WO2024114056A1 - 复合材料及其制备方法及发光器件 - Google Patents

复合材料及其制备方法及发光器件 Download PDF

Info

Publication number
WO2024114056A1
WO2024114056A1 PCT/CN2023/120550 CN2023120550W WO2024114056A1 WO 2024114056 A1 WO2024114056 A1 WO 2024114056A1 CN 2023120550 W CN2023120550 W CN 2023120550W WO 2024114056 A1 WO2024114056 A1 WO 2024114056A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ligand
doped
composite material
quantum dot
Prior art date
Application number
PCT/CN2023/120550
Other languages
English (en)
French (fr)
Inventor
周礼宽
侯文军
Original Assignee
广东聚华新型显示研究院
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东聚华新型显示研究院, Tcl科技集团股份有限公司 filed Critical 广东聚华新型显示研究院
Publication of WO2024114056A1 publication Critical patent/WO2024114056A1/zh

Links

Definitions

  • the present application relates to the semiconductor field, and in particular to a composite material, a preparation method thereof, and a light-emitting device.
  • Quantum dots are an important low-dimensional semiconductor material. Their sizes in three dimensions are no more than twice the exciton Bohr radius of the corresponding semiconductor material. By applying a certain electric field or light pressure to this semiconductor material, they will emit light of a specific frequency, and the frequency of the emitted light will change with the size of the semiconductor. Therefore, by adjusting the size of the semiconductor, the color of the light it emits can be controlled.
  • the present application provides a composite material and a preparation method thereof and a light-emitting device, aiming to solve the problem of poor fluorescence stability of existing quantum dot materials.
  • the present application provides a composite material, comprising a quantum dot and a first ligand, wherein the first ligand comprises one or more of a first compound that satisfies the following conditions: the structural formula of the first compound comprises a conjugated group and a coordination group, and the first ligand is connected to the surface of the quantum dot through the coordination group;
  • the conjugated group includes a combination of one or more of a group containing a conjugated double bond, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted C7-C20 condensed ring aromatic group;
  • the coordinating group includes a combination of one or more of a thiol group, a carboxyl group, an acyl group, and an amide group;
  • the substituent is selected from one or more of a nitro group, a cyano group, a halogen group, a hydroxyl group, a vinyl group, a C1-C10 alkyl group, a C1-C10 alkoxy group, and a C1-C10 alkylthio group.
  • the number of the conjugated groups is 1 to 5, and when the first compound contains a plurality of the conjugated groups, the plurality of the conjugated groups are mutually conjugated to form a conjugated system; and/or,
  • the number of the coordination groups is 1 to 3.
  • the first compound is composed of the conjugated group and the coordinating group, wherein the conjugated group is selected from a C1-C10 conjugated alkenyl group, a substituted or unsubstituted phenyl group, and a substituted or unsubstituted biphenyl group.
  • the weight of the first ligand accounts for 0.8-12.5% of the weight of the composite material.
  • the weight of the first ligand accounts for 10 to 50% of the total weight of the first ligand and the second ligand.
  • the total weight of the first ligand and the second ligand accounts for 8-25% of the weight of the composite material.
  • the quantum dots include one or more of single-structure quantum dots and core-shell structure quantum dots
  • the single-structure quantum dots are selected from one or more of II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds
  • the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, One or more of HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, Cd
  • the present application also proposes a method for preparing a composite material, comprising the following steps:
  • the quantum dot carrier comprises quantum dots
  • the quantum dot carrier includes a quantum dot solution or a quantum dot film
  • the first ligand includes one or more of the first compounds that meet the following conditions: the structural formula of the first compound contains a conjugated group and a coordination group, wherein the conjugated group includes a combination of one or more of a group containing a conjugated double bond, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted C7-C20 condensed ring aromatic group, and the coordination group includes a combination of one or more of a thiol group, a carboxyl group, an acyl group, and an amide group; the substituent is selected from one or more of a nitro group, a cyano group, a halogen group, a hydroxyl group, a vinyl group, a C1-C10 alkyl group, a C1-C10 alkoxy group, and
  • the step of contacting the first ligand with the quantum dots includes: mixing the first ligand and the quantum dot solution at 20 to 80° C. for 5 to 120 minutes, wherein the solvent of the quantum dot solution includes one or more of n-octane, n-heptane, and n-hexane, and the weight ratio of the first ligand to the quantum dots is (5 to 30):100.
  • the step of contacting the first ligand with the quantum dot includes: providing an organic solvent, dispersing the first ligand in the organic solvent, A first ligand solution with a concentration of 0.1 to 10 mol/L is obtained, and the first ligand solution is disposed on the surface of the quantum dot film to form a liquid film, and the liquid film is removed after standing for 10 to 30 seconds, wherein the organic solvent includes one or more of acetonitrile, ethanol, and ether.
  • a second ligand is connected to the surface of the quantum dot, and the second ligand includes one or more of oleic acid, oleylamine, octylamine, trioctylphosphine, trioctylphosphine oxide, and octadecyl phosphoric acid.
  • the first ligand includes one or more of phenylethanethiol, benzoic acid, phenylacetic acid, p-cyanobenzoic acid, p-nitrophenylacetic acid, 4-vinylbenzoic acid, 2-mercaptobiphenyl, 4-(phenylmercapto)acetophenone, hexadienedioic acid, acetophenone, phenylacetamide, bibenzoyl, 4-butyrylbiphenyl, phthalimide, biphenyl-4-carboxamide, 2,2-biphenylacetamide, and 2-phenylbutyric acid.
  • the present application further proposes a light-emitting device, comprising a cathode, a light-emitting layer and an anode, wherein the material of the light-emitting layer comprises a composite material, wherein the composite material comprises the composite material as described above, or the composite material is prepared by the preparation method as described above.
  • the anode is selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode;
  • the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide;
  • the composite electrode of metal and metal oxide is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , TiO 2 /
  • the cathode is selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode.
  • the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide.
  • the composite electrode of metal and metal oxide is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS.
  • the material of the metal electrode is selected from one or more of Ag, Al, Cu, Mo, Au, Pt, Si, Ca, Mg and Ba.
  • the light emitting device further comprises an electron transport layer disposed between the cathode and the light emitting layer, and the material of the electron transport layer is selected from metal oxides, doped metal oxides, II-VI group semiconductors, Conductor material, one or more of Group III-V semiconductor materials and Group I-III-VI semiconductor materials, the metal oxide is selected from one or more of ZnO, BaO, TiO2 , SnO2 ; the metal oxide in the doped metal oxide is selected from one or more of ZnO, TiO2 , SnO2 , the doping element is selected from one or more of Al, Mg, Li, In, Ga, the Group II-VI semiconductor materials are selected from one or more of ZnS, ZnSe, CdS; the Group III-V semiconductor materials are selected from one or more of InP, GaP; the Group I-III-VI semiconductor materials are selected from one or more of CuInS, CuGaS; and/or,
  • the light emitting device further comprises an electron injection layer disposed between the cathode and the light emitting layer, wherein a material of the electron injection layer is selected from one or more of cesium carbonate, cesium fluoride, cesium azide and lithium fluoride.
  • the light-emitting device further comprises a hole transport layer disposed between the anode and the light-emitting layer, and the material of the hole transport layer is selected from 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine, N,N '-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro(spiro-TPD), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine, 4,4',4'-triamino)phenyl)-N,
  • the light-emitting device further includes a hole injection layer disposed between the anode and the light-emitting layer, and the material of the hole injection layer is selected from one or more of 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, PEDOT, PEDOT:PSS, PEDOT:PSS doped with s-MoO 3 derivatives, 4,4',4'-tris(N-3-methylphenyl-N-phenylamino)triphenylamine, tetracyanoquinodimethane, copper phthalocyanine, nickel oxide, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide and copper oxide.
  • the technical solution provided by the present application connecting the first ligand on the surface of quantum dots, not only does not affect the fluorescence quantum yield of quantum dots, but also can play the role of passivating the surface defects of quantum dots, effectively improve the fluorescence stability of quantum dots, so that it still has a higher fluorescence quantum yield (PLQY) after working for a period of time.
  • PLQY fluorescence quantum yield
  • the first ligand contains a coordination group and a conjugated group
  • the coordination group can attract the electron transfer on the conduction band energy level of the quantum dot to the conjugated group, and the electron is delocalized, thereby playing a role in releasing excess electrons; after the charging phenomenon on the quantum dot is improved, the delocalized electron can also be reversibly transferred back to the quantum dot, thereby effectively solving the problem of quantum dot charging.
  • the combination of a coordination group with a larger electronegativity and a conjugated group with a smaller electronegativity also makes the first ligand have a larger intrinsic dipole moment, so that it can offset the interface dipole moment generated by it and the surface of the quantum dot, resulting in the band position of the composite material moving up, and the Fermi level decreasing, thereby playing a role in promoting hole injection.
  • the composite material When the composite material is applied to the light-emitting layer of a light-emitting device, it helps to improve the non-radiative Auger recombination efficiency attenuation problem caused by the charging of quantum dots in the light-emitting layer, improve the carrier balance of the device, and thus effectively improve the current efficiency and life of the device.
  • FIG1 is a schematic flow chart of a method for preparing a composite material proposed in an embodiment of the present application
  • FIG3 is a schematic structural diagram of a light emitting device proposed in another embodiment of the present application.
  • condensed ring aromatic group refers to a group derived from a condensed ring compound by removing a hydrogen atom
  • biphenyl group refers to a group derived from a biphenyl compound by removing a hydrogen atom.
  • C7-C20 condensed ring aromatic group refers to a condensed ring aromatic group having 7 to 20 carbon atoms, for example, the carbon number of the condensed ring aromatic group can be 7, 8, 9, 10, 12, 14, 20, etc.
  • acyl refers to the atomic radical remaining after removing one or more hydroxyl groups from an organic or inorganic oxygen-containing acid, and has the general formula -M(O)-R, wherein M can be C or S, and R can be a hydrocarbon group or H.
  • the present application provides a composite material, the specific form of the composite material is not limited, it can be a nanoparticle or a film structure.
  • the composite material includes quantum dots and a first ligand, the first ligand includes one or more of the first compounds that meet the following conditions: the structural formula of the first compound contains a conjugated group and a coordination group, and the first ligand is connected to the surface of the quantum dot through the coordination group.
  • the conjugated group includes a group containing a conjugated double bond, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted C7-C20 condensed ring aromatic group.
  • One or more combinations of the coordination group include a thiol, a carboxyl, an acyl, and an amide group; the substituent is selected from one or more of a nitro, a cyano, a halogen, a hydroxyl, a vinyl, a C1-C10 alkyl, a C1-C10 alkoxy, and a C1-C10 alkylthio.
  • the technical solution provided by the present application connects the first ligand on the surface of the quantum dot, which not only does not affect the fluorescence quantum yield of the quantum dot, but also can play a role in passivating the surface defects of the quantum dot, effectively improving the fluorescence stability of the quantum dot, so that it still has a high fluorescence quantum yield (PLQY) after working for a period of time.
  • PLQY fluorescence quantum yield
  • the conjugated group refers to a group that forms a large ⁇ bond
  • the large ⁇ bond refers to a ⁇ bond formed by p orbitals of three or more atoms that are parallel to each other and overlap from the side.
  • the conjugated group includes a combination of one or more of a group containing a conjugated double bond, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted C7-C20 fused ring aromatic group.
  • the specific number can be one or more.
  • the number of the conjugated groups is 1 to 5, for example, the number can be 1, 2, 3, 4 or 5; in other embodiments, the first compound contains multiple conjugated groups, and the multiple conjugated groups are mutually conjugated to form a conjugated system, so that a larger electron delocalization range can be constructed, which helps to better improve the charging of quantum dots.
  • the coordination group includes a combination of one or more of thiol, carboxyl, acyl, and amide.
  • the coordination group coordinates with the unpassivated cationic dangling bonds on the surface of the quantum dot to form a chemical bond, thereby combining the first ligand and the surface of the quantum dot.
  • the coordination groups listed above have strong electron-withdrawing properties and can better attract excess electrons to transfer to the conjugated group.
  • the present application does not limit the number of coordination groups, and the specific number can be one or more.
  • the number of the coordination groups in the first compound, is 1 to 3, for example, the number can be 1, 2 or 3.
  • the atom participating in forming the large ⁇ bond is a conjugated atom.
  • the structural formula of the first compound further includes a connecting group, one of the conjugated atoms of the conjugated group is connected to the connecting group, and the coordination group is also connected to the connecting group.
  • the first compound is composed of the conjugated group and the coordination group, and the coordination group is connected to one of the conjugated atoms of the conjugated group.
  • the linking group has a main chain, one end of the main chain is connected to the conjugated atom, and the other end is connected to the coordinating group.
  • the number of carbon atoms connected between the coordinating group and the conjugated group is 1 to 3, for example, the number of carbon atoms can be 1, 2 or 3. In this way, it is helpful to quickly transfer the electrons adsorbed by the coordinating group to the conjugated group. It is understandable that when there is a carbon-containing substituent on a carbon atom on the main chain, the carbon atom of the carbon-containing substituent is not counted as a carbon atom connected between the coordinating group and the conjugated group.
  • the first compound can be phenylethanethiol (CAS: 4410-99-5), benzoic acid (CAS: 65-85-0), phenylacetic acid (CAS: 103-82-2), p-cyanobenzoic acid (CAS: 619-65-8), p-nitrophenylacetic acid (CAS: 104-03-0), 4-vinylbenzoic acid (CAS: 1075-49-6), 2-mercaptobiphenyl (CAS: 2688-96-2), 4-(phenylmercapto)acetophenone (CAS: 10169-55-8), hexanedioic acid (CAS: 3588-17-8), acetophenone (CAS: 98-86-2), phenylacetamide (CAS: 103-81-1), dibenzoyl (CAS: 13 4-81-6), 4-butyrylbiphenyl (CAS: 13211-01-3), phthalimide (CAS: 85-41-6), biphenyl-4-carboxamide (CAS: 3815-20-1), 2,2-biphenylacetamide (CAS: 4410-
  • the composite material also includes a second ligand connected to the surface of the quantum dots, and the second ligand is an oil-soluble ligand, such as a straight-chain carbon skeleton alkane, and the second ligand includes but is not limited to one or more of oleic acid (OA), oleylamine (OAm), octylamine, trioctylphosphine (TOP), trioctylphosphine oxide (TOPO), and octadecyl phosphoric acid (ODPA).
  • the second ligand is coordinated and connected to the cationic dangling bonds on the surface of the quantum dots, which helps to improve the dispersibility of the quantum dots so that they can exist stably in the solution system.
  • the weight of the first ligand accounts for 0.8-12.5% of the weight of the composite material.
  • the percentage can be 0.8%, 1%, 2%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 12.5% and values between any two of the above-mentioned values. This helps to improve the stability of the fluorescence quantum yield of quantum dots, while also improving the charging problem of quantum dots and promoting hole injection.
  • the total weight of the first ligand and the second ligand is M
  • the weight of the first ligand is a percentage of 10-50% of M.
  • the percentage can be 10%, 11%, 13%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% and values between any two of the above-mentioned values. This helps to fully exert the role of the first ligand and effectively maintain the dispersion of quantum dots.
  • the total weight of the first ligand and the second ligand is M
  • the percentage of M in the weight of the composite material is 8-25%.
  • the percentage can be 8%, 9%, 10%, 14%, 15%, 16%, 19%, 20%, 22%, 24%, 25% and values between any two of the above-mentioned values. This helps to give full play to the role of the first ligand and the second ligand, and helps to improve the conductive properties of the composite material.
  • the quantum dots include one or more of single structure quantum dots and core-shell structure quantum dots, the single structure quantum dots are selected from one or more of II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds, the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, One or more of HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe
  • the core-shell structured quantum dots may be selected from, but not limited to, CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS, One or more of CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS, InP/ZnSeS/ZnS, CdZnSe/ZnSe/ZnS, CdSeS/ZnSeS/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS and InP/ZnSe/ZnS.
  • the present application also proposes a method for preparing a composite material.
  • the preparation method comprises the following steps:
  • Step S10 providing a quantum dot carrier and a first ligand, wherein the quantum dot carrier comprises quantum dots;
  • Step S20 contacting the first ligand with the quantum dot so that the first ligand is connected to the surface of the quantum dot to obtain a composite material
  • the quantum dot carrier includes a quantum dot solution or a quantum dot film
  • the first ligand includes one or more of the first compounds that meet the following conditions: the structural formula of the first compound contains a conjugated group and a coordination group, wherein the conjugated group includes a combination of one or more of a group containing a conjugated double bond, a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, and a substituted or unsubstituted C7-C20 condensed ring aromatic group, and the coordination group includes a combination of one or more of a thiol group, a carboxyl group, an acyl group, and an amide group; the substituent is selected from one or more of a nitro group, a cyano group, a halogen group, a hydroxyl group, a vinyl group, a C1-C10 alkyl group, a C1-C10 alkoxy group, and
  • the first ligand includes one or more of phenylethanethiol, benzoic acid, phenylacetic acid, p-cyanobenzoic acid, p-nitrophenylacetic acid, 4-vinylbenzoic acid, 2-mercaptobiphenyl, 4-(phenylmercapto)acetophenone, hexadienedioic acid, acetophenone, phenylacetamide, bibenzoyl, 4-butyrylbiphenyl, phthalimide, biphenyl-4-carboxamide, 2,2-biphenylacetamide, and 2-phenylbutyric acid.
  • a solution ligand exchange method is used to connect the first ligand to the surface of the quantum dot, and accordingly, the quantum dot carrier appears as a quantum dot solution.
  • the method for preparing the quantum dot solution is: dispersing the quantum dots in a solvent to obtain the quantum dot solution.
  • the solvent includes but is not limited to one or more of n-octane, n-heptane, and n-hexane.
  • the step S20 includes: S21, mixing the first ligand and the quantum dot solution so that the first ligand is connected to the surface of the quantum dots to obtain a composite material.
  • the temperature during mixing is 20-80° C.
  • the temperature can be 20° C., 25° C., 30° C., 35° C., 40° C., 45° C., 50° C., 55° C., 60° C., 70° C., 75° C., 80° C., and values between any two of the above-listed values. Controlling the mixing temperature within this range helps promote the reaction between the first ligand and the quantum dots.
  • the mixing time is 5 to 120 minutes, for example, the mixing time can be 5 minutes, 10 minutes, 20 minutes, 30 minutes, 50 minutes, 60 minutes, 70 minutes, 80 minutes, 90 minutes, 100 minutes, 110 minutes, 120 minutes, and any two values between the above-mentioned values. Controlling the mixing time within this range can allow the first ligand and the quantum dot to fully contact and react.
  • the mixture is stirred continuously, and the stirring rate may be 100-1000 rpm, for example, the stirring rate may be 100 rpm, 200 rpm, 500 rpm, 600 rpm, 800 rpm, 900 rpm, 1000 rpm, and any value between two of the above values. This helps to disperse the first ligand well in the quantum dot solution so that it is in full contact with the quantum dots.
  • the weight ratio of the first ligand to the quantum dot can be (5-30):100, for example, the weight ratio can be 5:100, 7:100, 10:100, 15:100, 20:100, 25:100, 30:100 and any value between two of the above values.
  • the content of the first ligand on the surface of the quantum dot can be well controlled to satisfy: the weight of the first ligand accounts for 0.8-12.5% of the weight of the composite material.
  • a solid-state membrane ligand exchange method is used to connect the first ligand to the surface of the quantum dot, and accordingly, the quantum dot carrier is manifested as a quantum dot film.
  • the preparation of the quantum dot film can be achieved by conventional techniques in the art, such as spin coating, printing, inkjet printing, doctor blade coating, printing, dip-coating, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • spin coating as an example, in some embodiments, the preparation method of the quantum dot film is: a quantum dot solution is disposed on a substrate, and solidified to obtain a quantum dot film.
  • the substrate can be a glass substrate or some semi-finished light-emitting devices.
  • the step S20 includes: S22, providing an organic solvent, dispersing the first ligand in the organic solvent to obtain a first ligand solution, setting the first ligand solution on the surface of the quantum dot film to form a liquid film, and removing the liquid film after standing.
  • the organic solvent includes one or more of acetonitrile, ethanol, and diethyl ether.
  • the concentration of the first ligand is 0.1 to 10 mol/L, for example, the concentration can be 0.1 mol/L, 0.5 mol/L, 1 mol/L, 2 mol/L, 3 mol/L, 4 mol/L, 5 mol/L, 6 mol/L, 7 mol/L, 8 mol/L, 9 mol/L, 10 mol/L and any value between two of the above values.
  • the standing time is 10 to 30 seconds, for example, the standing time can be 10 seconds, 12 seconds, 15s, 20s, 25s, 28s, 30s and values between any two of the above values.
  • the quantum dots and the first ligand can be fully contacted, and on the other hand, the content of the first ligand bound to the surface of the quantum dots can be effectively controlled.
  • the preparation method further includes a step of synthesizing quantum dots.
  • the quantum dots are single-structure quantum dots. Accordingly, the synthesis of the quantum dots includes: providing a core cation precursor and a core anion precursor; mixing the core cation precursor with the core anion precursor to react to obtain a core solution containing quantum dot cores, and separating the quantum dot cores to obtain single-structure quantum dots.
  • the quantum dots are core-shell structured quantum dots. Accordingly, the synthesis of the quantum dots also includes the step of forming a shell layer outside the quantum dot core. Specifically, the step of forming the shell layer includes: adding a shell cation source and a shell anion source to the core solution to form a shell layer on the surface of the quantum dot core.
  • the core cation precursor includes one or more of a cadmium source, a zinc source, an indium source, a copper source, and a silver source.
  • the core anion precursor includes one or more of a selenium source, a sulfur source, a tellurium source, and a phosphorus source. It is understood that the core cation precursor and the core anion precursor can be selected according to the type of quantum dots to be prepared. For example, when the type of quantum dots to be prepared is CdSe, the core cation precursor required is a cadmium source, and the core anion precursor is a selenium source.
  • the surface of the quantum dot is also connected to a second ligand, and the second ligand includes one or more of oleic acid, oleylamine, octylamine, trioctylphosphine, trioctylphosphine oxide, and octadecylphosphonic acid.
  • the second ligand can be introduced during the synthesis of the quantum dot, for example, the cadmium source or selenium source is dispersed in the second ligand, and the second ligand is also introduced while the precursor solution is prepared; it can also be introduced by ligand exchange after the quantum dot is synthesized, for example, after the quantum dot is prepared, it can be mixed with the second ligand, and the quantum dot with the second ligand connected to the surface can be obtained by ligand exchange.
  • the present application further proposes a light-emitting device 100.
  • the light-emitting device 100 includes a cathode 40, a light-emitting layer 20 and an anode 10.
  • the material of the light-emitting layer 20 includes a composite material.
  • the composite material includes the composite material as described above, or the composite material is prepared by the preparation method as described above.
  • the use of the composite material to prepare the light-emitting layer 20 can not only make the light-emitting device 100 have a higher luminous efficiency, but also due to the presence of the first ligand, when the light-emitting device 100 works for a period of time and the quantum dots are in a charged state, driven by the redistribution of the electron localized state density of the first ligand, the excess electrons are delocalized to the first ligand and reversibly stored and released, which can effectively suppress the charging of the quantum dots and reduce the overlap ratio of the electron wave function and the hole wave function, thereby solving the problem of quantum dot charging that causes the luminous efficiency to decrease and the life attenuation; in addition, since the first ligand has a large intrinsic dipole moment, the energy band position of the composite material moves up and the Fermi level decreases, thereby promoting hole injection, improving the balance between electron injection and hole injection in the device, and greatly improving the luminous efficiency and life of the device.
  • the anode 10 is selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene An electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode, the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, the composite electrode of metal and metal oxide is selected from one or more of AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ ZnO , ZnO /Al/ZnO, TiO2 /Ag/ TiO2 , TiO2/Al/TiO2, ZnS/Ag/ZnS
  • the cathode 40 is selected from a doped metal oxide particle electrode, a composite electrode of metal and metal oxide, a graphene electrode, a carbon nanotube electrode, a metal electrode or an alloy electrode.
  • the material of the doped metal oxide particle electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide.
  • the composite electrode of metal and metal oxide is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO2 / Ag/TiO2, TiO2 /Al/ TiO2 , ZnS/Ag/ZnS, ZnS/Al/ZnS.
  • the material of the metal electrode is selected from one or more of Ag, Al, Cu, Mo, Au, Pt, Si, Ca, Mg and Ba.
  • the light-emitting device 100 also includes an electron transport layer 30 arranged between the cathode 40 and the light-emitting layer 20.
  • the material of the electron transport layer 30 may include but is not limited to one or more of metal oxides, doped metal oxides, II-VI semiconductor materials, III-V semiconductor materials and I-III-VI semiconductor materials.
  • the metal oxide is selected from one or more of ZnO, BaO, TiO2 , and SnO2 ; the metal oxide in the doped metal oxide is selected from one or more of ZnO, TiO2 , and SnO2 , the doping element is selected from one or more of Al, Mg, Li, In, and Ga, the II-VI semiconductor material is selected from one or more of ZnS, ZnSe, and CdS; the III-V semiconductor material is selected from one or more of InP and GaP; the I-III-VI semiconductor material is selected from one or more of CuInS and CuGaS.
  • the light emitting device 100 further includes an electron injection layer disposed between the cathode 40 and the light emitting layer 20, and the material of the electron injection layer is selected from one or more of cesium carbonate, cesium fluoride, cesium azide and lithium fluoride. It should be noted that when the device includes both the electron transport layer 30 and the electron injection layer, the electron injection layer is disposed between the electron transport layer 30 and the cathode 40.
  • the light-emitting device 100 further includes a hole transport layer 50 disposed between the anode 10 and the light-emitting layer 20, and the material of the hole transport layer 50 is selected from 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine, N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro(spiro-TPD), N,N'-di(4-(N,N'-diphenyl-amino)phenyl triphenylamine, poly[(9,9'-dioctylfluorene
  • CBP
  • the light-emitting device 100 further includes a hole injection layer 60 disposed between the anode 10 and the light-emitting layer 20, and the material of the hole injection layer 60 is selected from one or more of 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, PEDOT, PEDOT:PSS, PEDOT:PSS doped with s-MoO3 derivatives, 4,4',4'-tris(N-3-methylphenyl-N-phenylamino)triphenylamine, tetracyanoquinodimethane, copper phthalocyanine, nickel oxide, molybdenum oxide, tungsten oxide, vanadium oxide, molybdenum sulfide, tungsten sulfide and copper oxide. It should be noted that when the device includes both the hole transport layer 50 and the hole injection layer 60, the hole injection layer 60 is disposed between the hole transport layer 50 and the anode 10.
  • the preparation method of the anode 10, the hole transport layer 50, the light-emitting layer 20, the electron transport layer 30, the cathode 40 and the hole injection layer 60 can be achieved by conventional techniques in the art, such as chemical methods or physical methods.
  • the chemical method includes chemical vapor deposition, continuous ion layer adsorption and reaction, anodization, electrolytic deposition, and coprecipitation.
  • the physical method includes physical plating and solution method, among which the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.; the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip pulling, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.
  • the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip pulling, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the composite material of this embodiment includes quantum dots and a first ligand and a second ligand connected to the surface of the quantum dots, wherein the first ligand is phenylethyl mercaptan, the second ligand is OA and TOP, the weight of the first ligand accounts for 6% of the weight of the composite material, the weight of the first ligand accounts for 30% of the total weight of the first ligand and the second ligand, and the first ligand and the second ligand are 100% and 100% of the total weight of the composite material. The total weight of the ligands accounted for 20% of the weight of the composite material.
  • the preparation method of the composite material is as follows:
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by 4-(phenylmercapto)acetophenone.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by 2-mercaptobiphenyl.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by dibenzoyl.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in step (6), phenylethyl sulfide Alcohol was changed to 4-butyrylbiphenyl.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by 2,2-biphenylacetamide.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by biphenyl-4-carboxamide.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, in step (6), phenylethylmercaptan is replaced by 2-phenylbutyric acid.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, a solid-state membrane ligand exchange method is used to connect the first ligand on the surface of the quantum dot, and accordingly, step (6) is changed to:
  • Phenethyl mercaptan is dispersed in acetonitrile to obtain a phenethyl mercaptan solution with a concentration of 1 mol/L.
  • CdZnSe/ZnSe/ZnS quantum dots with OA and TOP connected on the surface were dispersed in n-octane to prepare a quantum dot solution with a concentration of 15 mg/mL.
  • the quantum dot solution was spin-coated on a substrate and annealed at 100° C. for 10 min to obtain a quantum dot film.
  • the phenylethyl mercaptan solution was spin-coated on the surface of the quantum dot film, and after standing for 15 seconds, the spin coating-standing step was repeated again, and then the surface of the quantum dot film was cleaned with acetonitrile to obtain a quantum dot film with phenylethyl mercaptan connected to the surface, that is, a composite material was obtained.
  • the scheme of this embodiment is basically the same as that of embodiment 9, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by 4-(phenylmercapto)acetophenone.
  • the scheme of this embodiment is basically the same as that of embodiment 9, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by hexanedioic acid.
  • the scheme of this embodiment is basically the same as that of embodiment 9, except that in this embodiment, in step (6), phenylethylmercaptan is replaced by a mixture of 4-vinylbenzoic acid and 2-mercaptobiphenyl, and the molar ratio of the two in the mixture is 1:1.
  • the scheme of this embodiment is basically the same as that of embodiment 9, except that in this embodiment, in step (6), the The concentration of a ligand was changed from 1 mol/L to 12 mol/L.
  • the scheme of this embodiment is basically the same as that of Embodiment 9, except that in this embodiment, in step (6), the standing time is changed from 15 s to 40 s.
  • the scheme of comparative example 1 is basically the same as that of embodiment 1, except that step (6) is removed in comparative example 1, that is, the material obtained in comparative example 1 is CdZnSe/CdZnS/ZnS quantum dots with OA and TOP connected on the surface.
  • This comparative example is substantially the same as Example 1, except that, in this comparative example, in step (6), phenylethyl mercaptan is changed to ethyl mercaptan.
  • This comparative example is substantially the same as Example 1, except that, in this comparative example, in step (6), phenylethylmercaptan is replaced by phenylethylamine.
  • Example 2 The composite material prepared in Example 1 was dispersed in n-octane to prepare a mixed solution with a concentration of 15 mg/mL. The mixed solution was spin-coated on the hole transport layer and annealed at 100° C. for 10 min to obtain a light-emitting layer with a thickness of 15 nm.
  • the scheme of device embodiment m is basically the same as that of device embodiment 1, with the only difference being that in device embodiment m, in step (4), the composite material used is the composite material prepared in embodiment m, wherein m is 2 to 8.
  • step (4) is: dispersing phenylethyl mercaptan in acetonitrile to obtain a phenylethyl mercaptan solution with a concentration of 1 mol/L.
  • the scheme of this device embodiment is basically the same as that of device embodiment 9, with the only difference being that, in this device embodiment, in step (4), phenylethylmercaptan is replaced by 4-(phenylmercapto)acetophenone.
  • the scheme of this device embodiment is basically the same as that of device embodiment 9, with the only difference being that, in this device embodiment, in step (4), phenylethylmercaptan is replaced by hexanedioic acid.
  • the scheme of the present device embodiment is basically the same as that of device embodiment 9, except that in the present device embodiment, in step (4), phenylethanethiol is replaced by a mixture of 4-vinylbenzoic acid and 2-mercaptobiphenyl, wherein the molar ratio of the two in the mixture is 1:1.
  • the scheme of this device embodiment is basically the same as that of device embodiment 9, with the only difference being that in this device embodiment, in step (4), the concentration of the first ligand is changed from 1 mol/L to 12 mol/L.
  • the scheme of this device embodiment is basically the same as that of device embodiment 9, with the only difference being that, in this device embodiment, in step (4), the standing time is changed from 15 s to 40 s.
  • the scheme of device comparative example 1 is basically the same as that of device embodiment 1, except that in step (4), the composite material used is CdZnSe/CdZnS/ZnS quantum dots with OA and TOP connected on the surface prepared in comparative example 1.
  • the scheme of device comparative example 2 is basically the same as that of device embodiment 1, except that in step (4), the composite material used is the composite material prepared in comparative example 2.
  • the scheme of device comparative example 3 is basically the same as that of device embodiment 1, except that in step (4), the composite material used is the composite material prepared in comparative example 3.
  • Fluorescence quantum yield The composite material was placed into the built-in integrating sphere of the Edinburgh spectrometer to compare the incident photons with the photons emitted by the composite material.
  • the detection method of the fluorescence stability of quantum dots is as follows: after the quantum dot solution is kept under blue light excitation for 10 minutes, the fluorescence quantum yield is tested and the attenuation change of the fluorescence quantum yield is calculated.
  • the PLQY of each embodiment remains basically unchanged, indicating that the addition of the first ligand has little effect on the PLQY of the quantum dots; however, the fluorescence stability of each embodiment under blue light excitation is significantly improved, indicating that the first ligand has a reducing effect on the rate of Auger recombination in the process of quantum dot radiation recombination, and has a significant effect on maintaining fluorescence stability.
  • the time it takes for the brightness to drop to 95% of the maximum brightness is defined as T95, and this lifespan is the measured lifespan.
  • device lifespan testing is usually performed at high brightness by accelerating device aging, and the lifespan at high brightness is obtained by fitting the extended exponential decay brightness attenuation fitting formula. For example, the lifespan at 1000nit is calculated as T95@1000nit.
  • the specific calculation formula is as follows:
  • T95L is the lifespan at low brightness
  • T95H is the measured lifespan at high brightness
  • LH is the device accelerated to the maximum brightness
  • LL is 1000nit
  • A is the acceleration factor.
  • each device embodiment Compared with the device comparative example 1, the current efficiency of each device embodiment has been greatly improved, indicating that the use of the composite material proposed in this application to make the light-emitting layer is helpful to improve the light-emitting efficiency of the device. This may be because the surface of the quantum dots is combined with After the first ligand is introduced, the charging of quantum dots is well suppressed, and the non-radiative Auger recombination efficiency decrease and quantum dot fluorescence quenching problems caused by the charging of quantum dots in the light-emitting layer are improved; at the same time, each device embodiment has a lifespan much higher than that of the device comparative example 1, indicating that the use of the composite material proposed in the present application to prepare the light-emitting layer is helpful to improve the lifespan of the device, which may be because the introduction of the first ligand not only suppresses the charging of quantum dots, but also plays a role in improving the carrier injection balance;
  • device example 1 By comparing device example 1 with device comparative example 2, it can be seen that the current efficiency and life of device comparative example 2 are much lower than those of device example 1, which shows that it is difficult to improve the charging of quantum dots and the carrier injection balance of devices by using compounds containing only coordination groups as ligand materials. This may be because, in the absence of conjugated groups, the compounds cannot reversibly store and release excess electrons, and therefore, it is difficult to suppress the problem of quantum dot charging. Further, by comparing device examples 1-8 with device comparative example 3, it can be seen that selecting compounds whose coordination groups are thiol, carboxyl, acyl, and amide groups as the first ligand has a better effect on improving device performance.
  • device examples 1 and 2 have better effects on improving luminous efficiency and lifespan. This may be because, in the composite material prepared by the solution ligand exchange method, the distribution of the first ligand is more uniform, and it can better combine with the quantum dots.

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种复合材料及其制备方法及发光器件,复合材料包括量子点和第一配体,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,所述第一配体通过所述配位基团连接在所述量子点表面。本申请旨在解决现有量子点材料荧光稳定性较差的问题。

Description

复合材料及其制备方法及发光器件
本申请要求于2022年11月29日在中国专利局提交的、申请号为202211506529.1、申请名称为“复合材料及其制备方法及发光器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体领域,尤其涉及一种复合材料及其制备方法及发光器件。
背景技术
量子点是一种重要的低维半导体材料,其三个维度上的尺寸都不大于其对应的半导体材料的激子玻尔半径的两倍,通过对这种半导体材料施加一定的电场或光压,它们便会发出特定频率的光,而发出的光的频率会随着这种半导体的尺寸的改变而变化,因而通过调节这种半导体的尺寸就可以控制其发出的光的颜色。
技术问题
现有的量子点材料表面通常存在很多缺陷,导致其荧光稳定性较差。
技术解决方案
鉴于此,本申请提供一种复合材料及其制备方法及发光器件,旨在解决现有量子点材料荧光稳定性较差的问题。
本申请实施例是这样实现的:
第一方面,本申请提供一种复合材料,包括量子点和第一配体,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,所述第一配体通过所述配位基团连接在所述量子点表面;
其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
可选的,在本申请的一些实施例中,所述第一化合物中,所述共轭基团的数量为1~5,且当所述第一化合物含有多个所述共轭基团时,多个所述共轭基团相互共轭形成共轭体系;和/或,
所述第一化合物中,所述配位基团的数量为1~3个。
可选的,在本申请的一些实施例中,所述第一化合物由所述共轭基团和所述配位基团构成,其中,所述共轭基团选自C1-C10的共轭烯基、取代或未取代的苯基、取代或未取代的联苯基团。
可选的,在本申请的一些实施例中,所述第一化合物的结构式还包括连接基团,所述共轭基团和所述配位基团通过所述连接基团连接,其中连接基团选自-(CH2)m1-、-(CH2)m2CH=CH(CH2)m3-、-(CH2)m4C≡C(CH2)m5-、-(CH2)m6O(CH2)m7-、-(CH2)m8CO(CH2)m9-、-(CH2)m10NHCO(CH2)m11-、(CH2)m12OCO(CH2)m13-、-(CH2)m14COO(CH2)m15-中的一种或多种的组合,其中,m1至m15各自独立地选自1~5的整数。
可选的,在本申请的一些实施例中,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料还包括连接在所述量子点表面的第二配体,优选地,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦、十八烷基磷酸中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料中,所述第一配体的重量占所述复合材料的重量的百分比为0.8~12.5%。
可选的,在本申请的一些实施例中,所述第一配体的重量占所述第一配体和所述第二配体的总重量的10~50%。
可选的,在本申请的一些实施例中,所述第一配体和所述第二配体的总重量占所述复合材料的重量的8~25%。
可选的,在本申请的一些实施例中,所述量子点包括单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、 HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
第二方面,本申请还提出一种复合材料的制备方法,包括以下步骤:
提供量子点载体和第一配体,所述量子点载体包含量子点;
将所述第一配体与所述量子点接触,以使得所述第一配体连接在所述量子点表面,得到复合材料;
其中,所述量子点载体包括量子点溶液或量子点薄膜,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
可选的,在本申请的一些实施例中,所述量子点载体为量子点溶液时,将所述第一配体与所述量子点接触的步骤包括:在20~80℃下,将所述第一配体和所述量子点溶液混合5~120min,其中,所述量子点溶液的溶剂包括正辛烷、正庚烷、正己烷中的一种或多种,所述第一配体和所述量子点的重量比为(5~30):100。
可选的,在本申请的一些实施例中,所述量子点载体为量子点薄膜时,将所述第一配体与所述量子点接触的步骤包括:提供有机溶剂,将所述第一配体分散在所述有机溶剂中, 得到浓度为0.1~10mol/L的第一配体溶液,将所述第一配体溶液设置在所述量子点薄膜的表面,形成液膜,静置10~30s后去除所述液膜,其中,所述有机溶剂包括乙腈、乙醇、乙醚中的一种或多种。
可选的,在本申请的一些实施例中,所述量子点表面连接有第二配体,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦、十八烷基磷酸中的一种或多种。
可选的,在本申请的一些实施例中,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
第三方面,本申请还提出一种发光器件,包括阴极、发光层和阳极,所述发光层的材料包括复合材料,所述复合材料包括如上所述的复合材料,或者,所述复合材料由如上所述的制备方法制得。
可选的,在本申请的一些实施例中,所述阳极选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种;和/或,
所述阴极选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
可选的,在本申请的一些实施例中,所述发光器件还包括设于所述阴极和所述发光层之间的电子传输层,所述电子传输层的材料选自金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半 导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的一种或多种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的一种或多种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的一种或多种,掺杂元素选自Al、Mg、Li、In、Ga中的一种或多种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的一种或多种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的一种或多种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的一种或多种;和/或,
所述发光器件还包括设于所述阴极和所述发光层之间的电子注入层,所述电子注入层的材料选自碳酸铯、氟化铯、叠氮铯及氟化锂中的一种或多种。
可选的,在本申请的一些实施例中,所述发光器件还包括设于所述阳极和所述发光层之间的空穴传输层,所述空穴传输层的材料选自4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺、4,4',4'-三(N-咔唑基)-三苯胺、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))]、聚(4-丁基苯基-二苯基胺)(聚-TPD)、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基、聚(亚苯基亚乙烯基)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基]和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基]、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)(PVK)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB、掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的一种或多种。
可选的,在本申请的一些实施例中,所述发光器件还包括设于所述阳极和所述发光层之间的空穴注入层,所述空穴注入层的材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、PEDOT、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、四氰基醌二甲烷、酞菁铜、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨及氧化铜中的一种或多种。
有益效果
本申请提供的技术方案,在量子点表面连接第一配体,不仅不会影响量子点的荧光量子产率,而且可以起到钝化量子点表面缺陷的作用,有效提高量子点的荧光稳定性,使其在工作一段时间后,仍具有较高的荧光量子产率(PLQY)。此外,由于第一配体含有配位基团和共轭基团,当量子点因处于载流子注入不平衡的环境下而出现充电情况时,配位基团可以吸引量子点导带能级上的电子转移至共轭基团,电子发生离域,从而起到了释放过量电子的作用;在量子点上充电现象得到改善后,离域电子还可以可逆的转移回量子点,从而有效解决了量子点充电问题。同时,具有较大电负性的配位基团和具有较小电负性的共轭基团组合,也使得第一配体具有较大的本征偶极矩,从而可以抵消其与量子点表面产生的界面偶极矩,导致复合材料的能带位置上移,费米能级下降,从而起到了促进空穴注入的作用。在将本复合材料应用于发光器件的发光层时,有助于改善发光层量子点带电造成的非辐射俄歇复合效率衰减问题,改善器件的载流子平衡性,进而有效提升器件的电流效率和寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提出的一种复合材料的制备方法的流程示意图;
图2是本申请一实施例提出的一种发光器件的结构示意图;
图3是本申请另一实施例提出的一种发光器件的结构示意图;
附图标记:
100-发光器件;10-阳极;20-发光层;30-电子传输层;40-阴极;50-空穴传输层;60-
空穴注入层。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于 说明和解释本申请,并不用于限制本申请。
在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”具体为附图中的图面方向。另外,在本申请说明书的描述中,术语“包括”是指“包括但不限于”。
本申请的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“一种或多种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
术语解释
在本申请中,“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团为被取代时,应理解为所定义的基团可以被一个或多个取代基取代,所述取代基选自但不限于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
在本申请中,“稠环芳基”是指在稠环化合物的基础上除去一个氢原子衍生的基团;“联苯基团”是指在联苯化合物的基础上除去一个氢原子衍生的基团。C7-C20稠环芳基是指碳原子数为7~20的稠环芳基,例如,所述稠环芳基的碳原子数可以是7个、8个、9个、10个、12个、14个、20个等等。
在本申请中,“烷基”可以表示直链、支链和/或环状烷基。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、2-乙基丁基、3,3-二甲基 丁基、正戊基、异戊基、新戊基、叔戊基、环戊基、1-甲基戊基、3-甲基戊基、2-乙基戊基、4-甲基-2-戊基、正己基、1-甲基己基、2-乙基己基、2-丁基己基、环己基、4-甲基环己基、4-叔丁基环己基、正庚基、1-甲基庚基、2,2-二甲基庚基、2-乙基庚基、2-丁基庚基、正辛基、叔辛基、2-乙基辛基、2-丁基辛基、2-己基辛基、3,7-二甲基辛基、环辛基、正壬基、正癸基、金刚烷基、2-乙基癸基、2-丁基癸基、2-己基癸基、2-辛基癸基、正十一烷基、正十二烷基、2-乙基十二烷基、2-丁基十二烷基、2-己基十二烷基、2-辛基十二烷基、正十三烷基、正十四烷基、正十五烷基、正十六烷基、2-乙基十六烷基、2-丁基十六烷基、2-己基十六烷基、2-辛基十六烷基、正十七烷基、正十八烷基、正十九烷基、正二十烷基、2-乙基二十烷基、2-丁基二十烷基、2-己基二十烷基、2-辛基二十烷基、正二十一烷基、正二十二烷基、正二十三烷基、正二十四烷基、正二十五烷基、正二十六烷基、正二十七烷基、正二十八烷基、正二十九烷基、正三十烷基、金刚烷等。烷基的碳数可以为1至50、1至30、1至20、1至10或1至6。包含该术语的短语,例如,“C1-10烷基”是指包含1至10个碳原子的烷基,每次出现时,可以互相独立地为C1烷基、C2烷基、C3烷基、C4烷基、C5烷基、C6烷基、C7烷基、C8烷基、C9烷基或C10烷基,具体地,例如可以是甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、2-乙基丁基、3,3-二甲基丁基、正戊基、异戊基、新戊基、叔戊基、环戊基、1-甲基戊基、3-甲基戊基、2-乙基戊基、4-甲基-2-戊基、正己基、1-甲基己基、2-乙基己基、2-丁基己基、环己基、4-甲基环己基、4-叔丁基环己基、正庚基、1-甲基庚基、2,2-二甲基庚基、2-乙基庚基等。
