層158を形成する。ここでは、着色層として、遮光層151〜154、赤色の着色層155、青色の着色層156、及び緑色の着色層157を示す。なお、着色層及び絶縁層158により、機能層159を構成することができる。
着色層の形成方法としては、着色樹脂を用いたエッチング法、カラーレジストを用いたカラーレジスト法、染色法、電着法、ミセル電解法、電着転写法、フィルム分散法、インクジェット法(液滴吐出法)などを適宜用いることができる。
ここでは、顔料が分散された感光性樹脂を用いたエッチング法によって、カラーフィルタを形成する。はじめに、黒色顔料が分散された感光性アクリル樹脂を塗布法により有機化合物層104上に塗布する。次に、アクリル樹脂を乾燥し、仮焼きした後、露光及び現像し、200℃以上350℃以下、好ましくは200℃以上300℃以下、ここでは220℃の加熱によりアクリルを硬化し、膜厚0.5〜1.5μmの遮光層151〜154を形成する。
次に、赤色顔料、緑色顔料、又は青色顔料が分散された感光性アクリル樹脂を塗布法によりそれぞれ塗布し、遮光層151〜154と同様の工程によって、それぞれ膜厚1.0〜2.5μmの赤色の着色層155、青色の着色層156、緑色の着色層157を形成する。
以上の工程により、幅が制御された着色層を容易に形成することができる。
なお、ここでは、赤色の着色層は赤色の光(650nm付近にピーク波長をもつ光)を透過する着色層であり、緑色の着色層は緑色の光(550nm付近にピーク波長をもつ光)を透過する着色層であり、青色の着色層は青色の光(450nm付近にピーク波長をもつ光)を透過する着色層を指す。
着色層を覆う絶縁層158は、塗布法で絶縁性の組成物を、有機化合物層104、着色層155〜157、及び遮光層151〜154の露出部に塗布し、加熱して焼成して形成する。絶縁層158は実施の形態1で示される層間絶縁層118と同様の手法及び材料により形成することができる。また、絶縁層158は、着色層の保護層として機能することが好ましい(図20(B)参照)。
次に、図20(C)に示すように、基板100から、有機化合物層104、機能層159を含む積層体を剥離する。
次に、図20(D)に示すように、脆弱層102を除去した後、有機化合物層104に可撓性基板160を貼り付ける。ここでは、熱圧着により有機化合物層104に可撓性基板160を固定する。なお、接着剤を用いて、有機化合物層104に可撓性基板160を固定してもよい。
以上の工程により、機能層159を有する可撓性基板を歩留まり高く形成することができる。
(実施の形態7)
本発明により得られる液晶表示装置や発光装置によって、様々なモジュール(アクティブマトリクス型液晶モジュール、アクティブマトリクス型ELモジュール)に用いることができる。即ち、それらを表示部に組み込んだ電子機器全てに本発明を実施できる。
その様な電子機器としては、ビデオカメラ、デジタルカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、カーナビゲーション、プロジェクタ、カーステレオ、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図15に示す。
図15(A)、(B)はテレビジョン装置である。表示パネルには、画素部のみが形成されて走査線側駆動回路と信号線側駆動回路とが、TAB方式により実装される場合と、COG方式により実装される場合と、薄膜トランジスタを形成し、画素部と走査線側駆動回路を基板上に一体形成し信号線側駆動回路を別途ドライバICとして実装する場合、また画素部と信号線側駆動回路と走査線側駆動回路を基板上に一体形成する場合などがあるが、どのような形態としても良い。
その他の外部回路の構成として、映像信号の入力側では、チューナで受信した信号のうち、映像信号を増幅する映像信号増幅回路と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路などからなっている。コントロール回路は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路を設け、入力デジタル信号を複数に分割して供給する構成としても良い。
チューナで受信した信号のうち、音声信号は、音声信号増幅回路に送られ、その出力は音声信号処理回路を経てスピーカーに供給される。制御回路は受信局(受信周波数)や音量の制御情報を入力部から受け、チューナや音声信号処理回路に信号を送出する。
表示モジュールを、図15(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。FPCまで取り付けられた表示パネルのことを表示モジュールとも呼ぶ。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー部2009、操作スイッチなどが備えられている。このように、テレビジョン装置を完成させることができる。
図15(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン操作機2006により行うことが可能であり、このリモコン操作機にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を発光表示用パネルで形成し、サブ画面を液晶表示用パネルで形成しても良い。また、主画面2003を液晶表示用パネルで形成し、サブ画面を発光表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。
図15(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、操作部であるキーボード部2012、表示部2011、スピーカー部2013等を含む。本発明は、表示部2011の作製に適用される。図15(B)の表示部は、わん曲可能な可撓性基板を用いているので、表示部がわん曲したテレビジョン装置となっている。このように表示部の形状を自由に設計することができるので、所望な形状のテレビジョン装置を作製することができる。
本発明により、簡略な工程で表示装置を形成できるため、コストダウンも達成できる。よって本発明を用いたテレビジョン装置では、大画面の表示部を有しても低いコストで形成できる。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の表示媒体としても様々な用途に適用することができる。
また、図15(C)は携帯情報端末(電子書籍)であり、本体3001、表示部3002、3003、記憶媒体3004、操作スイッチ3005、アンテナ3006等を含む。
可撓性基板を用いて携帯情報端末の薄型化及び軽量化を図ることができる。
本実施の形態は、実施の形態1乃至3のいずれか一と自由に組み合わせることができる。
(実施の形態8)
本実施の形態では、実施の形態6に記載の表示部として用いることが可能な電気泳動表示装置を用いる例を示す。代表的には図15(C)に示す携帯書籍(電子書籍)の表示部3002、または表示部3003に適用する。
電気泳動表示装置(電気泳動ディスプレイ)は、電子ペーパーとも呼ばれており、紙と同じ読みやすさを有し、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能という利点を有している。
電気泳動ディスプレイは、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と、マイナスの電荷を有する第2の粒子と、溶媒とを含むマイクロカプセルを複数有するものであり、マイクロカプセルに電界を印加することによって、マイクロカプセル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するものである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む)とする。
このように、電気泳動ディスプレイは、誘電定数の高い第1の粒子または第2の粒子が高い電界領域に移動する、いわゆる誘電泳動的効果を利用したディスプレイである。電気泳動ディスプレイは、液晶表示装置には必要な偏光板、対向基板も電気泳動表示装置には必要なく、厚さや重さが半減する。
上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、この電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
また、基板上に適宜、二つの電極の間に挟まれるように上記マイクロカプセルを複数配置すれば表示装置が完成し、マイクロカプセルに電界を印加すれば表示を行うことができる。例えば、実施の形態1または2で得られるアクティブマトリクス基板を用いることができる。プラスチック基板に電子インクを直接印刷することも可能であるが、アクティブマトリクス型とした場合、熱や有機溶剤に弱いプラスチック基板上に素子を形成するよりも、ガラス基板上に素子及び電子インクを形成した後、ガラス基板を実施の形態1または実施の形態2に従って剥離することが好ましい。
なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレクトロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を用いればよい。
本実施の形態は、実施の形態1、2、または6のいずれか一と自由に組み合わせることができる。
本実施例では、フレキシブルな液晶表示装置の作製工程を図16乃至図18を用いて説明する。なお、図16乃至図18は、液晶表装置の作製工程を示す断面図である。
図16(A)に示すように、第1の基板50上にシリコーン層51を形成する。次に、シリコーン層51の表面をプラズマで処理して脆弱層52を形成する。ここでは、第1の基板50としてガラス基板を用い、シリコーン層51として、東レ製のPSB−K31(20〜40%のシロキサンポリマー及び60〜80%の3−メトキシ3−メチル−1ブタノールを含む組成物)を塗布し200℃で30分加熱して、厚さ900nm〜1000nmのシリコーン層を形成する。また、シリコーン層51の表面を酸素プラズマ処理して、シリコーン層51の表面の有機基が酸化された脆弱層52を形成する。
次に、図16(B)に示すように、第1の基板50の脆弱層52上に有機化合物層53を形成する。ここでは、ポリイミドをスピンコータで塗布した後、300℃で30分加熱して有機化合物層53としてポリイミド層を形成する。
