CN114735942A - 一种数码可控打印ito纳米导线的方法 - Google Patents

一种数码可控打印ito纳米导线的方法 Download PDF

Info

Publication number
CN114735942A
CN114735942A CN202210418781.0A CN202210418781A CN114735942A CN 114735942 A CN114735942 A CN 114735942A CN 202210418781 A CN202210418781 A CN 202210418781A CN 114735942 A CN114735942 A CN 114735942A
Authority
CN
China
Prior art keywords
ito
wire
printing
ito nano
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210418781.0A
Other languages
English (en)
Inventor
徐文涛
屈尚达
孙林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202210418781.0A priority Critical patent/CN114735942A/zh
Publication of CN114735942A publication Critical patent/CN114735942A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/505Tin oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明为一种数码可控打印ITO纳米导线的方法。该方法以N,N‑二甲基甲酰胺和无水乙醇为混合溶剂,溶解聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物制得前驱体溶液,然后利用电流体打印设备打印出ITO纳米导线阵列,最后经过一步高温退火,直接得到ITO纳米导线。本发明制备的ITO纳米导线,不仅具有低成本、高产率、节能环保、工艺简单、操作简便、适宜大规模制备等优点,而且所制备的ITO纳米导线化学稳定性好、尺寸可调、可以有序排列,适用于传感、光伏、电子和信息等多个领域。

Description

一种数码可控打印ITO纳米导线的方法
技术领域
本发明涉及一种数码可控打印ITO纳米导线的方法,属于先进材料制造领域。
背景技术
氧化铟锡(ITO)作为一种宽带隙(3.5-4.3eV)半导体具有良好的化学稳定性和导电性、较高的透明度以及耐酸碱腐蚀等优点,被广泛应用在传感、光伏、电子和信息等多个领域。通常,传统的ITO导电电极采用溅射、电子束蒸发等工艺制备而得,不仅设备昂贵、耗能高,而且ITO靶材的利用率低,存在稀有金属元素铟(In)的浪费。为了解决上述问题,人们开始采用静电纺丝的方法合成具有良好电导率的ITO一维纳米线,并应用于制备传感器等电子器件。然而,传统静电纺丝的方法制备的ITO一维纳米线杂乱无章,无序排列,未能挖掘无机纳米线克服传统光刻方法局限性的潜力。目前,还没有成熟的技术用来制备长度、方向、位置和数量等可控,能够大规模对齐的ITO纳米线阵列。综上所述,为了实现低成本、高产率、节能环保地制备大规模尺寸可调、有序排列的ITO纳米线阵列,亟需一种新的制备方法。
基于以上问题,本发明通过电流体打印技术制备ITO纳米导线,将功能性ITO前驱体直接打印到衬底上制备电子元器件和电路,不仅工艺简单、操作简便,具有低成本、高产率和节能环保等优点,还实现了纳米线的大规模尺寸可调和有序排列,充分挖掘了无机纳米线在克服传统光刻方法局限性的潜力。
发明内容
针对现有技术的不足,本发明提供了一种数码可控打印ITO纳米导线的方法;该方法以N,N-二甲基甲酰胺和无水乙醇为混合溶剂,溶解聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物制得前驱体溶液,然后利用电流体打印设备打印出ITO纳米导线阵列,最后经过一步高温退火,直接得到ITO纳米导线。本发明方法制备ITO纳米导线,不仅具有低成本、高产率、节能环保、工艺简单、操作简便、适宜大规模制备等优点,而且所制备的ITO纳米导线化学稳定性好、尺寸可调、可以有序排列,克服了现有技术制备纳米导线成本高、产率低、工艺复杂和环境不友好等缺点,适用于传感、光伏、电子和信息等多个领域。
本发明的技术方案如下:
一种数码可控打印ITO纳米导线的方法,具体步骤如下:
(1)N,N-二甲基甲酰胺和无水乙醇混合,配置混合溶剂;
其中,质量比N,N-二甲基甲酰胺:无水乙醇=1~20:1;
(2)将聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物溶于混合溶剂中,在20~70℃温度条件下搅拌0.5~24小时,配置打印所用前驱体溶液;
其中,质量比聚乙烯吡咯烷酮:硝酸铟水合物=1:1~4,氯化亚锡二水合物:硝酸铟水合物=1:1~20,前驱体溶液中聚乙烯吡咯烷酮的质量浓度为5%~20%;
(3)利用电流体打印机,将前驱体溶液打印为纳米线;
其中,在注射器针头上施加0.5~3kV的高电压,将注射器针头到基板的距离设置为0.5~8mm,注射器的出液流量设置为1~250nL/min,基板的移动速度设置为50~1000mm/s;
(4)将打印所得的纳米线在空气气氛中300~700℃温度条件下高温退火30~240min,最终得到ITO纳米导线。
所述ITO纳米导线的直径为100~6000nm,长度为0.01~20cm。多条纳米线之间的间距为10~2000μm。
本发明的实质特点为:
利用传统静电纺丝的方法制备ITO纳米线,注射器针头上施加的电压较高(约10~25kV),注射器针头与基板距离较远(约10~25cm),而在本发明中所需电压较低(约0.5~3kV),针头与基板距离较近(约0.5~8mm);此外,在传统静电纺丝方法中基板是固定不动的,而在本发明中基板以设置的速度高速运动,进而打印出有序、笔直且连续的ITO纳米导线,为无机氧化物半导体纳米线的可控制备开辟了路径。
与其他数码可控打印的方法制备导线的方案(包括金属铜、银等)相比,本方法制备ITO纳米导线,只需要高温退火,不需要在高温氢气氛围中还原,相比之下工艺简单、安全(氢气易爆炸)、节能环保。
本发明的有益效果为:
1、与传统的制备导电电极所采用的贵金属溅射与蒸发等方法相比,本发明制备的ITO纳米导线工艺简单、操作简便且不需要掩模板,充分显示了无机纳米线在克服传统光刻方法局限性的潜力;
2、与制备ITO导电电极所常用的溅射、电子束蒸发等工艺相比,采用本发明中的方法制备ITO纳米导线成本低、产率高、节能环保、环境友好;
3、与传统的静电纺丝方法所制备的ITO纳米线相比,本发明制备的ITO纳米导线长度、方向、位置和数量可控,可有序排列,能够直接实现图案化,在器件和电路的图案化设计和制备方面具有显著的优势和拓展空间,可根据需求选择性打印图案化的器件和电路;
4、本发明方法适用于Si/SiO2,Al2O3和玻璃等多种衬底,可应用于光伏、传感、电子和信息等多个领域,例如,在普通玻璃衬底上打印的ITO纳米线,具有优异的透光性能,可以作为导线和器件互连线,制备光电子元器件和电路,应用于显示和光电探测等领域。
5、与利用数码可控打印的方法制备金属导线(铜、银等)相比,采用本发明方法制备ITO纳米导线,高温退火后不需要在高温氢气氛围中进行还原,相比之下工艺简单、安全(氢气易爆炸)、节能环保,只需要一步高温退火便可得到纳米导线。
附图说明
图1是实施例1中ITO纳米导线电极的光学显微镜图片;
图2是实施例1中ITO纳米导线电极阵列的光学显微镜图片;
图3是传统静电纺丝方法所制备ITO纳米线的SEM图片,其中,图3A为空气中未热处理,图3B为氮气中500℃热处理,图3C为空气中1000℃热处理,图3D为氮气中1000℃热处理的ITO纳米线;
图4是在玻璃衬底上打印的ITO纳米导线电极阵列的数码照片;
图5是实施例1中ITO纳米导线电阻率测试示意图;
下面结合说明书附图和实施例对本发明进一步说明,但不仅限于此。
具体实施方式
实施例1
(1)将质量比为20:1的N,N-二甲基甲酰胺和无水乙醇混合,配置混合溶剂;
(2)将聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物溶于混合溶剂中,在50℃温度条件下搅拌6小时,配置打印所用前驱体溶液;其中,质量比聚乙烯吡咯烷酮:硝酸铟水合物=1:1.2,氯化亚锡二水合物:硝酸铟水合物=1:6.5,前驱体溶液中,聚乙烯吡咯烷酮的质量浓度为10.4%;
(3)利用电流体打印机,将所配置的前驱体溶液打印为纳米线,其中,在注射器针头上施加0.65kV的高电压,将注射器针头到基板的距离设置为2.5mm,注射器的出液流量设置为50nL/min,基板的移动速度设置为250mm/s;
(4)将打印所得的纳米线在空气气氛中500℃温度条件下高温退火120min,最终得到ITO纳米导线。
图1是实施例1中ITO纳米导线电极的光学显微镜图片,图2是实施例1中ITO纳米导线电极阵列的光学显微镜图片,纳米线总长度约为2cm,图中均为其部分区域的放大,如图所示ITO纳米导线是连续、笔直的、有序排列,间距大约为100μm,直径约1500nm。图3为文献“Electrochemistry and Spectroelectrochemistry with Electrospun Indium TinOxide Nanofibers”(见英国学术期刊《Electrochimica Acta》,2016年,第202卷,第55-65页)报道的ITO纳米纤维的SEM图片,图3A、图3B、图3C和图3D分别是空气中未热处理、氮气中500℃热处理、空气中1000℃热处理和氮气中1000℃热处理的结果,可以看出该文采用传统静电纺丝方法制备的ITO纳米纤维杂乱无章,长度、方向、位置和数量不可控,经过对比可以体现出采用本发明方法制备的ITO纳米导线具有长度、方向、位置和数量可控,可有序排列等优点。图4是玻璃衬底上打印的100条ITO纳米导线(间距200um)电极阵列的数码照片,可以看出其具有良好的透光度。图5是实施例1中的ITO纳米导线电阻率测试示意图,将两根探针搭在ITO纳米导线两端,利用吉时利4200A-SCS半导体分析仪测试其电阻,然后利用公式R=ρL/A计算其电阻率。所测纳米导线长约2000μm,三次测量其电阻的平均值约为1.14GΩ,计算得到其电阻率约为100.68Ω·cm。
实施例2
(1)将质量比为10:1的N,N-二甲基甲酰胺和无水乙醇混合,配置混合溶剂;
(2)将聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物溶于混合溶剂中,在50℃温度条件下搅拌6小时,配置打印所用前驱体溶液;其中,质量比聚乙烯吡咯烷酮:硝酸铟水合物=1:1.5,氯化亚锡二水合物:硝酸铟水合物=1:10,前驱体溶液中,聚乙烯吡咯烷酮的质量浓度为12%;
(3)利用电流体打印机,将所配置的前驱体溶液打印为纳米线,其中,在注射器针头上施加0.9kV的高电压,将注射器针头到基板的距离设置为2mm,注射器的出液流量设置为60nL/min,基板的移动速度设置200mm/s;
(4)将打印所得的纳米线在空气气氛中450℃温度条件下高温退火120min,最终得到ITO纳米导线。
实施例3
(1)将质量比为5:1的N,N-二甲基甲酰胺和无水乙醇混合,配置混合溶剂;
(2)将聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物溶于混合溶剂中,在25℃温度条件下搅拌12小时,配置打印所用前驱体溶液;其中,质量比聚乙烯吡咯烷酮:硝酸铟水合物=1:2,氯化亚锡二水合物:硝酸铟水合物=1:10,前驱体溶液中,聚乙烯吡咯烷酮的质量浓度为9%;
(3)利用电流体打印机,将所配置的前驱体溶液打印为纳米线,其中,在注射器针头上施加1.1kV的高电压,将注射器针头到基板的距离设置为3mm,注射器的出液流量设置为30nL/min,基板的移动速度设置500mm/s;
(4)将打印所得的纳米线在空气气氛中550℃温度条件下高温退火60min,最终得到ITO纳米导线。
本发明未尽事宜为公知技术。

Claims (2)

1.一种数码可控打印ITO纳米导线的方法,其特征为该方法包括如下步骤:
(1)N,N-二甲基甲酰胺和无水乙醇混合,配置混合溶剂;
其中,质量比N,N-二甲基甲酰胺:无水乙醇=1~20:1;
(2)将聚乙烯吡咯烷酮、硝酸铟水合物及氯化亚锡二水合物溶于混合溶剂中,在20~70℃温度条件下搅拌0.5~24小时,配置打印所用前驱体溶液;
其中,质量比聚乙烯吡咯烷酮:硝酸铟水合物=1:1~4,氯化亚锡二水合物:硝酸铟水合物=1:1~20,前驱体溶液中聚乙烯吡咯烷酮的质量浓度为5%~20%;
(3)利用电流体打印机,将前驱体溶液打印为纳米线;
其中,在注射器针头上施加0.5~3kV的高电压,将注射器针头到基板的距离设置为0.5~8mm,注射器的出液流量设置为1~250nL/min,基板的移动速度设置为50~1000mm/s;
(4)将打印所得的纳米线在空气气氛中300~700℃温度条件下高温退火30~240min,最终得到ITO纳米导线。
2.如权利要求1所述的数码可控打印ITO纳米导线的方法,其特征为所述ITO纳米导线的直径为100~6000nm,长度为0.01~20cm,纳米线的间距为10~2000μm。
CN202210418781.0A 2022-04-20 2022-04-20 一种数码可控打印ito纳米导线的方法 Pending CN114735942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210418781.0A CN114735942A (zh) 2022-04-20 2022-04-20 一种数码可控打印ito纳米导线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210418781.0A CN114735942A (zh) 2022-04-20 2022-04-20 一种数码可控打印ito纳米导线的方法

Publications (1)

Publication Number Publication Date
CN114735942A true CN114735942A (zh) 2022-07-12

Family

ID=82284192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210418781.0A Pending CN114735942A (zh) 2022-04-20 2022-04-20 一种数码可控打印ito纳米导线的方法

Country Status (1)

Country Link
CN (1) CN114735942A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110347A (en) * 1997-10-15 2000-08-29 Canon Kabushiki Kashia Method for the formation of an indium oxide film by electrodeposition process or electroless deposition process, a substrate provided with the indium oxide film for a semiconductor element, and a semiconductor element provided with the substrate
CN103922609A (zh) * 2014-03-27 2014-07-16 浙江大学 一种胶体ito纳米晶薄膜的制备方法及其产品
WO2018113334A1 (zh) * 2016-12-22 2018-06-28 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN111333103A (zh) * 2020-04-04 2020-06-26 南开大学 一种数码可控打印izo半导体纳米线的方法
CN111393159A (zh) * 2020-04-04 2020-07-10 南开大学 一种数码可控打印izo纳米线电极的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6110347A (en) * 1997-10-15 2000-08-29 Canon Kabushiki Kashia Method for the formation of an indium oxide film by electrodeposition process or electroless deposition process, a substrate provided with the indium oxide film for a semiconductor element, and a semiconductor element provided with the substrate
CN103922609A (zh) * 2014-03-27 2014-07-16 浙江大学 一种胶体ito纳米晶薄膜的制备方法及其产品
WO2018113334A1 (zh) * 2016-12-22 2018-06-28 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN111333103A (zh) * 2020-04-04 2020-06-26 南开大学 一种数码可控打印izo半导体纳米线的方法
CN111393159A (zh) * 2020-04-04 2020-07-10 南开大学 一种数码可控打印izo纳米线电极的方法

Similar Documents

Publication Publication Date Title
Du et al. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process
Zhao et al. Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties
Zheng et al. A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers
CN109095782B (zh) 一种基于三维立体微结构的银纳米线透明导电薄膜的制备方法
Munir et al. Optical and electrical properties of indium tin oxide nanofibers prepared by electrospinning
Liu et al. High‐Performance, Micrometer Thick/Conformal, Transparent Metal‐Network Electrodes for Flexible and Curved Electronic Devices
CN102080268A (zh) 有序排列In2O3纳米纤维及用于制备超快响应酒精传感器
CN109935423B (zh) 一种具有分级结构的柔性透明导电膜及其制备方法
CN104099687A (zh) 一种石墨烯纤维及其制备方法
CN103628028A (zh) 一种透明导电金属网络的制备方法
Su et al. Characterization and humidity sensitivity of electrospun ZrO2: TiO2 hetero-nanofibers with double jets
CN107938027B (zh) 一种纯钨纳米纤维、其制备方法及应用
CN110942863A (zh) 一种柔性透明导电薄膜制备方法
Wang et al. Halbach array assisted assembly of orderly aligned nickel nanowire networks as transparent conductive films
CN109735833A (zh) 一种金属纳米线自限制纳米钎焊方法及其应用
TW201511627A (zh) 圖案化透明導體之製造方法
Li et al. Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing
CN114735942A (zh) 一种数码可控打印ito纳米导线的方法
CN114158148A (zh) 一种3d打印透明电加热电极的制备方法和应用
Mohamadbeigi et al. Improving the multi-step fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency
KR101191959B1 (ko) 염료감응형 태양전지 및 그 제조 방법
CN111393159A (zh) 一种数码可控打印izo纳米线电极的方法
CN1664181A (zh) 聚对苯乙炔纳米丝及其制备方法
Han et al. Fabrication of Ag nanowire/polymer composite nanocables via direct electrospinning
Sun et al. Synchronously improved reliability, figure of merit and adhesion of flexible copper nanowire networks by chitosan transition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination