WO2018113334A1 - 量子点发光层与器件及制备方法、发光模组与显示装置 - Google Patents

量子点发光层与器件及制备方法、发光模组与显示装置 Download PDF

Info

Publication number
WO2018113334A1
WO2018113334A1 PCT/CN2017/099079 CN2017099079W WO2018113334A1 WO 2018113334 A1 WO2018113334 A1 WO 2018113334A1 CN 2017099079 W CN2017099079 W CN 2017099079W WO 2018113334 A1 WO2018113334 A1 WO 2018113334A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
emitting layer
layer
preparing
Prior art date
Application number
PCT/CN2017/099079
Other languages
English (en)
French (fr)
Inventor
梁柱荣
曹蔚然
Original Assignee
Tcl集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl集团股份有限公司 filed Critical Tcl集团股份有限公司
Publication of WO2018113334A1 publication Critical patent/WO2018113334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region

Definitions

  • the invention relates to the technical field of light-emitting diodes, in particular to a quantum dot cross-linked light-emitting layer and a QLED device, a preparation method thereof, a light-emitting module and a display device.
  • Quantum dot also known as semiconductor nanocrystal, is a semiconductor nanoparticle with a particle radius smaller or closer to the exciton Bohr radius. It has various unique optical properties, such as banned. The belt width is easy to adjust, the absorption spectrum range is wide, the spectral purity is high, and the light/chemical properties are stable.
  • a quantum dot-based light-emitting diode is called a Quantum dot light-emitting diode (QLED), and is an emerging display device whose structure is similar to that of an organic light-emitting diode (OLED).
  • QLEDs Compared with traditional light-emitting diodes and OLEDs, QLEDs have outstanding advantages such as high color purity, good stability, long life, good color temperature and simple preparation process. It is expected to replace traditional inorganic and organic LEDs as economical, stable and high-performance. Next generation display panel.
  • the solution method is not only simple in method, fast in process, but also low in cost, which is beneficial to large-scale industrialization of QLED devices. preparation. Nevertheless, it is difficult to obtain a very uniform and dense film layer by the solution method, and the prepared film tends to have uneven thickness, insufficient coverage, poor film crystallinity, large interface defects, and mutual dissolution between the layers. In contrast to the unfavorable phenomenon such as osmosis, the evaporation coating method can easily obtain a high-quality film having uniform film thickness and excellent crystallinity by precisely controlling the deposition rate and atmosphere.
  • the film formation of the solution method is not uniform, which eventually leads to poor repeatability of the prepared QLED device, large difference in performance between devices, and uneven illumination area and unstable performance.
  • the quantum dot light-emitting layer serves as a core constituent layer of the QLED device, and its film formation uniformity plays a vital role in the performance of other film layers and device performances to be processed later.
  • quantum dot luminescent layer For the deposition method of quantum dot luminescent layer, most of the current film forming processes are to dissolve quantum dots functionalized by surface ligands in an organic solvent, configured as quantum dot solution or quantum dot ink, and then deposited by spin coating or printing. On the substrate or the functional layer, other functional layers are sequentially deposited on the quantum dot light-emitting layer by the same film formation method, and finally the electrode is evaporated to obtain a QLED device.
  • quantum dots mainly rely on ligands dispersed in a solution or ink, they remain in a state of particles, and the particle size is larger than that of ordinary ions or small organic molecules, and it is difficult for quantum dot particles to spread uniformly on the substrate during film formation.
  • the spacing between the quantum dot particles will gradually increase or shrink, which will aggravate the unevenness of the quantum dot emitting layer.
  • the surface of the quantum dot is rich in organic ligands, the deposited quantum dots still have a great chance to be re-dissolved or directly washed away in the subsequent solution process of other functional layers, resulting in no quantum dot film layer. Uniform, and the device is unevenly illuminated and has low performance. Even with solvents that are difficult to dissolve quantum dots, it is difficult to avoid this process, and because of this, the choice of materials for subsequent functional layers is also limited by their optional solvents.
  • the present invention aims to provide a quantum dot cross-linked luminescent layer and QLED device and a preparation method thereof, a light-emitting module and a display device, aiming at solving the uneven coverage and thickness of the existing quantum dot film layer. Unevenness, as well as uneven illumination and low performance of the device.
  • a method for preparing a quantum dot cross-linked luminescent layer comprising the steps of:
  • the quantum dots coated with the ligand are dissolved in a solvent to obtain a quantum dot solution
  • the quantum dot solution is deposited on the substrate or the functional layer by a solution method to obtain a quantum dot light-emitting layer;
  • the obtained quantum dot luminescent layer is placed in a vacuum chamber, and an organometallic complex is introduced for treatment for 0.5 to 30 minutes, wherein the pressure inside the cavity is 0.01 to 1 mbar, and the partial pressure of the organometallic complex after gasification is 0.001 to 0.1 mbar, the temperature inside the chamber is 10 to 25 ° C;
  • the quantum dot light-emitting layer after the completion of the above treatment was taken out to obtain a quantum dot crosslinked light-emitting layer.
  • the method for preparing a quantum dot crosslinked light-emitting layer wherein the ligand is an organic ligand or an inorganic ligand, and the organic ligand is a long-chain organic ligand and/or a short-chain organic ligand;
  • the organic ligands are thioglycolic acid, mercaptopropionic acid, mercaptobutyric acid, mercapto oleic acid, mercaptoglycerol, glutathione, mercaptoethylamine, mercapto oleylamine, trioctylphosphine, trioctylphosphine oxide, oleic acid, amino acid One or more of an alkyl acid, an alkylamine, a sulfonic acid, a thiol; the inorganic ligands are Cl - , Br - , S 2- , HS - , SnS 4 4- , Sn 2 S 6 One or more of
  • the method for preparing a quantum dot crosslinked luminescent layer, wherein the quantum dot is II-V One or more of a group compound semiconductor, a III-V compound semiconductor, an IV-VI compound semiconductor, and a core-shell structure thereof.
  • the method for preparing a quantum dot crosslinked light-emitting layer wherein the solvent is n-octane, isooctane, toluene, benzene, chlorobenzene, xylene, chloroform, acetone, cyclohexane, n-hexane, n-pentane Alkane, isopentane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, hexamethylphosphoramide, n-butyl ether, benzene One or more of ether, phenethyl ether, acetophenone, aniline, and diphenyl ether.