次に、図16(C)に示すように、有機化合物層53上に素子層54aを形成する。ここでは、実施の形態1に示すように、素子層54aに薄膜トランジスタ及び薄膜トランジスタに接続する画素電極を形成する。また、素子層54aの一部の配線を用いてアライメントマーカ54bを形成する。
次に、素子層54a、及び有機化合物層53上に配向層55を形成する。配向層55としては、ポリイミドを印刷法により印刷し、250℃1時間半加熱した後、X軸方向にラビングして配向層を形成する。
一方、図16(D)に示すように、第2の基板60上にモリブデン層61a、及びアライメントマーカ61bを形成し、モリブデン層61a、及びアライメントマーカ61bの表面に酸化モリブデン層62a、62bを形成し、酸化モリブデン層62a、62b上に絶縁層63を形成する。
ここでは、第2の基板60としてガラス基板を用いる。モリブデン層61a、及びアライメントマーカ61bは、モリブデンターゲットをアルゴンでスパッタリングして、第2の基板60上に厚さ10nmのモリブデン層を形成する。次に、フォトリソグラフィ工程により形成されたレジストマスクを用いてモリブデン層の一部を、リン酸、酢酸、及び硝酸を含む溶液を用いてエッチングして、モリブデン層61a、及びアライメントマーカ61bを形成する。次に、レジストマスクを除去し、フッ酸でモリブデン層61a、及びアライメントマーカ61b表面の酸化層を除去した後、一酸化二窒素プラズマ処理してモリブデン層61a、及びアライメントマーカ61bの表面に酸化モリブデン層62a、62bを形成する。次に、シラン、一酸化二窒素、及びアンモニアを用いて、絶縁層63として厚さ100nmの窒化珪素層を形成する。
次に、図16(E)に示すように、絶縁層63上に有機化合物層64を形成する。ここでは、図1(B)に示す有機化合物層53と同様に形成する。
次に、図16(F)に示すように、有機化合物層64上に着色層65を形成する。ここでは、着色層65は、赤色着色層、青色着色層、緑色着色層、及び黒色着色層と、赤色着色層、青色着色層、緑色着色層、及び黒色着色層上に形成される保護層と、保護層上に形成される画素電極を含む。なお、赤色着色層は赤色の光(650nm付近にピーク波長をもつ光)が透過する着色層であり、緑色着色層は緑色の光(550nm付近にピーク波長をもつ光)が透過する着色層であり、青色着色層は青色の光(450nm付近にピーク波長をもつ光)が透過する着色層を指す。
次に、着色層65及び有機化合物層64上に配向層66を形成する。配向層66としては、ポリイミドを印刷法により印刷し、250℃1時間半加熱した後、Y軸方向にラビングして配向層を形成する。
次に、配向層66表面を洗浄した後、図16(G)に示すように、配向層66上にシール材67を形成する。なお、この際、液晶注入口となる切欠き部を設けるようにシール材の材料をディスペンサまたは液滴吐出装置から吐出し、シール材を形成する。また、配向層66上に球状スペーサ68を散布する。ここでは、シール材としてエポキシ樹脂を用いる。
次に、図17(A)に示すように、第1の基板50及び第2の基板60を貼り合せる。具体的には、第1の基板50上に形成されるアライメントマーカ54b、及び第2の基板60上にあるアライメントマーカ61bの位置を合わせながら、シール材67によって、第1の基板50及び第2の基板を貼り合せる。ここでは、第1の基板50及び第2の基板60を圧着しながら160℃で3時間加熱してシール材71を硬化して、第1の基板50及び第2の基板60を貼り合せる。
ここでは、第1の基板50上に形成されるシリコーン層51及び脆弱層52が透光性を有するため、アライメントマーカ54b、61bの位置合わせが容易である。このため、第1の基板50及び第2の基板60の貼り合せを容易に行うことができる。
次に、図17(B)に示すように、第1の基板50及び第2の基板60をスクライバーで分断する。ここではシール材71の外側で第1の基板50及び第2の基板60を分断する。なお、当該スクライバーの切断と共に、図17(C)に示すように、第2の基板60において、酸化モリブデン層62a、62b近傍で剥離が生じる。これは、第2の基板60上に形成される酸化モリブデン層62a、62bは、第1の基板50上に形成される脆弱層52と比較して、物理的作用により剥離しやすい。このため、スクライバーの物理的作用により、第2の基板60が第1の基板50から剥離する。具体的には、酸化モリブデン層62a、62bと、絶縁層63との界面で剥離が生じする。
なお、シリコーン層51及び脆弱層及び52の界面における剥離性は、酸化モリブデン層62a、62b及び絶縁層63の界面における剥離性と比較して低いため、当該スクライバーによる分断による外力では、剥離が生じない。このため、剥離工程において、有機化合物層53、64、素子層54a、及び着色層65等を第1の基板50に保持することができるため、後の液晶注入、封止等の処理がしやすい。このため、歩留まりを向上させることが可能であると共に、スループットを向上させることができる。
なお、スクライバーにより分断された第1の基板50を第1の基板50aと示し、スクライバーにより分断されたシリコーン層51をシリコーン層51aと示し、スクライバーにより分断された脆弱層52を脆弱層52aと示し、スクライバーにより分断された有機化合物層53を有機化合物層53aと示す。