本申请所述的“烷氧基”的通式为-OR,其中,R代表烷基,所述烷基如上所述,在此不做赘述。烷氧基的碳数可以为1至50、1至30、1至20、1至10或1至6,例如,在一些实施例中,基团为C1~C10的烷氧基,是指烷基的碳原子数为1至10个的烷氧基,每次出现时,可以互相独立地为C1烷氧基、C2烷氧基、C3烷氧基、C4烷氧基、C5烷氧基、C6烷氧基、C7烷氧基、C8烷氧基、C9烷氧基或C10烷氧基。
本申请所述的“烷硫基”的通式为-SR,其中,R代表烷基,所述烷基如上所述,在此不做赘述。烷硫基的碳数可以为1至50、1至30、1至20、1至10或1至6,例如,在一些实施例中,基团为C1~C10的烷硫基,是指烷基的碳原子数为1至10个的烷硫基,每次出现时,可以互相独立地为C1烷硫基、C2烷硫基、C3烷硫基、C4烷硫基、C5烷硫基、C6烷硫基、C7烷硫基、C8烷硫基、C9烷硫基或C10烷硫基。
本申请中所述的“烯基”的通式为-CR=CR’,此处通式中的R和R’各自独立地选自被本 领域可接受的任意基团,例如,直链或支链烷基等。烯基的碳原子数大于等于2。
在本申请中,“氨基”的通式为-NH2;“巯基”的通式为-SH;“羧基”的通式为-COOH;“酰胺基”的通式为-C(O)NH2;“氰基”的通式为-CN;“硝基”的通式为-NO2
在本申请中,“酰基”是指有机或无机含氧酸去掉一个或多个羟基后剩下的原子团,通式为-M(O)-R,其中,M可以是C或者S,R可以是烃基或者H。
在本申请中,“多种基团的组合”表示其中至少一个基团上的氢原子被其它基团取代。作为示例:卤代烷基就是烷基和卤素基团的组合,例如,-(CH2)nBr;-NHR’就是氨基和R’基团的组合,R’基团是为了描述方便而给出的代号,其具体是指列举的多种基团中的任意一种。
本申请技术方案是这样实施的:
第一方面,本申请提供一种复合材料,所述复合材料的具体形态不作限制,其可以是纳米颗粒,也可以是膜层结构。所述复合材料包括量子点和第一配体,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,所述第一配体通过所述配位基团连接在所述量子点表面。其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
量子点处于空穴和电子注入不平衡的环境中一段时间后,很容易发生量子点充电的现象,这是由于电子注入大于空穴注入导致的电子积累。带电的量子点,一方面会造成量子点材料的荧光淬灭,另一方面,过量的电子会形成负电荷激子,由此产生的非辐射俄歇衰减,激子复合能量迅速转移到额外的载流子,而不是作为光子释放,从而会导致能量损失,造成应用所述量子点的发光器件100的发光效率和稳定性下降,使得器件的寿命加速衰减。
本申请提供的技术方案,在量子点表面连接第一配体,不仅不会影响量子点的荧光量子产率,而且可以起到钝化量子点表面缺陷的作用,有效提高量子点的荧光稳定性,使其在工作一段时间后,仍具有较高的荧光量子产率(PLQY)。此外,由于第一配体含有配位基团和共轭基团,当量子点因处于载流子注入不平衡的环境下而出现充电情况时,配位基团可以吸引量子点导带能级上的电子转移至共轭基团,电子发生离域,从而起到了释放过量电子的作用;在量子点上充电现象得到改善后,离域电子还可以可逆的转移回量子点, 从而有效解决了量子点充电问题。同时,具有较大电负性的配位基团和具有较小电负性的共轭基团组合,也使得第一配体具有较大的本征偶极矩,从而可以抵消其与量子点表面产生的界面偶极矩,导致复合材料的能带位置上移,费米能级下降,从而起到了促进空穴注入的作用。在将本复合材料应用于发光器件100的发光层20时,有助于改善发光层20量子点带电造成的非辐射俄歇复合效率衰减问题,改善器件的载流子平衡性,进而有效提升器件的电流效率和寿命。
所述共轭基团是指形成有大π键的基团,所述大π键是指3个或3个以上原子彼此平行的p轨道从侧面相互重叠形成的π键。
在本申请的一些实施例中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述含共轭双键的基团是指具有至少两个双键且单键和双键相间设置的结构特征的基团,例如-CH=CH-CH=CH2
本申请不限定共轭基团的数量,其具体数量可以是一个,也可以是多个。在一些实施例中,所述第一化合物中,所述共轭基团的数量为1~5,例如,所述数量可以是1、2、3、4或者5;在另一些实施例中,所述第一化合物含有多个所述共轭基团,且多个所述共轭基团相互共轭形成共轭体系,如此,能够构建更大的电子离域范围,有助于更好地改善量子点充电情况。
在本申请的一些实施例中,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合。所述配位基团与量子点表面未被钝化的阳离子悬挂键配位形成化学键,从而将第一配体和量子点表面结合起来,此外,上述列举的配位基团具有较强的吸电子性,能够更好地吸引过量电子转移至共轭基团。
本申请不限定配位基团的数量,其具体数量可以是一个,也可以是多个。在一些实施例中,所述第一化合物中,所述配位基团的数量为1~3,例如,所述数量可以是1、2或者3。
在本申请中,所述共轭基团中,参与形成所述大π键的原子为共轭原子。在一些实施例中,所述第一化合物的结构式还包括连接基团,所述共轭基团的一所述共轭原子与所述连接基团连接,同时,所述配位基团也与所述连接基团连接。在另一些实施例中,所述第一化合物由所述共轭基团和所述配位基团构成,所述配位基团与所述共轭基团的一所述共轭原子连接。
在本申请的一些实施例中,所述连接基团选自-(CH2)m1-、-(CH2)m2CH=CH(CH2)m3-、-(CH2)m4C≡C(CH2)m5-、-(CH2)m6O(CH2)m7-、-(CH2)m8CO(CH2)m9-、-(CH2)m10NHCO(CH2)m11-、(CH2)m12OCO(CH2)m13-、-(CH2)m14COO(CH2)m15-中的一种或多种的组合,其中,m1至m15各自独立地选自1~5的整数,例如,所述连接基团可以是-CH2-、-(CH2)2-、-(CH2)3-、-(CH2)4-、-(CH2)5-、-CH2CH=CHCH2-、-(CH2)2CH=CH(CH2)3-、-(CH2)2CH=CH(CH2)2-、-(CH2)2C≡C(CH2)2-、-CH2OCH2-、-(CH2)2OCH2-、-(CH2)3O(CH2)5-、-CH2CO(CH2)2-、-(CH2)2CO(CH2)3-、-(CH2)4COCH2-、-(CH2)3NHCO(CH2)3-、-(CH2)2CONH(CH2)3-、(CH2)2OCO(CH2)3-、CH2OCO(CH2)3-、-(CH2)2COO(CH2)2-中的一种或多种的组合。
进一步地,在本申请的一些实施例中,所述连接基团具有主链,所述主链的一端连接所述共轭原子,另一端连接所述配位基团,所述主链中,连接在所述配位基团和所述共轭基团之间的碳原子的数量为1~3,例如碳原子数可以是1、2或3。如此,有助于很好地将配位基团吸附过来的电子快速传递至共轭基团。可以理解的是,当所述主链上某一碳原子上有含碳取代基时,所述含碳取代基的碳原子不算作连接在所述配位基团和所述共轭基团之间的碳原子。
在本申请的一些实施例中,所述第一化合物可以是苯乙硫醇(CAS:4410-99-5)、苯甲酸(CAS:65-85-0)、苯乙酸(CAS:103-82-2)、对氰基苯甲酸(CAS:619-65-8)、对硝基苯乙酸(CAS:104-03-0)、4-乙烯基苯甲酸(CAS:1075-49-6)、2-巯基联苯(CAS:2688-96-2)、4-(苯巯基)苯乙酮(CAS:10169-55-8)、己二烯二酸(CAS:3588-17-8)、乙酰苯(CAS:98-86-2)、苯乙酰胺(CAS:103-81-1)、联苯甲酰(CAS:134-81-6)、4-丁酰基联苯(CAS:13211-01-3)、邻苯二甲酰亚胺(CAS:85-41-6)、联苯-4-甲酰胺(CAS:3815-20-1)、2,2-联苯基乙酰胺(CAS:4695-13-0)或者2-苯基丁酸(CAS:90-27-7),相应的,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
此外,在本申请的一些实施例中,所述复合材料还包括连接在所述量子点表面的第二配体,所述第二配体为油溶性配体,例如直链碳骨架烷烃,所述第二配体包括并不限于油酸(OA)、油胺(OAm)、辛胺、三辛基膦(TOP)、三辛基氧膦(TOPO)、十八烷基磷酸(ODPA)中的一种或多种,所述第二配体与所述量子点表面的阳离子悬挂键配位连接,有助于提高量子点的分散性,使得其在溶液体系中可以稳定存在。
在本申请的一些实施例中,所述复合材料中,所述第一配体的重量占所述复合材料的重量的百分比为0.8~12.5%,例如,所述百分比可以为0.8%、1%、2%、4%、5%、6%、7%、8%、9%、10%、12.5%以及上述列举的任意两个数值之间的值,如此,有助于提高量子点的荧光量子产率稳定性,同时起到改善量子点带电问题和促进空穴注入的作用。
在另一些实施例中,所述第一配体和所述第二配体的总重量为M,所述第一配体的重量占M的百分比值为10~50%,例如,所述百分比可以为10%、11%、13%、15%、20%、25%、30%、35%、40%、45%、50%以及上述列举的任意两个数值之间的值,如此,既有助于充分发挥第一配体的作用,又能有效维持量子点的分散性。
此外,在本申请的又一些实施例中,所述第一配体和所述第二配体的总重量为M,M占所述复合材料的重量的百分比为8~25%,例如,所述百分比可以为8%、9%、10%、14%、15%、16%、19%、20%、22%、24%、25%以及上述列举的任意两个数值之间的值,如此,既有助于充分发挥第一配体和第二配体的作用,又有助于改善复合材料的导电性能。
所述量子点包括单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
作为示例,所述核壳结构的量子点可以选自但不限于CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS、 CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS、InP/ZnSeS/ZnS、CdZnSe/ZnSe/ZnS、CdSeS/ZnSeS/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS及InP/ZnSe/ZnS中的一种或多种。
第二方面,本申请还提出一种复合材料的制备方法,参阅图1,所述制备方法包括以下步骤:
步骤S10,提供量子点载体和第一配体,所述量子点载体包含量子点;
步骤S20,将所述第一配体与所述量子点接触,以使得所述第一配体连接在所述量子点表面,得到复合材料;
其中,所述量子点载体包括量子点溶液或量子点薄膜,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
在本申请的一些实施例中,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
将第一配体连接至量子点表面可以有多种实现形式,例如,溶液配体交换法或固态膜配体交换法。
具体地,在一些实施例中,采用溶液配体交换的方法将第一配体连接至量子点表面,相应的,量子点载体表现为量子点溶液。
在一些实施例中,所述量子点溶液的制备方法为:将量子点分散在溶剂中,得到量子点溶液。所述溶剂包括但不限于正辛烷、正庚烷、正己烷中的一种或多种。
基于所述量子点载体为量子点溶液的情况,所述步骤S20包括:S21,将所述第一配体和所述量子点溶液混合,以使得所述第一配体连接在所述量子点表面,得到复合材料。
在一些实施例中,混合时的温度为20~80℃,例如,所述温度可以是20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、70℃、75℃、80℃以及上述列举的任意两个数值之间的值。控制混合温度在此范围内,有助于促进第一配体和量子点反应。
在一些实施例中,混合时间为5~120min,例如,混合时间可以是5min、10min、20min、30min、50min、60min、70min、80min、90min、100min、110min、120min以及上述列举的任意两个数值之间的值。控制混合时间在此范围内,可以使第一配体和量子点充分接触并反应。
在一些实施例中,混合时不断搅拌,且所述搅拌的速率可以为100~1000rpm,例如,搅拌速率可以为100rpm、200rpm、500rpm、600rpm、800rpm、900rpm、1000rpm以及上述列举的任意两个数值之间的值。如此,有助于将第一配体很好地分散在量子点溶液中,使其与量子点充分接触。
在一些实施例中,所述第一配体和所述量子点的重量比可以为(5~30):100,例如,所述重量比可以为5:100、7:100、10:100、15:100、20:100、25:100、30:100以及上述列举的任意两个数值之间的值。如此,可以很好地控制量子点表面的第一配体的含量,使其满足:所述第一配体的重量占所述复合材料的重量的百分比为0.8~12.5%。
具体地,在另一些实施例中,采用固态膜配体交换的方法将第一配体连接至量子点表面,相应的,量子点载体表现为量子点薄膜。
所述量子点薄膜的制备可采用本领域常规技术实现,例如旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。以旋涂法为例,在一些实施例中,所述量子点薄膜的制备方法为:将量子点溶液设置在基板上,固化得到量子点薄膜。所述基板可以是玻璃基板,也可以是一些半成品发光器件。
基于所述量子点载体为量子点薄膜的情况,所述步骤S20包括:S22,提供有机溶剂,将所述第一配体分散在所述有机溶剂中,得到第一配体溶液,将所述第一配体溶液设置在所述量子点薄膜的表面,形成液膜,静置后去除所述液膜。
步骤S22中,所述有机溶剂包括乙腈、乙醇、乙醚中的一种或多种。
所述第一配体溶液中,所述第一配体的浓度为0.1~10mol/L,例如,所述浓度可以是0.1mol/L、0.5mol/L、1mol/L、2mol/L、3mol/L、4mol/L、5mol/L、6mol/L、7mol/L、8mol/L、9mol/L、10mol/L以及上述列举的任意两个数值之间的值。通过控制第一配体溶液的浓度在此范围内,一方面可以使量子点和第一配体充分接触,另一方面可以有效控制量子点表面结合的第一配体的含量。
此外,步骤S22中,所述静置的时间为10~30s,例如,所述静置时间可以为10s、12s、 15s、20s、25s、28s、30s以及上述列举的任意两个数值之间的值。如此,一方面可以使量子点和第一配体充分接触,另一方面可以有效控制量子点表面结合的第一配体的含量。
在一些实施例中,所述制备方法还包括量子点的合成步骤。
在一些实施例中,所述量子点为单一结构量子点,相应的,所述量子点的合成包括:提供核阳离子前体和核阴离子前体;将所述核阳离子前体与所述核阴离子前体混合,反应得到含有量子点核的核溶液,分离量子点核,即得单一结构量子点。
在另一些实施例中,所述量子点为核壳结构量子点,相应的,所述量子点的合成还包括在量子点核外形成壳层的步骤,具体的,所述形成壳层的步骤包括:向核溶液中加入壳阳离子源和壳阴离子源,在所述量子点核的表面形成壳层。
所述核阳离子前体包括镉源、锌源、铟源、铜源、银源中的一种或多种。所述核阴离子前体包括硒源、硫源、碲源、磷源中的一种或多种。可以理解,所述核阳离子前体以及所述核阴离子前体可以根据要制备的量子点种类进行选择,例如,要制备的量子点种类为CdSe时,其所需的核阳离子前体为镉源,核阴离子前体为硒源。
在本申请的一些实施例中,所述量子点表面还连接有第二配体,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦、十八烷基磷酸中的一种或多种。所述第二配体可以在量子点的合成过程中引入,例如,将镉源或硒源分散在第二配体中,制成前体溶液的同时,也引入第二配体;也可以在合成量子点后通过配体交换引入,例如,可以在制得量子点后,将其与第二配体混合,经配体交换即得表面连接有第二配体的量子点。
第三方面,本申请还提出一种发光器件100,参阅图2,所述发光器件100包括阴极40、发光层20和阳极10,所述发光层20的材料包括复合材料,所述复合材料包括如上所述的复合材料,或者,所述复合材料由如上所述的制备方法制得。
采用所述复合材料制备发光层20,不仅可以使得所述发光器件100具有较高的发光效率,而且由于第一配体的存在,在发光器件100工作一段时间,量子点处于带电状态时,受第一配体的电子局域态密度重分布驱动,过量电子离域至第一配体并可逆地存储和释放,可以很好地抑制量子点充电的现象,降低电子波函数与空穴波函数重叠的比例,从而解决了因量子点带电的问题导致发光效率下降和寿命衰减;此外,由于第一配体具有较大的本征偶极矩,导致复合材料的能带位置上移,费米能级下降,从而起到了促进空穴注入的作用,改善了器件中电子注入和空穴注入的平衡性,很好地提升了器件的发光效率和寿命。
所述阳极10选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯 电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
所述阴极40选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
此外,请参阅图3,在本申请的一些实施例中,所述发光器件100还包括设于所述阴极40和所述发光层20之间的电子传输层30,所述电子传输层30的材料可以包括但不限于金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的一种或多种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的一种或多种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的一种或多种,掺杂元素选自Al、Mg、Li、In、Ga中的一种或多种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的一种或多种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的一种或多种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的一种或多种。
在一些实施例中,所述发光器件100还包括设于所述阴极40和所述发光层20之间的电子注入层,所述电子注入层的材料选自碳酸铯、氟化铯、叠氮铯及氟化锂中的一种或多种。需要说明的是,当器件中同时包含电子传输层30和电子注入层时,电子注入层设于电子传输层30和阴极40之间。
在一些实施例中,所述发光器件100还包括设于所述阳极10和所述发光层20之间的空穴传输层50,所述空穴传输层50的材料选自4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯 基)-N,N'-二苯基联苯胺、4,4',4'-三(N-咔唑基)-三苯胺、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))]、聚(4-丁基苯基-二苯基胺)(聚-TPD)、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基、聚(亚苯基亚乙烯基)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基]和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基]、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)(PVK)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB、掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的一种或多种。
在一些实施例中,所述发光器件100还包括设于所述阳极10和所述发光层20之间的空穴注入层60,所述空穴注入层60的材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、PEDOT、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、四氰基醌二甲烷、酞菁铜、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨及氧化铜中的一种或多种。需要说明的是,当器件中同时包含空穴传输层50和空穴注入层60时,空穴注入层60设于空穴传输层50和阳极10之间。
上述发光器件100的制备方法中,所述阳极10、空穴传输层50、发光层20、电子传输层30、阴极40及空穴注入层60的制备方法可采用本领域常规技术实现,例如化学法或物理法。其中,化学法包括化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法。物理法包括物理镀膜法和溶液法,其中,物理镀膜法包括:热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法等;溶液法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。
下面通过具体实施例和对比例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例复合材料包括量子点和连接在量子点表面的第一配体和第二配体,其中,第一配体为苯乙硫醇,第二配体为OA和TOP,第一配体的重量占所述复合材料的重量的百分比为6%,第一配体的重量占第一配体和第二配体的总量的百分比为30%,第一配体和第二 配体的总重量占复合材料的重量的百分比为20%。
复合材料的制备方法如下:
(1)配制前驱体溶液:称量10mmol硒粉和10mL TOP混合,配制成1mol/L的Se/TOP阴离子前驱体溶液;称量10mmol硫单质和10mL TOP混合,配制成1mol/L的S/TOP阴离子前驱体溶液。
(2)称量0.2mmol氧化镉、5mmol醋酸锌、15mL硬脂酸和5mL石蜡油置于三颈烧瓶中,加热到100℃,抽真空,待水氧处理完全,通入氩气,升温到310℃;待温度稳定,向反应体系中注入所述Se/TOP阴离子前驱体溶液0.5mL,保持温度继续熟化1h,得到CdZnSe量子点核。
(3)降低反应体系温度至280℃,向反应体系中同时滴加0.6mmol Cd(OA)2和1.5mL所述S/TOP阴离子前驱体溶液,持续1h,生长CdZnS壳层。
(4)保持温度,向反应体系中滴加0.5mL所述S/TOP阴离子前驱体溶液,持续20min。
(5)待反应完成,降至室温,以正庚烷为溶剂、乙醇为非溶剂,沉淀、纯化量子点三次,得到表面连接有OA和TOP的CdZnSe/CdZnS/ZnS量子点。
(6)将表面连接有OA和TOP的CdZnSe/CdZnS/ZnS量子点分散在正辛烷中,将溶液升温至40℃,按照所述第一配体和所述量子点的重量比为10:100,添加苯乙硫醇,以800rpm的转速进行搅拌,30min后,得到表面连接有OA、TOP和苯乙硫醇的CdZnSe/CdZnS/ZnS量子点,即得到复合材料。
实施例2
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为4-(苯巯基)苯乙酮。
实施例3
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为2-巯基联苯。
实施例4
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为联苯甲酰。
实施例5
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫 醇改为4-丁酰基联苯。
实施例6
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为2,2-联苯基乙酰胺。
实施例7
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为联苯-4-甲酰胺。
实施例8
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为2-苯基丁酸。
实施例9
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,采用固态膜配体交换的方法在量子点表面连接第一配体,相应的,步骤(6)改为:
将苯乙硫醇分散在乙腈中,得到浓度为1mol/L的苯乙硫醇溶液。
将表面连接有OA和TOP的CdZnSe/ZnSe/ZnS量子点分散在正辛烷中,制成浓度为15mg/mL的量子点溶液,将量子点溶液旋涂在基板上,100℃退火10min,得到量子点薄膜。
将苯乙硫醇溶液旋涂在量子点薄膜表面,静置15s后,再次重复旋涂-静置步骤,然后用乙腈清洗量子点薄膜表面,得到表面连接有苯乙硫醇的量子点薄膜,即得到复合材料。
实施例10
本实施例方案与实施例9基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为4-(苯巯基)苯乙酮。
实施例11
本实施例方案与实施例9基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为己二烯二酸。
实施例12
本实施例方案与实施例9基本相同,区别仅在于,本实施例中,步骤(6)中,苯乙硫醇改为4-乙烯基苯甲酸和2-巯基联苯的混合物,混合物中,二者摩尔比为1:1。
实施例13
本实施例方案与实施例9基本相同,区别仅在于,本实施例中,步骤(6)中,所述第 一配体的浓度由1mol/L改为12mol/L。
实施例14
本实施例方案与实施例9基本相同,区别仅在于,本实施例中,步骤(6)中,静置时间由15s改为40s。
对比例1
对比例1的方案与实施例1基本相同,区别仅在于,对比例1中,减去步骤(6),即本对比例1制得的材料为表面连接有OA和TOP的CdZnSe/CdZnS/ZnS量子点。
对比例2
本对比例方案与实施例1基本相同,区别仅在于,本对比例中,步骤(6)中,苯乙硫醇改为乙硫醇。
对比例3
本对比例方案与实施例1基本相同,区别仅在于,本对比例中,步骤(6)中,苯乙硫醇改为苯乙胺。
器件实施例1
(1)提供厚度为100nm的ITO阳极。
(2)在所述阳极上旋涂PEDOT:PSS材料,100℃退火15min,得到厚度为40nm的空穴注入层。
(3)在所述空穴注入层上旋涂TFB材料,80℃退火15min,得到厚度为30nm的空穴传输层。
(4)将实施例1制得的复合材料分散在正辛烷中,制成浓度为15mg/mL的混合溶液,在空穴传输层上旋涂混合溶液,100℃退火10min,得到厚度为15nm的发光层。
(5)在发光层上旋涂ZnO的乙醇溶液,80℃退火15min,得到厚度为40nm的电子传输层。
(6)在所述电子传输层上蒸镀Ag,得到厚度为100nmnm的阴极,封装,得到QLED器件。
器件实施例2~8
器件实施例m的方案与器件实施例1基本相同,区别仅在于,器件实施例m中,步骤(4)中,采用的复合材料为实施例m制得的复合材料,其中,m为2~8。
器件实施例9
本器件实施例的方案与器件实施例1基本相同,区别仅在于,本器件实施例中,步骤(4)为:将苯乙硫醇分散在乙腈中,得到浓度为1mol/L的苯乙硫醇溶液。将表面连接有OA和OAm的CdZnSe/ZnSe/ZnS量子点分散在正辛烷中,制成浓度为15mg/mL的量子点溶液,将量子点溶液旋涂在空穴传输层上,100℃退火10min,得到厚度为15nm的量子点薄膜。将苯乙硫醇溶液旋涂在量子点薄膜表面,静置15s后,再次重复旋涂-静置步骤,然后用乙腈清洗量子点薄膜表面,得到表面连接有苯乙硫醇的量子点薄膜,即得发光层。
器件实施例10
本器件实施例的方案与器件实施例9基本相同,区别仅在于,本器件实施例中,步骤(4)中,苯乙硫醇改为4-(苯巯基)苯乙酮。
器件实施例11
本器件实施例的方案与器件实施例9基本相同,区别仅在于,本器件实施例中,步骤(4)中,苯乙硫醇改为己二烯二酸。
器件实施例12
本器件实施例的方案与器件实施例9基本相同,区别仅在于,本器件实施例中,步骤(4)中,苯乙硫醇改为4-乙烯基苯甲酸和2-巯基联苯的混合物,混合物中,二者摩尔比为1:1。
器件实施例13
本器件实施例的方案与器件实施例9基本相同,区别仅在于,本器件实施例中,步骤(4)中,所述第一配体的浓度由1mol/L改为12mol/L。
器件实施例14
本器件实施例的方案与器件实施例9基本相同,区别仅在于,本器件实施例中,步骤(4)中,静置时间由15s改为40s。
器件对比例1
器件对比例1的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例1制得的表面连接有OA和TOP的CdZnSe/CdZnS/ZnS量子点。
器件对比例2
器件对比例2的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例2制得的复合材料。
器件对比例3
器件对比例3的方案与器件实施例1基本相同,区别仅在于,步骤(4)中,采用的复合材料为对比例3制得的复合材料。
(一)取上述实施例1-14和对比例1中制得的复合材料进行荧光量子产率(PLQY)测试。结果记入表1。测试方法如下:
荧光量子产率:将复合材料放入爱丁堡光谱仪内置积分球对入射光子与复合材料发射光子进行对比。
量子点荧光稳定性的检测方法为:量子点溶液在蓝光激发下,保持10min后,测试荧光量子产率,计算其荧光量子产率的衰减变化。
表1
由表一可以看出:
相较对比例1,各实施例的PLQY基本不变,说明添加第一配体,对量子点的PLQY的影响较小;但各实施例的蓝光激发下的荧光稳定性得到明显改善,说明第一配体的作用对量子点辐射复合过程中俄歇复合的比率有降低作用,对荧光稳定性的保持作用明显。
(二)取上述器件实施例1-14和器件对比例1-3中制得的器件进行发射峰(EL)、半峰宽(FWHM)、电流效率(CE)以及寿命T95@1000nit测试。结果记入表2。测试方法如下:
(1)发射峰(EL)、半峰宽(FWHM)以及电流效率(CE)分别通过Keithley 2400高精度数字源表、Ocean Optic USB2000+光谱仪以及LS-160亮度计测试,并计算所得;
(2)寿命T95@1000nit的测试方法为:
器件在恒定电流或电压驱动下,亮度减少至最高亮度的一定比例时所需的时间,亮度下降至最高亮度的95%的时间定义为T95,该寿命为实测寿命。为缩短测试周期,器件寿命测试通常是在高亮度下通过加速器件老化进行,并通过延伸型指数衰减亮度衰减拟合公式拟合得到高亮度下的寿命,比如:1000nit下的寿命计为T95@1000nit。具体计算公式如下:
其中,T95L为低亮度下的寿命,T95H为高亮度下的实测寿命,LH为器件加速至最高亮度,LL为1000nit,A为加速因子,本实验通过测得若干组绿色QLED器件在额定亮度下的寿命得出A值为1.7。
表2
请参阅表2,可知:
相较器件对比例1,各器件实施例的电流效率得到了大幅度的提升,说明采用本申请提出的复合材料制作发光层有助于提高器件的发光效率,这可能是因为在量子点表面结合 第一配体后,很好地抑制了量子点充电的情况,改善了发光层量子点带电造成的非辐射俄歇复合效率下降和量子点荧光淬灭问题;同时,各器件实施例具有远高于器件对比例1的寿命,说明采用本申请提出的复合材料制作发光层有助于提高器件的寿命,这可能是因为第一配体的引入不仅抑制了量子点充电的情况,而且起到了改善载流子注入平衡的作用;
将器件实施例1和器件对比例2进行对比,可以看出,器件对比例2的电流效率和寿命都远低于器件实施例1,这说明,采用只含有配位基团的化合物作为配体材料,难以起到改善量子点充电和器件载流子注入平衡的作用,这可能是因为,缺少共轭基团的情况下,化合物无法起到可逆地存储和释放过量的电子的作用,因此,难以抑制量子点充电的问题;进一步地,对比器件实施例1-8和器件对比例3,可以看出,选择配位基团为巯基、羧基、酰基、酰胺基的化合物作为第一配体,对器件性能的改善效果更佳;
将器件实施例1和器件实施例8进行对比,可以看出,器件实施例1的效果提升更明显,说明控制连接配位基团和共轭原子之间的碳原子数在1~3范围内,有利于提高第一配体对量子点充电问题的抑制效果;
将器件实施例1和器件实施例9,器件实施例2和器件实施例10分别进行对比,可以看出器件实施例1和2的发光效率和寿命提升效果更好,这可能是因为,采用溶液配体交换法制备的复合材料中,第一配体的分布更加均匀,与量子点能够更好地结合。
以上对本申请实施例所提供的复合材料及其制备方法及发光器件进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种复合材料,其中,包括量子点和第一配体,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,所述第一配体通过所述配位基团连接在所述量子点表面;
    其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
  2. 根据权利要求1所述的复合材料,其中,所述第一化合物中,所述共轭基团的数量为1~5,且当所述第一化合物含有多个所述共轭基团时,多个所述共轭基团相互共轭形成共轭体系;和/或,
    所述第一化合物中,所述配位基团的数量为1~3个。
  3. 根据权利要求1所述的复合材料,其中,所述第一化合物由所述共轭基团和所述配位基团构成,其中,所述共轭基团选自C1-C10的共轭烯基、取代或未取代的苯基、取代或未取代的联苯基团。
  4. 根据权利要求1所述的复合材料,其中,所述第一化合物的结构式还包括连接基团,所述共轭基团和所述配位基团通过所述连接基团连接,其中连接基团选自-(CH2)m1-、-(CH2)m2CH=CH(CH2)m3-、-(CH2)m4C≡C(CH2)m5-、-(CH2)m6O(CH2)m7-、-(CH2)m8CO(CH2)m9-、-(CH2)m10NHCO(CH2)m11-、(CH2)m12OCO(CH2)m13-、-(CH2)m14COO(CH2)m15-中的一种或多种的组合,其中,m1至m15各自独立地选自1~5的整数。
  5. 根据权利要求1所述的复合材料,其中,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
  6. 根据权利要求1所述的复合材料,其中,所述复合材料还包括连接在所述量子点表面的第二配体,优选地,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦、十八烷基磷酸中的一种或多种。
  7. 根据权利要求6所述的复合材料,其中,所述复合材料中,所述第一配体的重量占所述复合材料的重量的百分比为0.8~12.5%。
  8. 根据权利要求6所述的复合材料,其中,所述第一配体的重量占所述第一配体和所述第二配体的总重量的10~50%。
  9. 根据权利要求6所述的复合材料,其中,所述第一配体和所述第二配体的总重量占所述复合材料的重量的8~25%。
  10. 根据权利要求1所述的复合材料,其中,所述量子点包括单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。
  11. 一种复合材料的制备方法,其中,包括以下步骤:
    提供量子点载体和第一配体,所述量子点载体包含量子点;
    将所述第一配体与所述量子点接触,以使得所述第一配体连接在所述量子点表面,得到复合材料;
    其中,所述量子点载体包括量子点溶液或量子点薄膜,所述第一配体包括满足以下条件的第一化合物中的一种或多种:所述第一化合物的结构式包含共轭基团和配位基团,其中,所述共轭基团包括含共轭双键的基团、取代或未取代的苯基、取代或未取代的联苯基团以及取代或未取代的C7-C20稠环芳基中的一种或多种的组合,所述配位基团包括巯基、 羧基、酰基、酰胺基中的一种或多种的组合;所述取代基选自于硝基、氰基、卤素、羟基、乙烯基、C1~C10的烷基、C1~C10的烷氧基、C1~C10的烷硫基中的一种或多种。
  12. 根据权利要求11所述的制备方法,其中,所述量子点载体为量子点溶液时,将所述第一配体与所述量子点接触的步骤包括:在20~80℃下,将所述第一配体和所述量子点溶液混合5~120min,其中,所述量子点溶液的溶剂包括正辛烷、正庚烷、正己烷中的一种或多种,所述第一配体和所述量子点的重量比为(5~30):100。
  13. 根据权利要求11所述的制备方法,其中,所述量子点载体为量子点薄膜时,将所述第一配体与所述量子点接触的步骤包括:提供有机溶剂,将所述第一配体分散在所述有机溶剂中,得到浓度为0.1~10mol/L的第一配体溶液,将所述第一配体溶液设置在所述量子点薄膜的表面,形成液膜,静置10~30s后去除所述液膜,其中,所述有机溶剂包括乙腈、乙醇、乙醚中的一种或多种。
  14. 根据权利要求11所述的制备方法,其中,所述量子点表面连接有第二配体,所述第二配体包括油酸、油胺、辛胺、三辛基膦、三辛基氧膦、十八烷基磷酸中的一种或多种。
  15. 根据权利要求11所述的制备方法,其中,所述第一配体包括苯乙硫醇、苯甲酸、苯乙酸、对氰基苯甲酸、对硝基苯乙酸、4-乙烯基苯甲酸、2-巯基联苯、4-(苯巯基)苯乙酮、己二烯二酸、乙酰苯、苯乙酰胺、联苯甲酰、4-丁酰基联苯、邻苯二甲酰亚胺、联苯-4-甲酰胺、2,2-联苯基乙酰胺、2-苯基丁酸中的一种或多种。
  16. 一种发光器件,包括阴极、发光层和阳极,其中,所述发光层的材料包括复合材料,所述复合材料包括权利要求1至10任一项所述的复合材料,或者,所述复合材料由权利要求11至15任一项所述的制备方法制得。
  17. 根据权利要求16所述的发光器件,其中,所述阳极选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种;
    和/或,所述阴极选自掺杂金属氧化物颗粒电极、金属与金属氧化物的复合电极、石墨 烯电极、碳纳米管电极、金属电极或合金电极,所述掺杂金属氧化物颗粒电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或几种,所述金属与金属氧化物的复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS,所述金属电极的材料选自Ag、Al、Cu、Mo、Au、Pt、Si、Ca、Mg及Ba中的一种或几种。
  18. 根据权利要求16所述的发光器件,其中,所述发光器件还包括设于所述阴极和所述发光层之间的电子传输层,所述电子传输层的材料选自金属氧化物、掺杂金属氧化物、Ⅱ-Ⅵ族半导体材料、Ⅲ-Ⅴ族半导体材料及Ⅰ-Ⅲ-Ⅵ族半导体材料中的一种或多种,所述金属氧化物选自ZnO、BaO、TiO2、SnO2中的一种或多种;所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的一种或多种,掺杂元素选自Al、Mg、Li、In、Ga中的一种或多种,所述Ⅱ-Ⅵ半导体族材料选自ZnS、ZnSe、CdS中的一种或多种;所述Ⅲ-Ⅴ半导体族材料选自InP、GaP中的一种或多种;所述Ⅰ-Ⅲ-Ⅵ族半导体材料选自CuInS、CuGaS中的一种或多种;
    和/或,所述发光器件还包括设于所述阴极和所述发光层之间的电子注入层,所述电子注入层的材料选自碳酸铯、氟化铯、叠氮铯及氟化锂中的一种或多种。
  19. 根据权利要求16所述的发光器件,其中,所述发光器件还包括设于所述阳极和所述发光层之间的空穴传输层,所述空穴传输层的材料选自4,4'-N,N'-二咔唑基-联苯、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺、4,4',4'-三(N-咔唑基)-三苯胺、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))]、聚(4-丁基苯基-二苯基胺)、聚苯胺、聚吡咯、聚(对)亚苯基亚乙烯基、聚(亚苯基亚乙烯基)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基]和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基]、铜酞菁、芳香族叔胺、多核芳香叔胺、4,4'-双(对咔唑基)-1,1'-联苯化合物、N,N,N',N'-四芳基联苯胺、PEDOT:PSS及其衍生物、聚(N-乙烯基咔唑)及其衍生物、聚甲基丙烯酸酯及其衍生物、聚(9,9-辛基芴)及其衍生物、聚(螺芴)及其衍生物、N,N'-二(萘-1-基)-N,N'-二苯基联苯胺、螺NPB、掺杂石墨烯、非掺杂石墨烯、C60、掺杂或非掺杂的NiO、掺杂或非掺杂的MoO3、掺杂或非掺杂的WO3、掺杂或非掺杂的V2O5、掺杂或非掺杂的P型氮化 镓、掺杂或非掺杂的CrO3、掺杂或非掺杂的CuO中的一种或多种。
  20. 根据权利要求16所述的发光器件,其中,所述发光器件还包括设于所述阳极和所述发光层之间的空穴注入层,所述空穴注入层的材料选自2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、PEDOT、PEDOT:PSS、PEDOT:PSS掺有s-MoO3的衍生物、4,4',4'-三(N-3-甲基苯基-N-苯基氨基)三苯胺、四氰基醌二甲烷、酞菁铜、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨及氧化铜中的一种或多种。
PCT/CN2023/120550 2022-11-29 2023-09-22 复合材料及其制备方法及发光器件 WO2024114056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211506529.1A CN118119253A (zh) 2022-11-29 2022-11-29 复合材料及其制备方法及发光器件
CN202211506529.1 2022-11-29

Publications (1)

Publication Number Publication Date
WO2024114056A1 true WO2024114056A1 (zh) 2024-06-06

Family

ID=91218262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120550 WO2024114056A1 (zh) 2022-11-29 2023-09-22 复合材料及其制备方法及发光器件

Country Status (2)

Country Link
CN (1) CN118119253A (zh)
WO (1) WO2024114056A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935661A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 正型qled器件及其制备方法
CN109935724A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点发光层及其制备方法和应用
CN110746973A (zh) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 一种颗粒及其制备方法与量子点发光二极管

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935661A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 正型qled器件及其制备方法
CN109935724A (zh) * 2017-12-15 2019-06-25 Tcl集团股份有限公司 量子点发光层及其制备方法和应用
CN110746973A (zh) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 一种颗粒及其制备方法与量子点发光二极管

Also Published As

Publication number Publication date
CN118119253A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
US10961446B2 (en) Quantum dots, production methods thereof, and light emitting device including the same
JP7199922B2 (ja) 量子ドット素子及び電子装置
EP3537492A1 (en) Quantum dot device and electronic device
KR102649296B1 (ko) 양자점 소자와 표시 장치
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
US10923668B2 (en) Electroluminescent device, and display device comprising thereof
Qiu et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer
KR20210034953A (ko) 발광소자, 발광소자의 제조 방법과 표시 장치
US11171291B2 (en) Electroluminescent device, and display device comprising thereof
WO2024114056A1 (zh) 复合材料及其制备方法及发光器件
CN113801648B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024120060A1 (zh) 复合材料、发光器件及其制备方法
CN114068828A (zh) 复合膜层及其制备方法和发光二极管
WO2024109334A1 (zh) 复合材料、组合物及发光器件
CN114479827A (zh) 复合材料及其制备方法、发光二极管
WO2024056004A1 (zh) 复合材料及其制备方法及量子点发光二极管
WO2024088181A1 (zh) 发光器件及其制备方法及显示装置
WO2024131279A1 (zh) 发光器件及显示装置
WO2024114078A1 (zh) 量子点的制备方法、材料筛选方法与发光器件
WO2024109341A1 (zh) 复合电极及其制备方法、发光器件
CN117186871B (zh) 复合材料、薄膜、发光器件及其制备方法、mini-LED背光模组及显示装置
WO2024061102A1 (zh) 复合材料、组合物及发光二极管
CN113801470B (zh) 复合材料的制备方法和发光二极管
WO2024114066A1 (zh) 发光器件及其制备方法及显示装置
WO2024061105A1 (zh) 功能膜及其制备方法及发光器件