WO2024120060A1 - 复合材料、发光器件及其制备方法 - Google Patents

复合材料、发光器件及其制备方法 Download PDF

Info

Publication number
WO2024120060A1
WO2024120060A1 PCT/CN2023/128043 CN2023128043W WO2024120060A1 WO 2024120060 A1 WO2024120060 A1 WO 2024120060A1 CN 2023128043 W CN2023128043 W CN 2023128043W WO 2024120060 A1 WO2024120060 A1 WO 2024120060A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
ligand
electrode
doped
group
Prior art date
Application number
PCT/CN2023/128043
Other languages
English (en)
French (fr)
Inventor
侯文军
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024120060A1 publication Critical patent/WO2024120060A1/zh

Links

Definitions

  • the present application relates to the field of semiconductor packaging, and in particular to a composite material, a light-emitting device and a preparation method thereof.
  • Inorganic semiconductor materials refer to inorganic materials with semiconductor properties.
  • Commonly used inorganic materials such as cadmium sulfide nanoparticles, cadmium selenide nanoparticles, zinc oxide nanoparticles, molybdenum oxide nanoparticles, tungsten oxide nanoparticles, molybdenum sulfide nanoparticles, etc., have suitable energy levels, excellent carrier injection or transport, good chemical stability, long service life, high transparency, safety and non-toxicity, low price and other properties and are widely used in semiconductor devices.
  • the solution method is one of the common processing methods for making stacked semiconductor devices.
  • the solvent resistance of thin films made of existing inorganic semiconductor materials is poor.
  • the thin films are easily affected by the solutions of adjacent film layers, resulting in interfacial miscibility. This not only affects the device performance, but also greatly limits the selection of film materials and solvent types.
  • the present application provides a composite material, a light-emitting device and a preparation method thereof.
  • the present application provides a composite material, comprising:
  • the first ligand bound to the surface of the inorganic semiconductor particle has the following structural formula:
  • R1 is a coordination group connected to the inorganic semiconductor particle
  • L is a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 10 carbon atoms
  • R2 includes a crosslinkable group.
  • the cross-linkable group contains at least one double bond.
  • the cross-linkable group contains multiple double bonds, and the multiple double bonds are conjugated with each other to form a conjugated system.
  • the R 2 is selected from any one of the groups having structures shown in the following formulae (1) to (3);
  • * indicates the connecting site of R2 and L.
  • the R 1 is selected from a combination of one or more of an amino group, a thiol group, a carboxyl group, and a boronic acid group.
  • L is selected from an alkyl group having 2 to 10 carbon atoms.
  • the number of R 2 is 1 or 2; and/or,
  • the number of R 1 is 1 or 2.
  • the first ligand is selected from one or more of allylamine, crotonic acid, 3-methyl-2-butene-1-thiol, 4-boronic acid benzocyclobutene, benzocyclobutene-1-carboxylic acid, 1-bicyclo[4.2.0]octa-1,3,5-triene-7-ylmethylamine, trans,trans-1,3-butadiene-1,4-dicarboxylic acid, and sorbic acid.
  • the composite material further comprises:
  • the second ligand is bound to the surface of the inorganic semiconductor particle, wherein the second ligand is selected from at least one of oleic acid, oleylamine, octylamine, trioctylphosphine and trioctylphosphine oxide.
  • the weight of the first ligand accounts for 0.3-2% of the weight of the inorganic semiconductor particles
  • the weight of the second ligand accounts for 10-20% of the weight of the inorganic semiconductor particles.
  • the weight ratio of the first ligand to the second ligand is (3-10):100.
  • the inorganic semiconductor particles include quantum dots
  • the quantum dots include at least one of single structure quantum dots and core-shell structure quantum dots
  • the single structure quantum dots are selected from at least one of II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds
  • the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnS At least one of CdS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, C
  • the inorganic semiconductor particles include at least one of metal oxides, doped metal oxides, II-VI semiconductor materials, III-V semiconductor materials and I-III-VI semiconductor materials, the metal oxide is selected from at least one of ZnO, BaO, TiO2 and SnO2; the metal oxide in the doped metal oxide is selected from at least one of ZnO, TiO2 and SnO2 , the doping element is selected from at least one of Al, Mg, Li, In and Ga, the II- VI semiconductor material is selected from at least one of ZnS, ZnSe and CdS; the III-V semiconductor material is selected from at least one of InP and GaP; the I-III-VI semiconductor material is selected from at least one of CuInS and CuGaS; or,
  • the inorganic semiconductor particles include doped or undoped NiO, doped or undoped MoO 3 , At least one of doped or undoped WO 3 , doped or undoped V 2 O 5 , doped or undoped P-type gallium nitride, doped or undoped CrO 3 , and doped or undoped CuO.
  • the present application also proposes a light-emitting device, comprising a first electrode, a second electrode, and one or more functional layers arranged between the first electrode and the second electrode, at least one of the one or more functional layers is a first functional layer, the material of the first functional layer comprises a composite material, and the composite material comprises the composite material described above.
  • the first electrode and the second electrode are each independently selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode;
  • the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide;
  • the composite electrode of metal and metal oxide is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al
  • the present application also proposes a method for preparing a light-emitting device, comprising the following steps:
  • the preparation of the first functional layer includes: providing a composite material and a solvent, dispersing the composite material in the solvent to obtain a composite material solution; placing the composite material solution on the upper film layer, and heating the solution to obtain the first functional layer; the composite material includes the composite material described above.
  • the solvent includes at least one of toluene, cyclohexylbenzene, tetralin, n-octane, n-heptane, n-hexane, and oleic acid; and/or,
  • the concentration of the composite material is 10-60 mg/ml.
  • the temperature of the heating treatment is 150-250° C., and the time is 10-60 min.
  • the step of providing a composite material includes preparing the composite material
  • the step of preparing the composite material comprises:
  • Inorganic semiconductor particles an organic solvent and a first ligand are provided, wherein the first ligand has the following structural formula: R 1 -LR 2 ; wherein R 1 is a coordination group connected to the inorganic semiconductor particle; L is a substituted or unsubstituted alkyl or cycloalkyl group with 1 to 10 carbon atoms; R 2 includes a crosslinkable group;
  • the inorganic semiconductor particles, the organic solvent and the first ligand are mixed so that the first ligand is bound to the surface of the inorganic semiconductor particles, and the composite material is obtained by purification.
  • the first ligand includes one or more of allylamine, crotonic acid, 3-methyl-2-butene-1-thiol, 4-boronic acid benzocyclobutene, benzocyclobutene-1-carboxylic acid, 1-bicyclo[4.2.0]octa-1,3,5-triene-7-ylmethylamine, trans,trans-1,3-butadiene-1,4-dicarboxylic acid, and sorbic acid.
  • the organic solvent includes at least one of aromatic hydrocarbons, olefins, aromatic olefins, aromatic ethers, aromatic esters and C5-18 alkanes; and/or,
  • the weight ratio of the inorganic semiconductor particles to the first ligand is (1-3):1; and/or,
  • the concentration of the inorganic semiconductor particles is 10 to 60 mg/ml; and/or,
  • the temperature of the solution is 10-100° C., and the mixing time is 5-60 minutes.
  • FIG1 is a schematic flow chart of a method for preparing a composite material proposed in an embodiment of the present application
  • FIG2 is a schematic structural diagram of a light emitting device proposed in one embodiment of the present application.
  • FIG3 is a schematic structural diagram of a light emitting device proposed in another embodiment of the present application.
  • FIG4 is a schematic flow chart of a method for preparing a light-emitting device according to an embodiment of the present application
  • Reference numerals 100-light-emitting device; 10-anode; 20-light-emitting layer; 30-electron transport layer; 40-cathode; 50-hole Transport layer; 60 - hole injection layer.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • a and B can be singular or plural.
  • At least one means one or more
  • plural means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • “at least one of a, b, or c” can all mean: a, b, c, a-b (i.e. a and b), a-c, b-c, or a-b-c, where a, b, c can be single or multiple, respectively.
  • the present application provides a composite material, comprising: an inorganic semiconductor particle and a first ligand bound to the surface of the inorganic semiconductor particle, wherein the first ligand has the following structural formula:
  • R1 is a coordination group connected to the inorganic semiconductor particle;
  • L is a substituted or unsubstituted alkyl or cycloalkyl group having 1 to 10 carbon atoms; and
  • R2 includes a cross-linkable group.
  • the technical solution provided in the present application is to connect the first ligand on the surface of the inorganic semiconductor particles.
  • the cross-linkable groups of two adjacent first ligands are cross-linked with each other to form a film layer with a cross-linked structure.
  • the film layer is stable, uniform and has high solvent resistance.
  • the existing light-emitting device 100 is usually a laminated structure in which multiple film layers are stacked in sequence.
  • a solution method to prepare multiple functional layers of the light-emitting device 100 although an orthogonal solvent scheme is also adopted, the problem of interface miscibility still exists due to the long-term residence of the solution of the subsequent film layer on the current film layer.
  • the composite material described in the present application is suitable for the production of functional layers of the light-emitting device 100.
  • the film layer made of the composite material is stable and has good solvent resistance.
  • the film layer made of the composite material is less affected by the solvent, and accordingly, the selection of film layer materials and solvent types is less restricted, and more types can be selected.
  • the crosslinkable group may be any currently known group that can be crosslinked with each other.
  • the crosslinkable group may be a group containing at least one double bond.
  • the crosslinkable group may be a group containing multiple double bonds, and the multiple double bonds are conjugated with each other to form a conjugated system. For example, two adjacent double bonds are connected by a single bond to form a conjugated double bond group.
  • the cross-linkable group may include but is not limited to any one of a benzocyclobutene group structure, a butadiene group structure and an alkenyl group.
  • the benzocyclobutene group structure has a structure as shown in the following formula (1)
  • the butadiene group structure has a structure as shown in the following formula (2)
  • the alkenyl group has a structure as shown in the following formula (3).
  • "*" represents a site that can be connected to the linking group L, that is, the benzocyclobutene group structure/butadiene group structure/alkenyl group has multiple connection sites, and the linking group can be connected to any one of the multiple connection sites.
  • the first ligand can be cross-linked at a relatively low temperature (150-250°C) without the need to add an additional cross-linking agent. In this way, when the composite material is applied to the light-emitting device 100, the influence of the cross-linking agent and high temperature on the device performance is avoided.
  • the coordination group R1 can be any currently known group that can coordinate with the dangling bonds on the surface of the inorganic semiconductor particles.
  • the R1 is selected from one or more combinations of amino, thiol, carboxyl, and boronic acid groups.
  • the general formula of the "amino” group is -NH2 ; the general formula of the "thiol” group is -SH; the general formula of the "carboxyl” group is -COOH; and the general formula of the "boronic acid group” is -B(OH) 2 .
  • the linking group L is a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 1 to 10 carbon atoms. Further, in some embodiments, L is selected from an alkyl group having 2 to 10 carbon atoms.
  • alkyl may represent a straight chain and/or branched chain alkyl group; a cycloalkyl group refers to an alkyl group that forms a ring.
  • C1-10 alkyl or C1-10 cycloalkyl refers to an alkyl group or cycloalkyl group containing 1 to 10 carbon atoms.
  • each occurrence may be independently C1 alkyl, C2 alkyl, C3 alkyl, C4 alkyl, C5 alkyl, C6 alkyl, C7 alkyl, C8 alkyl, C9 alkyl or C10 alkyl.
  • Non-limiting examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 2-ethylbutyl, 3,3-dimethylbutyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, 1-methylpentyl, 3-methylpentyl, 2-ethylpentyl, 4-methyl-2-pentyl, etc.
  • substituted means that the hydrogen atom in the substituted group is replaced by a substituent.
  • Substituted or unsubstituted means that the defined group may be substituted or not.
  • the defined group may be substituted by one or more substituents R, and the R is selected from but not limited to deuterium atoms, alkyl groups containing 1 to 20 C atoms, heterocyclic groups containing 3 to 20 ring atoms, aromatic groups containing 6 to 20 ring atoms, heteroaromatic groups containing 5 to 20 ring atoms, alkoxy groups, silane groups, etc., which are acceptable in the art The group.
  • the number of the cross-linkable groups is 1 or 2.
  • the number of the coordination groups is 1 or 2.
  • the first ligand includes one or more of allylamine, butenoic acid, 3-methyl-2-butene-1-thiol, 4-boronic acid benzocyclobutene, benzocyclobutene-1-carboxylic acid, 1-bicyclo[4.2.0]octa-1,3,5-triene-7-ylmethylamine, trans, trans-1,3-butadiene-1,4-dicarboxylic acid, and sorbic acid.
  • the information of the above compounds is as follows:
  • Crotonic acid CAS: 3724-65-0, having the structural formula shown in formula (5);
  • trans, trans-1,3-butadiene-1,4-dicarboxylic acid having the structural formula shown in formula (10);
  • Sorbic acid, CAS: 110-44-1 has the structural formula shown in formula (11).
  • the composite material also includes a second ligand connected to the surface of the inorganic semiconductor particles, and the second ligand includes at least one of oleic acid, oleylamine, octylamine, trioctylphosphine, and trioctylphosphine oxide. Connecting the second ligand on the surface of the inorganic semiconductor particles helps to improve the dispersibility of the inorganic semiconductor particles and improve the film formation uniformity of the composite material.
  • the weight of the first ligand accounts for 0.3-2% of the weight of the inorganic semiconductor particles, for example, the percentage can be 0.3%, 1%, 1.1%, 1.5%, 1.7%, 1.9%, 2% and the percentage between any two of the values listed above;
  • the weight of the second ligand accounts for 10-20% of the weight of the inorganic semiconductor particles, for example, the above percentage can be 10%, 11%, 12%, 15%, 16%, 18%, 19%, 20% and the percentage between any two of the values listed above. Within this range, it helps to further improve the dispersibility of the inorganic semiconductor particles.
  • the weight ratio of the first ligand to the second ligand is (3-10): 100.
  • the weight ratio can be 3:100, 4:100, 5:100, 6:100, 7:100, 8:100, 9:100, 10:100, and the ratio between any two values listed above, which helps to take into account the dispersibility and cross-linking effect of the composite material.
  • inorganic semiconductor particles can be selected in a variety of ways. Conductive particles, applications of the composite material vary accordingly.
  • the inorganic semiconductor particles include quantum dots, and the quantum dots include at least one of single-structure quantum dots and core-shell structure quantum dots.
  • the single-structure quantum dots are selected from at least one of II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds.
  • the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, At least one of ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, and the IV-VI group compound is selected
  • the core-shell structured quantum dots may be selected from but not limited to at least one of CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS, CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS, InP/ZnSeS/ZnS, CdZnSe/ZnSe/ZnS, CdSeS/ZnSeS/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS and InP/ZnSe/ZnS.
  • the chemical formula provided only indicates the elemental composition, but does not indicate the content of each element.
  • CdZnSe only indicates that it is composed of three elements, Cd, Zn and Se. If the content of each element is indicated, it corresponds to Cd x Zn 1-x Se, 0 ⁇ x ⁇ 1.
  • the corresponding composite material can be used to prepare the light-emitting layer 20 of the light-emitting device 100 .
  • the inorganic semiconductor particles may be semiconductor materials having electron transport properties.
  • the inorganic semiconductor particles include at least one of metal oxides, doped metal oxides, II-VI semiconductor materials, III-V semiconductor materials and I-III-VI semiconductor materials.
  • the metal oxide is selected from at least one of ZnO, BaO, TiO 2 and SnO 2 ; the metal oxide in the doped metal oxide is selected from at least one of ZnO, TiO 2 and SnO 2 , the doping element is selected from at least one of Al, Mg, Li, In and Ga; the II-VI semiconductor material is selected from at least one of ZnS, ZnSe and CdS; the III-V semiconductor material is selected from at least one of InP and GaP; the I-III-VI semiconductor material is selected from at least one of CuInS and CuGaS.
  • the corresponding composite materials can be used to prepare the electronic functional layer of the light-emitting device 100, and the electronic functional layer can include but is not limited to the electron transport layer 30 and/or the electron injection layer.
  • the inorganic semiconductor particles may be a semiconductor material with hole transport properties.
  • the inorganic semiconductor particles include at least one of doped or undoped NiO, doped or undoped MoO 3 , doped or undoped WO 3 , doped or undoped V 2 O 5 , doped or undoped P-type gallium nitride, doped or undoped CrO 3 , and doped or undoped CuO.
  • the corresponding composite materials can be used to prepare the hole functional layer of the light-emitting device 100 , and the hole functional layer can include but is not limited to the hole transport layer 50 and/or the hole injection layer 60 .
  • the present application also proposes a method for preparing a composite material.
  • the preparation method comprises the following steps:
  • the first ligand may be the first ligand described above, and the first ligand includes at least one of the first ligands that meet the following conditions: the first ligand has the following structural formula: R1 - LR2 ; wherein R1 is a coordination group connected to the inorganic semiconductor particle; L is a substituted or unsubstituted The substituted alkyl or cycloalkyl group has 1 to 10 carbon atoms; R 2 includes a crosslinkable group.
  • the crosslinkable group includes any one of a benzocyclobutene group structure, a butadiene group structure and an alkenyl group;
  • the coordinating group includes a combination of one or more of an amino group, a thiol group, a carboxyl group and a boronic acid group;
  • the connecting group includes a substituted or unsubstituted C2 to 10 alkyl group.
  • the first ligand includes one or more of allylamine, butenoic acid, 3-methyl-2-butene-1-thiol, 4-boronic acid benzocyclobutene, benzocyclobutene-1-carboxylic acid, 1-bicyclo[4.2.0]oct-1,3,5-triene-7-ylmethylamine, trans, trans-1,3-butadiene-1,4-dicarboxylic acid, and sorbic acid.
  • the organic solvent includes at least one of aromatic hydrocarbons, olefins, aromatic olefins, aromatic ethers, aromatic esters and C5-18 alkanes.
  • the aromatic hydrocarbon refers to a hydrocarbon containing a benzene ring in the molecule and having aromaticity, for example, it can be one or more of toluene and ethylbenzene;
  • the olefin can be selected from one or more of ethylene, propylene, and butene;
  • the aromatic olefin can be selected from one or more of styrene, p-methylstyrene, p-chlorostyrene, and p-nitrostyrene;
  • the aromatic ether can be selected from one or more of diphenyl ether and tribromophenyl ether;
  • the aromatic ester can be selected from one or more of methyl benzoate, methyl phenylacetate, and ethyl benzoate;
  • the inorganic semiconductor particles described in S10 may also be inorganic semiconductor particles having a second ligand connected to the surface, wherein the second ligand includes at least one of oleic acid, oleylamine, octylamine, trioctylphosphine, and trioctylphosphine oxide.
  • the second ligand may be added to the solution system during or after the synthesis of the inorganic semiconductor particles to obtain inorganic semiconductor particles having a second ligand connected to the surface.
  • the concentration of the inorganic semiconductor particles is 10 to 60 mg/ml.
  • the concentration can be 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, 50 mg/ml, 60 mg/ml and a value between any two of the above-listed values.
  • the temperature of the solution is 10-100°C.
  • the temperature can be 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C and values between any two of the above listed values. Within this range, it helps to promote the rapid connection of the first ligand to the surface of the inorganic semiconductor particles.
  • the mixing time is 5 to 60 min.
  • the mixing time can be 5 min, 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, or a value between any two of the above-mentioned values.
  • the present application also proposes a light-emitting device 100, including a first electrode, a second electrode, and one or more functional layers arranged between the first electrode and the second electrode, at least one of the one or more functional layers is a first functional layer, and the material of the first functional layer includes a composite material, and the composite material includes the composite material described above, or the composite material is prepared by the preparation method described above.
  • At least one functional layer (defined as the first functional layer) adopts the above-mentioned composite material as the preparation material, and the solvent resistance of the first functional layer is improved through cross-linking, so that it is not easily dissolved or carried away by the solvent during the deposition of subsequent functional layers, which helps to solve the problem of interface mutual solubility between adjacent film layers in the device, thereby greatly improving the luminous efficiency and life of the device; at the same time, it also makes the selection of film layer materials and solvent types less restricted, and more types can be selected.
  • the first electrode is selected from one of the anode 10 and the cathode 40
  • the second electrode is selected from the other of the anode 10 and the cathode 40
  • the first electrode and the second electrode are each independently selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode
  • the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide
  • the composite electrode of metal and metal oxide is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO,
  • the one or more functional layers are selected from one or more of a hole functional layer, a light emitting layer 20, and an electron functional layer, wherein the hole functional layer may be selected from a hole injection layer 60 and/or a hole transport layer 50, and the electron functional layer may be selected from an electron injection layer and/or an electron transport layer 30.
  • the hole injection layer 60, the hole transport layer 50, a light emitting layer 20, an electron transport layer 30, and an electron injection layer are stacked in sequence from the anode 10 to the cathode 40, and when one or more of the film layers are missing, the stacking order of other film layers is not affected, such as the light emitting device 100 shown in FIG3, wherein the light emitting device 100 includes an anode 10, a hole injection layer 60, a hole transport layer 50, a light emitting layer 20, an electron transport layer 30, and a cathode 40 stacked in sequence.
  • the light emitting device 100 may further be provided with some functional layers for the light emitting device 100 that help to improve the performance of the light emitting device 100, such as an electron blocking layer, a hole blocking layer, an interface modification layer, etc.
  • one of the functional layers can be selected to use the composite material as the manufacturing material, or multiple functional layers can be selected as the manufacturing material. It should be noted that the material of each functional layer should be adjusted based on its own functional requirements.
  • the inorganic semiconductor particles in the composite material used should be selected as a semiconductor material with hole transport performance, such as doped or undoped NiO, doped or undoped MoO 3 , doped or undoped WO 3 , doped or undoped V 2 O 5 , doped or undoped P-type gallium nitride, doped or undoped CrO 3 , doped or undoped CuO;
  • the first functional layer includes the light-emitting layer 20 and the electron transport layer 30 (named as the first light-emitting layer and the first electron transport layer for easy distinction)
  • the composite material of the first light-emitting layer should be quantum dots + the first ligand
  • the composite material of the first electron transport layer should be a semiconductor material with electron transport properties (such as zinc oxide) + the first ligand.
  • the light-emitting device 100 also includes a second functional layer.
  • the functional layers other than the first functional layer in the multiple functional layers are defined as the second functional layer, and the material of the second functional layer can still be selected from the common film layer materials in the art.
  • the first functional layer includes a light-emitting layer 20, and the second functional layer includes an electronic functional layer and a hole functional layer.
  • the other functional layers are prepared using common film layer materials in the art; in other embodiments, the first functional layer includes a light-emitting layer 20 and a hole functional layer, and the second functional layer includes an electronic functional layer.
  • the light-emitting layer 20 is prepared using a composite material corresponding to quantum dots
  • the hole functional layer is prepared using a composite material corresponding to a hole functional semiconductor material
  • the electronic functional layer is prepared using common electronic functional film layer materials in the art. Specifically:
  • the material of the light-emitting layer 20 is selected from one or more of organic light-emitting materials and quantum dot light-emitting materials, and the organic light-emitting material is selected from 4,4'-bis(N-carbazole)-1,1'-biphenyl:tri[2-(p-tolyl)pyridine iridium(III), 4,4',4"-tri(carbazole-9-yl)triphenylamine:tri[2-(p-tolyl)pyridine iridium, diaromatic anthracene derivatives, distilbene aromatic derivatives, pyrene derivatives, fluorene derivatives, TBPe fluorescent materials, TTPX fluorescent materials, TBRb fluorescent materials, DBP fluorescent materials, delayed fluorescent materials, TTA materials, thermally activated delayed materials, and BN covalently bonded materials.
  • the quantum dot luminescent material is selected from one or more of a single structure quantum dot, a core-shell structure quantum dot, and a perovskite semiconductor material
  • the material of the single structure quantum dot, the core material of the core-shell structure quantum dot, and the shell material of the core-shell structure quantum dot are selected from at least one of a II-VI group compound, a IV-VI group compound, a III-V group compound, and a I-III-VI group compound, respectively
  • the II-VI group compound is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO , at least one of HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS
  • the inorganic perovskite semiconductor has a general structural formula of AMX 3 , wherein A is a Cs + ion, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion selected from at least one of Cl - , Br - , and I - .
  • the general structural formula of the organic-inorganic hybrid perovskite semiconductor is BMX 3 , wherein B is an organic amine cation selected from CH 3 (CH 2 ) n-2 NH 3 + or [NH 3 (CH 2 ) n NH 3 ] 2 + , wherein n ⁇ 2, M is a divalent metal cation selected from at least one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion selected from at least one of Cl - , Br - , and I - .
  • the material of the electron transport layer 30 is selected from metal oxides, doped metal oxides, II-VI semiconductor materials, III-V semiconductor materials and I-III-VI semiconductor materials.
  • the metal oxide in the doped metal oxide is selected from at least one of ZnO, TiO2 , SnO2
  • the doping element is selected from at least one of Al, Mg , Li, In, Ga
  • the II-VI semiconductor material is selected from at least one of ZnS, ZnSe, CdS
  • the III-V semiconductor material is selected from at least one of InP and GaP
  • the I-III-VI semiconductor material is selected from at least one of CuInS and CuGaS.
  • the material of the electron injection layer is selected from at least one of cesium carbonate, cesium fluoride, cesium azide and lithium fluoride.
  • the material of the hole transport layer 50 is selected from 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine, N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)- )-spiro(spiro-TPD), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine, 4,4',4'-tri(N-carbazolyl)-triphenylamine, 4,4',4'-tri(N-3),
  • the material of the hole injection layer 60 is selected from at least one of 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, PEDOT, PEDOT:PSS, a derivative of PEDOT:PSS doped with s-MoO 3 , 4,4',4'-tris(N-3-methylphenyl-N-phenylamino)triphenylamine, tetracyanoquinodimethane, copper phthalocyanine, nickel oxide, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide and copper oxide.
  • the present application further proposes a method for preparing a light-emitting device 100.
  • the method for preparing the light-emitting device 100 comprises the following steps:
  • the preparation of the first functional layer includes: providing a composite material and a solvent, dispersing the composite material in the solvent to obtain a composite material solution; arranging the composite material solution on the upper film layer to obtain a first functional layer; wherein the composite material includes the composite material described above, or the composite material is prepared by the preparation method described above.
  • the solvent includes at least one of toluene, cyclohexylbenzene, tetralin, n-octane, n-heptane, n-hexane, and oleic acid.
  • the solvent when the inorganic semiconductor particles in the composite material are quantum dots or semiconductor materials with hole transport properties, the solvent can be selected from at least one of toluene, cyclohexylbenzene, tetralin, n-octane, n-heptane, and n-hexane; when the inorganic semiconductor particles in the composite material are semiconductor materials with electron transport properties, the solvent can be selected from oleic acid.
  • the concentration of the composite material is 10 to 60 mg/ml.
  • the concentration can be 10 mg/ml, 15 mg/ml, 20 mg/ml, 25 mg/ml, 30 mg/ml, 40 mg/ml, 50 mg/ml, 60 mg/ml and a value between any two of the above-listed values.
  • the step of arranging the composite material solution on the upper film layer to obtain the first functional layer includes: arranging the composite material solution on the upper film layer, heating it at 150-250°C to obtain the first functional layer.
  • the heating temperature can be 150-160°C, 160-180°C, 180-200°C, 150-220°C, 200-230°C, 200-250°C, 230-250°C, etc. Controlling the heating temperature within this range can promote cross-linking of the composite materials.
  • the first ligand of the composite material contains a cross-linkable group of a benzocyclobutene group structure, and accordingly, the heating temperature can be set to 200-250°C; in other embodiments, the first ligand of the composite material contains a cross-linkable group of a butadiene group structure and/or an olefin group, and accordingly, the heating temperature can be set to 150-230°C; in yet other embodiments, the first ligand molecule contains both When there is a butadiene group structure and at least one of an alkenyl group, as well as a benzocyclobutene group structure, the heating temperature can be controlled at 200-230°C, or at 200-250°C, or first heated at 150-230°C for a period of time and then heated to 200-250°C.
  • the heating time is 10-60 min.
  • the heating time can be 10 min, 20 min, 30 min, 40 min, 50 min, 60 min, and a value between any two of the above-listed values.
  • the preparation of multiple functional layers is to sequentially arrange the corresponding film layer materials according to the stacking order of the multiple functional layers to form the corresponding film layers.
  • the method for forming the light-emitting layer 20 and other functional layers such as the hole injection layer 60, the hole transport layer 50 and the electron transport layer 30 can be a chemical method or a physical method.
  • the chemical method can be a chemical vapor deposition method, a continuous ion layer adsorption and reaction method, anodization method, electrolytic deposition method and coprecipitation method, etc.
  • the physical method can be a physical coating method or a solution processing method.
  • the physical coating method can be a thermal evaporation coating method CVD, an electron beam evaporation coating method, a magnetron sputtering method, a multi-arc ion coating method, a physical vapor deposition method PVD, an atomic layer deposition method and a pulsed laser deposition method, etc.;
  • the solution processing method can be a spin coating method, a printing method, an inkjet printing method, a doctor blade method, a printing method, a dip-pull method, a soaking method, a spray coating method, a roll coating method, a casting method, a slit coating method and a strip coating method, etc.
  • Those skilled in the art can prepare the various film layers of the optoelectronic device of the embodiment of the present application according to the method for preparing the light-emitting device 100 known in the art, which will not be described in detail here.
  • the composite material of this embodiment includes quantum dots and a first ligand and a second ligand connected to the surface of the quantum dots, wherein the first ligand is 4-boronic acid benzocyclobutene, the second ligand is OA and TOP, the weight of the second ligand accounts for 15% of the weight of the quantum dots, and the ratio of the weight of the first ligand to the weight of the second ligand is 5:100.
  • the preparation method of the composite material is as follows:
  • Preparation of precursor solution Weigh 10 mmol of selenium powder and mix with 10 mL of TOP to prepare a 1 mol/L Se/TOP anion precursor solution; weigh 10 mmol of sulfur and mix with 10 mL of TOP to prepare a 1 mol/L S/TOP anion precursor solution.
  • CdZnSe/ZnSe/ZnS quantum dots with OA and TOP connected on the surface are dispersed in n-octane, 4-boric acid benzocyclobutene is added according to the weight ratio of the first ligand to the quantum dots being 1:3, and the mixture is stirred at a speed of 800 rpm. After 30 minutes, the mixture is purified by precipitation twice with ethyl acetate and ethanol to obtain CdZnSe/ZnSe/ZnS quantum dots with OA, TOP and 4-boric acid benzocyclobutene connected on the surface, that is, a composite material is obtained.
  • the composite material was dispersed in n-octane to prepare a composite material solution with a concentration of 15 mg/mL.
  • the composite material solution was spin-coated on a glass substrate and heated at 220° C. for 15 min to form a quantum dot film.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), the first ligand is changed to 3-methyl-2-butene-1-thiol.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), the first ligand is changed to sorbic acid.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), the first ligand is changed to a mixture of 4-boronic acid benzocyclobutene and benzocyclobutene-1-carboxylic acid, and the molar ratio of the two is 1:1.
  • the scheme of this embodiment is basically the same as that of Embodiment 2, except that, in this embodiment, the heating temperature is changed to 150° C. during the preparation of the quantum dot film.
  • the scheme of this embodiment is basically the same as that of Embodiment 1, except that, in this embodiment, the heating temperature is changed to 250° C. during the preparation of the quantum dot film.
  • the scheme of this embodiment is basically the same as that of Embodiment 1, except that, in this embodiment, the heating temperature is changed to 140° C. during the preparation of the quantum dot film.
  • the scheme of this embodiment is basically the same as that of Embodiment 1, except that, in this embodiment, the heating temperature is changed to 260° C. during the preparation of the quantum dot film.
  • the preparation method of the zinc oxide film is as follows: the composite material is dispersed in oleic acid to prepare a composite material solution with a concentration of 15 mg/mL.
  • the composite material solution is spin-coated on a glass substrate and heated at 220° C. for 15 min to form a zinc oxide film with a thickness of 30 nm.
  • the preparation method of the gallium nitride film is as follows: the composite material is dispersed in n-octane to prepare a composite material solution with a concentration of 15 mg/mL. The composite material solution is spin-coated on a glass substrate and heated at 220° C. for 15 min to form a gallium nitride film with a thickness of 30 nm.
  • Comparative Example 1 The scheme of Comparative Example 1 is basically the same as that of Example 1, except that step (6) is removed in Comparative Example 1.
  • This comparative example is basically the same as Example 1, except that in this comparative example, in step (6), the first ligand is changed to benzocyclobutene.
  • This comparative example is basically the same as Example 9, except that the material provided in this comparative example is zinc oxide nanoparticles.
  • This comparative example is basically the same as Example 10, except that the material provided in this comparative example is gallium nitride nanoparticles.
  • An ITO anode 10 having a thickness of 100 nm is provided.
  • Example 1 The composite material prepared in Example 1 was dispersed in n-octane to prepare a composite material solution with a concentration of 15 mg/mL.
  • the composite material solution was spin-coated on the hole transport layer 50 and heated at 220° C. for 20 min to obtain a light-emitting layer 20 with a thickness of 15 nm.
  • a ZMO ethanol solution was spin-coated on the light-emitting layer 20 and annealed at 100° C. for 15 min to obtain an electron transport layer 30 with a thickness of 40 nm.
  • the scheme of device embodiment m is basically the same as that of device embodiment 1, with the only difference being that in device embodiment m, in step (4), the composite material used is the composite material prepared in embodiment m, wherein m is 2 to 8.
  • step (4) the composite material is changed to CdZnSe/ZnSe/ZnS quantum dots
  • step (5) the ethanol solution of ZMO was replaced with an oleic acid solution of the composite material prepared in Example 9 (the concentration of the composite material was 15 mg/mL).
  • step (4) the composite material is changed to CdZnSe/ZnSe/ZnS quantum dots
  • step (3) the poly(9,9-octylfluorene) material was replaced with an n-octane solution of the composite material prepared in Example 10 (the concentration of the composite material was 15 mg/mL).
  • the scheme of device comparative example 1 is basically the same as that of device embodiment 1, except that in step (4), the composite material used is the composite material prepared in comparative example 1.
  • the scheme of device comparative example 2 is basically the same as that of device embodiment 1, except that in step (4), the composite material used is the composite material prepared in comparative example 2.
  • the scheme of device comparative example 3 is basically the same as that of device embodiment 1, with the only difference being that in step (4), the composite material used is the material provided in comparative example 3.
  • the scheme of device comparative example 4 is basically the same as that of device embodiment 1, with the only difference being that in step (4), the composite material used is the material provided in comparative example 4.
  • the PLQY of the films prepared in Examples 1-8 changes relatively little before and after immersion; compared with Comparative Example 3, the thickness of the film in Example 9 decreases less after immersion; compared with Comparative Example 4, the thickness of the film in Example 10 decreases less after immersion, which indicates that after the first ligand is connected to the surface of the inorganic semiconductor particles, the film prepared by the composite material proposed in the present application has high solvent resistance and is not easily affected by the solvent;
  • Example 1 and Examples 6-8 Comparing Example 1 and Examples 6-8, the PLQY of the films of Examples 1 and 6 changed relatively little before and after immersion, which shows that controlling the heating temperature within the range of 150-250°C is helpful to further improve the film Solvent resistance.
  • External quantum efficiency EQE represents the ratio of the number of electron-hole pairs injected into quantum dots to the number of emitted photons.
  • the unit is %, which is an important parameter to measure the quality of electroluminescent devices. It can be obtained by measuring with EQE optical testing instruments.
  • the specific calculation formula is as follows:
  • ⁇ e is the light output coupling efficiency
  • is the ratio of the number of recombined carriers to the number of injected carriers
  • x is the ratio of the number of excitons that generate photons to the total number of excitons
  • KR is the radiation process rate
  • KNR is the non-radiative process rate
  • Test conditions carried out at room temperature, air humidity is 30-60%.
  • the lifespan T95@1000nit indicates the time required for the brightness of the device to decrease to a certain percentage of the maximum brightness when driven by a constant current or voltage.
  • the time when the brightness drops to 95% of the maximum brightness is defined as T95, and this lifespan is the measured lifespan.
  • the device lifespan test is usually carried out at high brightness by accelerating device aging, and the lifespan at high brightness is obtained by fitting the extended exponential decay brightness attenuation fitting formula.
  • the lifespan at 1000nit is calculated as T95@1000nit.
  • the specific calculation formula is as follows:
  • T95 L is the lifespan at low brightness
  • T95 H is the measured lifespan at high brightness
  • L H is the device accelerated to the maximum brightness
  • L L is 1000nit
  • A is the acceleration factor.
  • device embodiments 1-6 all have higher lifespan and luminous efficiency; compared with device comparison example 3, device embodiment 9 has higher lifespan and luminous efficiency; compared with device comparison example 4, device embodiment 10 has higher lifespan and luminous efficiency, which shows that using the composite material proposed in the present application to make the functional layer can help improve the luminous performance of the device and extend the service life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

本申请公开了一种复合材料及其制备方法、发光器件及其制备方法,复合材料包括结合在所述无机半导体粒子表面的第一配体,所述第一配体具有如下所述的结构式:R1-L-R2;其中,R1为与所述无机半导体粒子连接的配位基团;L为取代或未被取代的碳原子数为1~10的烷基或环烷基;R2包括可交联基团。

Description

复合材料、发光器件及其制备方法
本申请要求于2022年12月08日在中国专利局提交的、申请号为202211579659.8、申请名称为“复合材料及其制备方法、发光器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体封装领域,尤其涉及一种复合材料、发光器件及其制备方法。
背景技术
无机半导体材料是指具有半导体性能的无机材料。目前常用的无机材料,例如,硫化镉纳米粒子、硒化镉纳米粒子、氧化锌纳米粒子、氧化钼纳米粒子、氧化钨纳米粒子、硫化钼纳米粒子等,具有合适的能级、优异的载流子注入或传输、化学稳定性好、使用寿命长、透明度高、安全无毒、价格低廉等性能而被广泛应用于半导体器件中。
溶液法制作层叠设置的半导体器件是常见的加工方法之一,然而,现有的无机半导体材料制成的薄膜的抗溶剂性能欠佳,薄膜容易受到相邻膜层溶液的影响,发生界面互溶的问题,不仅影响器件性能,也使得膜层材料和溶剂种类的选择受到了很大的限制。
技术解决方案
因此,本申请提供一种复合材料、发光器件及其制备方法。
本申请提供一种复合材料,包括:
结合在所述无机半导体粒子表面的第一配体,所述第一配体具有如下所述的结构式:
R1-L-R2
其中,R1为与所述无机半导体粒子连接的配位基团;
L为取代或未被取代的碳原子数为1~10的烷基或环烷基;
R2包括可交联基团。
可选的,在本申请的一些实施例中,所述可交联基团含有至少一个双键。
可选的,在本申请的一些实施例中,所述可交联基团含有多个双键,且多个双键互相共轭形成共轭体系。
可选的,在本申请的一些实施例中,所述R2选自具有如下式(1)至(3)所示结构的基团中的任意一种;
其中,*表示R2和L的可连接位点。
可选的,在本申请的一些实施例中,所述R1选自氨基、巯基、羧基、硼酸基中的一种或多种的组合。
可选的,在本申请的一些实施例中,所述L选自碳原子数为2~10的烷基。
可选的,在本申请的一些实施例中,所述第一配体的结构式中,所述R2的数量为1个或2个;和/或,
所述第一配体的结构式中,所述R1的数量为1个或2个。
可选的,在本申请的一些实施例中,所述第一配体选自烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料还包括:
结合在所述无机半导体粒子表面的第二配体,所述第二配体选自油酸、油胺、辛胺、三辛基膦、三辛基氧膦中的至少一种。
可选的,在本申请的一些实施例中,所述复合材料中,所述第一配体的重量占所述无机半导体粒子的重量的百分比为0.3~2%,所述第二配体的重量占所述无机半导体粒子的重量的百分比为10~20%。
可选的,在本申请的一些实施例中,所述第一配体和所述第二配体的重量比为(3~10):100。
可选的,在本申请的一些实施例中,所述无机半导体粒子包括量子点,所述量子点包括单一结构量子点及核壳结构量子点中的至少一种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种;或者,
所述无机半导体粒子包括金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的至少一种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的至少一种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的至少一种,掺杂元素选自Al、Mg、Li、In、Ga中的至少一种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的至少一种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的至少一种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的至少一种;或者,
所述无机半导体粒子包括掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、 掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的至少一种。
本申请还提出一种发光器件,包括第一电极、第二电极以及设于第一电极和第二电极之间的一个或多个功能层,所述一个或多个功能层中的至少一层为第一功能层,所述第一功能层的材料包括复合材料,所述复合材料包括如上文所述的复合材料。
可选的,在本申请的一些实施例中,所述第一电极和所述第二电极各自独立的选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
本申请还提出一种发光器件的制备方法,包括以下步骤:
提供第一电极;
在所述第一电极的一侧设置一个或多个功能层,所述一个或多个功能层包括第一功能层;
在所述一个或多个功能层背离所述第一电极的一侧设置第二电极;
其中,所述第一功能层的制备包括:提供复合材料和溶剂,将复合材料分散在溶剂中,得到复合材料溶液;在上一膜层上设置所述复合材料溶液,加热处理以得到所述第一功能层;其中,所述复合材料包括上文所述的复合材料。
可选的,在本申请的一些实施例中,所述溶剂包括甲苯、环己基苯、四氢化萘、正辛烷、正庚烷、正己烷、油酸中的至少一种;和/或,
所述复合材料溶液中,所述复合材料的浓度为10~60mg/ml。
可选的,在本申请的一些实施例中,加热处理的温度为150~250℃,时间为10~60min。
可选的,在本申请的一些实施例中,提供复合材料的步骤包括制备所述复 合材料,所述制备所述复合材料的步骤包括:
提供无机半导体粒子、有机溶剂和第一配体,所述第一配体具有如下所述的结构式:R1-L-R2;其中,R1为与所述无机半导体粒子连接的配位基团;L为取代或未被取代的碳原子数为1~10的烷基或环烷基;R2包括可交联基团;
将所述无机半导体粒子、所述有机溶剂和所述第一配体混合,以使得所述第一配体结合在所述无机半导体粒子表面,提纯得到所述复合材料。
可选的,在本申请的一些实施例中,所述第一配体包括烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸的一种或多种。
可选的,在本申请的一些实施例中,所述有机溶剂包括芳香烃、烯烃、芳香烯烃、芳香醚、芳香酯以及C5~18烷烃中的至少一种;和/或,
所述无机半导体粒子和所述第一配体的重量比为(1~3):1;和/或,
将所述无机半导体粒子、所述有机溶剂和所述第一配体混合后得到的混合体系中,所述无机半导体粒子的浓度为10~60mg/ml;和/或,
所述混合时,溶液的温度为10~100℃,所述混合的时间为5~60min。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提出的一种复合材料的制备方法的流程示意图;
图2是本申请一实施例提出的一种发光器件的结构示意图;
图3是本申请另一实施例提出的一种发光器件的结构示意图;
图4是本申请实施例提出的一种发光器件的制备方法的流程示意图;
附图标记:
100-发光器件;10-阳极;20-发光层;30-电子传输层;40-阴极;50-空穴
传输层;60-空穴注入层。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”具体为附图中的图面方向。另外,在本申请说明书的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请的技术方案是这样实施的:
第一方面,本申请提供一种复合材料,包括:无机半导体粒子和结合在所述无机半导体粒子表面的第一配体,所述第一配体具有如下所述的结构式:
R1-L-R2
其中,R1为与所述无机半导体粒子连接的配位基团;L为取代或未被取代的碳原子数为1~10的烷基或环烷基;R2包括可交联基团。
本申请提供的技术方案,在无机半导体粒子表面连接第一配体,如此,在使用本复合材料制成膜层时,相邻两个第一配体的可交联基团之间相互交联,形成具有交联结构的膜层,膜层稳定、均匀且具有较高的抗溶剂性能。
现有的发光器件100通常为多个膜层依次层叠的叠层结构,在使用溶液法制备发光器件100的多个功能层时,虽然也会采用溶剂正交的方案,但由于后续膜层的溶液在当前膜层上的长期停留,致使仍然存在界面互溶的问题。本申请所述的复合材料适用于发光器件100的功能层的制作。所述复合材料制成的膜层稳定且抗溶剂性能好,不容易被后续功能层沉积时的溶剂溶解或带走,有助于解决器件中相邻膜层之间界面互溶的问题,进而大大提升器件的发光效率和寿命;同时,所述复合材料制成的膜层受溶剂影响小,相应的,也使得膜层材料和溶剂种类的选择受到的限制变得更小,可选择种类更多。
所述可交联基团可以是目前已知的任意一种可相互之间发生交联的基团,在一些实施例中,所述可交联基团可以是含有至少一个双键的基团;进一步地,在另一些实施例中,所述可交联基团可以是含有多个双键的基团,且多个双键相互共轭,共同形成了共轭体系,例如,相邻两个双键之间通过一个单键连接,即可形成共轭双键基团。
在本申请的一些实施例中,所述可交联基团可以包括但不限于苯并环丁烯基团结构、丁二烯基团结构和烯基中的任意一种。其中:苯并环丁烯基团结构具有如下式(1)所示的结构;丁二烯基团结构具有如下式(2)所示的结构;烯基具有如下式(3)所示的结构。式中,“*”代表可以与连接基团L进行连接的位点,也即,苯并环丁烯基团结构/丁二烯基团结构/烯基具有多个连接位点,连接基团可以与多个连接位点中的任意一个连接。
所述可交联基团选自苯并环丁烯基团结构、丁二烯基团结构或烯基时,第一配体在较低温度(150~250℃)下、无须额外添加交联剂即可发生交联,如此,在将本复合材料应用于发光器件100时,避免了交联剂和高温对器件性能的影响。
所述配位基团R1可以是目前已知的任意一种可以与无机半导体粒子表面的悬挂键配位的基团,在本申请的一些实施例中,所述R1选自氨基、巯基、羧基、硼酸基中的一种或多种的组合。其中,所述“氨基”的通式为-NH2;“巯基”的通式为-SH;“羧基”的通式为-COOH;“硼酸基”的通式为-B(OH)2
在本申请的一些实施例中,所述连接基团L为取代或未被取代的碳原子数为1~10的烷基,或者,取代或未被取代的碳原子数为1~10的环烷基。进一步地,在一些实施例中,所述L选自碳原子数为2~10的烷基。在本申请中,“烷基”可以表示直链和/或支链烷基;环烷基是指形成环状的烷基。“C1-10烷基或C1-10环烷基”是指包含1至10个碳原子的烷基或环烷基,以C1-10烷基为例,每次出现时,可以互相独立地为C1烷基、C2烷基、C3烷基、C4烷基、C5烷基、C6烷基、C7烷基、C8烷基、C9烷基或C10烷基。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、2-乙基丁基、3,3-二甲基丁基、正戊基、异戊基、新戊基、叔戊基、1-甲基戊基、3-甲基戊基、2-乙基戊基、4-甲基-2-戊基等。在本申请中,“取代”表示被取代基中的氢原子被取代基所取代。“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团为被取代时,应理解为所定义的基团可以被一个或多个取代基R取代,所述R选自但不限于氘原子、含有1至20个C原子的烷基、含有3至20个环原子的杂环基、含有6至20个环原子的芳香基团、含有5至20个环原子的杂芳香基团、烷氧基、硅烷基等本领域可接受 的基团。
在本申请的一些实施例中,所述第一配体中,所述可交联基团的数量为1个或2个。
在本申请的一些实施例中,所述第一配体中,所述配位基团的数量为1个或2个。
在本申请的一些实施例中,所述第一配体包括烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸的一种或多种。具体地,上述化合物的信息如下:
烯丙基胺,CAS:107-11-9,具有式(4)所示结构式;
丁烯酸,CAS:3724-65-0,具有式(5)所示结构式;
3-甲基-2-丁烯-1-硫醇,CAS:5287-45-6,具有式(6)所示结构式;
4-硼酸基苯并环丁烯,CAS:195730-31-5,具有式(7)所示结构式;
苯并环丁烯-1-羧酸,CAS:14381-41-0,具有式(8)所示结构式;
1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺,CAS:1005-19-2,具有式(9)所示结构式;
反式,反式-1,3-丁二烯-1,4-二羧酸,CAS:3588-17-8,具有式(10)所示结构式;
山梨酸,CAS:110-44-1,具有式(11)所示结构式。
在本申请的一些实施例中,所述复合材料还包括连接在所述无机半导体粒子表面的第二配体,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦中的至少一种,在无机半导体粒子表面连接第二配体,有助于提高无机半导体粒子的分散性,改善复合材料的成膜均匀性。
在本申请的一些实施例中,所述复合材料中,所述第一配体的重量占所述无机半导体粒子的重量的百分比为0.3~2%,例如,所述百分比可以是0.3%、1%、1.1%、1.5%、1.7%、1.9%、2%以及上述列举的任意两个数值之间的百分比;所述第二配体的重量占所述无机半导体粒子的重量的百分比为10~20%,例如,上述百分比可以为10%、11%、12%、15%、16%、18%、19%、20%以及上述列举的任意两个数值之间的百分比,在此范围内,有助于进一步提升无机半导体粒子的分散性。
在本申请的一些实施例中,所述第一配体和所述第二配体的重量比为(3~10):100。例如,所述重量比可以为3:100、4:100、5:100、6:100、7:100、8:100、9:100、10:100以及上述列举的任意两个数值之间的比值,这样有助于兼顾复合材料的分散性和可交联效果。
所述无机半导体粒子的具体种类可以有多种选择,基于不同种类的无机半 导体粒子,所述复合材料的应用相应变化。
在本申请的一些实施例中,所述无机半导体粒子包括量子点,所述量子点包括单一结构量子点及核壳结构量子点中的至少一种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种。
作为示例,所述核壳结构的量子点可以选自但不限于CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS、CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS、InP/ZnSeS/ZnS、CdZnSe/ZnSe/ZnS、CdSeS/ZnSeS/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS及InP/ZnSe/ZnS中的至少一种。
需要说明的是,对于前述单一组分量子点的材料、或者核壳结构量子点的核的材料、或者核壳结构量子点的壳的材料,提供的化学式仅示明了元素组成,并未示明各个元素的含量,例如:CdZnSe仅表示由Cd、Zn和Se三种元素组成,若表示各个元素的含量,则对应为CdxZn1-xSe,0<x<1。
在所述无机半导体粒子为量子点时,其对应的复合材料可以用于制备发光器件100的发光层20。
在本申请的另一些实施例中,所述无机半导体粒子可以为具有电子传输性能的半导体材料,例如,所述无机半导体粒子包括金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的至少一种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的至少一种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的至少一种,掺杂元素选自Al、Mg、Li、In、Ga中的至少一种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的至少一种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的至少一种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的至少一种。
在所述无机半导体粒子为上述具有电子传输性能的半导体材料时,其对应的复合材料可以用于制备发光器件100的电子功能层,所述电子功能层可以包括但不限于电子传输层30和/或电子注入层。
在本申请的又一些实施例中,所述无机半导体粒子可以为具有空穴传输性能的半导体材料,例如,所述无机半导体粒子包括掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的至少一种。
在所述无机半导体粒子为上述具有空穴传输性能的半导体材料时,其对应的复合材料可以用于制备发光器件100的空穴功能层,所述空穴功能层可以包括但不限于空穴传输层50和/或空穴注入层60。
第二方面,本申请还提出一种复合材料的制备方法。请参阅图1,所述制备方法包括以下步骤:
S10,提供无机半导体粒子、有机溶剂和第一配体;
S20,将所述无机半导体粒子、所述有机溶剂和所述第一配体混合,以使得所述第一配体连接在所述无机半导体粒子表面,提纯得到复合材料;
S10中,所述第一配体可以是前面描述的第一配体,该第一配体包括满足以下条件的第一配体中的至少一种:所述第一配体具有如下所述的结构式:R1-L-R2;其中,R1为与所述无机半导体粒子连接的配位基团;L为取代或未 被取代的碳原子数为1~10的烷基或环烷基;R2包括可交联基团。其中,所述可交联基团包括苯并环丁烯基团结构、丁二烯基团结构和烯基中的任意一种;所述配位基团包括氨基、巯基、羧基、硼酸基中的一种或多种的组合;所述连接基团包括取代或未取代的C2~10烷基。具体地,所述第一配体包括烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸中的一种或多种。
此外,所述有机溶剂包括芳香烃、烯烃、芳香烯烃、芳香醚、芳香酯以及C5~18烷烃中的至少一种,所述芳香烃是指分子中含有苯环,具有芳香性的烃,例如,可以是甲苯、乙苯中的一种或多种;所述烯烃可以选自乙烯、丙烯、丁烯中的一种或多种;所述芳香烯烃可以选自苯乙烯、对甲基苯乙烯、对氯苯乙烯、对硝基苯乙烯中的一种或多种;所述芳香醚可以选自二苯醚、三溴苯醚中的一种或多种;芳香酯可以选自苯甲酸甲酯、苯乙酸甲酯、苯甲酸乙酯中的一种或多种;C5~18烷烃可以选自戊胺、正己胺、二辛胺中的一种或多种。
在一些实施例中,S10中所述的无机半导体粒子还可以是表面连接有第二配体的无机半导体粒子,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦中的至少一种。第二配体可以在无机半导体粒子的合成过程中或者合成后加入到溶液体系中,即可得到表面连接有第二配体的无机半导体粒子。
S20中,将所述无机半导体粒子、所述有机溶剂和所述第一配体混合后得到的混合体系中,所述无机半导体粒子的浓度为10~60mg/ml,例如,所述浓度可以为10mg/ml、15mg/ml、20mg/ml、25mg/ml、30mg/ml、40mg/ml、50mg/ml、60mg/ml以及上述列举的任意两个数值之间的值。
在一些实施例中,S20中,所述混合时,溶液的温度为10~100℃,例如,所述温度可以是10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃以及上述列举的任意两个数值之间的值,在此范围内,有助于促使第一配体快速的连接在无机半导体粒子的表面。
在一些实施例中,所述混合的时间为5~60min,例如,所述时间可以为5min、10min、20min、30min、40min、50min、60min以及上述列举的任意两个数值之间的值。
请参阅图2,第三方面,本申请还提出一种发光器件100,包括第一电极、第二电极以及设于第一电极和第二电极之间的一个或多个功能层,所述一个或多个功能层中的至少一层为第一功能层,所述第一功能层的材料包括复合材料,所述复合材料包括如上文所述的复合材料,或者,所述复合材料由如上文所述的制备方法制得。
本申请提供的技术方案中,至少一个功能层(定义为第一功能层)采用上述复合材料作为制备材料,通过交联提高了第一功能层的抗溶剂性能,使其不容易被后续功能层沉积时的溶剂溶解或带走,有助于解决器件中相邻膜层之间界面互溶的问题,进而大大提升器件的发光效率和寿命;同时,也使得膜层材料和溶剂种类的选择受到的限制变得更小,可选择种类更多。
所述第一电极选自阳极10和阴极40中的一个,所述第二电极选自阳极10和阴极40中的另一个。在本申请的一些实施例中,所述第一电极和所述第二电极各自独立的选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
所述一个或多个功能层选自空穴功能层、发光层20、电子功能层中的一个或多个,其中,空穴功能层可以选自空穴注入层60和/或空穴传输层50,电子功能层可以选自电子注入层和/或电子传输层30。当发光器件100同时包括空穴注入层60、空穴传输层50、发光层20、电子传输层30和电子注入层时,空穴注入层60、空穴传输层50、发光层20、电子传输层30和电子注入层沿阳极10向阴极40的方向依次层叠,且当其中某一个或者多个膜层缺失时,不影响其它膜层的层叠顺序,如图3所示的发光器件100,所述发光器件100包括依次层叠的阳极10、空穴注入层60、空穴传输层50、发光层20、电子传输层30和阴极40。
可以理解,所述发光器件100还可以增设一些用于发光器件100的有助于提升发光器件100性能的功能层,例如电子阻挡层、空穴阻挡层、界面修饰层等。
当发光器件100具有多个功能层时,可以选择其中一个功能层使用复合材料作为制成材料,也可以选择其中多个功能层作为制成材料,需要说明的是,各功能层的材料当基于其本身的功能需求进行调整,例如,当第一功能层为空穴功能层时,其采用的复合材料中的无机半导体粒子应当选择为具有空穴传输性能的半导体材料,例如,掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的至少一种;当发光器件100的发光层20和电子传输层30均采用复合材料制备时,也即,第一功能层包括发光层20和电子传输层30(为便于区别,命名为第一发光层和第一电子传输层),则第一发光层的复合材料应该为量子点+第一配体,第一电子传输层的复合材料应该为具有电子传输性能的半导体材料(例如氧化锌)+第一配体。
在一些实施例中,所述发光器件100还包括第二功能层。当发光器件100具有多个功能层时,将多个功能层中除第一功能层以外的功能层定义为第二功能层,第二功能层的材料仍然可以选择本领域常见的膜层材料。例如,在一些实施例中,第一功能层包括发光层20,第二功能层包括电子功能层和空穴功能层,相应的,除发光层20采用复合材料制备外,其它功能层采用本领域常见膜层材料制备;在另一些实施例中,第一功能层包括发光层20和空穴功能层,第二功能层包括电子功能层,相应的,发光层20采用量子点对应的复合材料制备,空穴功能层采用空穴功能半导体材料对应的复合材料制备,电子功能层则采用本领域常见电子功能膜层材料制备。具体地:
当第二功能层为发光层20时,所述发光层20的的材料选自有机发光材料及量子点发光材料中的一种或几种,所述有机发光材料选自4,4'-双(N-咔唑)-1,1'-联苯:三[2-(对甲苯基)吡啶合铱(III)、4,4',4”-三(咔唑-9-基)三苯胺:三[2-(对甲苯基)吡啶合铱、二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物、芴衍生物、TBPe荧光材料、TTPX荧光材料、TBRb荧光材料、DBP荧光材料、延迟荧光材料、TTA材料、热活化延迟材料、含有B-N共价键合的 聚合物、杂化局域电荷转移激发态材料、激基复合物发光材料中的一种或几种,所述量子点发光材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或几种,所述单一结构量子点的材料、核壳结构量子点的核材料及核壳结构量子点的壳层材料分别选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种,所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、或有机-无机杂化钙钛矿型半导体。所述无机钙钛矿型半导体的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种。所述有机-无机杂化钙钛矿型半导体的结构通式为BMX3,其中B为有机胺阳离子,选自CH3(CH2)n-2NH3 +或[NH3(CH2)nNH3]2 +,其中n≥2,M为二价金属阳离子,选自Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的至少一种,X为卤素阴离子,选自Cl-、Br-、I-中的至少一种。
当第二功能层为电子传输层30时,所述电子传输层30的材料选自金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ 族半导体材料中的至少一种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的至少一种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的至少一种,掺杂元素选自Al、Mg、Li、In、Ga中的至少一种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的至少一种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的至少一种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的至少一种。
当第二功能层为电子注入层时,所述电子注入层的材料选自碳酸铯、氟化铯、叠氮铯及氟化锂中的至少一种。
当第二功能层为空穴传输层50时,所述空穴传输层50的材料选自4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺、4,4',4'-三(N-咔唑基)-三苯胺、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))]、聚(4-丁基苯基-二苯基胺)(聚-TPD)、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基、聚(亚苯基亚乙烯基)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基]和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基]、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)(PVK)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB、掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的至少一种。
当第二功能层为空穴注入层60时,所述空穴注入层60的材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、PEDOT、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、四氰基醌二甲烷、酞菁铜、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨及氧化铜中的至少一种。
第四方面,本申请还提出一种发光器件100的制备方法,请参阅图4,所述发光器件100的制备方法包括以下步骤:
S100,提供第一电极;
S200,在所述第一电极的一侧设置一个或多个功能层,所述一个或多个功能层包括第一功能层;
S300,在所述一个或多个功能层背离所述第一电极的一侧设置第二电极;
其中,所述第一功能层的制备包括:提供复合材料和溶剂,将复合材料分散在溶剂中,得到复合材料溶液;在上一膜层上设置所述复合材料溶液,得到第一功能层;其中,所述复合材料包括上文所述的复合材料,或者,所述复合材料由上文所述的制备方法制得。
在本申请的一些实施例中,所述溶剂包括甲苯、环己基苯、四氢化萘、正辛烷、正庚烷、正己烷、油酸中的至少一种。例如,在一些实施例中,所述复合材料中的无机半导体粒子为量子点或具有空穴传输性能的半导体材料时,所述溶剂可以选自甲苯、环己基苯、四氢化萘、正辛烷、正庚烷、正己烷中的至少一种;所述复合材料中的无机半导体粒子为具有电子传输性能的半导体材料时,所述溶剂可以选自油酸。
在本申请的一些实施例中,所述复合材料溶液中,所述复合材料的浓度为10~60mg/ml,例如,所述浓度可以为10mg/ml、15mg/ml、20mg/ml、25mg/ml、30mg/ml、40mg/ml、50mg/ml、60mg/ml以及上述列举的任意两个数值之间的值。
在本申请的一些实施例中,在上一膜层上设置所述复合材料溶液,得到第一功能层的步骤包括:将所述复合材料溶液设置在上一膜层上,在150~250℃下进行加热,得到第一功能层。其中,加热温度可以为150~160℃、160~180℃、180~200℃、150~220℃、200~230℃、200~250℃、230~250℃等等,控制加热温度在此范围内,可以促使复合材料相互交联。进一步地,在一些实施例中,所述复合材料的第一配体中,含有的可交联基团为苯并环丁烯基团结构,相应的,加热温度可以设置为200~250℃;在另一些实施例中,所述复合材料的第一配体中,含有的可交联基团为丁二烯基团结构和/或烯基,相应的,加热温度可以设置为150~230℃;在又一些实施例中,所述第一配体的分子中同时含 有丁二烯基团结构和烯基的至少一个,以及苯并环丁烯基团结构时,可以控制加热温度在200~230℃,也可以控制加热温度在200~250℃,还可以先在150~230℃内加热一段时间后,再升温至200~250℃。
在本申请的一些实施例中,在150~250℃下进行加热的步骤中,所述加热的时间为10~60min,例如,所述加热时间可以为10min、20min、30min、40min、50min、60min以及上述列举的任意两个数值之间的值。
在一些实施例中,步骤S200中,多个功能层的制备按照多个功能层的层叠顺序依次设置对应的膜层材料,形成对应的膜层即可。形成发光层20及其他功能层例如空穴注入层60、空穴传输层50及电子传输层30的方法可以为化学法或物理法。其中,化学法可以为化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法及共沉淀法等。物理法可以为物理镀膜法或溶液加工法,物理镀膜法可以为热蒸发镀膜法CVD、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法PVD、原子层沉积法及脉冲激光沉积法等;溶液加工法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。本领域技术人员可以根据本领域习知的发光器件100的制备方法制备本申请实施例的光电器件的各个膜层,在此不再赘述。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例复合材料包括量子点和连接在量子点表面的第一配体和第二配体,其中,第一配体为4-硼酸基苯并环丁烯,第二配体为OA和TOP,第二配体的重量占所述量子点的重量的百分比为15%,第一配体的重量和第二配体的重量的比例为5:100。
复合材料的制备方法如下:
(1)配制前驱体溶液:称量10mmol硒粉和10mL TOP混合,配制成1mol/L的Se/TOP阴离子前驱体溶液;称量10mmol硫单质和10mL TOP混合,配制成1mol/L的S/TOP阴离子前驱体溶液。
(2)称量0.2mmol氧化镉、10mmol醋酸锌、15mL硬脂酸和5mL石蜡油置于三颈烧瓶中,加热到100℃,抽真空,待水氧处理完全,通入氩气,升温到310℃;待温度稳定,向反应体系中注入所述Se/TOP阴离子前驱体溶液0.5mL,保持温度继续熟化1h,得到CdZnSe量子点核。
(3)降低反应体系温度至280℃,向反应体系中同时加入0.5mL所述Se/TOP阴离子前驱体溶液,持续1h,生长ZnSe壳层。
(4)保持温度,向反应体系中滴加2mL所述S/TOP阴离子前驱体溶液,持续20min。
(5)待反应完成,降至室温,以正庚烷为溶剂、乙醇为非溶剂,沉淀、纯化量子点三次,得到表面连接有OA和TOP的CdZnSe/ZnSe/ZnS量子点。
(6)将表面连接有OA和TOP的CdZnSe/ZnSe/ZnS量子点分散在正辛烷中,按照所述第一配体和所述量子点的重量比为1:3,添加4-硼酸基苯并环丁烯,以800rpm的转速进行搅拌,30min后,用乙酸乙酯、和乙醇沉降提纯两次,得到表面连接有OA、TOP和4-硼酸基苯并环丁烯的CdZnSe/ZnSe/ZnS量子点,即得到复合材料。
量子点薄膜的制备:取复合材料分散在正辛烷中,制成浓度为15mg/mL的复合材料溶液。在玻璃基板上旋涂上述复合材料溶液,在220℃下加热15min,形成量子点薄膜。
实施例2
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,第一配体改为3-甲基-2-丁烯-1-硫醇。
实施例3
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,第一配体改为山梨酸。
实施例4
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,第一配体改为4-硼酸基苯并环丁烯和苯并环丁烯-1-羧酸的混合物,二者摩尔比为1:1。
实施例5
本实施例方案与实施例2基本相同,区别仅在于,本实施例中,量子点薄膜的制备中,加热温度改为150℃。
实施例6
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,量子点薄膜的制备中,加热温度改为250℃。
实施例7
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,量子点薄膜的制备中,加热温度改为140℃。
实施例8
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,量子点薄膜的制备中,加热温度改为260℃。
实施例9
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
(1)将量子点改为氧化锌纳米颗粒;
(2)相应减去步骤(1)至(5);
(3)氧化锌薄膜的制备方法为:取复合材料分散在油酸中,制成浓度为15mg/mL的复合材料溶液。在玻璃基板上旋涂上述复合材料溶液,在220℃下加热15min,形成厚度为30nm的氧化锌薄膜。
实施例10
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
(1)将量子点改为氮化镓纳米颗粒;
(2)相应减去步骤(1)至(5);
(3)氮化镓薄膜的制备方法为:取复合材料分散在正辛烷中,制成浓度为15mg/mL的复合材料溶液。在玻璃基板上旋涂上述复合材料溶液,在220℃下加热15min,形成厚度为30nm的氮化镓薄膜。
对比例1
对比例1的方案与实施例1基本相同,区别仅在于,对比例1中,减去步骤(6)。
对比例2
本对比例方案与实施例1基本相同,区别仅在于,本对比例中,步骤(6)中,第一配体改为苯并环丁烯。
对比例3
本对比例方案与实施例9基本相同,区别仅在于,本对比例提供的材料为氧化锌纳米颗粒。
对比例4
本对比例方案与实施例10基本相同,区别仅在于,本对比例提供的材料为氮化镓纳米颗粒。
器件实施例1
(1)提供厚度为100nm的ITO阳极10。
(2)在所述阳极10上旋涂PEDOT:PSS材料,150℃退火30min,得到厚度为30nm的空穴注入层60。
(3)在所述空穴注入层60上旋涂聚(9,9-辛基芴)材料,180℃退火15min,得到厚度为30nm的空穴传输层50。
(4)将实施例1制得的复合材料分散在正辛烷中,制成浓度为15mg/mL的复合材料溶液,在空穴传输层50上旋涂复合材料溶液,在220℃下加热20min,得到厚度为15nm的发光层20。
(5)在发光层20上旋涂ZMO的乙醇溶液,100℃退火15min,得到厚度为40nm的电子传输层30。
(6)在所述电子传输层30上蒸镀Ag,得到厚度为100nm的阴极40,封装,得到QLED器件。
器件实施例2~8
器件实施例m的方案与器件实施例1基本相同,区别仅在于,器件实施例m中,步骤(4)中,采用的复合材料为实施例m制得的复合材料,其中,m为2~8。
器件实施例9
本器件实施例的方案与器件实施例1基本相同,区别仅在于,器件实施例9中:
步骤(4)中,将复合材料改为CdZnSe/ZnSe/ZnS量子点;
步骤(5)中,将ZMO的乙醇溶液改为实施例9制备的复合材料的油酸溶液(复合材料的浓度为15mg/mL)。
器件实施例10
本器件实施例的方案与器件实施例1基本相同,区别仅在于,器件实施例9中:
步骤(4)中,将复合材料改为CdZnSe/ZnSe/ZnS量子点;
步骤(3)中,将聚(9,9-辛基芴)材料改为实施例10制备的复合材料的正辛烷溶液(复合材料的浓度为15mg/mL)。
器件对比例1
器件对比例1的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例1制得的复合材料。
器件对比例2
器件对比例2的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例2制得的复合材料。
器件对比例3
器件对比例3的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例3提供的材料。
器件对比例4
器件对比例4的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例4提供的材料。
(一)检测上述实施例1-10和对比例1-4中复合材料制成的薄膜的成膜性能。检测方法如下:
(1)量子点薄膜的成膜性能:取量子点薄膜,使用爱丁堡光谱仪测试薄膜的PL光谱(光致发光光谱)。将量子点薄膜浸泡在甲苯(良溶剂)中10min,再次测试其PL光谱。结果记入表1。
(2)氧化锌薄膜的成膜性能:取氧化锌薄膜,将薄膜浸泡在甲苯中10min,再次测试其厚度,结果记入表2。
(3)氮化镓薄膜的成膜性能:取氮化镓薄膜,将薄膜浸泡在甲苯中10min, 再次测试其厚度,结果记入表2。
表1
表2
由表1和2可以看出:
相较对比例1和2,实施例1-8制得的薄膜的PLQY在浸泡前后的变化相对较小;相较对比例3,实施例9薄膜的厚度在浸泡后下降的幅度较小;相较对比例4,实施例10薄膜的厚度在浸泡后下降的幅度较小,这说明在无机半导体粒子表面连接第一配体后,本申请提出的复合材料制得的薄膜具有较高的抗溶剂性,不容易受到溶剂的影响;
对比实施例1、实施例6-8,实施例1和6薄膜的PLQY在浸泡前后的变化相对较小,这说明,控制加热温度在150~250℃范围内,有助于进一步提高薄膜 的抗溶剂性。
(二)取上述器件实施例1-6、9-10,器件对比例1、3和4中制得的器件进行外量子效率(EQE)以及寿命T95@1000nit测试。结果记入表3。测试方法如下:
(1)外量子效率EQE测试
外量子效率EQE表示注入到量子点中的电子-空穴对数转化为出射的光子数的比值,单位是%,是衡量电致发光器件优劣的一个重要参数,采用EQE光学测试仪器测定即可得到。具体计算公式如下:
其中,ηe为光输出耦合效率,ηγ为复合的载流子数与注入载流子数的比值,x为产生光子的激子数与总激子数的比值,KR为辐射过程速率,KNR为非辐射过程速率。
测试条件:在室温下进行,空气湿度为30~60%。
(2)寿命T95@1000nit测试
寿命T95@1000nit表示器件在恒定电流或电压驱动下,亮度减少至最高亮度的一定比例时所需的时间,亮度下降至最高亮度的95%的时间定义为T95,该寿命为实测寿命。为缩短测试周期,器件寿命测试通常是在高亮度下通过加速器件老化进行,并通过延伸型指数衰减亮度衰减拟合公式拟合得到高亮度下的寿命,比如:1000nit下的寿命计为T95@1000nit。具体计算公式如下:
其中,T95L为低亮度下的寿命,T95H为高亮度下的实测寿命,LH为器件加速至最高亮度,LL为1000nit,A为加速因子,本实验通过测得若干组绿色QLED器件在额定亮度下的寿命得出A值为1.7。
表3

请参阅表2,可知:
相较器件对比例1,器件实施例1-6均具有较高的寿命和发光效率;相较相较器件对比例3,器件实施例9具有较高的寿命和发光效率;相较器件对比例4,器件实施例10具有较高的寿命和发光效率,这说明采用本申请提出的复合材料制作功能层,有助于提高器件的发光性能,延长器件的使用寿命。
以上对本申请实施例所提供的复合材料、发光器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种复合材料,其中,包括:
    无机半导体粒子和结合在所述无机半导体粒子表面的第一配体,所述第一配体具有如下所述的结构式:
    R1-L-R2
    其中,R1为与所述无机半导体粒子连接的配位基团;
    L为取代或未被取代的碳原子数为1~10的烷基或环烷基;
    R2包括可交联基团。
  2. 根据权利要求1所述的复合材料,其中,所述可交联基团含有至少一个双键。
  3. 根据权利要求2所述的复合材料,其中,所述可交联基团含有多个双键,且所述多个双键互相共轭形成共轭体系。
  4. 根据权利要求2所述的复合材料,其中,所述R2选自具有如下式(1)至(3)所示结构的基团中的任意一种;
    其中,*表示R2和L的可连接位点。
  5. 根据权利要求1所述的复合材料,其中,所述R1选自氨基、巯基、羧基、硼酸基中的一种或多种的组合。
  6. 根据权利要求1所述的复合材料,其中,所述L选自碳原子数为2~10的烷基。
  7. 根据权利要求1所述的复合材料,其中,所述第一配体的结构式中,所述R2的数量为1个或2个;和/或,
    所述第一配体的结构式中,所述R1的数量为1个或2个。
  8. 根据权利要求1所述的复合材料,其中,所述第一配体选自烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸中的一种或多种。
  9. 根据权利要求1所述的复合材料,其中,所述复合材料还包括:
    结合在所述无机半导体粒子表面的第二配体,所述第二配体选自油酸、油胺、辛胺、三辛基膦、三辛基氧膦中的至少一种。
  10. 根据权利要求7所述的复合材料,其中,所述复合材料中,所述第一配体的重量占所述无机半导体粒子的重量的百分比为0.3~2%,所述第二配体的重量占所述无机半导体粒子的重量的百分比为10~20%。
  11. 根据权利要求7所述的复合材料,其中,所述第一配体和所述第二配体的重量比为(3~10):100。
  12. 根据权利要求1所述的复合材料,其中,所述无机半导体粒子包括量子点,所述量子点包括单一结构量子点及核壳结构量子点中的至少一种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2 中的至少一种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种;或者,
    所述无机半导体粒子包括金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的至少一种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的至少一种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的至少一种,掺杂元素选自Al、Mg、Li、In、Ga中的至少一种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的至少一种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的至少一种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的至少一种;或者,
    所述无机半导体粒子包括掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的至少一种。
  13. 一种发光器件,其中,包括:
    第一电极、第二电极以及设于第一电极和第二电极之间的一个或多个功能层,所述一个或多个功能层中的至少一层为第一功能层,所述第一功能层的材料包括权利要求1至12任一项所述的复合材料。
  14. 根据权利要求13所述的发光器件,其中,所述第一电极和所述第二电极各自独立的选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
  15. 一种发光器件的制备方法,其中,包括以下步骤:
    提供第一电极;
    在所述第一电极的一侧设置一个或多个功能层,所述一个或多个功能层包 括第一功能层;
    在所述一个或多个功能层背离所述第一电极的一侧设置第二电极;
    其中,所述第一功能层的制备包括:
    提供复合材料和溶剂,将复合材料分散在溶剂中,得到复合材料溶液;在上一膜层上设置所述复合材料溶液,加热处理以得到所述第一功能层;其中,所述复合材料包括权利要求1至12任一项所述的复合材料。
  16. 根据权利要求15所述的发光器件的制备方法,其中,所述溶剂包括甲苯、环己基苯、四氢化萘、正辛烷、正庚烷、正己烷、油酸中的至少一种;和/或,
    所述复合材料溶液中,所述复合材料的浓度为10~60mg/ml。
  17. 根据权利要求15所述的发光器件的制备方法,其中,加热处理的温度为150~250℃,时间为10~60min。
  18. 根据权利要求15所述的发光器件的制备方法,其中,提供复合材料的步骤包括制备所述复合材料,所述制备所述复合材料的步骤包括:
    提供无机半导体粒子、有机溶剂和第一配体,所述第一配体具有如下所述的结构式:R1-L-R2;其中,R1为与所述无机半导体粒子连接的配位基团;L为取代或未被取代的碳原子数为1~10的烷基或环烷基;R2包括可交联基团;
    将所述无机半导体粒子、所述有机溶剂和所述第一配体混合,以使得所述第一配体结合在所述无机半导体粒子表面,提纯得到所述复合材料。
  19. 根据权利要求18所述的复合材料的制备方法,其中,所述第一配体包括烯丙基胺、丁烯酸、3-甲基-2-丁烯-1-硫醇、4-硼酸基苯并环丁烯、苯并环丁烯-1-羧酸、1-二环[4.2.0]辛-1,3,5-三烯-7-基甲胺、反式,反式-1,3-丁二烯-1,4-二羧酸、山梨酸的一种或多种。
  20. 根据权利要求18所述的复合材料的制备方法,其中,所述有机溶剂包括芳香烃、烯烃、芳香烯烃、芳香醚、芳香酯以及C5~18烷烃中的至少一种;和/或,
    所述无机半导体粒子和所述第一配体的重量比为(1~3):1;和/或,
    将所述无机半导体粒子、所述有机溶剂和所述第一配体混合后得到的混合体系中,所述无机半导体粒子的浓度为10~60mg/ml;和/或, 所述混合时,溶液的温度为10~100℃,所述混合的时间为5~60min。
PCT/CN2023/128043 2022-12-08 2023-10-31 复合材料、发光器件及其制备方法 WO2024120060A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211579659.8A CN118215318A (zh) 2022-12-08 2022-12-08 复合材料及其制备方法、发光器件及其制备方法
CN202211579659.8 2022-12-08

Publications (1)

Publication Number Publication Date
WO2024120060A1 true WO2024120060A1 (zh) 2024-06-13

Family

ID=91378542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/128043 WO2024120060A1 (zh) 2022-12-08 2023-10-31 复合材料、发光器件及其制备方法

Country Status (2)

Country Link
CN (1) CN118215318A (zh)
WO (1) WO2024120060A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113334A1 (zh) * 2016-12-22 2018-06-28 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN113574136A (zh) * 2019-03-04 2021-10-29 默克专利股份有限公司 用于纳米尺寸材料的配体
WO2021248877A1 (zh) * 2020-06-09 2021-12-16 Tcl科技集团股份有限公司 复合材料、复合材料的制备方法和发光二极管
US20220162500A1 (en) * 2020-11-26 2022-05-26 Boe Technology Group Co., Ltd. Quantum dot material and method for manufacturing the same, light emitting diode, and display panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113334A1 (zh) * 2016-12-22 2018-06-28 Tcl集团股份有限公司 量子点发光层与器件及制备方法、发光模组与显示装置
CN113574136A (zh) * 2019-03-04 2021-10-29 默克专利股份有限公司 用于纳米尺寸材料的配体
US20220127286A1 (en) * 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
WO2021248877A1 (zh) * 2020-06-09 2021-12-16 Tcl科技集团股份有限公司 复合材料、复合材料的制备方法和发光二极管
US20220162500A1 (en) * 2020-11-26 2022-05-26 Boe Technology Group Co., Ltd. Quantum dot material and method for manufacturing the same, light emitting diode, and display panel

Also Published As

Publication number Publication date
CN118215318A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
EP3537491A1 (en) Quantum dot device and electronic device
KR20200021726A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024120060A1 (zh) 复合材料、发光器件及其制备方法
CN113801648B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024114056A1 (zh) 复合材料及其制备方法及发光器件
WO2024109334A1 (zh) 复合材料、组合物及发光器件
WO2024139487A1 (zh) 复合材料、发光器件及其制备方法
WO2024139580A1 (zh) 一种复合材料及其制备方法、以及发光器件的制备方法
CN117186871B (zh) 复合材料、薄膜、发光器件及其制备方法、mini-LED背光模组及显示装置
WO2024139449A1 (zh) 核壳量子点及其制备方法、量子点电致发光器件
WO2024114066A1 (zh) 发光器件及其制备方法及显示装置
WO2024139692A1 (zh) 发光器件、其制造方法以及显示装置
WO2024061102A1 (zh) 复合材料、组合物及发光二极管
WO2024139714A1 (zh) 掺杂金属氧化物的制备方法以及包含掺杂金属氧化物的发光器件
WO2024139622A1 (zh) 复合材料及其制备方法、发光器件
WO2024109341A1 (zh) 复合电极及其制备方法、发光器件
CN113801470B (zh) 复合材料的制备方法和发光二极管
WO2024104139A1 (zh) 复合材料、包含其的发光器件及其制备方法
CN113809248B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024093747A1 (zh) 复合材料、复合材料的制备方法与包含复合材料的光电器件
WO2024139483A1 (zh) 量子点组合物和量子点发光器件
CN113773614B (zh) 复合材料及其制备方法和发光二极管
WO2024056004A1 (zh) 复合材料及其制备方法及量子点发光二极管
WO2024139715A1 (zh) 氧化锌镁的制备方法以及包含氧化锌镁的发光器件