次に、図18(A)に示すように、液晶注入口(図示しない。)から、液晶注入法により第1の基板50上に形成される配向層55、有機化合物層64上に形成される配向層66、及びシール材71の間に液晶材料73を注入する。次に、注入口に封止材材料を塗布し硬化して封止材(図示しない。)を形成し、第2の基板60及び有機化合物層64の間の液晶をシール材及び封止材で封止する。
次に、図18(B)に示すように、第1の基板50aを有機化合物層53aから剥離する。具体的には、脆弱層52aとシリコーン層51aの界面で剥離する。なお、この後、脆弱層52aを除去してもよい。
以上の工程により、可撓性を有する液晶表示装置74を作製することができる。本実施例では、シリコーン層及びその上に形成される脆弱層が透光性を有するため、アライメントマーカ54b、61bの位置合わせが容易である。このため、第1の基板50及び第2の基板60の貼り合せを容易に行うことができる。また、剥離性の異なる剥離界面(ここでは、剥離性の酸化モリブデン層及び絶縁層の界面、並びにモリブデン層及び絶縁層の剥離界面と比較して、剥離性の低いシリコーン層及び脆弱層の界面)を用いることで、可撓性を有する液晶表示装置を歩留まり高く作製することができる。また、可撓性を有する液晶表示装置の作製工程におけるスループットを向上させることができる。
本実施例では、シリコーン層の表面の結合状態、及び剥離後のシリコーン層の表面の結合状態をX線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて測定した結果を、図19を用いて示す。
ガラス基板上に東レ製のPSB−K31(20〜40%のシロキサンポリマー及び60〜80%の3−メトキシ3−メチル−1ブタノールを含む組成物)をスピンコート法により塗布し、200℃で30分焼成してシリコーン層を形成した。次に、シリコーン層の表面に60秒間酸素プラズマを照射した後、シリコーン層表面にポリイミドをスピンコート法により塗布し、300℃で1時間焼成した。この後、ポリイミド表面にテープを貼り付けた後、シリコーン層からポリイミドを剥離した。
次に、シリコーン層(試料1とする。)の表面と、シリコーン層の表面を酸素プラズマで処理した後のシリコーン層(試料2とする。)の表面と、ポリイミドを剥離した後のシリコーン層(試料3とする。)の表面とをXPS測定した。図19に試料1乃至試料3の測定結果を示す。
図19のスペクトルにおいて、試料1及び試料2を比較すると、試料2の酸素結合を示すピーク81が相対的に増加するとともに、炭素結合のピーク82が相対的に減少していることがわかる。なお、シリコン結合を示すピーク83は試料2で増加しているが、それほど大きな増加ではない。このことから、酸素プラズマ処理によりシリコーン層表面の炭素が酸化されて、シリコーン層表面から除去されていることが分かる。
また、試料1及び試料3を比較すると、試料1及び試料3のピークがほぼ同じであることがわかる。このことから、ポリイミドをシリコーン層から剥離したときに、酸素プラズマ処理により酸化されたシリコーン層の表面も剥離されたことが分かる。即ち、酸素プラズマ処理によりシリコーン層表面の有機基が酸化し、脆弱化され、シリコーン層表面の柔軟性や強度が低下する。ここで、ポリイミドがシリコーン層から剥離するような外力を加えると、当該酸化された領域が剥離層となって、酸化され脆弱化された層と、酸化されていない層との界面において、脆性破壊が進行し、剥れることがわかる。
本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 有機薄膜トランジスタの断面構造の一例を示す図である。 本発明の半導体装置の作製方法を説明する上面図及び断面図である。 本発明の半導体装置の構成を説明する斜視図である。 本発明の半導体装置の構成を説明する上面図である。 本発明の半導体装置の構成を説明する上面図である。 本発明の半導体装置の構成を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図及び斜視図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明に適用可能なアンテナの形状を説明する上面図である。 (A)本発明の半導体装置の構成を説明する図であり、(B)は、電子機器の一例を説明する図である。 本発明の半導体装置の用途を説明する図である。 本発明の半導体装置の作製方法を説明する断面図である。 電子機器の一例を示す図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 本発明の半導体装置の作製方法を説明する断面図である。 シリコーン層の表面の結合状態をX線光電子分光法を用いて測定した結果を表した図である。 本発明の機能層を有する基板の作製方法を説明する断面図である。

Claims (9)

  1. 基板上にシリコーン層を形成し、
    前記シリコーン層の面を全てプラズマ処理して脆弱層を形成し、
    前記脆弱層上に有機化合物層を形成し、
    前記有機化合物層上に非晶質半導体層を形成し、
    前記非晶質半導体層を用いて半導体素子を形成した後、前記有機化合物層、及び前記半導体素子を含む積層体を前記基板から剥離する半導体装置の作製方法であって、
    前記脆弱層は、前記シリコーン層の表面の有機基が酸化された層でなることを特徴とする半導体装置の作製方法。
  2. 基板上にシリコーン層を形成し、
    前記シリコーン層の面を全てプラズマ処理して脆弱層を形成し、
    前記脆弱層上に有機化合物層を形成し、
    前記有機化合物層上に有機化合物を有する半導体層を形成し、
    前記有機化合物を有する半導体層を用いて半導体素子を形成した後、前記有機化合物層、及び前記半導体素子を含む積層体を前記基板から剥離する半導体装置の作製方法であって、
    前記脆弱層は、前記シリコーン層の表面の有機基が酸化された層でなることを特徴とする半導体装置の作製方法。
  3. 基板上にシリコーン層を形成し、
    前記シリコーン層の面を全てプラズマ処理して脆弱層を形成し、
    前記脆弱層上に有機化合物層を形成し、
    前記有機化合物層上に第1の電極を形成し、
    前記第1の電極上に発光層を形成し、
    前記発光層上に第2の電極を形成し、
    前記第2の電極上に可撓性基板を貼り付けた後、前記有機化合物層、前記第1の電極、前記発光層、及び前記第2の電極を含む積層体を前記基板から剥離する半導体装置の作製方法であって、
    前記脆弱層は、前記シリコーン層の表面の有機基が酸化された層でなることを特徴とする半導体装置の作製方法。
  4. 基板上にシリコーン層を形成し、
    前記シリコーン層の面を全てプラズマ処理して脆弱層を形成し、
    前記脆弱層上に有機化合物層を形成し、
    前記有機化合物層上に印刷法により導電層を印刷した後焼成し、
    前記導電層及び半導体部品を貼り付けた後、前記有機化合物層、及び前記導電層を含む積層体、並びに半導体部品を前記基板から剥離する半導体装置の作製方法であって、
    前記脆弱層は、前記シリコーン層の表面の有機基が酸化された層でなることを特徴とする半導体装置の作製方法。
  5. 基板上にシリコーン層を形成し、
    前記シリコーン層の面を全てプラズマ処理して脆弱層を形成し、
    前記脆弱層上に有機化合物層を形成し、
    前記有機化合物層上に印刷法により導電層を印刷した後焼成し、前記有機化合物層、及び前記導電層を含む積層体を前記基板から剥離した後、前記導電層に半導体部品を接続する半導体装置の作製方法であって、
    前記脆弱層は、前記シリコーン層の表面の有機基が酸化された層でなることを特徴とする半導体装置の作製方法。
  6. 請求項4または5において、
    前記導電層は、アンテナであることを特徴とする半導体装置の作製方法。
  7. 請求項1乃至6のいずれか一において、
    前記基板は、ガラス基板、セラミックス基板、或いは石英基板であることを特徴とする半導体装置の作製方法。
  8. 請求項1乃至7のいずれか一において、
    前記脆弱層は、酸化珪素層であることを特徴とする半導体装置の作製方法。
  9. 請求項1乃至8のいずれか一において、
    前記有機化合物層を塗布法により形成することを特徴とする半導体装置の作製方法。
JP2008204280A 2007-08-30 2008-08-07 半導体装置の作製方法 Expired - Fee Related JP5388500B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204280A JP5388500B2 (ja) 2007-08-30 2008-08-07 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007224043 2007-08-30
JP2007224043 2007-08-30
JP2008204280A JP5388500B2 (ja) 2007-08-30 2008-08-07 半導体装置の作製方法

Publications (3)

Publication Number Publication Date
JP2009076877A JP2009076877A (ja) 2009-04-09
JP2009076877A5 JP2009076877A5 (ja) 2011-07-28
JP5388500B2 true JP5388500B2 (ja) 2014-01-15

Family

ID=40408198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204280A Expired - Fee Related JP5388500B2 (ja) 2007-08-30 2008-08-07 半導体装置の作製方法

Country Status (3)

Country Link
US (1) US7838328B2 (ja)
JP (1) JP5388500B2 (ja)
KR (1) KR101514627B1 (ja)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2002508A1 (en) * 2006-03-17 2008-12-17 Nxp B.V. Antenna device and rf communication equipment
