WO2024088181A1 - 发光器件及其制备方法及显示装置 - Google Patents

发光器件及其制备方法及显示装置 Download PDF

Info

Publication number
WO2024088181A1
WO2024088181A1 PCT/CN2023/125768 CN2023125768W WO2024088181A1 WO 2024088181 A1 WO2024088181 A1 WO 2024088181A1 CN 2023125768 W CN2023125768 W CN 2023125768W WO 2024088181 A1 WO2024088181 A1 WO 2024088181A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
emitting device
layer
composite cathode
Prior art date
Application number
PCT/CN2023/125768
Other languages
English (en)
French (fr)
Inventor
王劲
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211319894.1A external-priority patent/CN117998889A/zh
Priority claimed from CN202211319859.XA external-priority patent/CN117998883A/zh
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024088181A1 publication Critical patent/WO2024088181A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight

Definitions

  • the present application relates to the field of semiconductors, and in particular to a light-emitting device, a method for preparing the same, and a display device.
  • QLED is an electroluminescent device based on quantum dot technology. It has a series of excellent characteristics, such as self-luminescence, no need for backlight module, wide viewing angle, high contrast, full curing, suitable for flexible panels, good temperature characteristics, fast response speed, energy saving and environmental protection.
  • QLED devices have various efficiencies (current, power or external quantum efficiency) that decay or increase over time or working conditions, namely "negative aging effect” and "positive aging effect”. From the perspective of mass production, the aging phenomenon of the performance of these two devices changing over time or working conditions seriously affects the stability of the product and makes it difficult to meet the reliability requirements (Reliability Analysis, RA).
  • the present application provides a light-emitting device, a method for manufacturing the same, and a display device.
  • the present application provides a light-emitting device, comprising an anode, a light-emitting layer, an electronic functional layer and a cathode stacked in sequence, wherein the material of the electronic functional layer comprises a metal oxide, and the material of the light-emitting layer comprises quantum dots; wherein:
  • the cathode is a composite cathode, and the composite cathode contains metal particles and a first modifying material; or,
  • the light emitting device further comprises an interface modification layer disposed between the light emitting layer and the electronic functional layer, wherein the material of the interface modification layer comprises a second modification material;
  • the first modifying material and the second modifying material each independently include at least one modifying compound having the following chemical formula: RSX; R is a group containing a first unsaturated bond, X is hydrogen or a monovalent organic group X 1 , and the number of atoms between the S atom and the first unsaturated bond is greater than 1.
  • the present application provides a method for preparing a light-emitting device, the method comprising the following steps:
  • Providing a stacked anode and a light-emitting layer providing a second modifying material, and arranging the second modifying material on a side of the light-emitting layer away from the anode to form an interface modification layer; forming an electronic functional layer containing a metal oxide on a side of the interface modification layer away from the light-emitting layer; and forming a cathode on a side of the electronic functional layer away from the interface modification layer;
  • the preparation method comprises the following steps:
  • the electronic functional layer contains a metal oxide
  • the preparation method comprises the following steps:
  • the preparation method comprises the following steps:
  • the material of the electronic functional layer includes metal oxide, the light-emitting layer includes quantum dots, the composite cathode material includes metal particles and a first modifying material, and the first modifying material and the second modifying material each independently include at least one modifying compound having the following chemical formula: RSX; R is a group containing a first unsaturated bond, X is hydrogen or a monovalent organic group X1 , and the number of atoms between the S atom and the first unsaturated bond is greater than 1.
  • an embodiment of the present application provides a display device, including a light-emitting device, wherein the light-emitting device includes the light-emitting device as described above, or the light-emitting device is manufactured by the method for manufacturing the light-emitting device as described above.
  • FIG1 is a schematic structural diagram of a light emitting device according to a first embodiment of the present application.
  • FIG2 is a schematic structural diagram of a light emitting device according to a second embodiment of the present application.
  • FIG3 is a schematic structural diagram of a light emitting device according to a third embodiment of the present application.
  • FIG4 is a schematic structural diagram of a light emitting device according to a fourth embodiment of the present application.
  • FIG5 is a schematic flow chart of a method for preparing a light-emitting device according to the first embodiment of the present application
  • FIG6 is a schematic flow chart of a method for preparing a light emitting device according to the second embodiment of the present application.
  • FIG. 7 is a schematic diagram of a process for preparing a light emitting device according to the third embodiment of the present application.
  • FIG8 is a schematic flow chart of a method for preparing a light emitting device according to a fourth embodiment of the present application.
  • FIG9 is a schematic flow chart of a method for preparing a light emitting device according to a fifth embodiment of the present application.
  • FIG10 is a schematic flow chart of a method for preparing a light emitting device according to a sixth embodiment of the present application.
  • FIG11 is a schematic flow chart of a method for preparing a light emitting device according to the seventh embodiment of the present application.
  • FIG12 is a schematic flow chart of a method for preparing a light emitting device according to the eighth embodiment of the present application.
  • Reference numerals 100-light-emitting device; 10-anode; 20-light-emitting layer; 30-interface modification layer; 40-electronic functional layer; 41-electron transport layer; 42 - electron injection layer; 50 - cathode; 50a - composite cathode; 60 - hole transport layer; 70 - hole injection layer.
  • a And/or B describes the association relationship of associated objects, indicating that there may be three relationships, for example, A And/or B can mean: A exists alone, A and B exist at the same time, and B exists alone. A and B can be singular or plural.
  • At least one means one or more
  • plural means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • “at least one of a, b, or c” can all mean: a, b, c, a-b (i.e. a and b), a-c, b-c, or a-b-c, where a, b, c can be single or multiple, respectively.
  • the unsaturated bond includes, but is not limited to, a carbon-carbon double bond, a carbon-carbon triple bond, a benzene ring, a heteroaromatic ring, a carbon-nitrogen double bond, or a carbon-nitrogen triple bond.
  • substituted means that the hydrogen atom in the substituted group is replaced by a substituent.
  • substituted or unsubstituted means that the defined group may be substituted or not.
  • substituents are selected from but not limited to deuterium atoms, cyano groups, isocyano groups, nitro groups or halogens, alkyl groups containing 1 to 20 C atoms, heterocyclic groups containing 3 to 20 ring atoms, aromatic groups containing 6 to 20 ring atoms, heteroaromatic groups containing 5 to 20 ring atoms, -NR'R", silane groups, carbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, carbamoyl groups, haloformyl groups, formyl groups, isocyanate groups, thiocyanate groups, isothiocyanate groups,
  • R' and R" in -NR'R" are independently selected from but not limited to H, deuterium atoms, , cyano, isocyano, nitro, halogen, alkyl containing 1 to 10 C atoms, heterocyclic group containing 3-20 ring atoms, aromatic group containing 6 to 20 ring atoms, heteroaromatic group containing 5 to 20 ring atoms.
  • the substituent is selected from but not limited to deuterium atom, cyano, isocyano, nitro, halogen, alkyl containing 1 to 10 C atoms, heterocyclic group containing 3 to 10 ring atoms, aromatic group containing 6 to 20 ring atoms, heteroaromatic group containing 5 to 20 ring atoms, silane group, carbonyl group, alkoxycarbonyl group, aryloxycarbonyl group, carbamoyl group, haloformyl group, formyl group, isocyanate group, thiocyanate group, isothiocyanate group, hydroxyl group, trifluoromethyl group, and the above groups may also be further substituted by substituents acceptable in the art.
  • aryl or aromatic group refers to an aromatic hydrocarbon group derived from an aromatic ring compound by removing a hydrogen atom, which can be a monocyclic aromatic group, a condensed aromatic group, or a polycyclic aromatic group.
  • a polycyclic ring at least one is an aromatic ring system.
  • substituted or unsubstituted aromatic group having 6 to 40 ring atoms refers to an aromatic group containing 6 to 40 ring atoms, preferably a substituted or unsubstituted aromatic group having 6 to 30 ring atoms, more preferably a substituted or unsubstituted aromatic group having 6 to 18 ring atoms, and particularly preferably a substituted or unsubstituted aromatic group having 6 to 14 ring atoms, and the aromatic group is optionally further substituted; suitable examples include, but are not limited to: phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, Phenanthryl, fluoranthenyl, triphenylene, pyrenyl, perylene, naphthyl, fluorenyl, perylene, acenaphthene and derivatives thereof.
  • aromatic groups may also be interrupted by short non-aromatic units (e.g. ⁇ 10% non-H atoms, such as C, N or O atoms), such as acenaphthene, fluorene, or 9,9-diarylfluorene, triarylamine, diaryl ether system should also be included in the definition of aromatic group.
  • short non-aromatic units e.g. ⁇ 10% non-H atoms, such as C, N or O atoms
  • acenaphthene, fluorene, or 9,9-diarylfluorene triarylamine
  • diaryl ether system should also be included in the definition of aromatic group.
  • hydrocarbyl refers to a group containing only carbon and hydrogen atoms, generally refers to the group remaining after the corresponding hydrocarbon loses a hydrogen atom (H), and the hydrocarbyl includes saturated hydrocarbyl and unsaturated hydrocarbyl.
  • Saturated hydrocarbyl, i.e., alkyl can represent straight chain, branched chain and/or cyclic alkyl.
  • the carbon number of the alkyl can be 1 to 50, 1 to 30, 1 to 20, 1 to 10 or 1 to 6.
  • C 1-9 alkyl refers to an alkyl containing 1 to 9 carbon atoms, and each occurrence can be independently C 1 alkyl, C 2 alkyl, C 3 alkyl, C 4 alkyl, C 5 alkyl, C 6 alkyl, C 7 alkyl, C 8 alkyl or C 9 alkyl.
  • alkyl include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, isobutyl, 2-ethylbutyl, etc.
  • Unsaturated hydrocarbon groups include alkenyl, alkynyl, aryl, etc.
  • the carbon number of the unsaturated hydrocarbon group can be 2 to 60, 2 to 6, 2 to 10, etc.
  • the number of unsaturated bonds (such as carbon-carbon double bonds, carbon-carbon triple bonds, etc.) contained in the unsaturated hydrocarbon group can be one or more.
  • amino refers to an amine derivative having the structural characteristics of the formula -N(X) 2 , wherein each "X” is independently H, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocyclyl, etc.
  • Non-limiting types of amines include -NH2 , -N(alkyl) 2 , -NH(alkyl), -N(cycloalkyl) 2 , -NH(cycloalkyl), -N(heterocyclyl) 2 , -NH(heterocyclyl), -N(aryl) 2 , -NH(aryl), -N(alkyl)(aryl), -N(alkyl)(heterocyclyl), -N(cycloalkyl)(heterocyclyl), -N(aryl)(heteroaryl), -N(alkyl)(heteroaryl), etc.
  • the "number of atoms between the S atom and the first unsaturated bond" and the “number of carbon atoms between the S atom and the second unsaturated bond” refer to the number of spacer atoms located between the sulfur atom and the unsaturated bond for connecting the sulfur atom and the unsaturated bond, and the spacer atoms include the unsaturated atom connected to the unsaturated bond near the sulfur atom.
  • the unsaturated bond is a double bond
  • the unsaturated atom directly connected to the double bond is an unsaturated carbon atom.
  • the embodiment of the present application provides a light-emitting device 100.
  • the light-emitting device 100 includes an anode 10, a light-emitting layer 20, an interface modification layer 30, an electronic functional layer 40, and a cathode 50 which are stacked in sequence, wherein: the material of the electronic functional layer 40 includes a metal oxide; the material of the light-emitting layer 20 includes quantum dots.
  • the cathode 50 is a composite cathode 50a, and the composite cathode 50a includes metal particles and a first modification material; or the light-emitting device 100 also includes An interface modification layer 30 is provided between the light emitting layer 20 and the electronic functional layer 40, wherein the material of the interface modification layer 30 includes a second modification material; the first modification material and the second modification material each independently include at least one modification compound having the following chemical formula: RSX; R is a group containing a first unsaturated bond, X is hydrogen or a monovalent organic group X1 , and the number of atoms between the S atom and the first unsaturated bond is greater than 1.
  • X is hydrogen, that is, the chemical formula is R-SH, and the modified compound is an unsaturated compound containing a thiol group; in other embodiments, X is a monovalent organic group X 1 , that is, the chemical formula is RSX 1 , and the modified compound is an unsaturated compound containing a sulfur group, wherein X 1 can be any monovalent organic group, for example, an alkyl group, an unsaturated hydrocarbon group, a halogen group, a nitro group, an amine group, an aryl group, a heteroaryl group, a carbonyl group, a hydroxyl group, an alkoxy group, or a combination of the above groups, etc.
  • the light-emitting device 100 of this embodiment includes an anode 10, a light-emitting layer 20, an interface modification layer 30, an electronic functional layer 40 and a cathode 50 which are stacked in sequence, wherein: the material of the electronic functional layer 40 includes a metal oxide; the material of the light-emitting layer 20 includes quantum dots; the material of the interface modification layer 30 includes at least one modified compound having the above chemical formula; in other embodiments, please refer to FIG. 3 and FIG.
  • the light-emitting device 100 includes a stacked anode 10, a light-emitting layer 20, an electronic functional layer 40 and a cathode 50, wherein: the material of the electronic functional layer 40 includes a metal oxide, the cathode 50 is a composite cathode 50a, and the composite cathode 50a includes metal particles and a first modification material.
  • the first modification material and the second modification material may be the same or different.
  • the interface modification layer 30 is disposed between the light emitting layer 20 and the electronic functional layer 40 .
  • the light-emitting device 100 provided in the present application is provided with an interface modification layer 30 between the light-emitting layer 20 and the electronic functional layer 40.
  • the material of the interface modification layer 30 includes at least one of an unsaturated compound containing a thiol group and an unsaturated compound containing a sulfur group.
  • at least one unsaturated bond is separated from the thiol group/sulfur group by a sufficient number of atoms, so that the thiol group/sulfur group and the unsaturated bond can act on the light-emitting layer 20 and the electronic functional layer 40 respectively.
  • the thiol group/sulfur group and the quantum dot can form a surface coordination, and the two are coordinated and connected.
  • the unsaturated bond is an electrophilic group with strong adsorption, and can form a strong interaction with the metal oxide in the electronic functional layer 40, thereby inhibiting the lattice mismatch oxygen ions in the metal oxide or the ambient oxygen from undergoing an electrochemical reaction to produce
  • the living oxygen ions and oxygen vacancies avoid the electrical aging stability problem caused by the oxidation of quantum dot materials and the change of charge mobility of metal oxides, and effectively improve the stability of the device.
  • there are surface defects such as lattice mismatch and oxygen/metal vacancies at the interface between quantum dots and metal oxides that can cause exciton quenching.
  • the material of the interface modification layer 30 When the material of the interface modification layer 30 combines with quantum dots and metal oxides, it will also interact with some surface defect sites, thereby passivating these surface defects, helping to inhibit exciton quenching and avoid device performance degradation. It can be understood that in this article, the main chain refers to the longest carbon chain containing unsaturated bonds.
  • the material of the interface modification layer 30 is composed of at least one of the modification compounds.
  • the material of the interface modification layer 30 is composed of at least one of the unsaturated compound containing a thiol group and the unsaturated compound containing a sulfur group.
  • R is selected from substituted or unsubstituted unsaturated hydrocarbon groups, that is, R can be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group containing a substituent.
  • R the number of carbon atoms in the main chain is 3-60.
  • the number of carbon atoms in the main chain can be 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and integer values within the range between any two values.
  • the number of carbon atoms in the main chain is set to 3 to 60, which not only allows the thiol/sulfur group and the unsaturated bond to be separated by a certain distance, so that the two can interact well with the quantum dots and the electronic functional layer 40, respectively, but also the preparation process is simple.
  • the number of carbon atoms between the first unsaturated bond and the S atom is greater than or equal to 1/2 of the number of carbon atoms in the main chain. In this way, it can be ensured that the thiol/sulfur group and the unsaturated bond are separated by a sufficient distance, so that the two can interact well with the quantum dots and the electronic functional layer 40 respectively.
  • R is selected from an unsaturated hydrocarbon group containing a substituent, and the substituent is selected from at least one of an aromatic group, a hydroxyl group, a thiol group, a sulfur group, an ester group, an ether group, a carbonyl group, a thioether group, an amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group.
  • the aromatic group, the hydroxyl group, the thiol group, the sulfur group, the ester group, the ether group, the carbonyl group, the thioether group, the amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group are all electrophilic groups, and at least one hydrogen atom on the unsaturated hydrocarbon group is replaced by the above electrophilic group, so that R has a stronger electrophilicity, enhances its interaction with the metal oxide, and further limits the electrochemical reaction of the metal oxide when power is applied.
  • the chemical formula of the modified compound is RSX 1 , i.e., an unsaturated compound containing a sulfur group
  • X 1 can be any monovalent organic group, for example, an alkyl group, an unsaturated hydrocarbon group, a halogen group, a nitro group, an amine group, an aryl group, a heteroaryl group, a carbonyl group, a hydroxyl group, an alkoxy group, or a combination of the above groups, etc.
  • X 1 is a group containing a second unsaturated bond. That is, the unsaturated compound containing a sulfur group can contain at least two unsaturated bonds. Saturated bonds, first unsaturated bonds and second unsaturated bonds, thereby having more sites for interacting with metal oxides, which helps to improve device stability.
  • X1 is selected from substituted or unsubstituted unsaturated hydrocarbon groups, and the number of carbon atoms in the main chain of X1 is 3-60.
  • the number of carbon atoms in the main chain of X1 can be 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and integer values within the range between any two values.
  • the number of carbon atoms in the main chain is set to 3 to 60, which not only allows the sulfur atom and the second unsaturated bond to be separated by a certain distance, so that the two can interact well with the quantum dots and the electronic functional layer 40, respectively, but also has a simple preparation process.
  • X1 is selected from a substituted or unsubstituted unsaturated hydrocarbon group.
  • the number of atoms between the second unsaturated bond and the S atom is greater than or equal to 1/2 of the number of carbon atoms in the main chain. In this way, it is possible to ensure that the sulfur group and the second unsaturated bond are separated by a sufficient distance, so that the two can interact well with the quantum dots and the electronic functional layer 40, respectively.
  • X1 is selected from a hydrocarbon group containing a substituent, and the substituent is selected from at least one of an aryl group, a hydroxyl group, a thiol group, a thiol group, an ester group, an ether group, a carbonyl group, a thioether group, an amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group.
  • the aryl group, the hydroxyl group, the thiol group, the thiol group, the ester group, the ether group, the carbonyl group, the thioether group, the amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group are all electrophilic groups.
  • the substituent can also interact with the metal oxide, thereby limiting the electrochemical reaction of the metal oxide when the power is on; if the group containing the substituent is an unsaturated hydrocarbon group, the presence of the substituent further enhances the interaction between X1 and the metal oxide, thereby further limiting the electrochemical reaction of the metal oxide when the power is on.
  • the chemical formula of the modified compound is R-SH
  • the modified compound includes at least one of allyl mercaptan, 2-pyridine propanethiol, 4-cyano-1-butanethiol, 2-(1H-benzimidazol-2-yl)ethanethiol, 3-(1,3-benzothiazole-3(2H)-yl)-1-propanethiol, pyrazinylethanethiol, prop-2-yn-1-thiol, 3-methyl-2-butene-1-thiol, 3,7-dimethylocta-1,6-diene-3-thiol, 2-phenylethanethiol, 2-(diallylamino)ethanethiol, 2-(di(prop-2-ynyl)amino)ethanethiol, 2-(7H-purin-8-yl)ethanethiol, and allyl L-cysteine ester.
  • the chemical formula of the modified compound is RSX 1
  • the modified compound includes N,N'-bis(acryloyl)cystamine, S-crotonyl-N-acetylcysteamine, S-acryl-N-acetylcysteamine, S-2-acryl-D-cysteine, N-acetyl-L-farnesylcysteine, allylthio-acetic acid, S-benzyl-D-cysteine, ethylthioethyl methacrylate, 3-methylbut-2-enylthiobenzene, 4,5-dihydro-2-((3-methyl-2-buten-1-yl)thiazole, 1-methylthio-3-butene-1-yne, propylene disulfide, vinyl [2-(ethylthio)ethyl] ether, diallyl disulfide At least one of ether, methyl allyl disulf
  • the material of the interface modification layer includes allyl mercaptan, 2-pyridine propanethiol, 4-cyano-1-butanethiol, 2-(1H-benzimidazol-2-yl)ethanethiol, 3-(1,3-benzothiazole-3(2H)-yl)-1-propanethiol, pyrazinylethanethiol, prop-2-yn-1-thiol, 3-methyl-2-butene-1-thiol, 3,7-dimethylocta-1,6-diene-3-thiol, 2-phenylethanethiol, 2-(diallylamino)ethanethiol, 2-(di(prop-2-ynyl)amino)ethanethiol, 2-(7H-purin-8-yl)ethanethiol, allyl L-cysteine ester, N,N'-dimethoxy-1-butylene-1-thiol, 1-(1-(1-(1
  • the thickness of the interface modification layer 30 is 0.5-10nm.
  • the thickness of the interface modification layer 30 can be 0.5nm, 0.6nm, 0.8nm, 1nm, 2nm, 3nm, 4nm, 5nm, 6nm, 7nm, 8nm, 9nm, 10nm, and a thickness value within a range between any two values.
  • the thickness of the interface modification layer 30 within this range is not only easy to prepare and has better thickness consistency, but also helps to improve conductivity.
  • cathode 50 is a composite cathode 50a.
  • the light-emitting device 100 provided in the present application has a cathode 50 that is a composite cathode 50a, and the composite cathode 50a contains an unsaturated compound containing a thiol or sulfur group.
  • the compound at least one unsaturated bond is separated from the thiol/sulfur group by enough atoms, so that the thiol/sulfur group and the unsaturated bond can act on the metal particles and the electronic functional layer 40 respectively.
  • the thiol/sulfur group forms a surface coordination with the metal particles, thereby forming a protective layer on the surface of the metal particles, which plays a role in corrosion and oxidation prevention;
  • the unsaturated bond forms a strong interaction with the metal oxide in the electronic functional layer 40, inhibiting the lattice mismatch oxygen ions in the metal oxide or the ambient oxygen from electrochemically reacting to produce oxygen vacancies and active oxygen ions when powered on, avoiding changes in the charge mobility of the metal oxide, and further preventing the metal particles from being oxidized, thereby improving the electrical aging stability of the device.
  • the unsaturated bond combines with the partial defects of the metal oxide surface in the electronic functional layer 40, which can play a passivation role and reduce the exciton quenching caused by the surface defects of the metal oxide.
  • the stability of the modified metal particles to the environment is improved, which can reduce the device packaging requirements to a certain extent.
  • the main chain refers to the longest carbon chain containing unsaturated bonds.
  • the first modifying material is composed of at least one of the modifying compounds.
  • the first modifying material is composed of at least one of the thiol-containing unsaturated compound and the sulfur-containing unsaturated compound.
  • the metal particles include one, a mixture of multiple, or an alloy of multiple selected from Ag, Al, Mg, Au, Cu, Mo, Pt, Ca, and Ba.
  • R is selected from substituted or unsubstituted unsaturated hydrocarbon groups, that is, R can be an unsaturated hydrocarbon group or an unsaturated hydrocarbon group containing a substituent.
  • R the number of carbon atoms in the main chain is 3-60.
  • the number of carbon atoms in the main chain can be 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and integer values within the range between any two values.
  • the number of carbon atoms in the main chain is set to 3 to 60, which not only allows the thiol/sulfur group and the first unsaturated bond to be separated by a certain distance, so that the two can interact well with the metal particles and the electronic functional layer 40, respectively, but also the preparation process is simple.
  • the number of carbon atoms between the first unsaturated bond and the S atom is greater than or equal to 1/2 of the number of carbon atoms in the main chain. In this way, it can be ensured that the S atom and the unsaturated bond are separated by a sufficient distance so that the two can interact well with the metal particles and the electronic functional layer 40 respectively.
  • R is selected from an unsaturated hydrocarbon group containing a substituent, and the substituent is selected from at least one of an aromatic group, a hydroxyl group, a thiol group, a sulfhydryl group, an ester group, an ether group, a carbonyl group, a thioether group, an amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group.
  • the aromatic group, the hydroxyl group, the thiol group, the sulfhydryl group, the ester group, the ether group, the carbonyl group, the thioether group, the amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group are all electrophilic groups, and at least one hydrogen atom on the unsaturated hydrocarbon group is replaced by the above electrophilic group, so that R has a stronger electrophilicity, enhances its interaction with the metal oxide, and further limits the electrochemical reaction of the metal oxide when power is applied.
  • the chemical formula of the modified compound is RSX 1 , i.e., an unsaturated compound containing a sulfur group
  • X 1 can be any monovalent organic group, for example, an alkyl group, an unsaturated hydrocarbon group, a halogen group, a nitro group, an amine group, an aryl group, a heteroaryl group, a carbonyl group, a hydroxyl group, an alkoxy group, or a combination of the above groups, etc.
  • X 1 is a group containing a second unsaturated bond.
  • the unsaturated compound containing a sulfur group can contain at least two unsaturated bonds, a first unsaturated bond and a second unsaturated bond, so that it has more sites for reacting with the metal oxide, which helps to improve the stability of the device.
  • X1 is selected from substituted or unsubstituted unsaturated hydrocarbon groups, and the number of carbon atoms in the main chain of X1 is 3-60.
  • the number of carbon atoms in the main chain of X1 can be 3, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and integer values between any two values.
  • the number of carbon atoms in the main chain is set to 3 to 60, which not only allows the sulfur atom and the second unsaturated bond to be separated by a certain distance, so that the two can interact well with the metal particles and the electronic functional layer 40, respectively, but also has a simple preparation process.
  • X1 is selected from a substituted or unsubstituted unsaturated hydrocarbon group.
  • the number of atoms between the second unsaturated bond and the S atom is greater than or equal to 1/2 of the number of carbon atoms in the main chain. In this way, it is possible to ensure that the sulfur group and the second unsaturated bond are separated by a sufficient distance, so that the two can interact well with the metal particles and the electronic functional layer 40, respectively.
  • X1 is selected from a hydrocarbon group containing a substituent, and the substituent is selected from at least one of an aryl group, a hydroxyl group, a thiol group, a thiol group, an ester group, an ether group, a carbonyl group, a thioether group, an amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group.
  • the aryl group, the hydroxyl group, the thiol group, the thiol group, the ester group, the ether group, the carbonyl group, the thioether group, the amine group, the amide group, the phosphorus group, the oxygen phosphorus group, the sulfonyl group, and the sulfoxide group are all electrophilic groups. If the group containing the substituent is a saturated hydrocarbon group, the substituent can also interact with the metal oxide to play a passivation role; if the group containing the substituent is an unsaturated hydrocarbon group, the presence of the substituent further enhances the interaction between X1 and the metal oxide, and further limits the electrochemical reaction of the metal oxide when the power is turned on.
  • the thiol-containing unsaturated compound includes at least one of allyl mercaptan, 2-pyridine propanethiol, 4-cyano-1-butanethiol, 2-(1H-benzimidazol-2-yl)ethanethiol, 3-(1,3-benzothiazole-3(2H)-yl)-1-propanethiol, pyrazinylethanethiol, prop-2-yn-1-thiol, 3-methyl-2-butene-1-thiol, 3,7-dimethylocta-1,6-diene-3-thiol, 2-phenylethanethiol, 2-(diallylamino)ethanethiol, 2-(di(prop-2-ynyl)amino)ethanethiol, 2-(7H-purine-8-yl)ethanethiol, and allyl L-cysteine ester.
  • the chemical formula of the modified compound is RSX 1
  • the modified compound includes at least one of N,N'-bis(acryloyl)cystamine, S-crotonyl-N-acetylcysteamine, S-Acryl-N-acetylcysteamine, S-2-acryl-D-cysteine, N-acetyl-L-farnesylcysteine, allylthio-acetic acid, S-benzyl-D-cysteine, ethylthioethyl methacrylate, 3-methylbut-2-enylthiobenzene, 4,5-dihydro-2-((3-methyl-2-buten-1-yl)thiazole, 1-methylthio-3-butene-1-yne, propylene disulfide, vinyl [2-(ethylthio)ethyl] ether, diallyl disulfide, methylallyl disulfide
  • the first modifying material includes allyl mercaptan, 2-pyridine propanethiol, 4-cyano-1-butanethiol, 2-(1H-benzimidazol-2-yl)ethanethiol, 3-(1,3-benzothiazol-3(2H)-yl)-1-propanethiol, pyrazinylethanethiol, prop-2-yn-1-thiol, 3-methyl-2-butene-1-thiol, 3,7-dimethyloct-1,6-diene-3-thiol, 2-phenylethanethiol, 2-(diallylamino)ethanethiol, 2-(di(prop-2-ynyl)amino)ethanethiol ⁇ 2-(7H-purin-8-yl)ethanethiol ⁇ allyl L-cysteine ester ⁇ N,N'-bis(acryloyl)cystamine ⁇ S-crotonyl-N-
  • the thickness of the composite cathode 50a is 10-2000nm.
  • the thickness of the composite cathode 50a can be 10nm, 20nm, 50nm, 100nm, 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm, 900nm, 1000nm, 1200nm, 1500nm, 1800nm, 2000nm, and a thickness value within a range between any two values.
  • the weight percentage of the first modifying material is 0.01 to 50 wt%.
  • the weight percentage of the first modifying material can be 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.2 wt%, 0.5 wt%, 1 wt%, 2 wt%, 5 wt%, 10 wt%, 20 wt%, 30 wt%, 40 wt%, 50 wt% and values within a range between any two values, etc. This helps to improve the electrical aging stability of the device when power is on and retain the conductive properties of the electrode.
  • the light-emitting layer 20 is a quantum dot light-emitting layer, wherein the material of the quantum dot light-emitting layer is a quantum dot material known in the art for the quantum dot light-emitting layer of the light-emitting device 100, for example, it can be selected from but not limited to at least one of a single structure quantum dot and a core-shell structure quantum dot.
  • the material of the single structure quantum dot, the material of the core of the core-shell structure quantum dot, and the material of the shell of the core-shell structure quantum dot can be selected from but not limited to at least one of II-VI group compounds, III-V group compounds, and I-III-VI group compounds.
  • the II-VI group compound can be selected from but not limited to at least one of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe; the
  • the core-shell structured quantum dots may be selected from but not limited to at least one of CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS, CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS, InP/ZnSeS/ZnS, CdZnSe/ZnSe/ZnS, CdSeS/ZnSeS/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS and InP/ZnSe/ZnS.
  • the electronic functional layer 40 may include but is not limited to an electron transport layer 41 and/or an electron injection layer 42.
  • the material of the electronic functional layer 40 may be selected from but is not limited to one or more of metal oxides and doped metal oxides.
  • the metal oxide may be selected from but is not limited to one or more of ZnO, TiO 2 , SnO 2 , and Al 2 O 3 ;
  • the metal oxide in the doped metal oxide may be selected from but is not limited to at least one of ZnO, TiO 2 , and SnO 2
  • the doping element may be selected from but is not limited to one or more of Mg, Ca, Zr, W, Li, Ti, Y, and Al.
  • the doped metal oxide may be Zn 1-x M x O, wherein M is selected from at least one of Mg, Ca, Zr, W, Li, Ti, Y, and Al, and 0 ⁇ x ⁇ 0.5.
  • the anode 10 is an anode 10 for the light-emitting device 100 known in the art, for example, can be independently selected from but not limited to a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode, the material of the metal electrode is selected from at least one of Ag, Al, Mg, Au, Cu, Mo, Pt, Ca and Ba, the material of the carbon silicon material electrode is selected from at least one of silicon, graphite, carbon nanotubes, graphene and carbon fiber, the material of the metal oxide electrode is selected from at least one of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, and the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO
  • the cathode 50 is a cathode 50 known in the art for the light-emitting device 100, for example, it can be independently selected from but not limited to a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode, as described above, which will not be repeated here.
  • the light emitting device 100 may further be provided with some functional layers that are used to help improve the performance of the light emitting device 100 , such as a hole transport layer 60 , a hole injection layer 70 , and the like.
  • the hole transport layer 60 is disposed between the anode 10 and the light-emitting layer 20.
  • the material of the hole transport layer 60 can be selected from, but not limited to, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-omeTAD), 4,4'-cyclohexylbis[N,N-di(4-methylphenyl)aniline] (TAPC), N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'- -diphenyl-4,4′-diamine (NPB), 4,4′-bis(N-carbazole)-1,1′-biphenyl (CBP), poly[(9,9-dioctylfluoren
  • the hole injection layer 70 is located on the surface of the anode 10 facing the cathode 50.
  • the material of the hole injection layer 70 is a material known in the art for the hole injection layer 70, and the material of the hole injection layer 70 can be selected from materials with hole injection ability, including but not limited to poly (3,4-ethylenedioxythiophene) (PEDOT), poly (3,4-ethylenedioxythiophene) -polystyrene sulfonic acid (PEDOT:PSS), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanoquinone-dimethane (F4-TCNQ), 2,3,6,7,10,11-hexacyano -1,4,5,8,9,12-hexaazatriphenylene (HATCN), polyester copper carbonate (CuPc), transition metal oxides, transition metal sulfur compounds or one or more thereof.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PEDOT:PSS
  • each layer of the light emitting device 100 can be adjusted according to the light emitting requirements of the light emitting device 100 .
  • the light emitting device 100 can be an upright quantum dot light emitting diode or an inverted quantum dot light emitting diode.
  • the present application proposes a method for preparing a light-emitting device 100 .
  • the light-emitting device 100 has the following structure: the light-emitting device 100 includes an anode 10, a light-emitting layer 20, an interface modification layer 30, an electronic functional layer 40 and a cathode 50 which are stacked in sequence, wherein: the material of the electronic functional layer 40 includes a metal oxide; the material of the light-emitting layer 20 includes quantum dots; the material of the interface modification layer 30 includes a second modification material, and the second modification material includes at least one modification compound having the above chemical formula. Accordingly, the preparation method of the light-emitting device 100 is as follows:
  • the method for preparing the light emitting device 100 includes the following steps:
  • Step S10a providing a stacked anode 10 and a light-emitting layer 20.
  • Step S20a providing a second modification material, and disposing the second modification material on a side of the light-emitting layer 20 away from the anode 10 to form an interface modification layer 30 .
  • Step S30a forming an electronic functional layer 40 containing metal oxide on a side of the interface modification layer 30 away from the light-emitting layer 20 .
  • Step S40 a forming a cathode 50 on a side of the electronic functional layer 40 away from the interface modification layer 30 .
  • the method for preparing the light emitting device 100 includes the following steps:
  • Step S10b providing a stacked cathode 50 and an electronic functional layer 40, wherein the electronic functional layer 40 contains a metal oxide;
  • Step S20b providing a second modification material, and disposing the second modification material on a side of the electronic functional layer 40 away from the cathode 50 to form an interface modification layer 30;
  • Step S30b forming a light-emitting layer 20 on a side of the interface modification layer 30 away from the electronic functional layer 40;
  • Step S40b forming an anode 10 on a side of the light-emitting layer 20 away from the interface modification layer 30 .
  • the material of the light emitting layer 20 includes quantum dots.
  • the second modifying material includes at least one modifying compound having the following chemical formula: RSX;
  • R is a group containing a first unsaturated bond, X is hydrogen or a monovalent organic group X 1 , and the number of atoms between the S atom and the first unsaturated bond is greater than 1.
  • the second modifying material includes at least one of an unsaturated compound containing a thiol group and an unsaturated compound containing a sulfur group.
  • the chemical formula of the unsaturated compound containing a thiol group is R-SH, and the general structural formula of the unsaturated compound containing a sulfur group is RSX 1 .
  • the thickness of the interface modification layer 30 is 0.5-10 nm.
  • the preparation method of the interface modification layer 30 adopts a solution method. Specifically: the second modification material is dissolved in a solvent to obtain an interface modification solution; in an inert atmosphere, the interface modification solution is spin-coated or ink-jet-printed on the surface of the electronic functional layer 40 or the light-emitting layer 20, and dried to form a film to obtain the interface modification layer 30.
  • the solvent can be ethanol, isopropanol, ethyl ether, ethylene glycol monobutyl ether, ethyl benzoate, benzaldehyde, triethylene glycol, 1H,1H,7H-dodecafluoro-1-heptanol, aniline, dimethyl sulfoxide, acetylacetinol.
  • the film after drying to form a film, the film is further subjected to a curing treatment. Specifically:
  • step S20a includes: S21a , providing a second modifying material, disposing the second modifying material on a side of the light-emitting layer 20 away from the anode 10 to form a thin film, and then curing the thin film to obtain an interface modification layer 30 .
  • step S20b includes: S21b, providing a second modification material, disposing the second modification material on a side of the electronic functional layer 40 away from the cathode 50 to form a thin film, and then curing the thin film to obtain an interface modification layer 30 .
  • the curing treatment methods include heating curing, light curing and heating + light curing.
  • heating + light curing means that the film is heated and cured while being cured by radiation light.
  • the conditions of heating curing are curing at 50-150°C for 1-40min.
  • the curing temperature can be 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 120°C, 130°C, 140°C, 150°C and a temperature value within the range of any two temperature values
  • the curing time can be 1min, 2min, 5min, 10min, 15min, 20min, 25min, 30min, 35min, 40min and a time value within the range of any two values; in other embodiments, when light curing is adopted, the conditions of light curing are that the wavelength of the radiation light is 365-450nm and the irradiation energy is 0.01-6J/ cm2
  • the wavelength band of the radiated light can be 365-380nm, 375-400nm, 390-420nm, 410-440nm, 430-450nm, etc.
  • the irradiation energy can be 0.01J/ cm2 , 0.1J/ cm2 , 0.5J/ cm2 , 1J/ cm2 , 2J/
  • the light emitting device 100 has the following structure: the light emitting device 100 includes The stacked anode 10, the light-emitting layer 20, the electronic functional layer 40 and the cathode 50, wherein the material of the electronic functional layer 40 includes a metal oxide, and the cathode 50 is a composite cathode 50a, and the composite cathode 50a includes metal particles and a first modifying material. Accordingly, the preparation method of the light-emitting device 100 is as follows:
  • the method for preparing the light emitting device 100 includes the following steps:
  • Step S10c providing a stacked anode 10, a light-emitting layer 20 and an electronic functional layer 40.
  • Step S20c providing a composite cathode material.
  • Step S30c disposing the composite cathode material on a side of the electronic functional layer 40 away from the light-emitting layer 20 to form a composite cathode 50a.
  • the method for preparing the light emitting device 100 includes the following steps:
  • Step S10d providing a substrate
  • Step S20d providing a composite cathode material
  • Step S30d disposing the composite cathode material on the surface of the substrate to form a composite cathode 50a;
  • Step S40d forming an electronic functional layer 40 on the surface of the composite cathode 50a;
  • Step S50d forming a light-emitting layer 20 on the surface of the electronic functional layer 40;
  • Step S60d forming an anode 10 on the surface of the light-emitting layer 20 .
  • the composite cathode material includes metal particles and a first modifying material, wherein the first modifying material is at least one modified compound having the following chemical formula: RSX; R is a group containing a first unsaturated bond, X is hydrogen or a monovalent organic group X 1 , the number of atoms between the S atom and the first unsaturated bond is greater than 1, and the S atom is coordinated and connected to the metal particle.
  • the first modifying material includes at least one of an unsaturated compound containing a thiol group and an unsaturated compound containing a sulfur group.
  • the chemical formula of the unsaturated compound containing a thiol group is R-SH, and the general structural formula of the unsaturated compound containing a sulfur group is RSX 1 .
  • the thickness of the composite cathode 50a is 10-2000 nm.
  • Step S20c or step S20d includes: providing metal particles, a first modifying material and an organic solvent, dispersing the metal particles and the first modifying material in the organic solvent to obtain a composite cathode material;
  • the metal particles are selected from but not limited to one of Ag, Al, Mg, Au, Cu, Mo, Pt, Ca and Ba, a mixture of multiple species or alloys thereof.
  • the organic solvent is selected from but not limited to alcohols, alcohol ethers and alcohol ketones.
  • the organic solvent can be selected from ethanol, methanol, citronellol, cyclohexanol, nonanol, octanol, triethylene glycol, ethyl acetate, ethanol ... At least one of glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether and acetol.
  • the weight percentage of the first modifying material is 0.01-50wt%.
  • the preparation method of the composite cathode 50a adopts a solution method. Specifically: in an inert atmosphere, the composite cathode material is spin-coated or ink-jet-printed on the surface of the electronic functional layer 40 or the substrate, and dried to form a film to obtain the composite cathode 50a.
  • the inert atmosphere includes but is not limited to an inert gas environment such as nitrogen, carbon dioxide, and argon.
  • the film after drying to form a film, the film is further subjected to a curing treatment. Specifically:
  • the step of arranging the composite cathode material on the side of the electronic functional layer 40 away from the light-emitting layer 20 to form a composite cathode 50a includes: S31c, arranging the composite cathode material on the side of the electronic functional layer 40 away from the light-emitting layer 20 to form a thin film, and then curing the thin film to obtain a composite cathode 50a; or,
  • the step of setting the composite cathode material on the surface of the substrate to form a composite cathode 50a includes: S31d, after the composite cathode material is set on the surface of the substrate to form a thin film, the thin film is cured to obtain a composite cathode 50a.
  • the curing treatment method includes heat curing.
  • the heat curing condition is curing at 50-150°C for 1-40min.
  • the curing temperature can be 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, 120°C, 130°C, 140°C, 150°C and any temperature value within the range between two temperature values
  • the curing time can be 1min, 2min, 5min, 10min, 15min, 20min, 25min, 30min, 35min, 40min and any time value within the range between two values.
  • R is selected from substituted or unsubstituted unsaturated hydrocarbon groups.
  • R is selected from unsaturated hydrocarbon groups containing substituents, and the substituents are selected from at least one of aryl, hydroxyl, sulfhydryl, sulfhydryl, ester, ether, carbonyl, thioether, amine, amide, phosphorus, phosphinyl, sulfonyl, and sulfoxide.
  • the number of carbon atoms in the main chain of R is 3 to 60.
  • the number of atoms between the S atom and the first unsaturated bond is greater than or equal to 1/2 of the number of carbon atoms in the main chain of R.
  • the thiol-containing unsaturated compound includes at least one of allyl mercaptan, 2-pyridine propanethiol, 4-cyano-1-butanethiol, 2-(1H-benzimidazol-2-yl)ethanethiol, 3-(1,3-benzothiazole-3(2H)-yl)-1-propanethiol, pyrazinylethanethiol, prop-2-yn-1-thiol, 3-methyl-2-butene-1-thiol, 3,7-dimethylocta-1,6-diene-3-thiol, 2-phenylethanethiol, 2-(diallylamino)ethanethiol, 2-(di(prop-2-ynyl)amino)ethanethiol, 2-(7H-purine-8-yl)ethanethiol, and allyl L-cysteine ester.
  • the chemical formula of the modified compound is RSX 1 , that is, an unsaturated sulfur-containing Compounds, wherein X1 can be any monovalent organic group, for example, an alkyl group, an unsaturated hydrocarbon group, a halogen group, a nitro group, an amine group, an aryl group, a heteroaryl group, a carbonyl group, a hydroxyl group, an alkoxy group, or a combination of the above groups, etc. Further, in some embodiments, X1 is a group containing a second unsaturated bond.
  • X1 is selected from a substituted or unsubstituted unsaturated hydrocarbon group, and X1 is selected from a hydrocarbon group containing a substituent, and the substituent is selected from at least one of an aryl group, a hydroxyl group, a thiol group, a sulfhydryl group, an ester group, an ether group, a carbonyl group, a thioether group, an amine group, an amide group, a phosphorus group, an oxygen phosphorus group, a sulfonyl group, and a sulfoxide group.
  • X1 is selected from substituted or unsubstituted unsaturated hydrocarbon groups, and the number of carbon atoms in the main chain of X1 is 3 to 60. The number of atoms between the S atom and the second unsaturated bond is greater than or equal to 1/2 of the number of carbon atoms in the main chain of X1 .
  • the sulfur-containing unsaturated compound includes at least one of N,N'-bis(acryloyl)cystamine, S-crotonyl-N-acetylcysteamine, S-Acryl-N-acetylcysteamine, S-2-acryl-D-cysteine, N-acetyl-L-farnesylcysteine, allylthio-acetic acid, S-benzyl-D-cysteine, ethylthioethyl methacrylate, 3-methylbut-2-enylthiobenzene, 4,5-dihydro-2-((3-methyl-2-butene-1-yl)thiazole, 1-methylthio-3-butene-1-yne, propylene disulfide, vinyl [2-(ethylthio)ethyl] ether, diallyl disulfide, methylallyl disulfide, and allyl methyl s
  • the preparation method of the anode 10, the hole transport layer 60, the light-emitting layer 20, the electronic functional layer 40, the interface modification layer 30, the cathode 50 and the hole injection layer 70 can be realized by conventional techniques in the art, such as chemical methods or physical methods.
  • the chemical method includes chemical vapor deposition, continuous ion layer adsorption and reaction, anodization, electrolytic deposition, and coprecipitation.
  • the physical method includes physical plating and solution method, among which the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.; the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip-coating, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.
  • the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip-coating, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the embodiment of the present application further provides a display device, which includes the light-emitting device 100 .
  • a second modification material 3-methyl-2-butene-1-thiol is provided.
  • a 3-methyl-2-butene-1-thiol solution (CAS No.: 5287-45-6) and an ethanol solution are mixed in a volume ratio of 1:1 to obtain a mixed solution.
  • the mixed solution is spin-coated on the light-emitting layer 20, heated at 80° C. for 10 min to remove the solvent, and then cured at 40° C. and 0.01-6 J/cm 2 @365-450 nm light radiation conditions to obtain an interface modification layer 30 with a thickness of 4 nm.
  • Al is evaporated on the electronic functional layer 40 to obtain a cathode 50 with a thickness of 80 nm, thereby obtaining a QLED device.
  • the second modifying material is diallyl disulfide (CAS No.: 2179-57-9).
  • the second modified material is 3-methyl-2-butene-1-thiol (CAS No.: 5287-45-6) and 1-methylthio-3-butene-1-yne (CAS No.: 13030-50-7), and 3-methyl-2-butene-1-thiol, 1-methylthio-3-butene-1-yne and ethanol solution are mixed in a volume ratio of 0.5:0.5:1.
  • the second modifying material is S-2-propylene-D-cysteine (CAS No.: 770742-93-3).
  • the thickness of the interface modification layer is 0.5 nm.
  • the thickness of the interface modification layer is 10 nm.
  • modifying materials 3-methyl-2-butene-1-thiol (CAS No.: 5287-45-6) and Al nanomaterials, dissolve 3-methyl-2-butene-1-thiol and Al in an ethanol solvent to obtain a composite cathode material solution with a concentration of 60 mg/mL, spin-coat the composite cathode material solution on the electron transport layer 41, heat at 80°C for 20 minutes to remove the solvent, and then cure at 100°C for 20 minutes to obtain a composite cathode 50a with a thickness of 100 nm, wherein the mass ratio of the modifying material to the composite cathode 50a is 20wt%, and a QLED device is obtained.
  • the modification material is diallyl disulfide (CAS No.: 2179-57-9).
  • the modification materials are 3-methyl-2-butene-1-thiol (CAS No.: 5287-45-6) and 1-methylthio-3-butene-1-yne (CAS No.: 13030-50-7), and 3-methyl-2-butene-1-thiol, 1-methylthio-3-butene-1-yne and ethanol solution are mixed at a volume ratio of 0.5:0.5:1.
  • the modified material is S-2-propylene-D-cysteine (CAS No.: 770742-93-3).
  • the thickness of the composite cathode is 2000nm.
  • the thickness of the composite cathode is 60 nm.
  • the mass ratio of the modification material to the composite cathode is 0.01wt%.
  • the mass ratio of the modifying material to the composite cathode is 50wt%.
  • the mass ratio of the modifying material to the composite cathode is 51 wt %.
  • This comparative example is basically the same as Example 1, except that:
  • the light emitting device does not include an interface modification layer.
  • This comparative example is basically the same as Example 2, except that:
  • the second modifying material is methyl vinyl sulfide (CAS No.: 1822-74-8).
  • This comparative example is basically the same as Example 1, except that:
  • the second modifying material is 2-naphthalenethiol (CAS No.: 91-60-1).
  • This comparative example is basically the same as Example 7, except that:
  • the material of the cathode of the light emitting device is Al.
  • This comparative example is basically the same as Example 7, except that:
  • the modified material is 3-methyl-2-butanethiol (CAS No.: 2084-18-6).
  • This comparative example is basically the same as Example 12, except that:
  • the material of the cathode of the light emitting device is Al.
  • This comparative example is basically the same as Example 8, except that:
  • the second modifying material is methyl vinyl sulfide (CAS No.: 1822-74-8).
  • This comparative example is basically the same as Example 7, except that:
  • the second modifying material is 2-naphthalenethiol (CAS No.: 91-60-1).
  • T95 life and voltage change value the test environment is 25°C, 60RH%, and the QLED device is driven at a constant current of 2mA.
  • the brightness change of the QLED device is tested using a silicon photonics system.
  • the time required for the device to decay from the maximum brightness of 100% (L100) to 95% (L95) after power-on is recorded.
  • the time required for the brightness of the QLED device to decay from 100% to 95% at a brightness of 1000nit is calculated.
  • the source meter in the silicon photonics system is used to record the voltage of the device at the maximum brightness of 100% (V L100 ) and the voltage at the maximum brightness of 95% (V L95 ).
  • the voltage change value is the difference between V L95 and V L100 .
  • the devices of each embodiment have a longer T95 life and a smaller voltage change value, and compared with the comparative example 1, the life of the embodiment 1 is longer and the voltage change value is smaller, indicating that after the interface modification layer is provided, the light-emitting device has better electrical aging stability, which is macroscopically manifested as a longer life and better voltage stability;
  • the devices of each embodiment have a longer T95 life and a smaller voltage change value; and compared with comparative examples 4 and 5, the life of embodiment 7 is longer and the voltage change value is smaller, and compared with comparative example 6, the life of embodiment 12 is longer and the voltage change value is smaller, indicating that after the composite cathode is set, the light-emitting device has better electrical aging stability, which is macroscopically manifested as a longer life and better voltage stability.
  • the present modified material having both thiol groups and unsaturated bonds is more conducive to improving the electrochemical stability of the device; at the same time, by comparing embodiments 7 and 10, it can be seen that the use of unsaturated compounds containing sulfur groups and having multiple substituents as modified materials has a greater favorable effect on electrical aging stability;
  • Example 8 selects a compound in which the number of carbon atoms between the sulfur atom and the unsaturated bond is greater than 1, which greatly improves the electrical aging stability of the device, showing a longer life and better voltage stability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种发光器件(100)及其制备方法及显示装置,发光器件(100)包括依次层叠设置的阳极(10)、发光层(20)、电子功能层(40)和阴极(50),其中,阴极(50)为复合阴极(50a),复合阴极(50a)中包含金属颗粒和修饰材料;或者,发光器件(100)还包括设于发光层(20)和电子功能层(40)之间的界面修饰层(30),界面修饰层(30)的材料包括修饰材料。

Description

发光器件及其制备方法及显示装置
本申请要求于2022年10月26日在中国专利局提交的、申请号为202211319859.X、申请名称为“发光器件及其制备方法及显示装置”以及2022年10月26日在中国专利局提交的、申请号为202211319894.1、申请名称为“发光器件及其制备方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体领域,尤其涉及一种发光器件及其制备方法及显示装置。
背景技术
QLED是基于量子点技术的电致发光器件,具有自发光、无需背光模组、视角宽、对比度高、全固化、适用于挠曲性面板、温度特性好、响应速度快和节能环保等一系列优异特性。然而,QLED器件存在各种效率(电流、功率或外量子效率)随时间或工况而衰减或提升的现象,即“负老化效应”和“正老化效应”。从量产角度考虑,这两种器件性能随时间或工况而变化的老化现象严重影响产品的稳定性,难以满足可靠性要求(Reliability Analysis,RA)。
技术解决方案
因此,本申请提供一种发光器件及其制备方法及显示装置。
第一方面,本申请提供一种发光器件,包括依次层叠设置的阳极、发光层、电子功能层和阴极,所述电子功能层的材料包括金属氧化物,所述发光层的材料包括量子点;其中:
所述阴极为复合阴极,且所述复合阴极中包含金属颗粒和第一修饰材料;或者,
所述发光器件还包括设于所述发光层和所述电子功能层之间的界面修饰层,所述界面修饰层的材料包括第二修饰材料;
所述第一修饰材料和所述第二修饰材料各自独立的包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。
第二方面,本申请提供一种发光器件的制备方法,所述制备方法包括以下步骤:
提供层叠的阳极和发光层;提供第二修饰材料,将所述第二修饰材料设置在所述发光层背离所述阳极的一侧,形成界面修饰层;在所述界面修饰层背离所述发光层的一侧形成含有金属氧化物的电子功能层;在所述电子功能层背离所述界面修饰层的一侧形成阴极;
或者,所述制备方法包括以下步骤:
提供层叠的阴极和电子功能层,所述电子功能层含有金属氧化物;提供第二修饰材料,将所述第二修饰材料设置在所述电子功能层背离所述阴极的一侧,形成界面修饰层;在所述界面修饰层背离所述电子功能层的一侧形成发光层;所述发光层背离所述界面修饰层的一侧形成阳极;
或者,所述制备方法包括以下步骤:
提供层叠的阳极、发光层和电子功能层;提供复合阴极材料;将所述复合阴极材料设置在所述电子功能层背离所述发光层的一侧,形成复合阴极;
或者,所述制备方法包括以下步骤:
提供衬底;提供复合阴极材料;将所述复合阴极材料设置在所述衬底的表面,形成复合阴极;在所述复合阴极的表面形成电子功能层;在所述电子功能层的表面形成发光层;在所述发光层的表面形成阳极;
其中,所述电子功能层的材料包括金属氧化物,所述发光层包含量子点,所述复合阴极材料包括金属颗粒和第一修饰材料,所述第一修饰材料和所述第二修饰材料各自独立的包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。
第三方面,本申请实施例提供一种显示装置,包括发光器件,所述发光器件包括如上文所述的发光器件,或者,所述发光器件由上文所述的发光器件的制备方法制得。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请第一实施例的一种发光器件的结构示意图;
图2是本申请第二实施例的一种发光器件的结构示意图;
图3是本申请第三实施例的一种发光器件的结构示意图;
图4是本申请第四实施例的一种发光器件的结构示意图;
图5是本申请第一实施例的一种发光器件的制备方法的流程示意图;
图6是本申请第二实施例的一种发光器件的制备方法的流程示意图;
图7是本申请第三实施例的一种发光器件的制备方法的流程示意图;
图8是本申请第四实施例的一种发光器件的制备方法的流程示意图;
图9是本申请第五实施例的一种发光器件的制备方法的流程示意图;
图10是本申请第六实施例的一种发光器件的制备方法的流程示意图;
图11是本申请第七实施例的一种发光器件的制备方法的流程示意图;
图12是本申请第八实施例的一种发光器件的制备方法的流程示意图;
附图标记:
100-发光器件;10-阳极;20-发光层;30-界面修饰层;40-电子功能层;41-电子传输层;
42-电子注入层;50-阴极;50a-复合阴极;60-空穴传输层;70-空穴注入层。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如“上”和“下”具体为附图中的图面方向。另外,在本申请说明书的描述中,术语“包括”是指“包括但不限于”。本发明的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本发明范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A 和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
在本申请中,不饱和键包括但不限于碳碳双键、碳碳三键、苯环、杂芳环、碳氮双键或碳氮三键。
在本申请中,“取代”表示被取代基中的氢原子被取代基所取代。“取代或未取代”表示所定义的基团可以被取代,也可以不被取代。当所定义的基团为被取代时,应理解为所定义的基团可以被一个或多个取代基取代,所述取代基选自但不限于氘原子、氰基、异氰基、硝基或卤素,含有1至20个C原子的烷基、含有3至20个环原子的杂环基、含有6至20个环原子的芳香基团、含有5至20个环原子的杂芳香基团、-NR’R”、硅烷基、羰基、烷氧基羰基、芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、三氟甲基,且上述基团也可以进一步被本领域可接受取代基取代。可以理解,-NR’R”中的R’和R”分别独立选自但不限于H、氘原子、氰基、异氰基、硝基、卤素、含有1至10个C原子的烷基、含有3-20个环原子的杂环基、含有6至20个环原子的芳香基团、含有5至20个环原子的杂芳香基团。优选地,取代基选自但不限于氘原子、氰基、异氰基、硝基、卤素、含有1至10个C原子烷基、含有3至10个环原子的杂环基、含有6至20个环原子的芳香基团、含有5至20个环原子的杂芳香基团、硅烷基、羰基、烷氧基羰基、芳氧基羰基、氨基甲酰基、卤甲酰基、甲酰基、异氰酸酯基、硫氰酸酯基、异硫氰酸酯基、羟基、三氟甲基,且上述基团也可以进一步被本领域可接受的取代基取代。
在本申请中,“芳基或芳香基团”是指在芳香环化合物的基础上除去一个氢原子衍生的芳族烃基,可以为单环芳基、或稠环芳基、或多环芳基,对于多环的环中,至少一个是芳族环系。例如,“取代或未取代的具有6至40个环原子的芳基”是指包含6至40个环原子的芳基,优选取代或未取代的具有6至30个环原子的芳基,更优选取代或未取代的具有6至18个环原子的芳基,特别优选取代或未取代的具有6至14个环原子的芳基,且芳基上任选进一步被取代;合适的实例包括但不限于:苯基、联苯基、三联苯基、萘基、蒽基、 菲基、荧蒽基、三亚苯基、芘基、苝基、并四苯基、芴基、二萘嵌苯基、苊基及其衍生物。可以理解,多个芳基也可以被短的非芳族单元间断(例如<10%的非H原子,比如C、N或O原子),具体如苊、芴,或者9,9-二芳基芴、三芳胺、二芳基醚体系也应该包含在芳基的定义中。
在本申请中,“烃基”指只含碳、氢两种原子的基团,一般指相应的烃失去一个氢原子(H)后剩下的基团,烃基包括饱和烃基和不饱和烃基。饱和烃基,即烷基可以表示直链、支链和/或环状烷基。烷基的碳数可以为1至50、1至30、1至20、1至10或1至6。包含该术语的短语,例如,“C1-9烷基”是指包含1至9个碳原子的烷基,每次出现时,可以互相独立地为C1烷基、C2烷基、C3烷基、C4烷基、C5烷基、C6烷基、C7烷基、C8烷基或C9烷基。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、仲丁基、叔丁基、异丁基、2-乙基丁基等。不饱和烃基包括烯基、炔基、芳基等,不饱和烃基的碳数可以为2至60,2至6,2至10等,不饱和烃基中含有的不饱和键(例如碳碳双键、碳碳三键等)的数量可以是一个,也可以是多个。
在本申请中,“胺基”是指胺的衍生物,具有式-N(X)2的结构特征,其中每个“X”独立地是H、取代的或未被取代的烷基、取代的或未被取代的环烷基、取代的或未被取代的杂环基等。胺基的非限制性类型包括-NH2、-N(烷基)2、-NH(烷基)、-N(环烷基)2、-NH(环烷基)、-N(杂环基)2、-NH(杂环基)、-N(芳基)2、-NH(芳基)、-N(烷基)(芳基)、-N(烷基)(杂环基)、-N(环烷基)(杂环基)、-N(芳基)(杂芳基)、-N(烷基)(杂芳基)等。
在本申请中,所述的“S原子和第一不饱和键间隔的原子数”以及“S原子和第二不饱和键间隔的碳原子数”是指位于硫原子和不饱和键之间,用于连接硫原子和不饱和键的间隔原子的数量,所述间隔原子包含不饱和键靠近硫原子一端所连接的不饱和原子。举例来说,甲基乙烯基硫醚中,不饱和键为双键,直接与双键连接的不饱和原子为不饱和碳原子,硫基和C=C不饱和键之间只间隔了所述不饱和碳原子,也即,硫基和不饱和键间隔的碳原子数为1;二烯丙基二硫醚中,硫基和C=C不饱和键之间间隔的碳原子数为2。
本申请的技术方案是这样实施的:
第一方面,本申请实施例提出一种发光器件100。所述发光器件100包括依次层叠设置的阳极10、发光层20、界面修饰层30、电子功能层40和阴极50,其中:所述电子功能层40的材料包括金属氧化物;所述发光层20的材料包括量子点。所述阴极50为复合阴极50a,且所述复合阴极50a中包含金属颗粒和第一修饰材料;或者,所述发光器件100还包 括设于所述发光层20和所述电子功能层40之间的界面修饰层30,所述界面修饰层30的材料包括第二修饰材料;所述第一修饰材料和所述第二修饰材料各自独立的包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。
在一些实施例中,X为氢,即化学式为R-SH,所述修饰化合物即为含巯基的不饱和化合物;在另一些实施例中,X为一价有机基团X1,即化学式为R-S-X1,所述修饰化合物即为含硫基的不饱和化合物,其中,X1可以是任意一价有机基团,例如,烷基、不饱和烃基、卤素基团、硝基、胺基、芳基、杂芳基、羰基、羟基、烷氧基或者上述基团的组合,等等。
具体的,在一些实施例中,请参阅图1和图2,本实施例所述发光器件100包括依次层叠设置的阳极10、发光层20、界面修饰层30、电子功能层40和阴极50,其中:所述电子功能层40的材料包括金属氧化物;所述发光层20的材料包括量子点;所述界面修饰层30的材料包括至少一种具有如上化学式的修饰化合物;在另一些实施例中,请参阅图3和图4,所述发光器件100包括层叠的阳极10、发光层20、电子功能层40和阴极50,其中:所述电子功能层40的材料包括金属氧化物,所述阴极50为复合阴极50a,所述复合阴极50a中包含金属颗粒和第一修饰材料。第一修饰材料和第二修饰材料可以相同,也可以不同。
以下将针对在发光层20和电子功能层40之间设置界面修饰层30的实施例进行详细说明。
经研究发现,金属氧化物中部分晶格失配的氧离子作为电子缺陷,可引起激子淬灭,但在金属氧化物的电阻开关效应下,内部的晶格失配氧离子转化为活化氧离子和氧空位,在器件通电初始阶段,由于金属氧化物中电子缺陷减少、氧空位的增加,分别抑制了激子淬灭和提高了金属氧化物导电性,器件效率显著提高,即正老化效应;但在持续通电情况下,发光层20/电子功能层40界面处聚集的活化氧离子氧化量子点材料,在界面形成很高的电子注入势垒,从而严重降低器件寿命,即负老化效应。鉴于此,本申请提供的发光器件100,在发光层20和电子功能层40之间设置界面修饰层30,界面修饰层30的材料包括含巯基的不饱和化合物和含硫基的不饱和化合物的至少一种,化合物中,至少一个不饱和键与巯基/硫基之间间隔足够的原子,使得巯基/硫基以及不饱和键能够分别作用于发光层20和电子功能层40,具体地,巯基/硫基与量子点可以形成表面配位,二者之间配位连接,不饱和键为亲电子基团,具有强吸附性,可以与电子功能层40中的金属氧化物形成较强的相互作用,抑制金属氧化物中的晶格失配氧离子或环境氧在通电情况下发生电化学反应产 生活性氧离子和氧空位,避免了量子点材料被氧化和金属氧化物电荷迁移率变化所导致的电老化稳定性问题,有效提高了器件的稳定性。此外,量子点和金属氧化物界面存在诸如晶格失配、氧/金属空位等会引发激子淬灭的表面缺陷,界面修饰层30的材料在与量子点和金属氧化物结合作用时,也会与部分表面缺陷点位作用,从而对这些表面缺陷起到钝化作用,有助于抑制激子淬灭,避免器件性能降低。可以理解,本文中,所述主链是指含有不饱和键的最长碳链。
在一具体实施例中,所述界面修饰层30的材料由至少一种所述修饰化合物组成,换言之,所述界面修饰层30的材料由所述含巯基的不饱和化合物及所述含硫基的不饱和化合物中的至少一种组成。
在一些实施例中,R选自取代或未取代的不饱和烃基,也即,R可以是不饱和烃基,也可以是含有取代基的不饱和烃基,前文已对取代基和不饱和烃基的释义进行描述,在此不作赘述。在本申请的一些实施例中,R中,主链的碳原子数为3-60,例如,主链的碳原子数可以是3、4、5、8、10、15、20、25、30、35、40、45、50、55、60以及任意两个数值之间范围内的整数值等。主链碳原子数设置为3~60,不仅使得巯基/硫基和不饱和键能够间隔一定的距离,使得二者能够分别很好地与量子点和电子功能层40相互作用,而且制备工艺简单。
此外,R中,所述R的主链上,所述第一不饱和键与所述S原子间隔的碳原子数大于等于所述主链的碳原子数的1/2,如此,能够确保巯基/硫基和不饱和键间隔足够的距离,使得二者能够分别很好地与量子点和电子功能层40相互作用。
进一步地,在一些实施例中,R选自含取代基的不饱和烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种,芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基以及亚砜基均为亲电子基团,不饱和烃基上至少一个氢原子被上述亲电子基团取代,使得R具有更强的亲电子性,增强了其与金属氧化物之间的相互作用,进一步限制了金属氧化物在通电情况下发生电化学反应。
在一些实施例中,所述修饰化合物的化学式为R-S-X1,即含硫基的不饱和化合物,其中,X1可以是任意一价有机基团,例如,烷基、不饱和烃基、卤素基团、硝基、胺基、芳基、杂芳基、羰基、羟基、烷氧基或者上述基团的组合,等等。进一步地,在一些实施例中,X1为含有第二不饱和键的基团。也即,含硫基的不饱和化合物中可以含有至少两个不 饱和键,第一不饱和键和第二不饱和键,从而具有更多与金属氧化物作用的位点,有助于提高器件稳定性。
在一些实施例中,X1选自取代或未取代的不饱和烃基,X1的主链的碳原子数为3-60,例如,X1中主链的碳原子数可以是3、4、5、8、10、15、20、25、30、35、40、45、50、55、60以及任意两个数值之间范围内的整数值等。主链碳原子数设置为3~60,不仅使得硫原子和第二不饱和键能够间隔一定的距离,使得二者能够分别很好地与量子点和电子功能层40相互作用,而且制备工艺简单。
在一些实施例中,X1选自取代或未取代的不饱和烃基,X1的主链上,所述第二不饱和键与所述S原子间隔的原子数大于等于所述主链的碳原子数的1/2,如此,能够确保硫基和第二不饱和键间隔足够的距离,使得二者能够分别很好地与量子点和电子功能层40相互作用。
进一步地,本实施例含硫基的不饱和化合物中,X1选自含取代基的烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种,芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基以及亚砜基均为亲电子基团,若含有该取代基的基团为饱和烃基,则该取代基也能够与金属氧化物之间相互作用,限制了金属氧化物在通电情况下发生电化学反应;若含有该取代基的基团为不饱和烃基,则该取代基的存在进一步增强了X1与金属氧化物之间的相互作用,进一步限制了金属氧化物在通电情况下发生电化学反应。
在本申请的一些具体实施例中,所述修饰化合物的化学式为R-SH,所述修饰化合物包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯中的至少一种。
在本申请的一些具体实施例中,所述修饰化合物的化学式为R-S-X1,所述修饰化合物包括N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基)噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫 醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
在一些实施例中,所述界面修饰层的材料包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯、N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基)噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
在本申请的一些实施例中,所述界面修饰层30的厚度为0.5-10nm,例如,所述界面修饰层30的厚度可以为0.5nm、0.6nm、0.8nm、1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm以及任意两个数值之间范围内的厚度值等,界面修饰层30的厚度在此范围内,不仅易于制备,具有较佳的厚度一致性,而且有助于提高导电性。
以下针对阴极50为复合阴极50a的实施例进行详细说明。
本申请提供的发光器件100,其阴极50为复合阴极50a,复合阴极50a中含有含巯基或硫基的不饱和化合物,化合物中,至少一个不饱和键与巯基/硫基之间间隔足够的原子,使得巯基/硫基以及不饱和键能够分别作用于金属颗粒和电子功能层40,具体地,巯基/硫基与金属颗粒形成表面配位,从而在金属颗粒表面形成一层保护层,起到防腐蚀、防氧化的作用;不饱和键与电子功能层40中的金属氧化物形成较强的相互作用,抑制金属氧化物中的晶格失配氧离子或环境氧在通电情况下发生电化学反应产生氧空位和活性氧离子,避免金属氧化物电荷迁移率变化,并进一步防止金属颗粒被氧化,从而提高器件的电老化稳定性。同时,不饱和键与电子功能层40中的金属氧化物表面部分缺陷结合,能够起到钝化作用,减少金属氧化物表面缺陷引起的激子淬灭。此外,经修饰后的金属颗粒对环境的稳定性提高,可在一定程度上降低器件封装要求。可以理解,本文中,所述主链是指含有不饱和键的最长碳链。
在一具体实施例中,所述第一修饰材料由至少一种所述修饰化合物组成,换言之,所述第一修饰材料由所述含巯基的不饱和化合物及所述含硫基的不饱和化合物中的至少一种组成。
在本申请的一些实施例中,所述金属颗粒包括Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种、多种的混合物或者多种的合金。
在本申请的一些实施例中,R选自取代或未取代的不饱和烃基,也即,R可以是不饱和烃基,也可以是含有取代基的不饱和烃基,前文已对取代基和不饱和烃基的释义进行描述,在此不作赘述。在本申请的一些实施例中,R中,主链的碳原子数为3-60,例如,主链的碳原子数可以是3、4、5、8、10、15、20、25、30、35、40、45、50、55、60以及任意两个数值之间范围内的整数值等。主链碳原子数设置为3~60,不仅使得巯基/硫基和第一不饱和键能够间隔一定的距离,使得二者能够分别很好地与金属颗粒和电子功能层40相互作用,而且制备工艺简单。
此外,R中,所述R的主链上,所述第一不饱和键与所述S原子间隔的碳原子数大于等于所述主链的碳原子数的1/2,如此,能够确保S原子和不饱和键间隔足够的距离,使得二者能够分别很好地与金属颗粒和电子功能层40相互作用。
进一步地,在一些实施例中,R选自含取代基的不饱和烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种,芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基以及亚砜基均为亲电子基团,不饱和烃基上至少一个氢原子被上述亲电子基团取代,使得R具有更强的亲电子性,增强了其与金属氧化物之间的相互作用,进一步限制了金属氧化物在通电情况下发生电化学反应。
在一些实施例中,所述修饰化合物的化学式为R-S-X1,即含硫基的不饱和化合物,其中,X1可以是任意一价有机基团,例如,烷基、不饱和烃基、卤素基团、硝基、胺基、芳基、杂芳基、羰基、羟基、烷氧基或者上述基团的组合,等等。进一步地,在一些实施例中,X1为含有第二不饱和键的基团。也即,含硫基的不饱和化合物中可以含有至少两个不饱和键,第一不饱和键和第二不饱和键,从而具有更多与金属氧化物作用的位点,有助于提高器件稳定性。
在一些实施例中,X1选自取代或未取代的不饱和烃基,X1的主链的碳原子数为3-60,例如,X1中主链的碳原子数可以是3、4、5、8、10、15、20、25、30、35、40、45、50、55、60以及任意两个数值之间范围内的整数值等。主链碳原子数设置为3~60,不仅使得硫原子和第二不饱和键能够间隔一定的距离,使得二者能够分别很好地与金属颗粒和电子功能层40相互作用,而且制备工艺简单。
在一些实施例中,X1选自取代或未取代的不饱和烃基,X1的主链上,所述第二不饱和键与所述S原子间隔的原子数大于等于所述主链的碳原子数的1/2,如此,能够确保硫基和第二不饱和键间隔足够的距离,使得二者能够分别很好地与金属颗粒和电子功能层40相互作用。
进一步地,本实施例含硫基的不饱和化合物中,X1选自含取代基的烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种,芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基以及亚砜基均为亲电子基团,若含有该取代基的基团为饱和烃基,则该取代基也能够与金属氧化物之间相互作用,起到钝化作用;若含有该取代基的基团为不饱和烃基,则该取代基的存在进一步增强了X1与金属氧化物之间的相互作用,进一步限制了金属氧化物在通电情况下发生电化学反应。
在本申请的一些具体实施例中,所述含巯基的不饱和化合物包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯中的至少一种。
在本申请的一些具体实施例中,所述修饰化合物的化学式为R-S-X1,所述修饰化合物包括N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基)噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
在一些实施例中,所述第一修饰材料包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯、N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基) 噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
在本申请的一些实施例中,所述复合阴极50a的厚度为10-2000nm,例如,所述复合阴极50a的厚度可以为10nm、20nm、50nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1200nm、1500nm、1800nm、2000nm以及任意两个数值之间范围内的厚度值等。
在本申请的一些实施例中,所述复合阴极50a中,所述第一修饰材料的重量百分含量为0.01~50wt%,例如,所述第一修饰材料的重量百分含量可以为0.01wt%、0.05wt%、0.1wt%、0.2wt%、0.5wt%、1wt%、2wt%、5wt%、10wt%、20wt%、30wt%、40wt%、50wt%以及任意两个数值之间范围内的值等,如此,有助于提高器件在通电情况下的电老化稳定性,并保留电极的导电性能。
此外,所述发光层20为量子点发光层,其中,所述量子点发光层的材料为本领域已知用于发光器件100的量子点发光层的量子点材料,例如,可以选自但不限于单一结构量子点及核壳结构量子点中的至少一种。所述单一结构量子点的材料、核壳结构量子点的核的材料及核壳结构量子点的壳的材料可以选自但不限于II-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种。作为举例,所述II-VI族化合物可以选自但不限于CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种;所述III-V族化合物可以选自但不限于GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种;所述I-III-VI族化合物可以选自但不限于CuInS2、CuInSe2及AgInS2中的至少一种。
作为示例,所述核壳结构的量子点可以选自但不限于CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS、CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS、InP/ZnSeS/ZnS、CdZnSe/ZnSe/ZnS、CdSeS/ZnSeS/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS及InP/ZnSe/ZnS中的至少一种。
请参阅图2,所述电子功能层40可以包括但不限于电子传输层41和/或电子注入层42。电子功能层40的材料可以选自但不限于金属氧化物、掺杂金属氧化物中的一种或多种。具体的,所述金属氧化物可以选自但不限于ZnO、TiO2、SnO2、Al2O3中的一种或几种;所述掺杂金属氧化物中的金属氧化物可以选自但不限于ZnO、TiO2、SnO2中的至少一种,掺杂元素可以选自但不限于Mg、Ca、Zr、W、Li、Ti、Y、Al中的一种或几种,作为列举,所述掺杂金属氧化物可以为Zn1-xMxO,其中,M选自Mg、Ca、Zr、W、Li、Ti、Y、Al中的至少一种,且0≤x≤0.5。
所述阳极10为本领域已知用于发光器件100的阳极10,例如,可以分别独立选自但不限于金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的至少一种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的至少一种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的至少一种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。可以理解,在第一实施例中,所述阴极50为本领域已知用于发光器件100的阴极50,例如,可以分别独立选自但不限于金属电极、碳硅材料电极、金属氧化物电极或复合电极,具体如上文所述,在此不作赘述。
可以理解,所述发光器件100还可以增设一些用于发光器件100的有助于提升性能的功能层,例如空穴传输层60、空穴注入层70等。
空穴传输层60设于阳极10和发光层20之间。空穴传输层60的材料可以选自但不限于聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-omeTAD)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺(NPB)、4,4'-双(N-咔唑)-1,1'-联苯(CBP)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚三苯胺(Poly-TPD)、及4,4',4”-三(咔唑-9-基)三苯胺(TCTA)中的至少一种。
空穴注入层70位于阳极10面向阴极50一侧的表面。空穴注入层70的材料为本领域已知用于空穴注入层70的材料,空穴注入层70的材料可以选自具有空穴注入能力的材料,包括但不限于是聚(3,4-亚乙二氧基噻吩)(PEDOT)、聚(3,4-亚乙二氧基噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基 -1,4,5,8,9,12-六氮杂苯并菲(HATCN)、聚酯碳酸铜(CuPc)、过渡金属氧化物、过渡金属硫系化合物中的一种或多种。
可以理解,所述发光器件100的各层的材料可以依据发光器件100的发光需求进行调整。
可以理解,所述发光器件100可以为正置型量子点发光二极管或倒置型量子点发光二极管。
第二方面,本申请提出一种发光器件100的制备方法。
在本申请的一些实施例中,所述发光器件100具有以下结构:所述发光器件100包括依次层叠设置的阳极10、发光层20、界面修饰层30、电子功能层40和阴极50,其中:所述电子功能层40的材料包括金属氧化物;所述发光层20的材料包括量子点;所述界面修饰层30的材料包括第二修饰材料,所述第二修饰材料包括至少一种具有如上化学式的修饰化合物。相应的,所述发光器件100的制备方法如下:
在一些实施例中,所述发光器件100为正置型量子点发光二极管时,请参阅图5,所述发光器件100的制备方法包括以下步骤:
步骤S10a,提供层叠的阳极10和发光层20。
步骤S20a,提供第二修饰材料,将所述第二修饰材料设置在所述发光层20背离所述阳极10的一侧,形成界面修饰层30。
步骤S30a,在所述界面修饰层30背离所述发光层20的一侧形成含有金属氧化物的电子功能层40。
步骤S40a,在所述电子功能层40背离所述界面修饰层30的一侧形成阴极50。
在本申请的另一些实施例中,所述发光器件100为倒置型量子点发光二极管时,请参阅图6,所述发光器件100的制备方法包括以下步骤:
步骤S10b,提供层叠的阴极50和电子功能层40,所述电子功能层40含有金属氧化物;
步骤S20b,提供第二修饰材料,将所述第二修饰材料设置在所述电子功能层40背离所述阴极50的一侧,形成界面修饰层30;
步骤S30b,在所述界面修饰层30背离所述电子功能层40的一侧形成发光层20;
步骤S40b,在所述发光层20背离所述界面修饰层30的一侧形成阳极10。
其中,所述发光层20的材料包括量子点。
步骤S20a和步骤S20b中,所述第二修饰材料包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。在一些实施例中,第二修饰材料包括含巯基的不饱和化合物和含硫基的不饱和化合物的至少一种。所述含巯基的不饱和化合物的化学式为R-SH,所述含硫基的不饱和化合物的结构通式为R-S-X1
在本申请的一些实施例中,所述界面修饰层30的厚度为0.5-10nm。
在至少一些实施例中,所述界面修饰层30的制备方法采用溶液法。具体的:将第二修饰材料溶于溶剂中,得到界面修饰溶液;在惰性气氛中,将所述界面修饰溶液旋涂或喷墨打印在电子功能层40或发光层20的表面,干燥成膜,得到界面修饰层30。其中,溶剂可以为乙醇、异丙醇、乙醚、乙二醇单丁醚、苯甲酸乙酯、苯甲醛、三乙二醇、1H,1H,7H-十二氟-1-庚醇、苯胺、二甲基亚砜、乙酰丙醇。
在至少一些实施例中,干燥成膜后,还要对膜进行固化处理。具体的:
如图9所示,步骤S20a包括:S21a,提供第二修饰材料,将所述第二修饰材料设置在所述发光层20背离所述阳极10的一侧形成薄膜后,对所述薄膜进行固化处理,得到界面修饰层30。
如图10所示,步骤S20b包括:S21b,提供第二修饰材料,将所述第二修饰材料设置在所述电子功能层40背离所述阴极50的一侧形成薄膜后,对所述薄膜进行固化处理,得到界面修饰层30。
其中,固化处理的方式包括加热固化、光固化以及加热+光固化。其中,加热+光固化是指,在用辐射光照固化的同时,对膜进行加热固化。具体的,在一些实施例中,采用加热固化时,所述加热固化的条件为,在50-150℃下固化1-40min,具体地,固化温度可以为50℃、60℃、70℃、80℃、90℃、100℃、120℃、130℃、140℃、150℃以及任意两个温度值间范围内的温度值,固化时间可以为1min、2min、5min、10min、15min、20min、25min、30min、35min、40min以及任意两个值间范围内的时间值;在另一些实施例中,采用光固化的方式时,所述光固化的条件为,辐射光的波段为365-450nm,辐照能量为0.01-6J/cm2,具体地,辐射光的波段可以为365-380nm、375-400nm、390-420nm、410-440nm、430-450nm等,辐照能量可以为0.01J/cm2、0.1J/cm2、0.5J/cm2、1J/cm2、2J/cm2、3J/cm2、4J/cm2、5J/cm2、6J/cm2以及任意两个值间范围内的能量值。
在本申请的一些实施例中,所述发光器件100具有如下结构:所述发光器件100包括 层叠的阳极10、发光层20、电子功能层40和阴极50,其中,所述电子功能层40的材料包括金属氧化物,所述阴极50为复合阴极50a,所述复合阴极50a中包含金属颗粒和第一修饰材料。相应的,所述发光器件100的制备方法如下:
在一些实施例中,所述发光器件100为正置型量子点发光二极管100时,请参阅图7,所述发光器件100的制备方法包括以下步骤:
步骤S10c,提供层叠的阳极10、发光层20和电子功能层40。
步骤S20c,提供复合阴极材料。
步骤S30c,将所述复合阴极材料设置在所述电子功能层40背离所述发光层20的一侧,形成复合阴极50a。
在本申请的另一些实施例中,所述发光器件100为倒置型量子点发光二极管100时,请参阅图8,所述发光器件100的制备方法包括以下步骤:
步骤S10d,提供衬底;
步骤S20d,提供复合阴极材料;
步骤S30d,将所述复合阴极材料设置在所述衬底的表面,形成复合阴极50a;
步骤S40d,在所述复合阴极50a的表面形成电子功能层40;
步骤S50d,在所述电子功能层40的表面形成发光层20;
步骤S60d,在所述发光层20的表面形成阳极10。
步骤S20c和步骤S20d中,所述复合阴极材料包括金属颗粒和第一修饰材料,所述第一修饰材料至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1,且所述S原子与所述金属颗粒配位连接。在一些实施例中,第一修饰材料包括含巯基的不饱和化合物和含硫基的不饱和化合物的至少一种。所述含巯基的不饱和化合物的化学式为R-SH,所述含硫基的不饱和化合物的结构通式为R-S-X1
在本申请的一些实施例中,所述复合阴极50a的厚度为10-2000nm。
步骤S20c或者步骤S20d包括:提供金属颗粒、第一修饰材料和有机溶剂,将所述金属颗粒和第一修饰材料分散在所述有机溶剂中,得到复合阴极材料;
其中,所述金属颗粒选自但不限于Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种、多种的混合物或者多种的合金。所述有机溶剂选自但不限于醇类、醇醚类和醇酮类溶剂,例如,有机溶剂可以选自乙醇、甲醇、香茅醇、环己醇、壬醇、辛醇、三乙二醇、乙 二醇单甲醚、乙二醇单乙醚、二乙二醇单甲醚、丙酮醇中的至少一种。
在本申请的一些实施例中,所述复合阴极50a中,所述第一修饰材料的重量百分含量为0.01~50wt%。
在至少一些实施例中,所述复合阴极50a的制备方法采用溶液法。具体的:在惰性气氛中,将所述复合阴极材料旋涂或喷墨打印在电子功能层40或衬底的表面,干燥成膜,得到复合阴极50a。其中,惰性气氛包括但不限于氮气、二氧化碳、氩气等惰性气体环境。
在至少一些实施例中,干燥成膜后,还要对膜进行固化处理。具体的:
如图11所示,将所述复合阴极材料设置在所述电子功能层40背离所述发光层20的一侧,形成复合阴极50a的步骤包括:S31c,将所述复合阴极材料设置在所述电子功能层40背离所述发光层20的一侧形成薄膜后,对所述薄膜进行固化处理,得到复合阴极50a;或者,
如图12所示,将所述复合阴极材料设置在所述衬底的表面,形成复合阴极50a的步骤包括:S31d,将所述复合阴极材料设置在所述衬底的表面形成薄膜后,对所述薄膜进行固化处理,得到复合阴极50a。
其中,固化处理的方式包括加热固化。具体的,采用加热固化时,所述加热固化的条件为,在50-150℃下固化1-40min,具体地,固化温度可以为50℃、60℃、70℃、80℃、90℃、100℃、120℃、130℃、140℃、150℃以及任意两个温度值间范围内的温度值,固化时间可以为1min、2min、5min、10min、15min、20min、25min、30min、35min、40min以及任意两个值间范围内的时间值。
在本申请的一些实施例中,R选自取代或未取代的不饱和烃基。R选自含取代基的不饱和烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种。
在本申请的一些实施例中,R的主链的碳原子数为3-60。所述S原子和所述第一不饱和键之间间隔的原子数大于等于R的主链的碳原子数的1/2。
在本申请的一些具体实施例中,所述含巯基的不饱和化合物包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯中的至少一种。
在本申请的一些实施例中,所述修饰化合物的化学式为R-S-X1,即含硫基的不饱和化 合物,其中,X1可以是任意一价有机基团,例如,烷基、不饱和烃基、卤素基团、硝基、胺基、芳基、杂芳基、羰基、羟基、烷氧基或者上述基团的组合,等等。进一步地,在一些实施例中,X1为含有第二不饱和键的基团。X1选自取代或未取代的不饱和烃基,X1选自含取代基的烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种。
在本申请的一些实施例中,X1选自取代或未取代的不饱和烃基,X1的主链的碳原子数为3-60。所述S原子和所述第二不饱和键之间间隔的原子数大于等于X1的主链的碳原子数的1/2。
在本申请的一些具体实施例中,所述含硫基的不饱和化合物包括N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基)噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
上述发光器件100的制备方法中,所述阳极10、空穴传输层60、发光层20、电子功能层40、界面修饰层30、阴极50及空穴注入层70的制备方法可采用本领域常规技术实现,例如化学法或物理法。其中,化学法包括化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法。物理法包括物理镀膜法和溶液法,其中,物理镀膜法包括:热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法等;溶液法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。
本申请实施例还提供一种显示装置,所述显示装置包括所述发光器件100。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
QLED器件制备方法:
提供具有ITO阳极10的玻璃衬底,其中,ITO阳极10的厚度为50nm;
在所述阳极10上旋涂PEDOT:PSS,得到厚度为40nm空穴注入层70;
在所述空穴注入层70上旋涂TFB材料,得到厚度为35nm的空穴传输层60;
在所述空穴传输层60上旋涂CdZnSe/ZnSe/ZnS蓝色量子点材料,得到厚度为30nm的发光层20;
提供第二修饰材料3-甲基-2-丁烯-1-硫醇,将3-甲基-2-丁烯-1-硫醇溶液(CAS号:5287-45-6)与乙醇溶液按1:1体积比混合得到混合液,将所述分散液旋涂于发光层20上,80℃加热10min去除溶剂,然后在40℃温度、0.01-6J/cm2@365-450nm光辐射条件下固化处理得到厚度为4nm的界面修饰层30;
在所述界面修饰层30上旋涂ZnO,得到厚度为40nm的电子功能层40;
在所述电子功能层40上蒸镀Al,得到厚度为80nm的阴极50,得到QLED器件。
实施例2
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
第二修饰材料为二烯丙基二硫醚(CAS号:2179-57-9)。
实施例3
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
第二修饰材料为3-甲基-2-丁烯-1-硫醇(CAS号:5287-45-6)和1-甲硫基-3-丁烯-1-炔(CAS号:13030-50-7),且,3-甲基-2-丁烯-1-硫醇、1-甲硫基-3-丁烯-1-炔与乙醇溶液按体积比0.5:0.5:1进行混合。
实施例4
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
第二修饰材料为S-2-丙烯基-D-半胱氨酸(CAS号:770742-93-3)。
实施例5
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
界面修饰层厚度为0.5nm。
实施例6
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
界面修饰层厚度为10nm。
实施例7
QLED器件制备方法:
提供具有ITO阳极10的玻璃衬底,其中,ITO阳极10的厚度为50nm;
在所述阳极10上旋涂PEDOT:PSS,得到厚度为40nm空穴注入层70;
在所述空穴注入层70上旋涂TFB材料,得到厚度为35nm的空穴传输层60;
在所述空穴传输层60上旋涂CdZnSe/ZnSe/ZnS蓝色量子点材料,得到厚度为35nm的发光层20;
在所述发光层20上旋涂ZnO,得到厚度为40nm的电子传输层41;
提供修饰材料3-甲基-2-丁烯-1-硫醇(CAS号:5287-45-6)和Al纳米材料,将3-甲基-2-丁烯-1-硫醇和Al溶于乙醇溶剂中,得到浓度为60mg/mL的复合阴极材料溶液,将所述复合阴极材料溶液旋涂于电子传输层41上,80℃加热20min去除溶剂,然后在100℃温度下固化处理20min,得到厚度为100nm的复合阴极50a,所述复合阴极50a中,修饰材料占复合阴极50a的质量比为20wt%,得到QLED器件。
实施例8
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
修饰材料为二烯丙基二硫醚(CAS号:2179-57-9)。
实施例9
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
修饰材料为3-甲基-2-丁烯-1-硫醇(CAS号:5287-45-6)和1-甲硫基-3-丁烯-1-炔(CAS号:13030-50-7),且,3-甲基-2-丁烯-1-硫醇、1-甲硫基-3-丁烯-1-炔与乙醇溶液按体积比0.5:0.5:1进行混合。
实施例10
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
修饰材料为S-2-丙烯基-D-半胱氨酸(CAS号:770742-93-3)。
实施例11
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
复合阴极厚度为2000nm。
实施例12
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
复合阴极厚度为60nm。
实施例13
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
所述复合阴极中,修饰材料占复合阴极的质量比为0.01wt%。
实施例14
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
所述复合阴极中,修饰材料占复合阴极的质量比为50wt%。
实施例15
本实施例方案与实施例7基本相同,区别仅在于,本实施例中:
所述复合阴极中,修饰材料占复合阴极的质量比为51wt%。
对比例1
本对比例方案与实施例1基本相同,区别仅在于,本对比例中:
发光器件不包括界面修饰层。
对比例2
本对比例方案与实施例2基本相同,区别仅在于,本对比例中:
第二修饰材料为甲基乙烯基硫醚(CAS号:1822-74-8)。
对比例3
本对比例方案与实施例1基本相同,区别仅在于,本对比例中:
第二修饰材料为2-萘硫醇(CAS号:91-60-1)。
对比例4
本对比例方案与实施例7基本相同,区别仅在于,本对比例中:
发光器件的阴极的材料为Al。
对比例5
本对比例方案与实施例7基本相同,区别仅在于,本对比例中:
所述修饰材料为3-甲基-2-丁烷硫醇(CAS号:2084-18-6)。
对比例6
本对比例方案与实施例12基本相同,区别仅在于,本对比例中:
发光器件的阴极的材料为Al。
对比例7
本对比例方案与实施例8基本相同,区别仅在于,本对比例中:
第二修饰材料为甲基乙烯基硫醚(CAS号:1822-74-8)。
对比例8
本对比例方案与实施例7基本相同,区别仅在于,本对比例中:
第二修饰材料为2-萘硫醇(CAS号:91-60-1)。
对实施例及对比例的发光器件进行T95寿命、电压稳定性进行检测,测试结果参表一。
T95寿命及电压变化值:测试环境为25℃、60RH%,在恒定2mA电流驱动QLED器件,采用硅光系统测试QLED器件的亮度变化,记录器件通电后亮度最大值100%(L100)衰减至95%(L95)所需的时间,计算获得QLED器件在1000nit的亮度下亮度由100%衰减至95%所需的时间;T95寿命测试过程中,采用硅光系统中的源表记录器件在亮度最大值100%的电压(VL100)和亮度最大值95%时的电压(VL95),电压变化值为VL95和VL100的差值。
表一:

由表一可知:
各实施例器件均具有较长的T95寿命和较小的电压变化值,且相较对比例1,实施例1的寿命更长、电压变化值更小,说明设置界面修饰层后,发光器件器件具有更佳的电老化稳定性,宏观表现为具有更长的寿命,且电压稳定性更好;
同时,对比实施例1至4,可以看出,采用含硫基的不饱和化合物作为第二修饰材料,对电老化稳定性的有利影响更大,且采用具有至少一个取代基的含硫基化合物时,器件的电老化稳定性最佳;此外,对比实施例2和对比例2,实施例1和对比例3,可以看出,同样为含烯基的硫醚/硫醇,本申请方案选用硫原子与不饱和键间隔碳原子数大于1的化合物,大大提高了器件的电老化稳定性,表现出更长的寿命和更好的电压稳定性。
各实施例器件均具有较长的T95寿命和较小的电压变化值;且相较对比例4和5,实施例7的寿命更长、电压变化值更小,相较于对比例6,实施例12的寿命更长、电压变化值更小,说明设置复合阴极后,发光器件器件具有更佳的电老化稳定性,宏观表现为具有更长的寿命,且电压稳定性更好,且相较于只有巯基的化合物,同时具有巯基和不饱和键的本修饰材料更有利于提高器件的电化学稳定性;同时,对比实施例7和10,可以看出,采用含硫基的且具有多个取代基的不饱和化合物作为修饰材料,对电老化稳定性的有利影响更大;
此外,对比实施例8和对比例7,实施例7和对比例8,可以看出,同样为含烯基的硫醚/硫醇,本申请方案选用硫原子与不饱和键间隔碳原子数大于1的化合物,大大提高了器件的电老化稳定性,表现出更长的寿命和更好的电压稳定性。
以上对本申请实施例所提供的发光器件及其制备方法及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种发光器件,其中,包括依次层叠设置的阳极、发光层、电子功能层和阴极,所述电子功能层的材料包括金属氧化物,所述发光层的材料包括量子点;其中:
    所述阴极为复合阴极,且所述复合阴极中包含金属颗粒和第一修饰材料;或者,
    所述发光器件还包括设于所述发光层和所述电子功能层之间的界面修饰层,所述界面修饰层的材料包括第二修饰材料;
    所述第一修饰材料和所述第二修饰材料各自独立的包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。
  2. 根据权利要求1所述的发光器件,其中,所述第一修饰材料由至少一种所述修饰化合物组成;或者,
    所述第二修饰材料由至少一种所述修饰化合物组成。
  3. 根据权利要求1所述的发光器件,其中,R选自取代或未取代的不饱和烃基;
    R的主链的碳原子数为3-60;和/或,
    所述S原子和所述第一不饱和键之间间隔的原子数大于等于R的主链的碳原子数的1/2。
  4. 根据权利要求3所述的发光器件,其中,R选自含取代基的不饱和烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、氧磷基、磺酰基、亚砜基中的至少一种。
  5. 根据权利要求1至4任一项所述的发光器件,其中,X1为含有第二不饱和键的基团。
  6. 根据权利要求5所述的发光器件,其中,X1选自取代或未取代的不饱和烃基;
    X1的主链的碳原子数为3-60;和/或,
    所述S原子和所述第二不饱和键之间间隔的原子数大于等于X1的主链的碳原子数的1/2。
  7. 根据权利要求6所述的发光器件,其中,X1选自含取代基的不饱和烃基,所述取代基选自芳基、羟基、巯基、硫基、酯基、醚基、羰基、硫醚基、胺基、酰胺基、磷基、 氧磷基、磺酰基、亚砜基中的至少一种。
  8. 根据权利要求1所述的发光器件,其中,所述修饰化合物的化学式为R-SH,所述修饰化合物包括烯丙硫醇、2-吡啶丙硫醇、4-氰基-1-丁硫醇、2-(1H-苯并咪唑-2-基)乙硫醇、3-(1,3-苯并噻唑-3(2H)-基)-1-丙硫醇、吡嗪基乙硫醇、丙-2-炔-1-硫醇、3-甲基-2-丁烯-1-硫醇、3,7-二甲基辛-1,6-二烯-3-硫醇、2-苯乙硫醇、2-(二烯丙基氨基)乙硫醇、2-(二(丙-2-炔基)氨基)乙硫醇、2-(7H-嘌呤-8-基)乙硫醇、烯丙基L-半胱氨酸酯中的至少一种。
  9. 根据权利要求1所述的发光器件,其中,所述修饰化合物的化学式为R-S-X1,所述修饰化合物包括N,N'-双(丙烯酰)胱胺、S-巴豆酰-N-乙酰基半胱胺、S-Acr基基-N-乙酰基半胱胺、S-2-丙烯基-D-半胱氨酸、N-乙酰基-L-法呢基半胱氨酸、烯丙基硫基-乙酸、S-苄基-D-半胱氨醇、乙硫基乙基甲基丙烯酸酯、3-甲基丁-2-烯基硫基苯、4,5-二氢-2-((3-甲基-2-丁烯-1-基)硫基)噻唑、1-甲硫基-3-丁烯-1-炔、二硫化丙基丙烯、乙烯基[2-(乙硫基)乙基]醚、二烯丙基二硫醚、甲基烯丙基二硫醚、烯丙基甲基硫醚中的至少一种。
  10. 根据权利要求1所述的发光器件,其中,所述界面修饰层的厚度为0.5-10nm。
  11. 根据权利要求1所述的发光器件,其中,所述复合阴极中,所述S原子与所述金属颗粒配位连接。
  12. 根据权利要求1所述的发光器件,其中,所述复合阴极的厚度为10-2000nm。
  13. 根据权利要求1所述的发光器件,其中,所述复合阴极中,所述第一修饰材料的重量百分含量为0.01~50wt%。
  14. 根据权利要求1所述的发光器件,其中,所述金属颗粒包括Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种、多种的混合物或者多种的合金;和/或,
    所述发光层的材料选自单一结构量子点及核壳结构量子点中的至少一种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的至少一种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的至少一种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的至少一种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、 InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的至少一种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的至少一种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的至少一种;和/或,
    所述电子功能层的材料包括金属氧化物和掺杂金属氧化物中的至少一种,所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3中的至少一种,所述掺杂金属氧化物中的金属氧化物选自ZnO、TiO2、SnO2中的至少一种,掺杂元素选自Mg、Ca、Zr、W、Li、Ti、Y、Al中的至少一种;和/或,
    所述阳极和所述阴极分别独立地选自金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的至少一种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的至少一种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的至少一种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。
  15. 一种发光器件的制备方法,其中,所述制备方法包括以下步骤:
    提供层叠的阳极和发光层;提供第二修饰材料,将所述第二修饰材料设置在所述发光层背离所述阳极的一侧,形成界面修饰层;在所述界面修饰层背离所述发光层的一侧形成含有金属氧化物的电子功能层;在所述电子功能层背离所述界面修饰层的一侧形成阴极;
    或者,所述制备方法包括以下步骤:
    提供层叠的阴极和电子功能层,所述电子功能层含有金属氧化物;提供第二修饰材料,将所述第二修饰材料设置在所述电子功能层背离所述阴极的一侧,形成界面修饰层;在所述界面修饰层背离所述电子功能层的一侧形成发光层;所述发光层背离所述界面修饰层的一侧形成阳极;
    或者,所述制备方法包括以下步骤:
    提供层叠的阳极、发光层和电子功能层;提供复合阴极材料;将所述复合阴极材料设 置在所述电子功能层背离所述发光层的一侧,形成复合阴极;
    或者,所述制备方法包括以下步骤:
    提供衬底;提供复合阴极材料;将所述复合阴极材料设置在所述衬底的表面,形成复合阴极;在所述复合阴极的表面形成电子功能层;在所述电子功能层的表面形成发光层;在所述发光层的表面形成阳极;
    其中,所述电子功能层的材料包括金属氧化物,所述发光层包含量子点,所述复合阴极材料包括金属颗粒和第一修饰材料,所述第一修饰材料和所述第二修饰材料各自独立的包括至少一种具有如下化学式的修饰化合物:R-S-X;R为含第一不饱和键的基团,X为氢或者一价有机基团X1,S原子和所述第一不饱和键之间间隔的原子数大于1。
  16. 根据权利要求15所述的发光器件的制备方法,其中,将所述第二修饰材料设置在所述发光层背离所述阳极的一侧,形成界面修饰层的步骤包括:将所述第二修饰材料设置在所述发光层背离所述阳极的一侧形成薄膜后,对所述薄膜进行固化处理,得到界面修饰层;或者,
    将所述第二修饰材料设置在所述电子功能层背离所述阴极的一侧,形成界面修饰层的步骤包括:将所述第二修饰材料设置在所述电子功能层背离所述阴极的一侧形成薄膜后,对所述薄膜进行固化处理,得到界面修饰层。
  17. 根据权利要求16所述的发光器件的制备方法,其中,所述固化处理包括加热固化和/或光固化,其中:
    所述加热固化的条件为,在50-150℃下固化1-40min,
    所述光固化的条件为,辐射光的波段为365-450nm,辐照能量为0.01-6J/cm2
  18. 根据权利要求15所述的发光器件的制备方法,其中,提供复合阴极材料的步骤包括:提供金属颗粒、第一修饰材料和有机溶剂,将所述金属颗粒和所述第一修饰材料分散在所述有机溶剂中,得到复合阴极材料;
    其中,所述有机溶剂包括乙醇、甲醇、香茅醇、环己醇、壬醇、辛醇、三乙二醇、乙二醇单甲醚、乙二醇单乙醚、二乙二醇单甲醚、丙酮醇中的至少一种;和/或,
    所述复合阴极中,所述第一修饰材料的重量百分含量为0.01~50wt%。
  19. 根据权利要求15所述的发光器件的制备方法,其中,将所述复合阴极材料设置在所述电子功能层背离所述发光层的一侧,形成复合阴极的步骤包括:将所述复合阴极材料设置在所述电子功能层背离所述发光层的一侧形成薄膜后,对所述薄膜进行固化处理,得 到复合阴极;或者,
    将所述复合阴极材料设置在所述衬底的表面,形成复合阴极的步骤包括:将所述复合阴极材料设置在所述衬底的表面形成薄膜后,对所述薄膜进行固化处理,得到复合阴极;
    其中,所述固化处理包括加热固化,所述加热固化的条件为,在50-150℃下固化1-40min。
  20. 一种显示装置,其中,包括发光器件,所述发光器件包括权利要求1至14任一项所述的发光器件,或者,所述发光器件由权利要求15至19任一项所述的发光器件的制备方法制得。
PCT/CN2023/125768 2022-10-26 2023-10-20 发光器件及其制备方法及显示装置 WO2024088181A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211319894.1 2022-10-26
CN202211319894.1A CN117998889A (zh) 2022-10-26 2022-10-26 发光器件及其制备方法及显示装置
CN202211319859.X 2022-10-26
CN202211319859.XA CN117998883A (zh) 2022-10-26 2022-10-26 发光器件及其制备方法及显示装置

Publications (1)

Publication Number Publication Date
WO2024088181A1 true WO2024088181A1 (zh) 2024-05-02

Family

ID=90830123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125768 WO2024088181A1 (zh) 2022-10-26 2023-10-20 发光器件及其制备方法及显示装置

Country Status (1)

Country Link
WO (1) WO2024088181A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807720A (zh) * 2017-04-26 2018-11-13 Tcl集团股份有限公司 功能化阴极、qled及制备方法、发光模组与显示装置
CN110797467A (zh) * 2018-08-03 2020-02-14 三星电子株式会社 发光器件、其制造方法和包括其的显示设备
CN112018254A (zh) * 2020-09-04 2020-12-01 河南工程学院 一种基于苯硫醇衍生物的量子点发光二极管及其制备方法
CN112289938A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112289937A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112289960A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112310290A (zh) * 2019-07-25 2021-02-02 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
JP2021093520A (ja) * 2019-12-11 2021-06-17 日本放送協会 量子ドット発光素子及び表示装置
CN114242923A (zh) * 2021-11-12 2022-03-25 华南理工大学 一种硫醇类化合物界面修饰磷化铟量子点提高电致发光器件性能的方法
WO2022091373A1 (ja) * 2020-10-30 2022-05-05 シャープ株式会社 発光素子、表示装置、照明装置、および発光素子の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807720A (zh) * 2017-04-26 2018-11-13 Tcl集团股份有限公司 功能化阴极、qled及制备方法、发光模组与显示装置
CN110797467A (zh) * 2018-08-03 2020-02-14 三星电子株式会社 发光器件、其制造方法和包括其的显示设备
CN112289938A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112289937A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112289960A (zh) * 2019-07-25 2021-01-29 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
CN112310290A (zh) * 2019-07-25 2021-02-02 Tcl集团股份有限公司 一种量子点发光二极管及其制备方法
JP2021093520A (ja) * 2019-12-11 2021-06-17 日本放送協会 量子ドット発光素子及び表示装置
CN112018254A (zh) * 2020-09-04 2020-12-01 河南工程学院 一种基于苯硫醇衍生物的量子点发光二极管及其制备方法
WO2022091373A1 (ja) * 2020-10-30 2022-05-05 シャープ株式会社 発光素子、表示装置、照明装置、および発光素子の製造方法
CN114242923A (zh) * 2021-11-12 2022-03-25 华南理工大学 一种硫醇类化合物界面修饰磷化铟量子点提高电致发光器件性能的方法

Similar Documents

Publication Publication Date Title
US8853938B2 (en) Inorganic electroluminescent device comprising an insulating layer, method for fabricating the electroluminescent device and electronic device comprising the electroluminescent device
CN110828681B (zh) 量子点发光器件及包括其的显示设备
EP3620497B1 (en) Electroluminescent device, and display device comprising thereof
WO2024088181A1 (zh) 发光器件及其制备方法及显示装置
WO2024114066A1 (zh) 发光器件及其制备方法及显示装置
CN117998883A (zh) 发光器件及其制备方法及显示装置
CN117998889A (zh) 发光器件及其制备方法及显示装置
WO2024114056A1 (zh) 复合材料及其制备方法及发光器件
WO2024120060A1 (zh) 复合材料、发光器件及其制备方法
WO2024104139A1 (zh) 复合材料、包含其的发光器件及其制备方法
WO2024109334A1 (zh) 复合材料、组合物及发光器件
WO2024139487A1 (zh) 复合材料、发光器件及其制备方法
WO2024139580A1 (zh) 一种复合材料及其制备方法、以及发光器件的制备方法
WO2024067394A1 (zh) 图案化量子点薄膜的制备方法、光电器件与电子设备
WO2023197659A1 (zh) 发光器件的制备方法、发光器件与显示装置
WO2024109341A1 (zh) 复合电极及其制备方法、发光器件
WO2024093747A1 (zh) 复合材料、复合材料的制备方法与包含复合材料的光电器件
WO2024139625A1 (zh) 一种薄膜的制备方法、发光器件及其制备方法
CN117186871B (zh) 复合材料、薄膜、发光器件及其制备方法、mini-LED背光模组及显示装置
WO2024139488A1 (zh) 一种复合材料及其制备方法、发光器件
WO2024139692A1 (zh) 发光器件、其制造方法以及显示装置
WO2024109552A1 (zh) 发光器件的制备方法、发光器件与电子设备
WO2024067203A1 (zh) 复合材料、光电器件及其制备方法
WO2024114078A1 (zh) 量子点的制备方法、材料筛选方法与发光器件
WO2023116207A1 (zh) 组合物、组合物的制备方法及发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881759

Country of ref document: EP

Kind code of ref document: A1