  • the method for preparing a quantum dot crosslinked luminescent layer wherein the organometallic complex is an alkyl aluminum, an alkyl lithium, an alkyl indium, an alkyl gallium, an alkyl cadmium, an alkyl hydrazine, an alkyl magnesium, One or more of an alkyl zinc, an amine lithium, and an aryl lithium.
  • the organometallic complex is an alkyl aluminum, an alkyl lithium, an alkyl indium, an alkyl gallium, an alkyl cadmium, an alkyl hydrazine, an alkyl magnesium, One or more of an alkyl zinc, an amine lithium, and an aryl lithium.
  • a quantum dot crosslinked light-emitting layer wherein the quantum dot cross-linked light-emitting layer is prepared by the method for preparing a quantum dot cross-linked light-emitting layer as described above.
  • a method for preparing a QLED device comprising:
  • Step A sequentially preparing a hole injection layer and a hole transport layer on a substrate containing an anode
  • Step B preparing a quantum dot cross-linked luminescent layer as described above on the hole transport layer;
  • Step C sequentially preparing an electron transport layer and a cathode on the quantum dot crosslinked light-emitting layer to obtain a QLED device.
  • a QLED device comprising, in order from bottom to top, a substrate containing an anode, a hole injection layer, a hole transport layer, a quantum dot crosslinked light-emitting layer as described above, an electron transport layer, and a cathode.
  • a lighting module comprising a QLED device as described above.
  • a display device comprising the light emitting module as described above.
  • the quantum dot luminescent layer prepared by the solution method is placed in a volatile organic metal complex atmosphere, and the active and highly hydrolyzable organometallic complex is reacted with a ligand rich in the surface of the quantum dot by gasification.
  • the individual quantum dots are cross-linked to form a vapor-bonded quantum dot cross-linked luminescent layer.
  • the quantum dot film of the invention is not only uniform and flat, but also the film layer is stable, and it is difficult to be re-dissolved or washed away by the solvent in the subsequent deposition of other functional layers, thereby effectively improving the uniformity and stability of light emission of the QLED device, and in addition, the organic metal compounding
  • the introduction of the material can effectively passivate the surface defects of the quantum dots and improve the luminous efficiency and luminescence lifetime of the QLED device.
  • FIG. 1 is a flow chart of a preferred embodiment of a method of fabricating a QLED device of the present invention.
  • FIG. 2 is a schematic view showing a cross-linking process of a QLED device in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a QLED device according to Embodiment 1 of the present invention.
  • the present invention provides a quantum dot cross-linked light-emitting layer, a QLED device, a preparation method, a light-emitting module and a display device.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • a preferred embodiment of a method for preparing a quantum dot cross-linked luminescent layer of the present invention comprising the steps of:
  • the quantum dots coated with the ligand are dissolved in a solvent to obtain a quantum dot solution
  • the quantum dot solution is deposited on the substrate or the functional layer by a solution method to obtain a quantum dot light-emitting layer;
  • the obtained quantum dot luminescent layer is placed in a vacuum chamber, and an organometallic complex is introduced for treatment for 0.5 to 30 minutes, wherein the pressure inside the cavity is 0.01 to 1 mbar, and the partial pressure of the organometallic complex after gasification is 0.001 to 0.1 mbar, the temperature inside the chamber is 10 to 25 ° C;
  • the quantum dot light-emitting layer after the completion of the above treatment was taken out to obtain a quantum dot crosslinked light-emitting layer.
  • the quantum dot luminescent layer prepared by the solution method is placed in a volatile organic metal complex atmosphere, and the active and highly hydrolyzable organometallic complex reacts with the ligand rich in the surface of the quantum dot after gasification, so as to be independent.
  • the quantum dots are crosslinked together to form a vapor-bonded quantum dot cross-linked luminescent layer.
  • the function of the organometallic complex is to crosslink the quantum dots with the ligands on the one hand, thereby improving the film formation quality, so that the quantum dot film formed is not evenly flat, and the film layer is stable and difficult to be subjected to subsequent functions.
  • the solvent is redissolved and removed during layer deposition, which effectively improves the uniformity and stability of the QLED device.
  • the introduction of the organometallic complex can effectively passivate the surface defects of the quantum dots and improve the QLED device. Luminous efficiency and luminescence lifetime.
  • the quantum dots coated with the ligand are dry and weighed and dissolved in a solvent such as toluene or chloroform to prepare a quantum dot solution, wherein the concentration of the quantum dot solution is 1 to 50 mg/mL.
  • the ligand is an organic ligand or an inorganic ligand, the organic ligand being a long-chain organic ligand and/or a short-chain organic ligand; the organic ligand may be, but not limited to, thioglycolic acid, sulfhydryl group Propionic acid, mercaptobutyric acid, mercapto oleic acid, mercaptoglycerol, glutathione, mercaptoethylamine, mercapto oleylamine, trioctylphosphine, trioctylphosphine oxide, oleic acid, amino acid, alkyl acid, alkylamine One or more of a sulfonic acid,
  • the organic ligand contains -OH, -COOH, -NH 2 , -NH-, -SH, -CN, -SO 3 H, -SOOH, -NO 2 , -CONH 2 , -CONH-, -COCl
  • the ligand is a short chain organic ligand or an inorganic ligand.
  • the quantum dot of the present invention may be one or more of a doped or undoped II-V compound semiconductor, a III-V compound semiconductor, an IV-VI compound semiconductor, and a core-shell structure thereof. .
  • the solvent of the present invention may be, but not limited to, n-octane, isooctane, toluene, benzene, chlorobenzene, xylene, chloroform, acetone, cyclohexane, n-hexane, n-pentane, isopentane, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, hexamethylphosphoramide, n-butyl ether, anisole, phenylethyl ether, benzene One or more of ethyl ketone, aniline, diphenyl ether, and the like.
  • the above solution method of the present invention may be, but not limited to, spin coating method, immersion pulling method, printing method, printing method, inkjet method, spray coating method, roll coating method, knife coating method, casting method, electrolytic deposition method, One or more of a slit coating method and a strip coating method.
  • the substrate of the present invention may be a rigid substrate or a flexible substrate, wherein the rigid substrate may be, but not limited to, one or more of glass and metal foil; the flexible substrate may be But not limited to polyethylene terephthalate (PET), ethylene terephthalate (PEN), polyetheretherketone (PEEK), polystyrene (PS), polyethersulfone (PES), Polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), One or more of polyvinyl chloride (PVC), polyethylene (PE), polyvinylpyrrolidone (PVP), and textile fibers.
  • PET polyethylene terephthalate
  • PEN ethylene terephthalate
  • PEEK polyetheretherketone
  • PS polystyrene
  • PS polyethersulfone
  • PC Polycarbonate
  • PAT polyarylate
  • PAR polyarylate
  • PI polyimide
  • PVC polyvinyl chloride
  • PE polyethylene
  • the functional layer of the present invention may be a conductive glass layer, a metal electrode layer, a hole injection layer, a hole transport layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron blocking layer, an electrode modification layer, One or more of the protective layers; wherein the conductive glass layer may be, but not limited to, indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), One or more of aluminum-doped zinc oxide (AZO).
  • ITO indium doped tin oxide
  • FTO fluorine doped tin oxide
  • ATO antimony doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the organometallic complex of the present invention is an active and volatile organometallic complex, which may be, but not limited to, an alkyl aluminum, an alkyl lithium, an alkyl indium, an alkyl gallium, an alkyl cadmium, an alkyl hydrazine.
  • the organometallic complex may be, but not limited to, trimethyl aluminum, triethyl aluminum, three Isobutyl aluminum, diethyl zinc, methyl lithium, ethyl lithium, butyl lithium, lithium trichloromethane, vinyl lithium, cyclopropyl lithium, phenyl lithium, dimethyl zinc, diethyl zinc, Dimethyl cadmium, diethyl cadmium, diethyl hydrazine, diisopropyl hydrazine, trimethyl gallium, triethyl gallium, trimethyl indium, dimethyl ethyl indium, triethyl hydrazine, dipentane One or more of magnesium, dimethyldipentaluminate, dimethylethylamine and alane.
  • the above organometallic complexes of the present invention are all capable of reacting with a ligand as described above.
  • a quantum dot crosslinked light-emitting layer according to the present invention wherein the quantum dot cross-linked light-emitting layer is prepared by the method for preparing a quantum dot cross-linked light-emitting layer as described above.
  • the quantum dot cross-linked luminescent layer prepared by the invention has uniform coverage, uniform thickness and high film forming quality; and it is used in the QLED device to effectively improve the uniformity of luminescence, luminous efficiency and stability of the QLED device.
  • FIG. 1 is a flow chart of a preferred embodiment of a method for fabricating a QLED device of the present invention The figure, as shown, includes:
  • Step S100 sequentially preparing a hole injection layer and a hole transport layer on a substrate containing an anode
  • Step S200 preparing a quantum dot cross-linked luminescent layer as described above on the hole transport layer;
  • Step S300 sequentially preparing an electron transport layer and a cathode on the quantum dot crosslinked light-emitting layer to obtain a QLED device.
  • a preferred embodiment of a QLED device of the present invention comprises, in order from bottom to top, a substrate containing an anode, a hole injection layer, a hole transport layer, a quantum dot crosslinked light-emitting layer as described above, and an electron transport layer. And the cathode.
  • the quantum dot cross-linked luminescent layer of the present invention as described above is used in a QLED device, and the QLED device produced not only has high illuminance uniformity and stability, but also has high luminescence efficiency and luminescence lifetime.
  • the substrate of the present invention may be a rigid substrate or a flexible substrate, wherein the rigid substrate may be, but not limited to, one or more of glass and metal foil; the flexible substrate may be But not limited to polyethylene terephthalate (PET), ethylene terephthalate (PEN), polyetheretherketone (PEEK), polystyrene (PS), polyethersulfone (PES), Polycarbonate (PC), polyarylate (PAT), polyarylate (PAR), polyimide (PI), polyvinyl chloride (PVC), polyethylene (PE), polyvinylpyrrolidone (PVP) One or more of the textile fibers.
  • PET polyethylene terephthalate
  • PEN ethylene terephthalate
  • PEEK polyetheretherketone
  • PS polystyrene
  • PS polyethersulfone
  • PC Polycarbonate
  • PAT polyarylate
  • PAR polyarylate
  • PI polyimide
  • PVC polyvinyl chloride
  • PE polyethylene
  • the anode of the present invention may be selected from one of indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO), and the like. kind or more.
  • ITO indium doped tin oxide
  • FTO fluorine doped tin oxide
  • ATO antimony doped tin oxide
  • AZO aluminum doped zinc oxide
  • the hole injection layer of the present invention may be poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), copper phthalocyanine (CuPc), 2,3,5,6. -tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethane (F4-TCNQ), 2,3,6,7,10,11-hexacyano-1,4,5,8, One or more of 9,12-hexaazatriphenylene (HATCN), a doped or undoped transition metal oxide, a doped or undoped metal sulfur-based compound; wherein the transition metal is oxidized
  • the material may be, but not limited to, one or more of MoO 3 , VO 2 , WO 3 , CrO 3 , CuO or a mixture thereof; the metal sulfur-based compound may be, but not limited to, MoS 2 , MoSe 2 , WS 2 One or more of WSe 2 , Cu
  • the material of the hole transport layer of the present invention may be selected from organic materials having hole transporting ability, and may be, but not limited to, poly(9,9-dioctylfluorene-CO-N-(4-butyl).
  • the hole transport layer material may also be selected from the group consisting of having hole transport Capable inorganic material, which may be, but not limited to, one or more of NiO, MoO 3 , VO 2 , WO 3 , CrO 3 , CuO, MoS 2 , MoSe 2 , WS 2 , WSe 2 , CuS, or a mixture thereof .
  • the material of the electron transport layer of the present invention may be, but not limited to, n-type ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , AlZnO, Zn 2 SnO 4 , InSnO 2 , Alq 3 , Ca, Ba, CsF, One or more of LiF and CsCO 3 ; preferably, the electron transport layer is n-type ZnO, n-type TiO 2 .
  • the cathode of the present invention may be, but not limited to, one or more of various conductive carbon materials, conductive metal oxide materials, and metal materials; wherein the conductive carbon materials may be, but not limited to, doped or undoped One or more of carbon nanotubes, doped or undoped graphene, doped or undoped graphene oxide, C 60 , graphite, carbon fiber, multiple carbon, or a mixture thereof; conductive metal oxide The material may be, but not limited to, one or more of ITO, FTO, ATO, AZO, or a mixture thereof; the metal material may be, but not limited to, one of Al, Ag, Cu, Mo, Au, or an alloy thereof Or one or more; wherein the metal material may be in the form of, but not limited to, one or more of a dense film, a nanowire, a nanosphere, a nanorod, a nanocone, a nano hollow sphere, or a mixture thereof; Preferably, the cathode is Ag or Al.
  • the QLED devices of the present invention may be partially packaged, fully packaged, or unpackaged.
  • the preparation method of the above layers of the present invention may be a chemical method or a physical method, wherein the chemical method may be, but not limited to, a sol-gel method, a chemical bath deposition method, a chemical vapor deposition method, a hydrothermal method, a coprecipitation method.
  • the electrochemical deposition methods may be, but not limited to, thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, electrolysis, electrospinning One or more of them.
  • the present invention is not limited to the QLED device of the above structure, and may further include an interface functional layer or an interface modification layer, including but not limited to one of an electron blocking layer, a hole blocking layer, an electrode modification layer, and an isolation protection layer. kind or more.
  • the present invention is not limited to the preparation of the QLED device of the above positive structure, and the QLED device of the inverted structure can also be prepared.
  • the inversion structure QLED device may further include an interface functional layer or an interface modification layer, including but not limited to an electron blocking layer, and an empty One or more of a hole barrier layer, an electrode modification layer, and an isolation protection layer.
  • a lighting module of the present invention includes the QLED device as described above.
  • a display device of the present invention includes the light emitting module as described above.
  • the steps for preparing the QLED device are as follows:
  • the CdSe@ZnS layer of the surface-coated thioglycolic acid (MPA) ligand prepared above is placed in a vacuum chamber, and a trimethylaluminum ((CH 3 ) 3 Al) gas is introduced therein, wherein the internal pressure of the cavity 0.05 mbar, the partial pressure of trimethyl aluminum gas is 0.01 mbar, the internal temperature of the chamber is 16 ° C, the treatment time is 5 min, and after the treatment is completed, the quantum dot cross-linked luminescent layer is obtained;
  • a trimethylaluminum ((CH 3 ) 3 Al) gas is introduced therein, wherein the internal pressure of the cavity 0.05 mbar, the partial pressure of trimethyl aluminum gas is 0.01 mbar, the internal temperature of the chamber is 16 ° C, the treatment time is 5 min, and after the treatment is completed, the quantum dot cross-linked luminescent layer is obtained;
  • FIG. 2 The schematic diagram of the cross-linking process of this embodiment is shown in FIG. 2, and the structure diagram of the QLED device is shown in FIG. 3.
  • 1 is an ITO substrate
  • 2 is a PEDOT:PSS layer
  • 3 is a PVK layer
  • 4 is a quantum dot intersection.
  • 5 is a ZnO layer
  • 6 is an Al layer.
  • the steps for preparing the QLED device are as follows:
  • the CdSe@ZnS layer of the surface-coated thioglycolic acid (MPA) ligand prepared above is placed in a vacuum chamber, and a trimethylaluminum ((CH 3 ) 3 Al) gas is introduced therein, wherein the internal pressure of the cavity 0.05 mbar, the partial pressure of trimethyl aluminum gas is 0.02 mbar, the internal temperature of the chamber is 18 ° C, the treatment time is 10 min, and after the treatment is completed, the quantum dot crosslinked luminescent layer is obtained;
  • a trimethylaluminum ((CH 3 ) 3 Al) gas is introduced therein, wherein the internal pressure of the cavity 0.05 mbar, the partial pressure of trimethyl aluminum gas is 0.02 mbar, the internal temperature of the chamber is 18 ° C, the treatment time is 10 min, and after the treatment is completed, the quantum dot crosslinked luminescent layer is obtained;
  • the steps for preparing the QLED device are as follows:
  • the CdSe@ZnS layer of the surface-coated oleic acid (OA) ligand prepared above is placed in a vacuum chamber, and a triethylaluminum ((CH 3 CH 2 ) 3 Al) gas is introduced therein, wherein the inside of the cavity
  • the pressure is 0.05 mbar
  • the partial pressure of triethyl aluminum gas is 0.01 mbar
  • the internal temperature of the chamber is 18 ° C
  • the treatment time is 20 min
  • the quantum dot cross-linked luminescent layer is obtained;
  • the steps for preparing the QLED device are as follows:
  • the CdSe@CdS layer of the surface-coated thioglycolic acid (TGA) ligand prepared above is placed in a vacuum chamber, and a triethylaluminum ((CH 3 CH 2 ) 3 Al) gas is introduced therein, wherein the inside of the cavity
  • the pressure is 0.05 mbar
  • the partial pressure of triethyl aluminum gas is 0.01 mbar
  • the internal temperature of the chamber is 18 ° C
  • the treatment time is 20 min
  • the quantum dot cross-linked luminescent layer is obtained;
  • the steps for preparing the QLED device are as follows:
  • the CdSe@CdS layer of the surface-coated dihydrolipoic acid (DHLA) ligand prepared above is placed in a vacuum chamber, and a triethylaluminum ((CH 3 CH 2 ) 3 Al) gas is introduced therein, wherein the cavity
  • a triethylaluminum ((CH 3 CH 2 ) 3 Al) gas is introduced therein, wherein the cavity
  • the internal pressure of the body is 0.1 mbar
  • the partial pressure of triethylaluminum gas is 0.02 mbar
  • the internal temperature of the chamber is 18 ° C
  • the treatment time is 30 min
  • the quantum dot crosslinked luminescent layer is obtained;
  • the present invention provides a quantum dot cross-linked light-emitting layer and QLED device and a preparation method thereof, a light-emitting module and a display device.
  • the quantum dot luminescent layer prepared by the solution method is placed in a volatile organic metal compound atmosphere, and the active and highly hydrolyzable organometallic compound is reacted with the organic ligand on the surface of the quantum dot by gasification, so that the separation is independent.
  • the quantum dots are cross-linked to form a vapor-bonded quantum dot cross-linked luminescent layer.
  • the action of the organometallic compound is to crosslink the quantum dots with ligands on the one hand, to improve the film formation quality, to make the quantum dot film not evenly flat, and the film layer is stable, and it is difficult to be followed by other functional layers.
  • the solvent is re-dissolved and removed during deposition, which effectively improves the uniformity and stability of the QLED device.
  • the introduction of the organometallic compound can effectively passivate the surface defects of the quantum dots and improve the luminescence of the quantum dot device. Efficiency and luminescence lifetime.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开量子点发光层与器件及制备方法、发光模组与显示装置,方法包括步骤:将表面包覆有配体的量子点溶解在溶剂中,得到量子点溶液;将量子点溶液采用溶液法沉积在衬底或功能层上,得到量子点发光层;将量子点发光层置于真空腔体中,通入有机金属配合物,处理0.5~30min,其中腔体内部的压力为0.01~1mbar,有机金属配合物经气化后的分压为0.001~0.1mbar,腔体内部的温度为10~25℃;将上述处理完成后的量子点发光层取出,得到量子点交联发光层。本发明量子点薄膜不仅均匀平整,而且膜层稳定,难以被后续其他功能层沉积时的溶剂重新溶解带走或冲走,有效提高QLED的发光均匀性和稳定性。