JP5371341B2 (ja) * 2007-09-21 2013-12-18 株式会社半導体エネルギー研究所 電気泳動方式の表示装置
JP5451036B2 (ja) * 2008-11-21 2014-03-26 株式会社ジャパンディスプレイ 表示装置及びその製造方法
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
WO2010065542A1 (en) 2008-12-02 2010-06-10 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of preparing a flexible substrate assembly and flexible substrate assembly therefrom
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
CN101762922B (zh) 2008-12-24 2012-05-30 京东方科技集团股份有限公司 触摸式电子纸及其制造方法
EP2436029A4 (en) * 2009-05-29 2013-04-10 Univ Arizona PROCESS FOR PROVIDING A FLEXIBLE SEMICONDUCTOR DEVICE AT HIGH TEMPERATURES AND FLEXIBLE SEMICONDUCTOR DEVICE THEREFOR
JP5632654B2 (ja) * 2009-05-29 2014-11-26 株式会社半導体エネルギー研究所 表示装置
KR101810699B1 (ko) * 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작 방법
KR101470811B1 (ko) 2009-09-16 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101519893B1 (ko) 2009-09-16 2015-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터
EP2486595B1 (en) * 2009-10-09 2019-10-23 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
CN110061144A (zh) * 2009-10-16 2019-07-26 株式会社半导体能源研究所 逻辑电路和半导体器件
KR101763126B1 (ko) 2009-11-06 2017-07-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR102450568B1 (ko) * 2009-11-13 2022-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2011068950A1 (en) * 2009-12-03 2011-06-09 The Trustees Of Columbia University In The City Of New York Hierarchical assembly of nanostructured organic heterojunctions for photovoltaic devices
EP2362421A1 (en) 2010-02-26 2011-08-31 STMicroelectronics S.r.l. Tailorable flexible sheet of monolithically fabricated array of separable cells each comprising a wholly organic, integrated circuit adapted to perform a specific function
JP2011181591A (ja) * 2010-02-26 2011-09-15 Sumitomo Chemical Co Ltd 薄膜半導体装置、薄膜半導体製造装置及び薄膜半導体製造方法
JP5565038B2 (ja) * 2010-03-30 2014-08-06 凸版印刷株式会社 電界効果型トランジスタ及びその製造方法並びに画像表示装置
WO2012021197A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
WO2012021196A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
JP2012015491A (ja) * 2010-06-04 2012-01-19 Semiconductor Energy Lab Co Ltd 光電変換装置
KR101856722B1 (ko) * 2010-09-22 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 파워 절연 게이트형 전계 효과 트랜지스터
US20130308076A1 (en) * 2010-10-01 2013-11-21 Sharp Kabushiki Kaisha Flexible display and method for manufacturing the same
US8912080B2 (en) 2011-01-12 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of the semiconductor device
JP5872912B2 (ja) * 2011-01-21 2016-03-01 株式会社半導体エネルギー研究所 発光装置
KR102040242B1 (ko) * 2011-05-12 2019-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 이용한 전자 기기
TWI527207B (zh) 2011-10-21 2016-03-21 友達光電股份有限公司 可撓式有機發光裝置及其製作方法
JP5674707B2 (ja) * 2012-05-22 2015-02-25 株式会社東芝 表示装置
DE102012224424A1 (de) * 2012-12-27 2014-07-17 Robert Bosch Gmbh Sensorsystem und Abdeckvorrichtung für ein Sensorsystem
US8878275B2 (en) * 2013-02-18 2014-11-04 Fairchild Semiconductor Corporation LDMOS device with double-sloped field plate
KR20140122677A (ko) * 2013-04-09 2014-10-20 주식회사 엘지화학 폴리이미드계 필름 및 이의 제조방법
US10486359B2 (en) * 2013-05-21 2019-11-26 Sharp Kabushiki Kaisha Method for manufacturing display apparatus, display apparatus, and film device
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
WO2015156891A2 (en) 2014-01-23 2015-10-15 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
WO2017034644A2 (en) 2015-06-09 2017-03-02 ARIZONA BOARD OF REGENTS a body corporate for THE STATE OF ARIZONA for and on behalf of ARIZONA STATE UNIVERSITY Method of providing an electronic device and electronic device thereof
JP2017518638A (ja) 2014-05-13 2017-07-06 アリゾナ・ボード・オブ・リージェンツ・フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティArizona Board Of Regents For And On Behalf Of Arizona State University 電子デバイスを提供する方法およびその電子デバイス
US10008611B2 (en) 2014-06-26 2018-06-26 Joled Inc. Thin film transistor and organic EL display device
DE202014103821U1 (de) * 2014-07-09 2014-09-09 Carmen Diegel Flexible elektrische Leiterstruktur
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
CN105118844A (zh) * 2015-07-01 2015-12-02 深圳市华星光电技术有限公司 一种柔性显示面板的制备方法及柔性显示面板
WO2017115225A2 (en) * 2015-12-28 2017-07-06 Semiconductor Energy Laboratory Co., Ltd. Flexible device, display device, and manufacturing methods thereof
KR102499288B1 (ko) * 2016-01-08 2023-02-14 삼성디스플레이 주식회사 표시 장치
CN107808892B (zh) * 2016-09-08 2020-06-26 群创光电股份有限公司 显示设备
KR102079423B1 (ko) * 2016-10-31 2020-02-19 주식회사 엘지화학 폴리이미드 필름 형성용 조성물 및 이를 이용하여 제조된 폴리이미드 필름
CN106773206B (zh) * 2016-12-26 2019-03-19 武汉华星光电技术有限公司 显示面板的制造方法
CN106773207B (zh) * 2016-12-26 2020-01-17 武汉华星光电技术有限公司 显示面板的制造方法