Description

量子点发光层与器件及制备方法、发光模组与显示装置 技术领域
本发明涉及发光二极管技术领域,尤其涉及一种量子点交联发光层与QLED器件及制备方法、发光模组与显示装置。
背景技术
量子点(Quantum dot,QD)也被称为半导体纳米晶(Semiconductor nanocrystal),是一种颗粒半径小于或接近于激子波尔半径的半导体纳米粒子,其具有各种独特的光学特性,如禁带宽度易调谐、吸光光谱范围宽、光谱纯度高、光/化学性能稳定等。基于量子点的发光二极管被称为量子点发光二极管(Quantum dot light-emitting diode,QLED),是一种新兴的显示器件,其结构与有机发光二极管(Organic light-emitting diode,OLED)相似,但与传统发光二极管以及OLED相比,QLED具有色纯度高、稳定性好、寿命长、色温佳、制备工艺简单等突出优点,有望替代传统的无机和有机LED成为经济的、稳定的和高效能的下一代显示面板。
目前大多数研究的QLED器件均采用溶液法加工制备,如旋涂法、印刷法等,溶液法与蒸发镀膜法相比,不仅方法简单、工艺快速,而且成本低廉,利于QLED器件的大规模产业化制备。虽然如此,溶液法较难得到非常均匀致密的膜层,所制备的薄膜往往会出现厚度不均匀、覆盖不全、膜层结晶性不好、界面缺陷大、膜层之间相互溶 解渗透等不利现象,而与之相比,蒸发镀膜法通过精确控制沉积速度和气氛容易得到膜厚均一、结晶性优良的高质量薄膜。溶液法的成膜不均匀,最终会导致所制备的QLED器件重复性不好、器件之间性能差异大,且发光面积不均匀和性能不稳定。特别地,量子点发光层作为QLED器件的核心组成层,其成膜均匀性对后续加工的其他膜层以及器件的性能起到至关重要的作用。
对于量子点发光层的沉积方法,目前大多数成膜工艺是将表面配体功能化的量子点溶于有机溶剂中,配置成量子点溶液或量子点墨水,接着通过旋涂或印刷方式沉积于衬底或功能层上,然后采用同样的成膜方法在量子点发光层上依次沉积其他功能层,最后蒸镀电极,得到QLED器件。但是,因为量子点主要依靠配体分散在溶液或墨水中,其仍保持颗粒状态,颗粒尺寸与普通离子或有机小分子相比较大,成膜时量子点颗粒较难均匀铺展在衬底上,且随着溶剂的进一步挥发,量子点颗粒之间的间距会逐渐拉大或收缩,会加剧量子点发光层的不均匀性。此外,由于量子点表面含有丰富的有机配体,沉积后的量子点仍有很大机会在后续其他功能层的溶液法成膜过程中重新溶解带走或直接冲走,导致量子点膜层不均匀,以及器件发光不均匀和性能较低。即使采用难溶解量子点的溶剂,也难以避免该过程的发生,而且也因为这样,后续功能层材料的选择也会受到其可选溶剂的限制。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种量子点交联发光层与QLED器件及制备方法、发光模组与显示装置,旨在解决现有量子点膜层覆盖不均匀、厚度不均匀,以及器件发光不均匀和性能较低的问题。
本发明的技术方案如下:
一种量子点交联发光层的制备方法,其中,包括步骤:
首先将表面包覆有配体的量子点溶解在溶剂中,得到量子点溶液;
然后将量子点溶液采用溶液法沉积在衬底或功能层上,得到量子点发光层;
接着将所得的量子点发光层置于真空腔体中,通入有机金属配合物,处理0.5~30min,其中腔体内部的压力为0.01~1mbar,有机金属配合物经气化后的分压为0.001~0.1mbar,腔体内部的温度为10~25℃;
将上述处理完成后的量子点发光层取出,得到量子点交联发光层。
所述的量子点交联发光层的制备方法,其中,所述配体为有机配体或无机配体,所述有机配体为长链有机配体和/或短链有机配体;所述有机配体为巯基乙酸、巯基丙酸、巯基丁酸、巯基油酸、巯基甘油、谷胱甘肽、巯基乙胺、巯基油胺、三辛基膦、三辛基氧化膦、油酸、氨基酸、烷基酸、烷基胺、磺酸、硫醇中的一种或多种;所述无机配体为Cl-、Br-、S2-、HS-、SnS4 4-、Sn2S6 4-、ZnCl4 2-、Zn(OH)4 2-中的一种或多种。
所述的量子点交联发光层的制备方法,其中,所述量子点为II-V 族化合物半导体、III-V族化合物半导体、IV-VI族化合物半导体及其核壳结构中的一种或多种。
所述的量子点交联发光层的制备方法,其中,所述溶剂为正辛烷、异辛烷、甲苯、苯、氯苯、二甲苯、氯仿、丙酮、环己烷、正己烷、正戊烷、异戊烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、六甲基磷酰胺、正丁醚、苯甲醚、苯乙醚、苯乙酮、苯胺、二苯醚中的一种或多种。
所述的量子点交联发光层的制备方法,其中,所述有机金属配合物为烷基铝、烷基锂、烷基铟、烷基镓、烷基镉、烷基碲、烷基镁、烷基锌、胺基锂、芳基锂中的一种或多种。
一种量子点交联发光层,其中,所述量子点交联发光层采用如上任一所述的量子点交联发光层的制备方法制备而成。
一种QLED器件的制备方法,其中,包括:
步骤A、在含有阳极的衬底上依次制备空穴注入层和空穴传输层;
步骤B、在空穴传输层上制备如上所述的量子点交联发光层;
步骤C、在量子点交联发光层上依次制备电子传输层以及阴极,得到QLED器件。
一种QLED器件,其中,自下而上依次包括:含有阳极的衬底、空穴注入层、空穴传输层、如上所述的量子点交联发光层、电子传输层及阴极。
一种发光模组,其中,包括如上所述的QLED器件。
一种显示装置,其中,包括如上所述的发光模组。
有益效果:本发明把溶液法制备的量子点发光层置于易挥发有机金属配合物气氛中,活泼且极易水解的有机金属配合物经气化后与量子点表面丰富的配体发生反应,使分别独立的量子点交联在一起,形成气相胶结后的量子点交联发光层。本发明量子点薄膜不仅均匀平整,而且膜层稳定,难以被后续其他功能层沉积时的溶剂重新溶解带走或冲走,有效地提高QLED器件的发光均匀性和稳定性,另外,有机金属配合物的引入能够有效地钝化量子点表面缺陷,提高QLED器件的发光效率和发光寿命。
附图说明
图1为本发明一种QLED器件的制备方法较佳实施例的流程图。
图2为本发明实施例1中QLED器件的交联过程示意图。
图3为本发明实施例1中QLED器件的结构示意图。
具体实施方式
本发明提供一种量子点交联发光层与QLED器件及制备方法、发光模组与显示装置,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的一种量子点交联发光层的制备方法较佳实施例,其中,包括步骤:
首先将表面包覆有配体的量子点溶解在溶剂中,得到量子点溶液;
然后将量子点溶液采用溶液法沉积在衬底或功能层上,得到量子点发光层;
接着将所得的量子点发光层置于真空腔体中,通入有机金属配合物,处理0.5~30min,其中腔体内部的压力为0.01~1mbar,有机金属配合物经气化后的分压为0.001~0.1mbar,腔体内部的温度为10~25℃;
将上述处理完成后的量子点发光层取出,得到量子点交联发光层。
本发明把溶液法制备的量子点发光层置于易挥发有机金属配合物气氛中,活泼且极易水解的有机金属配合物经气化后与量子点表面丰富的配体发生反应,使分别独立的量子点交联在一起,形成气相胶结后的量子点交联发光层。在本发明中,有机金属配合物的作用一方面是使带配体的量子点交联一起,提高成膜质量,使所成量子点薄膜不仅均匀平整,而且膜层稳定,难以被后续其他功能层沉积时的溶剂重新溶解带走或冲走,有效地提高QLED器件的发光均匀性和稳定性,另一方面,有机金属配合物的引入能够有效地钝化量子点表面缺陷,提高QLED器件的发光效率和发光寿命。
具体地,将表面包覆有配体的量子点干燥称重后溶解于甲苯或氯仿等溶剂中,配制成量子点溶液,其中量子点溶液的浓度为1~50mg/mL。优选地,所述配体为有机配体或无机配体,所述有机配体为长链有机配体和/或短链有机配体;所述有机配体可以为但不限于巯基乙酸、巯基丙酸、巯基丁酸、巯基油酸、巯基甘油、谷胱甘肽、巯基乙胺、巯基油胺、三辛基膦、三辛基氧化膦、油酸、氨基酸、烷基 酸、烷基胺、磺酸、硫醇等中的一种或多种;所述无机配体可以为但不限于Cl-、Br-、S2-、HS-、SnS4 4-、Sn2S6 4-、ZnCl4 2-、Zn(OH)4 2-中的一种或多种。其中,所述有机配体含有-OH、-COOH、-NH2、-NH-、-SH、-CN、-SO3H、-SOOH、-NO2、-CONH2、-CONH-、-COCl、-CO-、-CHO、-Cl、-Br等中的一个或多个配位基团。更优选地,所述配体为短链有机配体或无机配体。
具体地,本发明所述量子点可以为掺杂或非掺杂的II-V族化合物半导体、III-V族化合物半导体、IV-VI族化合物半导体及其核壳结构中的一种或多种。
具体地,本发明所述溶剂可以为但不限于正辛烷、异辛烷、甲苯、苯、氯苯、二甲苯、氯仿、丙酮、环己烷、正己烷、正戊烷、异戊烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、六甲基磷酰胺、正丁醚、苯甲醚、苯乙醚、苯乙酮、苯胺、二苯醚等中的一种或多种。
具体地,本发明上述溶液法可以为但不限于旋涂法、浸渍提拉法、打印法、印刷法、喷墨法、喷涂法、滚涂法、刮涂法、浇铸法、电解沉积法、狭缝式涂布法、条状涂布法中的一种或多种。
具体地,本发明所述衬底可以为刚性衬底或柔性衬底,其中所述刚性衬底可以为但不限于玻璃、金属箔片中的一种或多种;所述柔性衬底可以为但不限于聚对苯二甲酸乙二醇酯(PET)、对苯二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、 聚氯乙烯(PVC)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。
具体地,本发明所述功能层可以为导电玻璃层、金属电极层、空穴注入层、空穴传输层、空穴阻挡层、电子传输层、电子注入层、电子阻挡层、电极修饰层、隔离保护层中的一种或多种;其中,所述导电玻璃层可以为但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)中的一种或多种。
具体地,本发明所述有机金属配合物为活泼且易挥发的有机金属配合物,可以为但不限于烷基铝、烷基锂、烷基铟、烷基镓、烷基镉、烷基碲、烷基镁、烷基锌、胺基锂、芳基锂中的一种或多种;更具体地,所述有机金属配合物可以为但不限于三甲基铝、三乙基铝、三异丁基铝、二乙基锌、甲基锂、乙基锂、丁基锂、三氯甲锂、乙烯基锂、环丙基锂、苯基锂、二甲基锌、二乙基锌、二甲基镉、二乙基镉、二乙基碲、二异丙基碲、三甲基镓、三乙基镓、三甲基铟、二甲基乙基铟、三乙基锑、二戊镁、二甲基二戊镁、二甲基乙基胺配铝烷中的一种或多种。本发明上述有机金属配合物均能与如上所述配体发生反应。
本发明的一种量子点交联发光层,其中,所述量子点交联发光层采用如上任一所述的量子点交联发光层的制备方法制备而成。本发明制备所得的量子点交联发光层覆盖均匀、厚度均匀,成膜质量高;其用于QLED器件中,能够有效提高QLED器件的发光均匀性、发光效率以及稳定性。
图1为本发明的一种QLED器件的制备方法较佳实施例的流程 图,如图所示,其包括:
步骤S100、在含有阳极的衬底上依次制备空穴注入层和空穴传输层;
步骤S200、在空穴传输层上制备如上所述的量子点交联发光层;
步骤S300、在量子点交联发光层上依次制备电子传输层以及阴极,得到QLED器件。
本发明的一种QLED器件较佳实施例,其自下而上依次包括:含有阳极的衬底、空穴注入层、空穴传输层、如上所述的量子点交联发光层、电子传输层及阴极。本发明如上所述的量子点交联发光层用于QLED器件中,制成的QLED器件不仅具有较高的发光均匀性及稳定性,还具有高的发光效率和发光寿命。
具体地,本发明所述衬底可以为刚性衬底或柔性衬底,其中所述刚性衬底可以为但不限于玻璃、金属箔片中的一种或多种;所述柔性衬底可以为但不限于聚对苯二甲酸乙二醇酯(PET)、对苯二甲酸乙二醇酯(PEN)、聚醚醚酮(PEEK)、聚苯乙烯(PS)、聚醚砜(PES)、聚碳酸酯(PC)、聚芳基酸酯(PAT)、聚芳酯(PAR)、聚酰亚胺(PI)、聚氯乙烯(PVC)、聚乙烯(PE)、聚乙烯吡咯烷酮(PVP)、纺织纤维中的一种或多种。
具体地,本发明所述阳极可选自铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)等中的一种或多种。
具体地,本发明所述空穴注入层可以为聚(3,4-乙烯二氧噻吩)-聚 苯乙烯磺酸(PEDOT:PSS)、酞菁铜(CuPc)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)、掺杂或非掺杂过渡金属氧化物、掺杂或非掺杂金属硫系化合物中的一种或多种;其中,所述过渡金属氧化物可以为但不限于MoO3、VO2、WO3、CrO3、CuO或它们的混合物中的一种或多种;所述金属硫系化合物可以为但不限于MoS2、MoSe2、WS2、WSe2、CuS或它们的混合物中的一种或多种。
具体地,本发明所述空穴传输层的材料可选自具有空穴传输能力的有机材料,可以为但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯、C60或它们的混合物中的一种或多种。所述空穴传输层材料还可选自具有空穴传输能力的无机材料,可以为但不限于NiO、MoO3、VO2、WO3、CrO3、CuO、MoS2、MoSe2、WS2、WSe2、CuS或它们的混合物中的一种或多种。
具体地,本发明所述电子传输层的材料可以为但不限于n型ZnO、TiO2、SnO2、Ta2O3、AlZnO、Zn2SnO4、InSnO2、Alq3、Ca、Ba、CsF、LiF、CsCO3中的一种或多种;优选地,所述电子传输层为n型ZnO、n型TiO2
具体地,本发明所述阴极可以为但不限于各种导电碳材料、导电金属氧化物材料、金属材料中的一种或多种;其中导电碳材料可以为但不限于掺杂或非掺杂碳纳米管、掺杂或非掺杂石墨烯、掺杂或非掺杂氧化石墨烯、C60、石墨、碳纤维、多空碳、或它们的混合物中的一种或多种;导电金属氧化物材料可以为但不限于ITO、FTO、ATO、AZO、或它们的混合物中的一种或多种;金属材料可以为但不限于Al、Ag、Cu、Mo、Au、或它们的合金中的一种或多种;其中所述金属材料中,其形态可以为但不限于致密薄膜、纳米线、纳米球、纳米棒、纳米锥、纳米空心球、或它们的混合物中的一种或多种;优选地,所述阴极为Ag或Al。
具体地,本发明QLED器件可以部分封装、全封装或不封装。
具体地,本发明上述各层的制备方法可以是化学法或物理法,其中化学法可以为但不限于溶胶-凝胶法、化学浴沉积法、化学气相沉积法、水热法、共沉淀法、电化学沉积法中的一种或多种;物理法可以为但不限于热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、电解法、静电纺丝法中的一种或多种。
需说明的是,本发明不限于上述结构的QLED器件,还可进一步包括界面功能层或界面修饰层,包括但不限于电子阻挡层、空穴阻挡层、电极修饰层、隔离保护层中的一种或多种。
需说明的是,本发明不限于制备上述正型结构的QLED器件,还可以制备反型结构的QLED器件。且反型结构的QLED器件还可进一步包括界面功能层或界面修饰层,包括但不限于电子阻挡层、空 穴阻挡层、电极修饰层、隔离保护层中的一种或多种。
本发明的一种发光模组,其中,包括如上所述的QLED器件。
本发明的一种显示装置,其中,包括如上所述的发光模组。
下面通过实施例对本发明进行详细说明。
实施例1
QLED器件的制备步骤如下:
在ITO衬底上旋涂一层PEDOT:PSS薄膜作为空穴注入层;
在PEDOT:PSS层上旋涂一层PVK作为空穴传输层;
在PVK层上旋涂一层表面包覆巯基丙酸(MPA)配体的CdSe@ZnS作为量子点发光层;
接着,将上述制备的表面包覆巯基丙酸(MPA)配体的CdSe@ZnS层置于真空腔体中,通入三甲基铝((CH3)3Al)气体,其中腔体内部压力为0.05mbar,三甲基铝气体的分压为0.01mbar,腔体内部温度为16℃,处理时间为5min,处理结束后取出,得到量子点交联发光层;
然后,在上述制备的量子点交联发光层上旋涂一层ZnO作为电子传输层;
最后,在ZnO层上蒸镀一层Al,得到QLED器件。其中,本实施例的交联过程示意图见图2,其QLED器件的结构示意图见图3,图3中1为ITO衬底、2为PEDOT:PSS层、3为PVK层、4为量子点交联发光层、5为ZnO层、6为Al层。
实施例2
QLED器件的制备步骤如下:
在ITO衬底上旋涂一层PEDOT:PSS薄膜作为空穴注入层;
在PEDOT:PSS层上旋涂一层TFB层作为空穴传输层;
在TFB层上旋涂一层表面包覆巯基丙酸(MPA)配体的CdSe@ZnS作为量子点发光层;
接着,将上述制备的表面包覆巯基丙酸(MPA)配体的CdSe@ZnS层置于真空腔体中,通入三甲基铝((CH3)3Al)气体,其中腔体内部压力为0.05mbar,三甲基铝气体的分压为0.02mbar,腔体内部温度为18℃,处理时间为10min,处理结束后取出,得到量子点交联发光层;
然后,在上述制备的量子点交联发光层上旋涂一层ZnO作为电子传输层;
最后,在ZnO层上蒸镀一层Al,得到QLED器件。
实施例3
QLED器件的制备步骤如下:
在ITO衬底上旋涂一层PEDOT:PSS薄膜作为空穴注入层;
在PEDOT:PSS层上旋涂一层TFB作为空穴传输层;
在TFB层上旋涂一层表面包覆油酸(OA)配体的CdSe@ZnS作为量子点发光层;
接着,将上述制备的表面包覆油酸(OA)配体的CdSe@ZnS层置于真空腔体中,通入三乙基铝((CH3CH2)3Al)气体,其中腔体内部压力为0.05mbar,三乙基铝气体的分压为0.01mbar,腔体内部温 度为18℃,处理时间为20min,处理结束后取出,得到量子点交联发光层;
然后,在上述制备的量子点交联发光层上旋涂一层ZnO作为电子传输层;
最后,在ZnO层上蒸镀一层Al,得到QLED器件。
实施例4
QLED器件的制备步骤如下:
在ITO衬底上旋涂一层PEDOT:PSS薄膜作为空穴注入层;
在PEDOT:PSS层上旋涂一层PVK作为空穴传输层;
在PVK层上打印一层表面包覆巯基乙酸(TGA)配体的CdSe@CdS作为量子点发光层;
接着,将上述制备的表面包覆巯基乙酸(TGA)配体的CdSe@CdS层置于真空腔体中,通入三乙基铝((CH3CH2)3Al)气体,其中腔体内部压力为0.05mbar,三乙基铝气体的分压为0.01mbar,腔体内部温度为18℃,处理时间为20min,处理结束后取出,得到量子点交联发光层;
然后,在上述制备的量子点交联发光层上旋涂一层ZnO作为电子传输层;
最后,在ZnO层上蒸镀一层Al,得到QLED器件。
实施例5
QLED器件的制备步骤如下:
在ITO衬底上旋涂一层PEDOT:PSS薄膜作为空穴注入层;
在PEDOT:PSS层上旋涂一层PVK层作为空穴传输层;
在PVK层上打印一层表面包覆二氢硫辛酸(DHLA)配体的CdSe@CdS作为量子点发光层;
接着,将上述制备的表面包覆二氢硫辛酸(DHLA)配体的CdSe@CdS层置于真空腔体中,通入三乙基铝((CH3CH2)3Al)气体,其中腔体内部压力为0.1mbar,三乙基铝气体的分压为0.02mbar,腔体内部温度为18℃,处理时间为30min,处理结束后取出,得到量子点交联发光层;
然后,在上述制备的量子点交联发光层上旋涂一层ZnO作为电子传输层;
最后,在ZnO层上蒸镀一层Al,得到QLED器件。
综上所述,本发明提供的一种量子点交联发光层与QLED器件及制备方法、发光模组与显示装置。本发明把溶液法制备的量子点发光层置于易挥发有机金属化合物气氛中,活泼且极易水解的有机金属化合物经气化后与量子点表面丰富的有机配体发生反应,使分别独立的量子点交联在一起,形成气相胶结后的量子点交联发光层。在本发明中,有机金属化合物的作用一方面是使带配体的量子点交联一起,提高成膜质量,使所成量子点薄膜不仅均匀平整,而且膜层稳定,难以被后续其他功能层沉积时的溶剂重新溶解带走或冲走,有效地提高QLED器件的发光均匀性和稳定性,另一方面,有机金属化合物的引入能够有效地钝化量子点表面缺陷,提高量子点器件的发光效率和发光寿命。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种量子点交联发光层的制备方法,其特征在于,包括步骤:
    将表面包覆有配体的量子点溶解在溶剂中,得到量子点溶液;
    将量子点溶液进行沉积,得到量子点发光层;
    将所得的量子点发光层置于真空腔体中,通入有机金属配合物,进行交联处理,得到量子点交联发光层。
  2. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述配体为有机配体。
  3. 根据权利要求2所述的量子点交联发光层的制备方法,其特征在于,所述有机配体为巯基乙酸、巯基丙酸、巯基丁酸、巯基油酸、巯基甘油、谷胱甘肽、巯基乙胺、巯基油胺、三辛基膦、三辛基氧化膦、油酸、氨基酸、烷基酸、烷基胺、磺酸、硫醇中的一种或多种。
  4. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述配体为无机配体。
  5. 根据权利要求4所述的量子点交联发光层的制备方法,其特征在于,所述无机配体为Cl-、Br-、S2-、HS-、SnS4 4-、Sn2S6 4-、ZnCl4 2-、Zn(OH)4 2-中的一种或多种。
  6. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述量子点为II-V族化合物半导体、III-V族化合物半导体、IV-VI族化合物半导体及其核壳结构中的一种或多种。
  7. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述溶剂为烃类、卤代烃类、酮类、含氮溶剂、醚类中的一种或多种。
  8. 根据权利要求7所述的量子点交联发光层的制备方法,其特征在于,所述溶剂为正辛烷、异辛烷、甲苯、苯、氯苯、二甲苯、氯仿、丙酮、环己烷、正己烷、正戊烷、异戊烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、二甲基亚砜、六甲基磷酰胺、正丁醚、苯甲醚、苯乙醚、苯乙酮、苯胺、二苯醚中的一种或多种。
  9. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述有机金属配合物为金属烷基配合物、金属胺基配合物、金属芳基配合物中的一种或多种。
  10. 根据权利要求9所述的量子点交联发光层的制备方法,其特征在于,所述有机金属配合物为烷基铝、烷基锂、烷基铟、烷基镓、烷基镉、烷基碲、烷基镁、烷基锌、胺基锂、芳基锂中的一种或多种。
  11. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述交联处理的时间为0.5~30min。
  12. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,所述腔体内部的压力为0.01~1mbar。
  13. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,有机金属配合物经气化后的分压为0.001~0.1mbar。
  14. 根据权利要求1所述的量子点交联发光层的制备方法,其特征在于,腔体内部的温度为10~25℃。
  15. 一种QLED器件,其特征在于,包括依次设置的阳极、如权利要求1~14任一项所述的量子点交联发光层的制备方法制备的量子点交联发光层及阴极。
  16. 根据权利要求15所述的QLED器件,其特征在于,还包括在所述阳极与所述量子点交联发光层之间依次设置的空穴注入层和空穴传输层,及在所述量子点交联发光层与所述阴极之间设置的电子传输层,所述空穴传输层与所述量子点发光层叠合。
  17. 一种显示装置,其特征在于,包括如权利要求15~16任一项所述的QLED器件。
PCT/CN2017/099079 2016-12-22 2017-08-25 量子点发光层与器件及制备方法、发光模组与显示装置 WO2018113334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611198580.5 2016-12-22
CN201611198580.5A CN106531860B (zh) 2016-12-22 2016-12-22 量子点发光层与器件及制备方法、发光模组与显示装置

Publications (1)

Publication Number Publication Date
WO2018113334A1 true WO2018113334A1 (zh) 2018-06-28

Family

ID=58340726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099079 WO2018113334A1 (zh) 2016-12-22 2017-08-25 量子点发光层与器件及制备方法、发光模组与显示装置

Country Status (2)

Country Link
CN (1) CN106531860B (zh)
WO (1) WO2018113334A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148658A (zh) * 2019-05-28 2019-08-20 中国计量大学 一种基于量子点发光二极管发光的有机光敏三极管光耦器件
CN112018254A (zh) * 2020-09-04 2020-12-01 河南工程学院 一种基于苯硫醇衍生物的量子点发光二极管及其制备方法
CN113572014A (zh) * 2021-07-19 2021-10-29 南通大学 一种全无机半导体量子点激光器的制备方法
CN113644213A (zh) * 2021-08-13 2021-11-12 合肥福纳科技有限公司 量子点发光器件及其制备方法
CN113912877A (zh) * 2020-07-08 2022-01-11 Tcl科技集团股份有限公司 一种复合薄膜、量子点发光二极管及其制备方法
CN114735942A (zh) * 2022-04-20 2022-07-12 南开大学 一种数码可控打印ito纳米导线的方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531860B (zh) * 2016-12-22 2019-10-11 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN109935719A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点薄膜及其制备方法、qled器件及其制备方法
CN109935724B (zh) * 2017-12-15 2020-07-14 Tcl科技集团股份有限公司 量子点发光层及其制备方法和应用
CN109935670B (zh) * 2017-12-15 2021-03-26 Tcl科技集团股份有限公司 表面配体、量子点薄膜、qled器件及其制备方法
CN109980128B (zh) * 2017-12-27 2020-11-17 Tcl科技集团股份有限公司 一种量子点固态膜及其制备方法
CN109988573A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 复合量子点、量子点固态膜及其应用
WO2020048527A1 (zh) * 2018-09-07 2020-03-12 Tcl集团股份有限公司 一种复合材料与量子点发光二极管
CN109443630B (zh) * 2018-10-31 2020-11-10 福州大学 一种基于qled发光器件的压力传感器
CN111384269B (zh) * 2018-12-29 2021-08-03 Tcl科技集团股份有限公司 量子点发光二极管及其制备方法
US10826011B1 (en) * 2019-07-23 2020-11-03 Sharp Kabushiki Kaisha QLED fabricated by patterning with phase separated emissive layer
CN113054115A (zh) * 2019-12-27 2021-06-29 Tcl集团股份有限公司 量子点发光二极管的制备方法
CN112186118B (zh) * 2020-09-30 2023-06-16 京东方科技集团股份有限公司 量子点发光器件、其制作方法及显示装置
DE112020007184T5 (de) * 2020-10-28 2023-04-13 Boe Technology Group Co., Ltd. Lochtransportmaterial, quantenpunkt-leuchtbauelement undherstellungsverfahren dafür sowie anzeigevorrichtung
CN114981995A (zh) 2020-10-30 2022-08-30 京东方科技集团股份有限公司 一种量子点材料及相关应用
CN114946045A (zh) * 2020-12-15 2022-08-26 京东方科技集团股份有限公司 量子点膜层、量子点发光器件和制作方法
CN114686232B (zh) * 2020-12-30 2023-12-26 Tcl科技集团股份有限公司 一种量子点的筛分方法及量子点发光二极管
CN115700270A (zh) * 2021-07-27 2023-02-07 北京京东方技术开发有限公司 量子点膜及其制备方法、光电器件、显示装置、量子点发光器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN105070849A (zh) * 2015-07-14 2015-11-18 Tcl集团股份有限公司 一种量子点发光层排布致密的发光器件及其制备方法
CN105219163A (zh) * 2015-10-16 2016-01-06 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及制备方法与量子点发光层
CN106531860A (zh) * 2016-12-22 2017-03-22 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100754396B1 (ko) * 2006-02-16 2007-08-31 삼성전자주식회사 양자점 발광소자 및 그 제조방법
CN105098075A (zh) * 2015-07-14 2015-11-25 Tcl集团股份有限公司 一种量子点发光层排布致密的发光器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241553A (zh) * 2014-10-13 2014-12-24 深圳市华星光电技术有限公司 Oled器件的制备方法及其制得的oled器件
CN105070849A (zh) * 2015-07-14 2015-11-18 Tcl集团股份有限公司 一种量子点发光层排布致密的发光器件及其制备方法
CN105219163A (zh) * 2015-10-16 2016-01-06 Tcl集团股份有限公司 一种喷墨打印用的量子点油墨及制备方法与量子点发光层
CN106531860A (zh) * 2016-12-22 2017-03-22 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110148658A (zh) * 2019-05-28 2019-08-20 中国计量大学 一种基于量子点发光二极管发光的有机光敏三极管光耦器件
CN113912877A (zh) * 2020-07-08 2022-01-11 Tcl科技集团股份有限公司 一种复合薄膜、量子点发光二极管及其制备方法
CN112018254A (zh) * 2020-09-04 2020-12-01 河南工程学院 一种基于苯硫醇衍生物的量子点发光二极管及其制备方法
CN112018254B (zh) * 2020-09-04 2023-09-19 河南工程学院 一种基于苯硫醇衍生物的量子点发光二极管及其制备方法
CN113572014A (zh) * 2021-07-19 2021-10-29 南通大学 一种全无机半导体量子点激光器的制备方法
CN113644213A (zh) * 2021-08-13 2021-11-12 合肥福纳科技有限公司 量子点发光器件及其制备方法
CN114735942A (zh) * 2022-04-20 2022-07-12 南开大学 一种数码可控打印ito纳米导线的方法

Also Published As

Publication number Publication date
CN106531860A (zh) 2017-03-22
CN106531860B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2018113334A1 (zh) 量子点发光层与器件及制备方法、发光模组与显示装置
US11398612B2 (en) Quantum dot light-emitting diode and preparation method therefor, and light-emitting module and display apparatus
Yu et al. High‐performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment
CN106601925B (zh) 一种量子点发光层、量子点发光二极管及其制备方法
Yu et al. High-performance perovskite light-emitting diodes via morphological control of perovskite films
CN108807720B (zh) 功能化阴极、qled及制备方法、发光模组与显示装置
CN109326727B (zh) 一种qled器件及其制备方法
CN109935665B (zh) 量子点薄膜及其制备方法、qled器件及其制备方法
US11335873B2 (en) Quantum dot solid-state film and method for preparing same, and quantum dot light-emitting diode
CN111224000A (zh) 量子点发光二极管及其制备方法
CN106384769B (zh) 一种量子点发光二极管及其制备方法
WO2022011988A1 (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN111224017B (zh) 量子点发光二极管及其制备方法
CN109935670B (zh) 表面配体、量子点薄膜、qled器件及其制备方法
CN111223998A (zh) 量子点发光二极管及其制备方法
CN113130774B (zh) 一种量子点发光二极管及其制备方法、显示装置
CN112582565B (zh) 发光器件及其制备方法
CN111384303B (zh) 一种膜层的制备方法与量子点发光二极管
WO2019010997A1 (zh) 发光二极管及其制备方法
CN113130779B (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN111384259B (zh) 一种量子点发光二极管及其制备方法
WO2023165240A1 (zh) 一种纳米氧化锌溶液的制备方法、光电器件、显示装置
CN113130811B (zh) 一种量子点发光二极管及其制备方法
CN113130776B (zh) 一种量子点发光二极管及其制备方法
WO2023005708A1 (zh) 量子点发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17883701

Country of ref document: EP

Kind code of ref document: A1