CN206602182U (zh) * 2017-04-06 2017-10-31 京东方科技集团股份有限公司 一种天线结构及通讯设备
US20200372317A1 (en) * 2018-02-13 2020-11-26 Panasonic Intellectual Property Management Co., Ltd. Wireless communication semiconductor device and manufacturing method therefor
JPWO2019203200A1 (ja) * 2018-04-17 2021-05-13 凸版印刷株式会社 薄膜トランジスタアレイ、薄膜トランジスタアレイ多面付け基板、およびそれらの製造方法
CN112310615B (zh) * 2019-07-31 2023-03-28 庆鼎精密电子(淮安)有限公司 天线模组及其制备方法
CN110838544A (zh) * 2019-11-08 2020-02-25 福仕保(江苏)新材料有限公司 超薄柔性有机电子器件制备与封装一体式结构设计和制备流程工艺

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3364081B2 (ja) 1995-02-16 2003-01-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP3406727B2 (ja) 1995-03-10 2003-05-12 株式会社半導体エネルギー研究所 表示装置
US5757456A (en) 1995-03-10 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Display device and method of fabricating involving peeling circuits from one substrate and mounting on other
EP1039513A3 (en) 1999-03-26 2008-11-26 Canon Kabushiki Kaisha Method of producing a SOI wafer
JP2001284622A (ja) * 2000-03-31 2001-10-12 Canon Inc 半導体部材の製造方法及び太陽電池の製造方法
US6489659B2 (en) * 2000-04-20 2002-12-03 Agere Systems Inc. Non-hermetic APD
JP4027740B2 (ja) 2001-07-16 2007-12-26 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8415208B2 (en) 2001-07-16 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and peeling off method and method of manufacturing semiconductor device
JP4836445B2 (ja) * 2003-12-12 2011-12-14 株式会社半導体エネルギー研究所 半導体装置の作製方法
US7439111B2 (en) 2004-09-29 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2007251080A (ja) * 2006-03-20 2007-09-27 Fujifilm Corp プラスチック基板の固定方法、回路基板およびその製造方法
TWI427702B (zh) * 2006-07-28 2014-02-21 Semiconductor Energy Lab 顯示裝置的製造方法
JP4611270B2 (ja) * 2006-09-27 2011-01-12 Okiセミコンダクタ株式会社 半導体装置の製造方法
US7968382B2 (en) * 2007-02-02 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
KR20090023158A (ko) 2009-03-04
US20090061721A1 (en) 2009-03-05
JP2009076877A (ja) 2009-04-09
KR101514627B1 (ko) 2015-04-23
US7838328B2 (en) 2010-11-23

Similar Documents

Publication Publication Date Title
JP5388500B2 (ja) 半導体装置の作製方法
JP6175174B2 (ja) 表示装置の作製方法
JP5305737B2 (ja) 半導体装置
JP5651747B2 (ja) 半導体装置
JP5364242B2 (ja) 半導体装置の作製方法
TWI412138B (zh) 半導體裝置,電子裝置,和半導體裝置的製造方法
JP2007027367A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees