WO2024114078A1 - 量子点的制备方法、材料筛选方法与发光器件 - Google Patents

量子点的制备方法、材料筛选方法与发光器件 Download PDF

Info

Publication number
WO2024114078A1
WO2024114078A1 PCT/CN2023/121935 CN2023121935W WO2024114078A1 WO 2024114078 A1 WO2024114078 A1 WO 2024114078A1 CN 2023121935 W CN2023121935 W CN 2023121935W WO 2024114078 A1 WO2024114078 A1 WO 2024114078A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
solution
layer material
selenium
Prior art date
Application number
PCT/CN2023/121935
Other languages
English (en)
French (fr)
Inventor
聂志文
Original Assignee
广东聚华新型显示研究院
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东聚华新型显示研究院, Tcl科技集团股份有限公司 filed Critical 广东聚华新型显示研究院
Publication of WO2024114078A1 publication Critical patent/WO2024114078A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present application relates to the field of display technology, and in particular to a method for preparing quantum dots, a material screening method and a light-emitting device.
  • Quantum dots have attracted extensive attention from the industry, academia, and research circles due to their advantages such as high fluorescence quantum yield, narrow half-peak width, continuously adjustable fluorescence spectrum with size, and high stability.
  • quantum dot light emitting diodes built with quantum dots have inherited the excellent optical properties of quantum dots and have shown great competitive potential in terms of low cost, high brightness, wide color gamut, and excellent solution processability.
  • the performance of QLED devices has achieved rapid development.
  • core-shell quantum dots are usually prepared based on the solution method. This method makes it difficult to achieve completely uniform particle sizes of different quantum dots, which is manifested as a large standard deviation of particle size distribution.
  • the standard deviation of the particle size distribution of core-shell quantum dots is too large, it will cause different batches of light-emitting devices to have different numbers of quantum dot layers in the light-emitting layer. Since the number of quantum dot layers will significantly affect the tunneling barrier of holes, the hole injection levels of different batches of light-emitting devices will be different, resulting in different luminescence performances of different batches of light-emitting devices.
  • the present application provides a method for preparing quantum dots, a material screening method and a light-emitting device, which can solve the problem of poor uniformity of quantum dot particle size.
  • the present invention provides a method for preparing quantum dots, comprising:
  • Quantum dots are extracted from the quantum dot solution.
  • the step of adding quantum dot shell precursors to the quantum dot core solution for shell growth includes: adding corresponding quantum dot shell precursors to the quantum dot core solution in batches for shell growth to obtain a quantum dot solution containing n shell layers, wherein n ⁇ 2.
  • the reaction solution obtained after the previous shell growth is subjected to vacuum treatment.
  • the quantum dot shell precursor is added to the quantum dot core solution after vacuum treatment.
  • the vacuum treatment step includes maintaining the temperature at 60°C-200°C and 0.133Pa-133.3Pa for 0.5h-12h.
  • the step of providing a quantum dot core solution comprises:
  • a quantum dot core cation precursor, a ligand and an organic solvent are mixed to form a quantum dot core cation precursor solution, and a quantum dot core anion precursor is added to the quantum dot core cation precursor solution at 280° C.-320° C. in an inert gas atmosphere to react and obtain a quantum dot core solution.
  • the quantum dot core cation precursor and the quantum dot shell cation precursor are respectively selected from at least one of a cadmium source and a zinc source; the selected from at least one of a cadmium source and a zinc source.
  • the cadmium source includes cadmium oxide, cadmium chloride, cadmium oxalate, cadmium acetate, cadmium carbonate, cadmium stearate, cadmium acetylacetonate, diethyl cadmium, cadmium myristate, and cadmium oleate;
  • the zinc source includes zinc oxide, zinc chloride, zinc oxalate, zinc acetate, zinc carbonate, zinc stearate, zinc acetylacetonate, diethyl zinc, zinc undecylenate, zinc myristate, and zinc oleate.
  • the quantum dot core anion precursor and the quantum dot shell anion precursor are selected from at least one of a selenium source and a sulfur source respectively.
  • the selenium source includes selenium element, selenium dioxide, organic phosphine complexes of selenium, fatty amine compounds of selenium, organic selenium compounds, and organic selenol compounds;
  • the selenium source includes selenium powder, selenium dioxide, selenium-trioctylphosphine, selenium-tributylphosphine, selenium tetradecene solution, selenium pentadecene solution, selenium hexadecene solution, selenium heptadecene solution, selenium octadecene solution, selenol, diselenide, selenoether, selenoester, selenoamide, selenophene, and selenazole.
  • the sulfur source includes elemental sulfur, organic phosphine complexes of sulfur, fatty amine compounds of sulfur, organic sulfur compounds, and organic thiol compounds;
  • the sulfur source includes sulfur powder, a tetradecene solution of sulfur, a pentadecene solution of sulfur, a hexadecene solution of sulfur, a heptadecene solution of sulfur, an octadecene solution of sulfur, an n-octylamine solution of sulfur, a tri-n-octylamine solution of sulfur, sulfur-trioctylphosphine, sulfur-tributylphosphine, 1-octylthiol, 1-dodecanethiol, a mixture of 1-octylthiol and tri-n-octylamine, and a mixture of 1-octylthiol and tributylphosphine.
  • the ligand is selected from at least one of a C6-C18 saturated or unsaturated amine, a saturated or unsaturated acid;
  • the ligand is selected from at least one of C14-C18 saturated or unsaturated acids, including at least one of tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecanoic acid, and octadecenoic acid (oleic acid).
  • C14-C18 saturated or unsaturated acids including at least one of tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecanoic acid, and octadecenoic acid (oleic acid).
  • an embodiment of the present application further provides a material screening method, wherein the material screening method comprises:
  • the material to be screened is selected from anode layer materials, cathode layer materials, hole transport layer materials, hole injection layer materials Materials, hole blocking layer materials, electron transport layer materials, electron injection layer materials, electron blocking layer materials or interface modification layer materials;
  • quantum dot materials wherein the quantum dot materials are quantum dots prepared by the quantum dot preparation method
  • the target material is screened from the materials to be screened according to the performance parameters and/or target parameters of the light-emitting device.
  • the step of providing a material to be screened includes: providing an electron transport layer material to be screened;
  • the steps of preparing a light-emitting device using the material to be screened as the corresponding structural layer material and the quantum dot material as the light-emitting layer material include: preparing a single-electron light-emitting device using the electron transport layer material to be screened as the electron transport layer material and the quantum dot material as the light-emitting layer material.
  • the step of preparing a single electron light-emitting device using the electron transport layer material to be screened as the electron transport layer material and the quantum dot material as the light-emitting layer material comprises: using the electron transport layer material to be screened as the electron transport layer material and the quantum dot material as the light-emitting layer material, and repeatedly preparing a plurality of the single electron light-emitting devices;
  • Acquiring the performance parameters and/or target parameters of the light emitting device includes:
  • the calculated dispersion of the performance parameter is used as the target parameter.
  • the performance parameter is selected from one or more of luminous brightness, luminous efficiency, current density, start-up voltage and luminous lifetime.
  • the dispersion is selected from one or more of a standard deviation, a range, a variance and a coefficient of variation.
  • the anode layer material includes but is not limited to a conductive material with a relatively high work function, and may be composed of doped or undoped metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), tin oxide (SnO2), indium oxide (In2O3), cadmium-doped zinc oxide (Cd:ZnO), fluorine-doped tin oxide (F:SnO2), indium-doped tin oxide (In:SnO2), gallium-doped tin oxide (Ga:SnO2) or aluminum-doped zinc oxide (AZO), etc.; or in addition to the above-mentioned metal oxides, it may be composed of a metal material including nickel (Ni), platinum (Pt), gold (Au), silver (Ag), iridium (Ir) or carbon nanotubes (CNT);
  • ITO indium tin oxide
  • the cathode layer material includes but is not limited to a conductive material with a relatively low work function, and may be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au/Mg or Ag/Mg;
  • the hole injection layer material includes but is not limited to poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tri[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA), 4,4',4"-tri(N-carbazolyl)-triphenylamine (TCTA), 1,1-bis[(di-4, PEDOT
  • the hole blocking layer material includes but is not limited to Liq, 2-methyl-8-hydroxyquinoline p-hydroxybiphenyl aluminum, BCP and LiF;
  • the electron transport layer material includes but is not limited to zinc oxide, titanium oxide, zinc sulfide or cadmium sulfide doped with or undoped with a foreign metal element, wherein the doped foreign metal element includes at least one of aluminum, magnesium, lithium, lanthanum, yttrium, manganese, gallium, iron, chromium and cobalt;
  • the electron injection layer material includes but is not limited to metals such as Ca and Ba with low work function, compounds such as CsF, LiF, CsCO3, or other electrolyte-type electron injection layer materials;
  • the electron blocking layer material includes but is not limited to PVK, Poly-TPD, NPB, TCTA, TAPC, CBP and TFB which are doped compounds, and the doped compound is selected from one of Li-TFSI, NiO, CuSCN, MoO3, CuO, V2O5 or CuS.
  • the interface modification layer material is used to form an interface modification layer located between two specific structural layers.
  • the present application also provides a light-emitting device, wherein the light-emitting device includes an anode layer and a cathode layer arranged relatively to each other, and a light-emitting layer arranged between the anode layer and the cathode layer, and the material of the light-emitting layer is quantum dots prepared by the quantum dot preparation method.
  • the embodiments of the present application provide a method for preparing quantum dots, a material screening method and a light-emitting device, the preparation method comprising: providing a quantum dot core solution; adding a quantum dot shell precursor to the quantum dot core solution to grow a shell to obtain a quantum dot solution, wherein before adding the quantum dot shell precursor, the quantum dot core solution is vacuum-treated; quantum dots are extracted from the quantum dot solution; by vacuum-treating the quantum dot core solution before adding the quantum dot shell precursor to grow a shell, the short-chain organic solvent present in the quantum dot core solution can be effectively removed, thereby reducing the influence of the short-chain organic solvent on the crystal surface activity of the quantum dot core surface, improving the uniformity of the shell growth, and then improving the particle size uniformity of the formed quantum dots.
  • FIG1 is a schematic diagram of a process for preparing quantum dots provided in an embodiment of the present application.
  • FIG2 is a box plot comparison diagram obtained based on the data of Example 5 and Comparative Example 4 of the present application;
  • FIG3 is a box plot comparison diagram obtained based on the data of Example 6 of the present application and Comparative Example 5;
  • FIG4 is a box plot comparison diagram obtained based on the data of Example 7 of the present application and Comparative Example 6;
  • FIG5 is a box plot comparison diagram obtained based on the data of Example 8 and Example 5 of the present application.
  • FIG6 is a schematic diagram of a process of a material screening method provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a cross-sectional structure of a light emitting device provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a cross-sectional structure of a display device provided in an embodiment of the present application.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • a and B can be singular or plural.
  • At least one means one or more
  • plural means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • “at least one of a, b, or c” can all mean: a, b, c, a-b (i.e. a and b), a-c, b-c, or a-b-c, where a, b, c can be single or multiple, respectively.
  • the so-called “on” is a broad concept, which may indicate that the formed another layer is adjacent to the certain layer, or may indicate that there are other spacing structural layers between the another layer and the certain layer.
  • the so-called “on” may indicate that the formed top electrode is adjacent to the first carrier functional layer, or may indicate that there are other spacing structural layers between the top electrode and the first carrier functional layer, such as a light-emitting layer.
  • the embodiment of the present application provides a method for preparing quantum dots, which is described in detail below in conjunction with FIG. 1 .
  • the preparation method comprises the following steps:
  • Step S11 providing a quantum dot core solution
  • Step S12 adding a quantum dot shell precursor to the quantum dot core solution to grow a shell to obtain a quantum dot solution, wherein the quantum dot core solution is vacuum treated before adding the quantum dot shell precursor;
  • Step S13 extracting quantum dots from the quantum dot solution.
  • quantum dot core solutions usually contain organic solvents with longer chains, and some of them contain unsaturated bonds. Under high temperature and the conditions where the quantum dots themselves act as catalysts, after a period of time, some of the organic solvents may break and generate short-chain organic solvents. The presence of short-chain organic solvents may affect the activity of different crystal planes on the surface of the quantum dots, making it impossible for the shell to grow uniformly epitaxially when the shell grows, resulting in uneven size distribution of the final core-shell quantum dots.
  • the short-chain organic matter in the quantum dot core solution can be effectively removed by vacuum treating the quantum dot core solution before adding the quantum dot shell precursor for shell growth.
  • Solvent thereby reducing the impact of short-chain organic solvents on the crystal surface activity of the quantum dot core surface, improving the uniformity of shell growth, and further improving the uniformity of the particle size of the formed quantum dots.
  • step S11 the specific steps of providing the quantum dot core solution generally include:
  • the specific steps of adding a quantum dot shell precursor to the quantum dot core solution for shell growth generally include: adding a quantum dot shell precursor to the quantum dot core solution at 280° C.-320° C. and in an inert gas atmosphere, so that a quantum dot shell is formed on the surface of the quantum dot core;
  • the quantum dot shell precursor includes a quantum dot shell cation precursor and a quantum dot shell anion precursor
  • the specific steps of extracting quantum dots from the quantum dot solution generally include: centrifuging the obtained quantum dot solution, taking out the precipitate of the lower layer and drying the precipitate to obtain the quantum dots.
  • the quantum dot core cation precursor is selected from at least one of a cadmium source and a zinc source, and the quantum dot core anion precursor is selected from at least one of a selenium source and a sulfur source;
  • the quantum dot shell cation precursor is selected from at least one of a cadmium source and a zinc source, and the quantum dot shell anion precursor is selected from at least one of a selenium source and a sulfur source.
  • the cadmium source includes cadmium oxide, cadmium chloride, cadmium oxalate, cadmium acetate, cadmium carbonate, cadmium stearate, cadmium acetylacetonate, diethyl cadmium, cadmium myristate, cadmium oleate, and the like.
  • the zinc source includes zinc oxide, zinc chloride, zinc oxalate, zinc acetate, zinc carbonate, zinc stearate, zinc acetylacetonate, diethyl zinc, zinc undecylenate, zinc myristate, zinc oleate, and the like.
  • the selenium source includes selenium element, selenium dioxide, organic phosphine complexes of selenium, fatty amine compounds of selenium, organic selenium compounds, organic selenol compounds, and the like.
  • the selenium source includes selenium powder, selenium dioxide, selenium-trioctylphosphine, selenium-tributylphosphine, selenium-tetradecene solution, selenium-pentadecene solution, selenium-hexadecene solution, selenium-heptadecene solution, selenium-octadecene solution, selenium-octadecene solution, selenol, diselenide, selenoether, selenoester, selenoamide, selenophene, selenazole, etc.
  • the sulfur source includes elemental sulfur, organic phosphine complexes of sulfur, fatty amine compounds of sulfur, organic sulfur compounds, organic thiol compounds, and the like.
  • the sulfur source includes sulfur powder, sulfur tetradecene solution, sulfur pentadecene solution, sulfur hexadecene solution, sulfur heptadecene solution, sulfur octadecene solution, sulfur n-octylamine solution, sulfur tri-n-octylamine solution, sulfur-trioctylphosphine, sulfur-tributylphosphine, 1-octanethiol, 1-dodecanethiol, a mixture of 1-octanethiol and tri-n-octylamine, a mixture of 1-octanethiol and tri-n-octylphosphine, and the like.
  • the ligand is selected from at least one of a C6-C18 saturated or unsaturated amine, and a saturated or unsaturated acid.
  • the ligand is selected from at least one of C14-C18 saturated or unsaturated acids, including at least one of tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecanoic acid, and octadecenoic acid (oleic acid).
  • C14-C18 saturated or unsaturated acids including at least one of tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid, tetradecenoic acid, pentadecenoic acid, hexadecenoic acid, heptadecanoic acid, and octadecenoic acid (oleic acid).
  • the organic solvent is selected from at least one of C10-C22 alkanes, olefins, halogenated hydrocarbons, aromatic hydrocarbons, ethers, amines, ketones, and esters.
  • the organic solvent is a C14-C22 aliphatic hydrocarbon compound, for example, it can be at least one of tetradecene, pentadecene, hexadecene, heptadecene, octadecene, tetradecane, pentadecane, hexadecane, heptadecane, octadecane, nonadecane, eicosane, heneicosane, docosane, tricosane, tetracosane, and paraffin oil.
  • the step of adding a quantum dot shell precursor to the quantum dot core solution for shell growth includes: adding corresponding quantum dot shell precursors to the quantum dot core solution in batches for shell growth to obtain a quantum dot solution containing n shell layers, wherein n ⁇ 2, and before each addition of the corresponding quantum dot shell precursor, the reaction solution obtained after the previous shell growth is vacuum-treated.
  • vacuum-treating the reaction solution obtained after the previous shell growth before each shell growth it is ensured as much as possible that no or only a trace amount of short-chain solvents are present in the reaction solution each time the shell growth is performed, which is beneficial to further improve the particle size uniformity of the prepared quantum dots.
  • the quantum dot shell precursor since water, oxygen or low-boiling point solvents may exist in the quantum dot shell precursor, the water, oxygen or low-boiling point solvents contained therein will also affect the crystal surface activity of the quantum dot core surface, causing the quantum dot shell to not grow uniformly epitaxially during shell growth, resulting in uneven size distribution of the final quantum dots. Therefore, the quantum dot shell precursor is added to the quantum dot core solution after vacuum treatment to further improve the particle size uniformity of the prepared quantum dots.
  • the vacuum treatment step includes maintaining the temperature at 60° C.-200° C. and 0.133 Pa-133.3 Pa for 0.5 h-12 h.
  • the temperature of the vacuum treatment can be 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C or 190°C, etc.
  • the pressure of the vacuum treatment may specifically be 0.133 Pa, 1.33 Pa, 13.3 Pa or 133.3 Pa, etc.
  • the vacuum treatment time can specifically be 1 h, 2 h, 3 h, 4 h, 5 h, 6 h, 7 h, 8 h, 9 h or 10 h, etc.
  • the vacuum treatment operation can be replaced by other operation steps that can remove short-chain solvents, water and oxygen, and the present application does not make any special limitation on this.
  • the quantum dots were prepared as follows:
  • step (3) Switching to argon atmosphere, adding 1.5 mmol of selenium-trioctylphosphine to the solution obtained in step (2) at a reaction temperature of 300° C., and reacting for 20 min;
  • step (3) (4) reducing the temperature of the solution obtained in step (3) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • step (6) reducing the temperature of the solution obtained in step (5) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • step (7) The solution obtained in step (7) is centrifuged twice, precipitated and dried to obtain quantum dots 1;
  • the obtained quantum dots 1 are dispersed in n-octane solvent to prepare a 20 mg/mL solution for later use.
  • Quantum dots 2 were prepared as follows:
  • step (3) Switching to argon atmosphere, adding 3 mmol of selenium-trioctylphosphine to the solution obtained in step (2) at a reaction temperature of 300° C., and reacting for 20 min;
  • step (3) (4) reducing the temperature of the solution obtained in step (3) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • step (6) reducing the temperature of the solution obtained in step (5) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • the obtained quantum dots 2 are dispersed in n-octane solvent to prepare a 20 mg/mL solution for later use.
  • Quantum dots 3 were prepared as follows:
  • step (3) Switching to argon atmosphere, adding 1 mmol of selenium-trioctylphosphine to the solution obtained in step (2) at a reaction temperature of 300° C., and reacting for 20 min;
  • step (3) (4) reducing the temperature of the solution obtained in step (3) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • step (6) reducing the temperature of the solution obtained in step (5) to 150° C. and maintaining the temperature, and performing vacuum treatment at a vacuum degree of 0.133 Pa for 60 min;
  • step (7) The solution obtained in step (7) is centrifuged twice, precipitated and dried to obtain quantum dots 3;
  • the obtained quantum dots 3 are dispersed in n-octane solvent to prepare a 20 mg/mL solution for later use.
  • Quantum dots4 were prepared as follows:
  • the preparation method of this embodiment is roughly the same as that of embodiment 1, except that all quantum dot shell precursors need to be vacuum treated before being added to the reaction solution for shell growth:
  • step (3) 1.5 mmol of selenium-trioctylphosphine in step (3), 2 mmol of sulfur-trioctylphosphine and 0.6 mmol of cadmium oleate solution in step (5), and 0.3 ml of octanethiol in step (7) are added after being treated at 150° C. and a vacuum degree of 0.133 Pa for 60 minutes.
  • Quantum dots 5 were prepared as follows:
  • the preparation method of this comparative example is substantially the same as that of Example 1, except that the reaction solution is not subjected to vacuum treatment before each addition of quantum dot shell precursor for shell growth, specifically, steps (2), (4) and (6) are omitted.
  • the quantum dots 6 were prepared as follows:
  • the preparation method of this comparative example is substantially the same as that of Example 2, except that the reaction solution is not subjected to vacuum treatment before each addition of quantum dot shell precursor for shell growth, specifically, steps (2), (4) and (6) are omitted.
  • the quantum dots 7 were prepared as follows:
  • the preparation method of this comparative example is substantially the same as that of Example 3, except that the reaction solution is not subjected to vacuum treatment before each addition of quantum dot shell precursor for shell growth, specifically, steps (2), (4) and (6) are omitted.
  • the quantum dots 1 to 7 obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were tested according to the following test method:
  • the quantum dot solution after cleaning was measured on the Edinburgh FLS980 fluorescence spectrometer in combination with the photoluminescence quantum yield accessory to obtain the quantum yield of the liquid sample.
  • Fluorescence emission spectrum It can be directly measured on the Edinburgh FLS980 fluorescence spectrometer with an excitation wavelength of 350 nm.
  • Quantum dot particle size distribution measurement method First, the quantum dots are tested by transmission electron microscopy to obtain a transmission electron microscopy image. Nano measurer is used to perform size statistical analysis on the size of the particles in the electron microscopy image to obtain a particle size statistical report. The data in the particle size statistical report is then plotted using Origin software to obtain a bar chart, and the original number is evaluated to obtain the average value and standard deviation.
  • the method for preparing quantum dots provided in the embodiments of the present application, whether it is preparing quantum dots that emit red light, quantum dots that emit green light, or quantum dots that emit blue light, can effectively reduce the standard deviation of the particle size of the prepared quantum dots by vacuum treating the reaction solution before adding the quantum dot shell precursor for shell growth, that is, improve the uniformity of the particle size of the prepared quantum dots, and thereby narrow the peak width of the prepared quantum dots to a certain extent.
  • the particle size standard deviation of the prepared quantum dots can be further reduced, thereby further narrowing the peak width of the prepared quantum dots.
  • quantum dots prepared in the examples of the present application are further verified in combination with specific light-emitting device examples as follows.
  • the quantum dots prepared in Example 1 were used to prepare single-hole light-emitting devices. Specifically, 10 single-hole light-emitting devices were prepared repeatedly according to the following preparation steps:
  • An anode layer, a hole injection layer, a first hole transport layer, a light-emitting layer, a second hole transport layer and a cathode layer are sequentially formed on a substrate.
  • the substrate is a glass substrate; the material of the anode layer is ITO with a thickness of 110 nm; the material of the hole injection layer is PEDOT:PSS with a thickness of 80 nm; the material of the first hole transport layer is TFB with a thickness of 90 nm; the material of the light-emitting layer is the quantum dots prepared in Example 1 with a thickness of 25 nm; the material of the second hole transport layer is MoO3 with a thickness of 100 nm; the material of the cathode layer is Ag with a thickness of 70 nm.
  • the prepared single-hole light-emitting device is placed in an air atmosphere and heat treated at 120°C for 10 min.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Example 2, and 10 single-hole light-emitting devices are prepared.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Example 3, and 10 single-hole light-emitting devices are prepared.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Example 4, and 10 single-hole light-emitting devices are prepared.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Comparative Example 1. Up to 10 single-hole light-emitting devices.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Comparative Example 2, and 10 single-hole light-emitting devices are prepared.
  • Example 5 Similar to Example 5, the only difference is that the material of the light-emitting layer is replaced with the quantum dots prepared in Comparative Example 3, and 10 single-hole light-emitting devices are prepared.
  • the efficiency test system built by QEPRO spectrometer, Keithley 2400 and Keithley 6485 was controlled by LabView to obtain the current density data corresponding to the voltage of 8V.
  • Example 5 By comparing the data of Example 5 with that of Comparative Example 4, it can be seen that the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Example 5 is smaller than the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Comparative Example 4, that is, the data of each current density measured in Example 5 is more convergent than that in Comparative Example 4;
  • Example 6 By comparing the data of Example 6 with that of Comparative Example 5, it can be seen that the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Example 6 is smaller than the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Comparative Example 5, that is, the standard deviation of the current density measured in Example 6 is The data are more convergently distributed than in Comparative Example 5;
  • Example 7 By comparing the data of Example 7 with that of Comparative Example 6, it can be seen that the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Example 7 is smaller than the standard deviation of the current density between the 10 single-hole light-emitting devices prepared in Comparative Example 6, that is, the data of each current density measured in Example 7 is more convergent than that in Comparative Example 6;
  • Example 8 By comparing the data of Example 8 with that of Example 5, it can be seen that the standard deviation of current density among the 10 single-hole light-emitting devices prepared in Example 8 is smaller than the standard deviation of current density among the 10 single-hole light-emitting devices prepared in Example 5, that is, the data of each current density measured in Example 8 is more convergent than that in Example 5.
  • the quantum dots prepared by the quantum dot preparation method provided in the embodiment of the present application are used as the light-emitting layer material to prepare the light-emitting device, since they have better particle size uniformity than the quantum dots prepared in the comparative example, when they are used as the light-emitting layer material to prepare multiple light-emitting devices, the current density difference between different devices is smaller, that is, the device performance difference between different devices is smaller.
  • the standard deviation of current density between the 10 single-hole light-emitting devices prepared in Example 8 is smaller than the standard deviation of current density between the 10 single-hole light-emitting devices prepared in Example 5. The reason is that the light-emitting layer material in Example 8 uses quantum dots with better particle size uniformity prepared in Example 4.
  • the light-emitting devices prepared in Examples 5 to 8 and Comparative Examples 4 to 6 are single-hole light-emitting devices in order to avoid the influence of the instability of the electron transport layer material on the above comparative verification.
  • An embodiment of the present application provides a quantum dot, which is prepared by the quantum dot preparation method provided by the above embodiment.
  • An embodiment of the present application further provides a material screening method.
  • the material screening method includes:
  • S21 providing a material to be screened, wherein the material to be screened is selected from an anode layer material, a cathode layer material, a hole transport layer material, a hole injection layer material, a hole barrier layer material, an electron transport layer material, an electron injection layer material, an electron barrier layer material or an interface modification layer material;
  • S25 Screening a target material from the materials to be screened according to the performance parameters and/or target parameters of the light-emitting device.
  • the material of the light-emitting layer is the quantum dots prepared by the method for preparing quantum dots provided in the above embodiment, it can be known from the above embodiment that the quantum dots prepared by the method for preparing quantum dots provided in the embodiment of the present application have good particle size uniformity.
  • the quantum dots are used as the material of the light-emitting layer to prepare a light-emitting device, the obtained multiple light-emitting devices can be uniformly spaced. The performance differences of the devices are small;
  • the material screening method provided in the embodiment of the present application has better screening accuracy, which is conducive to accurately screening out the required materials and then preparing a light-emitting device with better performance.
  • the anode layer material includes but is not limited to a conductive material with a relatively high work function, and may be composed of doped or undoped metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tin zinc oxide (ITZO), tin oxide (SnO2), indium oxide (In2O3), cadmium-doped zinc oxide (Cd:ZnO), fluorine-doped tin oxide (F:SnO2), indium-doped tin oxide (In:SnO2), gallium-doped tin oxide (Ga:SnO2) or aluminum-doped zinc oxide (AZO), etc.; or in addition to the above-mentioned metal oxides, it may be composed of a metal material including nickel (Ni), platinum (Pt), gold (Au), silver (Ag), iridium (Ir) or carbon nanotubes (CNTs).
  • ITO indium tin oxide
  • the cathode layer material includes but is not limited to a conductive material with a relatively low work function, which may be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au/Mg or Ag/Mg.
  • a conductive material with a relatively low work function which may be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au/Mg or Ag/Mg.
  • the hole transport layer material includes but is not limited to organic materials and inorganic materials, and the organic material is selected from aromatic amines, such as 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine ( ⁇ -NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro (spiro-TPD), N,N'-di(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine (DNTPD), 4,4',4'-tri(N-N-(N
  • the hole injection layer material includes, but is not limited to, poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA), 4,4',4"-tris(N-carbazolyl)-triphenylamine (TCTA), 1,1-bis
  • TDATA p-doped phthalocyanine
  • ZnPc p-doped zinc phthalocyanine
  • ⁇ -NPD F4-TCNQ-doped N,N'-diphenyl-N,N'-di(1-naphthyl)-1,1'-biphenyl-4,4"-diamine
  • HAT-CN hexaazatriphenylene-capronitrile
  • the hole blocking layer material includes but is not limited to Liq, 2-methyl-8-hydroxyquinoline-p-hydroxybiphenyl aluminum, BCP, and LiF.
  • the electron transport layer material includes but is not limited to zinc oxide, titanium oxide, zinc sulfide or cadmium sulfide doped with or undoped with foreign metal elements, wherein the doped foreign metal element includes at least one of aluminum, magnesium, lithium, lanthanum, yttrium, manganese, gallium, iron, chromium and cobalt.
  • the electron injection layer material includes but is not limited to metals with low work function such as Ca, Ba, compounds such as CsF, LiF, CsCO3, or other electrolyte-type electron injection layer materials.
  • the electron blocking layer material includes but is not limited to PVK, Poly-TPD, NPB, TCTA, TAPC, CBP and TFB which are doped compounds, and the doped compound is selected from one of Li-TFSI, NiO, CuSCN, MoO3, CuO, V2O5 or CuS.
  • the interface modification layer material is used to form an interface modification layer located between two specific structural layers, usually to prevent corrosion and damage to the prepared lower structural layer during the preparation of the upper structural layer; or to improve the bonding state of the interface between the two specific structural layers.
  • the step of providing a material to be screened includes: providing an electron transport layer material to be screened;
  • the steps of preparing a light-emitting device using the material to be screened as the corresponding structural layer material and the quantum dot material as the light-emitting layer material include: preparing a single-electron light-emitting device using the electron transport layer material to be screened as the electron transport layer material and the quantum dot material as the light-emitting layer material.
  • the single-electron light-emitting device is a light-emitting device that does not have a hole carrier functional layer such as a hole transport layer and a hole injection layer, so as to avoid the instability of the hole transport material or the hole injection material affecting the accuracy of the screening results when screening the electron transport layer material. Therefore, when screening the electron transport layer material, setting the light-emitting device as a single-electron light-emitting device is beneficial to further improve the accuracy of the screening results.
  • the steps of preparing a single electron light-emitting device specifically include the following:
  • first electron transport layer on the anode layer, wherein the material of the first electron transport layer is the electron transport layer material to be screened;
  • a second electron transport layer is formed on the light-emitting layer, wherein the material of the second electron transport layer is the electron transport layer material to be screened. material;
  • the substrate includes a rigid substrate and a flexible substrate, specifically including glass, silicon wafer, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyether sulfone, or a combination thereof.
  • the anode layer is composed of a conductive material with a relatively high work function, and can be composed of doped or undoped metal oxides, such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd:ZnO, F:SnO2, In:SnO2, Ga:SnO2 or AZO; or in addition to the above-mentioned metal oxides, it can be composed of a metal material including nickel (Ni), platinum (Pt), gold (Au), silver (Ag), iridium (Ir) or carbon nanotubes (CNT).
  • doped or undoped metal oxides such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd:ZnO, F:SnO2, In:SnO2, Ga:SnO2 or AZO
  • metal oxides such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd:ZnO, F:
  • the material of the electron transport layer is the material to be screened, and the material to be screened generally includes at least one of zinc oxide, titanium oxide, zinc sulfide, and cadmium sulfide that are undoped and doped with a foreign metal element.
  • the foreign metal element includes at least one of aluminum, magnesium, lithium, lanthanum, yttrium, manganese, gallium, iron, chromium, and cobalt.
  • the material of the light-emitting layer is the quantum dots prepared by the method for preparing quantum dots provided in the embodiment of the present application; the specific material of the quantum dots is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZn
  • the cathode layer is composed of a conductive material with a relatively low work function, which may be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au/Mg or Ag/Mg.
  • a conductive material with a relatively low work function which may be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au/Mg or Ag/Mg.
  • the material of the packaging adhesive layer is selected from at least one of UV adhesive, metal film and glass adhesive.
  • the thickness of the anode layer is 20-200nm; the thickness of the first electron transport layer is 20-200nm; the thickness of the light-emitting layer is 10-50nm; the thickness of the second electron transport layer is 20-200nm; and the thickness of the cathode is 40-190nm.
  • the existing electron transport materials are usually prepared based on the low-temperature solution method, the conduction band properties of the prepared electron transport materials are very unstable and difficult to reproduce well, which has an adverse effect on the stability of the performance of the light-emitting device and the process of research and optimization of the light-emitting device. Therefore, when screening the electron transport material, it is necessary to focus on evaluating the stability of the electron transport layer material;
  • the material to be screened is used as the corresponding structural layer material, and the quantum dot material is used as the light-emitting layer material, and the light-emitting device is prepared, including: using the electron transport layer material to be screened as the electron transport layer material, and using the quantum dot material as the light-emitting layer material, repeatedly preparing to obtain a plurality of the single-electron light-emitting devices;, according to specific needs, repeatedly preparing 10-50 single-electron light-emitting devices;
  • the step of obtaining the performance parameters and/or target parameters of the light emitting device includes:
  • the calculated discreteness of the multiple performance parameters is used as the target parameter.
  • the principle of screening is that the smaller the discreteness, the smaller the performance difference of the multiple single electron light-emitting devices prepared by using the electron transport layer material to be screened as the electron transport layer material, which means that the conductivity of the electron transport layer material to be screened is more stable.
  • the dispersion includes but is not limited to standard deviation, range, variance, and coefficient of variation.
  • the performance parameters include but are not limited to luminous brightness, luminous efficiency, current density, start-up voltage, and luminous lifetime.
  • the performance parameter is current density, which may be a current density at a voltage of 4-8V according to the light-emitting device.
  • the step of obtaining the target parameters of the light emitting device includes the following steps:
  • the calculated standard deviations of the multiple current densities are used as the target parameters.
  • zinc oxide 1 zinc oxide 1
  • zinc oxide 2 zinc oxide 2
  • An anode layer, a first electron transport layer, a quantum dot layer, an electron transport layer and a cathode are sequentially formed on a substrate; wherein the substrate is a glass substrate; the material of the anode layer is ITO with a thickness of 120nm; the material of the first electron transport layer is the zinc oxide 1 or zinc oxide 2 provided above to be screened, with a thickness of 100nm; the material of the light-emitting layer is the quantum dots prepared in Example 1, with a thickness of 25nm; the material of the second electron transport layer is the zinc oxide 1 or zinc oxide 2 provided above to be screened, with a thickness of 100nm; the material of the cathode layer is Ag with a thickness of 80nm. After the preparation of each film layer is completed, the obtained single electron light-emitting device is placed at 120°C for heat treatment for 10 minutes.
  • the efficiency test system built by QEPRO spectrometer, Keithley 2400 and Keithley 6485 was controlled by LabView to obtain the current density data corresponding to the voltage of 8V.
  • the standard deviation of the current density of the 10 single-electron light-emitting devices corresponding to zinc oxide 1 at a voltage of 8 V is 4.6
  • the standard deviation of the current density of the 10 single-electron light-emitting devices corresponding to zinc oxide 2 at a voltage of 8 V is 20.0. Therefore, zinc oxide 1 can be selected as an electron transport material with more stable conductivity.
  • Another embodiment of the present application also provides a light-emitting device, which includes an anode layer and a cathode layer arranged relatively to each other, and a light-emitting layer arranged between the anode layer and the cathode layer, and the material of the light-emitting layer is quantum dots prepared by the quantum dot preparation method provided in the above embodiment of the present application.
  • the light emitting device 10 includes a substrate 11 , and an anode layer 12 , a hole injection layer 13 , a hole transport layer 14 , a light emitting layer 15 , an electron transport layer 16 , a cathode layer 17 and an encapsulation layer 18 stacked on the substrate 11 .
  • the substrate 11 includes a rigid or flexible substrate, specifically includes glass, silicon wafer, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, polyethylene naphthalate, polyamide, polyether sulfone, or a combination thereof.
  • the anode layer 12 is composed of a conductive material with a relatively high work function, and may be composed of doped or undoped metal oxides, such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd:ZnO, F:SnO2, In:SnO2, Ga:SnO2 or AZO, etc.; or in addition to the above-mentioned metal oxides, it may be composed of a metal material including nickel (Ni), platinum (Pt), gold (Au), silver (Ag), iridium (Ir) or carbon nanotubes (CNT).
  • doped or undoped metal oxides such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd:ZnO, F:SnO2, In:SnO2, Ga:SnO2 or AZO, etc.
  • metal oxides such as ITO, IZO, ITZO, ICO, SnO2, In2O3, Cd
  • the material of the hole injection layer 13 is selected from poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA ...
  • TCTA 4"-tri(N-carbazolyl)-triphenylamine
  • TAPC 1,1-bis[(di-4-tolylamino)phenylcyclohexane
  • TDATA 4,4',4"-tri(diphenylamino)triphenylamine
  • F4-TCNQ tetrafluoro-tetracyano-quinodimethane
  • ZnPc p-doped phthalocyanine
  • ⁇ -NPD hexaazatriphenylene-capronitrile
  • the material of the hole transport layer 14 is selected from at least one of an organic material and an inorganic material.
  • the organic material is selected from an aromatic amine, such as 4,4'-N,N'-dicarbazolyl-biphenyl (CBP), N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine ( ⁇ -NPD), N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD), N,N'-bis(3-methylphenyl)-N,N'-bis(phenyl)-spiro(spiro)- TPD), N,N'-bis(4-(N,N'-diphenyl-amino)phenyl)-N,N'-diphenylbenzidine (DNTPD), 4,4',4'-tri
  • the material of the light-emitting layer 15 is the quantum dots prepared by the method for preparing quantum dots provided in the embodiment of the present application; the specific material of the quantum dots is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZ
  • the material of the electron transport layer 16 is selected from at least one of zinc oxide, titanium oxide, zinc sulfide, and cadmium sulfide doped with or undoped with a foreign metal element, wherein the doped foreign metal element includes at least one of aluminum, magnesium, lithium, lanthanum, yttrium, manganese, gallium, iron, chromium, and cobalt.
  • the material of the cathode layer 17 is selected from conductive materials with relatively low work function, for example, it can be Ca, Ba, Ca/Al, LiF/Ca, LiF/Al, BaF2/Al, CsF/Al, CaCO3/Al, BaF2/Ca/Al, Al, Mg, Au:Mg or Ag:Mg.
  • the material of the packaging adhesive layer 18 is selected from at least one of UV adhesive, metal film and glass adhesive.
  • the thickness of the anode layer 12 is 20-200nm; the thickness of the hole injection layer 13 is 20-200nm; the thickness of the hole transport layer 14 is 30-180nm; the thickness of the light emitting layer 15 is 10-50nm; the thickness of the electron transport layer 16 is 20-200nm; and the thickness of the cathode layer 17 is 40-190nm.
  • the material of the light-emitting layer 15 is quantum dots prepared by the quantum dot preparation method provided in the embodiment of the present application, the particle size of the quantum dots has good uniformity, so that the uniformity of the number of quantum dot layers in the light-emitting layer 15 between different batches of light-emitting devices is higher, thereby making different batches of light-emitting devices have approximately the same hole injection level, that is, greatly reducing the device performance differences between different batches of light-emitting devices.
  • any one of the anode layer 12, the hole injection layer 13, the hole transport layer 14, the electron transport layer 16 and the cathode layer 17 is obtained by screening the material screening method provided in the above embodiments of the present application.
  • the material of the electron transport layer 16 is obtained by screening using the material screening method provided in the above embodiments of the present application.
  • Example 1 The quantum dots prepared in Example 1 were used as the material for the light-emitting layer, and the zinc oxide 1 selected in Example 9 was used as the material for the electron transport layer.
  • Ten light-emitting devices were prepared repeatedly according to the following method:
  • An anode layer, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer and a cathode layer are sequentially deposited on the substrate.
  • the substrate is a glass substrate; the material of the anode layer is ITO with a thickness of 120nm; the material of the hole injection layer is PEDOT:PSS with a thickness of 90nm; the material of the hole transport layer is TFB with a thickness of 80nm; the material of the light-emitting layer is the quantum dots prepared in Example 1 with a thickness of 15nm; the material of the electron transport layer is zinc oxide 1 selected in Example 5 with a thickness of 80nm; the material of the cathode layer is Ag with a thickness of 60nm.
  • the prepared light-emitting device is placed at 120°C for heat treatment for 15 minutes.
  • the time when the brightness drops to 95% of the maximum brightness is defined as T95, and this lifespan is the measured lifespan.
  • the device lifespan test is usually carried out by accelerating device aging at high brightness with reference to the OLED device test, and the lifespan at high brightness is obtained by fitting the extended exponential decay brightness attenuation fitting formula, for example: the lifespan at 1000nit is calculated as T951000nit.
  • the specific calculation formula is as follows:
  • T951000nit is the lifespan at a brightness of 1000nit
  • T95H is the measured lifespan at high brightness
  • LH is the device accelerated to the highest brightness
  • LL is 1000nit
  • A is the acceleration factor.
  • the quantum dots prepared by the quantum dot preparation method provided in the embodiment of the present application are used as the light-emitting layer material, and are matched with the material screened by the material screening method provided in the embodiment of the present application as the electron transport material.
  • the prepared multiple light-emitting devices have high life repeatability, that is, because the quantum dots prepared by the quantum dot preparation method provided in the embodiment of the application and the electron transport material screened by the material screening method provided in the embodiment of the present application both have good stability, the light-emitting device formed has high performance stability.
  • Another embodiment of the present application further provides a display device, which includes the light-emitting device provided by the above embodiment.
  • the display device 20 includes a substrate 21 , a plurality of light emitting devices 10 disposed on the substrate 21 at intervals, and a packaging layer 22 disposed on the plurality of light emitting devices 10 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种量子点的制备方法、材料筛选方法与发光器件。通过在加入量子点壳层前驱体进行壳层生长之前,对量子点核溶液进行真空处理的操作,得以有效去除量子点核溶液中所存在的短链有机溶剂,从而减少短链有机溶剂对量子点核表面的晶面活性的影响,提升了壳层生长均一性,进而提升了所形成的量子点的粒径均一性。

Description

量子点的制备方法、材料筛选方法与发光器件
本申请要求于2022年12月30日在中国专利局提交的、申请号为202211515392.6、申请名称为“量子点及其制备方法、材料筛选方法、发光器件与显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种量子点的制备方法、材料筛选方法与发光器件。
背景技术
量子点(QDs)由于具有荧光量子产率高、半峰宽窄、荧光光谱随尺寸连续可调、稳定性高等优点引起了产学研界的广泛关注。特别是以量子点构筑的量子点发光二级管(Quantum Dot Light Emitting Diodes,QLED)由于继承了量子点优异的光学性能,在低成本、高亮度、广色域、优异的可溶液加工等方面表现出极具竞争潜力。随着量子点合成技术的日益成熟和器件结构的优化改进,QLED器件的性能取得了飞速发展。
目前,核壳型量子点通常是基于溶液法制备,该种方法难以做到不同量子点的粒径完全均一,表现为粒径分布的标准差较大。当核壳型量子点的粒径分布标准差偏大时,会造成不同批次的发光器件的发光层中量子点层数不同,又由于量子点层数会显著影响空穴的遂穿势垒,使得不同批次的发光器件的空穴注入水平存在差异,造成不同批次的发光器件的发光性能存在差异。
技术解决方案
因此,本申请提供一种量子点的制备方法、材料筛选方法与发光器件,可解决量子点粒径均一性差的问题。
本申请实施例提供一种量子点的制备方法,包括:
提供量子点核溶液;
向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长,得到量子点溶液,其中,在加入所述量子点壳层前驱体之前,对所述量子点核溶液进行真空处理;
从所述量子点溶液中提取得到量子点。
可选的,向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长的步骤包括:向所述量子点核溶液中分批加入相应的量子点壳层前驱体进行壳层生长,得到含有n层壳层的量子点溶液,其中,n≥2。
可选的,在每次加入相应的所述量子点壳层前驱体之前,均对前一次壳层生长后得到待反应溶液进行真空处理。
可选的,所述量子点壳层前驱体在进行真空处理后加入至所述量子点核溶液中。
可选的,其中,所述真空处理的步骤包括在60℃-200℃以及0.133Pa-133.3Pa的条件下保持0.5h-12h。
可选的,所述提供量子点核溶液的步骤包括:
将量子点核阳离子前驱体、配体以及有机溶剂混合形成量子点核阳离子前驱体溶液,在280℃-320℃以及惰性气体气氛下,向所述量子点核阳离子前驱体溶液中加入量子点核阴离子前驱体,反应得到量子点核溶液。
可选的,所述量子点核阳离子前驱体和所述量子点壳层阳离子前驱体分别选自镉源以及锌源中的至少一种;所述选自镉源以及锌源中的至少一种。
可选的,所述镉源包括氧化镉、氯化镉、草酸镉、醋酸镉、碳酸镉、硬脂酸镉、乙酰丙酮镉、二乙基镉、十四酸镉、油酸镉;
和/或,所述锌源包括氧化锌、氯化锌、草酸锌、醋酸锌、碳酸锌、硬脂酸锌、乙酰丙酮锌、二乙基锌、十一烯酸锌、十四酸锌、油酸锌。
可选的,所述量子点核阴离子前驱体选和量子点壳层阴离子前驱体分别自硒源以及硫源中的至少一种。
可选的,所述硒源包括包括硒单质、二氧化硒、硒的有机膦配合物、硒的脂肪胺化合物、有机硒化合物、有机硒醇化合物;
或者,所述硒源包括硒粉、二氧化硒、硒-三辛基膦、硒-三丁基膦、硒的十四烯溶液、硒的十五烯溶液、硒的十六烯溶液、硒的十七烯溶液、硒的十八烯溶液、硒醇、二硒化物、硒醚、硒代酸酯、硒代酰胺、硒吩、硒唑。
可选的,所述硫源包括硫单质、硫的有机膦配合物、硫的脂肪胺化合物、有机硫化合物、有机硫醇化合物;
或者,所述硫源包括硫粉、硫的十四烯溶液、硫的十五烯溶液、硫的十六烯溶液、硫的十七烯溶液、硫的十八烯溶液、硫的正辛胺溶液、硫的三正辛胺溶液、硫-三辛基膦、硫-三丁基膦、1-辛硫醇、1-十二硫醇、1-辛硫醇与三正辛胺的混合物、1-辛硫醇与三丁基膦的混合物。
可选的,所述配体选自C6-C18的饱和或者不饱和胺、饱和或者不饱和酸中的至少一种;
或者,所述配体选自C14-C18的饱和或者不饱和酸中的至少一种,包括十四酸、十五酸、十六酸、十七酸、十八酸、十四烯酸、十五烯酸、十六烯酸、十七烯酸、十八烯酸(油酸)中的至少一种。
相应的,本申请实施例还提供一种材料筛选方法,其中,所述材料筛选方法包括:
提供待筛选材料,所述待筛选材料选自阳极层材料、阴极层材料、空穴传输层材料、空穴注入层材 料、空穴阻隔层材料、电子传输层材料、电子注入层材料、电子阻隔层材料或者界面修饰层材料;
提供量子点材料,所述量子点材料为所述的量子点的制备方法制备而得的量子点;
以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件;
获取所述发光器件的性能参数和/或目标参数;
根据所述发光器件的性能参数和/或目标参数从所述待筛选材料中筛选得到目标材料。
可选的,提供待筛选材料的步骤包括:提供待筛选的电子传输层材料;
以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件的步骤包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,制备单电子发光器件。
可选的,以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,制备单电子发光器件的步骤包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,重复制备得到多个所述单电子发光器件;
获取所述发光器件的性能参数和/或目标参数包括:
分别对多个所述单电子发光器件进行性能测试得到相应的的性能参数;
计算得到的所述性能参数的离散度作为所述目标参数。
可选的,所述性能参数选自发光亮度、发光效率、电流密度、启亮电压以及发光寿命中的一种或多种。
可选的,所述离散度选自中的一种标准差、极差、方差以及变异系数中的一种或多种。
可选的,所述阳极层材料包括不限于为具有相对高功函数的导电材料,可以由掺杂或未掺杂的金属氧化物组成,如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟锡锌(ITZO)、氧化锡(SnO2)、氧化铟(In2O3)、掺镉氧化锌(Cd:ZnO)、掺氟氧化锡(F:SnO2)、掺铟氧化锡(In:SnO2)、掺镓氧化锡(Ga:SnO2)或掺铝氧化锌(AZO)等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成;
和/或,所述阴极层材料包括不限于为具有相对低功函数的导电材料组成,可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF2/Al、CsF/Al、CaCO3/Al、BaF2/Ca/Al、Al、Mg、Au/Mg或Ag/Mg;
和/或,所述空穴注入层材料包括不限于为聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯 基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN);
和/或,所述空穴阻隔层材料包括不限于为Liq、2-甲基-8-羟基喹啉对羟基联苯合铝、BCP及LiF;
和/或,所述电子传输层材料包括不限于为掺杂有异金属元素或未掺杂的氧化锌、氧化钛、硫化锌或硫化镉中,其中,掺杂的异金属元素包括铝、镁、锂、镧、钇、锰、镓、铁、铬、钴中至少一种;
和/或,所述电子注入层材料包括不限于为低功函数的Ca、Ba等金属,CsF、LiF、CsCO3等化合物或其它电解质型电子注入层材料;
和/或,所述电子阻隔层材料包括但不限于为掺杂化合物的PVK、Poly-TPD、NPB、TCTA、TAPC、CBP和TFB,掺杂的所述化合物选自Li-TFSI、NiO、CuSCN、MoO3、CuO、V2O5或CuS中的一种。
可选的,所述界面修饰层材料用于形成位于特定两结构层之间的界面修饰层。
相应的,本申请还提供一种发光器件,其中,所述发光器件包括相对设置的阳极层与阴极层,以及设置于所述阳极层与所述阴极层之间的发光层,所述发光层的材料为由所述的量子点的制备方法制备而得的量子点。
有益效果:本申请实施例提供了一种量子点的制备方法、材料筛选方法与发光器件,所述制备方法包括:提供量子点核溶液;向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长,得到量子点溶液,其中,在加入所述量子点壳层前驱体之前,对所述量子点核溶液进行真空处理;从所述量子点溶液中提取得到量子点;通过在加入所述量子点壳层前驱体进行壳层生长之前,对所述量子点核溶液进行真空处理的操作,得以有效去除量子点核溶液中所存在的短链有机溶剂,从而减少短链有机溶剂对量子点核表面的晶面活性的影响,提升了壳层生长均一性,进而提升了所形成的量子点的粒径均一性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的一种量子点的制备方法的流程示意图;
图2是根据本申请实施例5与对比例4的数据制得的箱式图对照图;
图3是根据本申请实施例6与对比例5的数据制得的箱式图对照图;
图4是根据本申请实施例7与对比例6的数据制得的箱式图对照图;
图5是根据本申请实施例8与实施例5的数据制得的箱式图对照图;
图6是本申请实施例提供的一种材料筛选方法的流程示意图;
图7是本申请实施例提供的一种发光器件的截面结构示意图;
图8是本申请实施例提供的一种显示装置的截面结构示意图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
在本申请中,在某一层“上”形成另一层中,所谓的“上”为广义概念,可以表示形成的另一层与某一层相邻,也可以表示另一层与某一层之间存在其他间隔结构层,例如在第一载流子功能层“上”形成顶电极,所谓的“上”可以表示形成的顶电极与第一载流子功能层相邻,也可以表示顶电极与第一载流子功能层之间存在其他间隔结构层,例如发光层。
本申请实施例提供了一种量子点的制备方法,以下结合图1进行详细说明。
所述制备方法包括如下步骤:
步骤S11:提供量子点核溶液;
步骤S12:向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长,得到量子点溶液,其中,在加入所述量子点壳层前驱体之前,对所述量子点核溶液进行真空处理;
步骤S13:从所述量子点溶液中提取得到量子点。
通过研究发现,常规形成的量子点核溶液中通常存在链长较长的有机溶剂,且部分含有不饱和键,在高温以及量子点自身作为催化剂的条件下,经过一段时间后,部分有机溶剂可能会发生断裂,生成短链有机溶剂,而短链有机溶剂的存在可能会影响量子点表面不同晶面的活性,使得壳层生长时,壳不能均匀的进行外延生长,造成最终核壳量子点的尺寸分布不均一;
因此,在本申请实施例所提供的量子点的制备方法中,通过在加入所述量子点壳层前驱体进行壳层生长之前,对所述量子点核溶液进行真空处理的操作,得以有效去除量子点核溶液中所存在的短链有机 溶剂,从而减少短链有机溶剂对量子点核表面的晶面活性的影响,提升了壳层生长均一性,进而提升了所形成的量子点的粒径均一性。
补充说明的是,在所述步骤S11中,提供量子点核溶液的具体步骤通常包括:
将量子点核阳离子前驱体、配体以及有机溶剂混合形成量子点核阳离子前驱体溶液,在280℃-320℃以及惰性气体气氛下,向所述量子点核阳离子前驱体溶液中加入量子点核阴离子前驱体,反应得到量子点核溶液;
在所述步骤S12中,向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长的具体步骤通常包括:在280℃-320℃以及惰性气体气氛下,向所述量子点核溶液中加入量子点壳层前驱体,使得量子点核的表面形成量子点壳层;
其中,所述量子点壳层前驱体包括量子点壳层阳离子前驱体与量子点壳层阴离子前驱体;
在所述步骤S13中,从所述量子点溶液中提取得到量子点的具体步骤通常包括:对得到的所述量子点溶液进行离心,取下层的沉淀物并对该沉淀物进行干燥即得到所述量子点。
在一些实施例中,所述量子点核阳离子前驱体选自镉源以及锌源中的至少一种,所述量子点核阴离子前驱体选自硒源以及硫源中的至少一种;所述量子点壳层阳离子前驱体选自镉源以及锌源中的至少一种,所述量子点壳层阴离子前驱体选自硒源以及硫源中的至少一种。
在一些实施例中,所述镉源包括氧化镉、氯化镉、草酸镉、醋酸镉、碳酸镉、硬脂酸镉、乙酰丙酮镉、二乙基镉、十四酸镉、油酸镉等。
在一些实施例中,所述锌源包括氧化锌、氯化锌、草酸锌、醋酸锌、碳酸锌、硬脂酸锌、乙酰丙酮锌、二乙基锌、十一烯酸锌、十四酸锌、油酸锌等。
在一些实施例中,所述硒源包括硒单质、二氧化硒、硒的有机膦配合物、硒的脂肪胺化合物、有机硒化合物、有机硒醇化合物等。
在一些实施例中,所述硒源包括硒粉、二氧化硒、硒-三辛基膦、硒-三丁基膦、硒的十四烯溶液、硒的十五烯溶液、硒的十六烯溶液、硒的十七烯溶液、硒的十八烯溶液、硒醇、二硒化物、硒醚、硒代酸酯、硒代酰胺、硒吩、硒唑等。
在一些实施例中,所述硫源包括硫单质、硫的有机膦配合物、硫的脂肪胺化合物、有机硫化合物、有机硫醇化合物等。
在一些实施例中,所述硫源包括硫粉、硫的十四烯溶液、硫的十五烯溶液、硫的十六烯溶液、硫的十七烯溶液、硫的十八烯溶液、硫的正辛胺溶液、硫的三正辛胺溶液、硫-三辛基膦、硫-三丁基膦、1-辛硫醇、1-十二硫醇、1-辛硫醇与三正辛胺的混合物、1-辛硫醇与三丁基膦的混合物等。
在一些实施例中,所述配体选自C6-C18的饱和或者不饱和胺、饱和或者不饱和酸中的至少一种。
在一些实施例中,所述配体选自C14-C18的饱和或者不饱和酸中的至少一种,包括十四酸、十五酸、十六酸、十七酸、十八酸、十四烯酸、十五烯酸、十六烯酸、十七烯酸、十八烯酸(油酸)中的至少一种。
在一些实施例中,所述有机溶剂选自C10-C22的烷烃、烯烃、卤代烃、芳香烃、醚类、胺类、酮类、酯类中的至少一种。
在一些实施例中,所述有机溶剂为C14-C22的脂肪族烃类化合物,例如可以为十四碳烯、十五碳烯、十六碳烯、十七碳烯、十八碳烯、十四烷、十五烷、十六烷、十七烷、十八烷、十九烷、二十烷、二十一烷、二十二烷、二十三烷、二十四烷、石蜡油中的至少一种。
在一些实施例中,向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长的步骤包括:向所述量子点核溶液中分批加入相应的量子点壳层前驱体进行壳层生长,得到含有n层壳层的量子点溶液,其中,n≥2,且在每次加入相应的所述量子点壳层前驱体之前,均对前一次壳层生长后得到待反应溶液进行真空处理,通过在每次进行壳层生长前均对前一次壳层生长后得到待反应溶液进行真空处理,尽可能地保证在每次进行壳层生长时,反应溶液中均不存在或仅微量存在短链溶剂,有利于进一步提升制备得到的量子点的粒径均一性。
在一些实施例中,由于量子点壳层前驱体中可能会存在水、氧或者低沸点溶剂,其含有的水、氧或者低沸点溶剂同样会影响量子点核表面的晶面活性,使得壳层生长时,使得量子点壳层不能均匀的进行外延生长,造成最终量子点的尺寸分布不均一,因此,所述量子点壳层前驱体均在进行真空处理后加入至所述量子点核溶液中,以进一步提升制备得到的量子点的粒径均一性。
在一些实施例中,所述真空处理的步骤包括在60℃-200℃以及0.133Pa-133.3Pa的条件下保持0.5h-12h。
进一步地,所述真空处理的温度具体可以为70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃或190℃等。
所述真空处理的压强具体可以为0.133Pa、1.33Pa、13.3Pa或133.3Pa等。
所述真空处理的时间具体可以为1h、2h、3h、4h、5h、6h、7h、8h、9h或10h等。
补充说明的是,在本申请实施例提供的量子点的制备方法中,真空处理操作可替换为其他可去除短链溶剂、水及氧的操作步骤,本申请对此不作特殊限定。
实施例1
按照如下方法制备得到量子点①:
(1)在将12mmol醋酸锌,0.5mmol氧化镉,15ml油酸和10ml十八碳烯混合,形成金属阳离子前驱体溶液,然后,在300℃的反应温度下,将1mmol硒-三辛基膦注入到金属阳离子前驱体中,得到含CdZnSe量子点核的量子点核溶液;
(2)将得到的量子点核溶液温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(3)切换成氩气气氛,在300℃的反应温度下,向步骤(2)得到的溶液中加入1.5mmol硒-三辛基膦,反应20min;
(4)将步骤(3)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(5)切换成氩气气氛,在300℃的反应温度下,向步骤(4)得到的溶液中加入2mmol硫-三辛基膦和0.6mmol油酸镉溶液,反应30min;
(6)将步骤(5)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(7)切换成氩气气氛,在300℃的反应温度下,向步骤(6)得到的溶液中加入0.3ml辛硫醇,反应20min;
(8)将步骤(7)得到的溶液通过两次离心、沉淀并干燥得到量子点①;
(9)将得到的量子点①分散至正辛烷溶剂中,配置成20mg/mL溶液以备待用。
实施例2
按照如下方法制备得到量子点②:
(1)在将10mmol醋酸锌,0.3mmol氧化镉,12ml油酸和20ml十八碳烯混合,形成金属阳离子前驱体溶液,然后,在300℃的反应温度下,将1mmol硒-三辛基膦注入到金属阳离子前驱体中,得到含CdZnSe量子点核的量子点核溶液;
(2)将得到的量子点核溶液温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(3)切换成氩气气氛,在300℃的反应温度下,向步骤(2)得到的溶液中加入3mmol硒-三辛基膦,反应20min;
(4)将步骤(3)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(5)切换成氩气气氛,在300℃的反应温度下,向步骤(4)得到的溶液中加入3mmol硫-三辛基膦和0.6mmol油酸镉溶液,反应30min;
(6)将步骤(5)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(7)切换成氩气气氛,在300℃的反应温度下,向步骤(6)得到的溶液中加入0.2mL辛硫醇,反应20min;
(8)将步骤(7)得到的溶液通过两次离心、沉淀并干燥得到量子点②;
(9)将得到的量子点②分散至正辛烷溶剂中,配置成20mg/mL溶液以备待用。
实施例3
按照如下方法制备得到量子点③:
(1)在将5mmol醋酸锌,0.1mmol氧化镉,5ml油酸和15ml十八碳烯混合,形成金属阳离子前驱体溶液,然后,在300℃的反应温度下,将1mmol硒-三辛基膦注入到金属阳离子前驱体中,得到含CdZnSe量子点核的量子点核溶液;
(2)将得到的量子点核溶液温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(3)切换成氩气气氛,在300℃的反应温度下,向步骤(2)得到的溶液中加入1mmol硒-三辛基膦,反应20min;
(4)将步骤(3)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(5)切换成氩气气氛,在300℃的反应温度下,向步骤(4)得到的溶液中加入2mmol硫-三辛基膦和0.4mmol油酸镉溶液,反应30min;
(6)将步骤(5)得到的溶液的温度降低至150℃并保持,采用0.133Pa的真空度进行真空处理60min;
(7)切换成氩气气氛,在300℃的反应温度下,向步骤(6)得到的溶液中加入0.2mL辛硫醇,反应20min;
(8)将步骤(7)得到的溶液通过两次离心、沉淀并干燥得到量子点③;
(9)将得到的量子点③分散至正辛烷溶剂中,配置成20mg/mL溶液以备待用。
实施例4
按照如下方法制备得到量子点④:
本实施例的制备方法与实施例1大致相同,不同之处在于所有的量子点壳层前驱体均需进行真空处理后再加入待反应溶液中进行壳层生长:
具体为步骤(3)中的1.5mmol硒-三辛基膦,步骤(5)中的2mmol硫-三辛基膦和0.6mmol油酸镉溶液,以及步骤(7)中的0.3ml辛硫醇在需在150℃,0.133Pa的真空度下处理60min后再加入。
对比例1
按照如下方法制备得到量子点⑤:
本对比例的制备方法与实施例1大致相同,不同之处在于在每次加入量子点壳层前驱体进行壳层生长前不对待反应溶液经过真空处理,具体为步骤(2)、步骤(4)以及步骤(6)均省略。
对比例2
按照如下方法制备得到量子点⑥:
本对比例的制备方法与实施例2大致相同,不同之处在于在每次加入量子点壳层前驱体进行壳层生长前不对待反应溶液经过真空处理,具体为步骤(2)、步骤(4)以及步骤(6)均省略。
对比例3
按照如下方法制备得到量子点⑦:
本对比例的制备方法与实施例3大致相同,不同之处在于在每次加入量子点壳层前驱体进行壳层生长前不对待反应溶液经过真空处理,具体为步骤(2)、步骤(4)以及步骤(6)均省略。
对实施例1-实施例4以及对比例1-对比例3制得得到的量子点①-量子点⑦按照如下测试方法进行测试
(1)溶液QY测试:
将清洗后的量子点溶液通过在爱丁堡FLS980荧光光谱仪上联合光致发光量子产率附件对液体样品进行量子产率的测量,得到结果。
(2)荧光发射光谱:采用爱丁堡FLS980荧光光谱仪器上直接测试可得,激发波长为350nm。
(3)峰宽是将得到的荧光发射光谱数据通过Origin软件进行Peak-Gauss拟合可得。
(4)量子点粒径分布测量方法:先对量子点进行透射电镜测试,得到透射电镜图。采用Nano measurer对电镜图谱颗粒的大小进行尺寸统计分析,得到粒径统计报告,然后将粒径统计报告中的数据采用Origin软件进行绘图,得到柱状图,并对原始数进行求值,得到平均值和标准差。
测得的数据汇总如下表1:
表1
首先比对实施例1与对比例1的数据,发现实施例1制备得到的量子点的粒径标准差较对比例1制备得到的量子点的粒径标准差更小,且峰宽更窄;
比对实施例2与对比例2的数据,发现实施例2制备得到的量子点的粒径标准差较对比例2制备得到的量子点的粒径标准差更小,且峰宽更窄;
比对实施例3与对比例3的数据,发现实施例3制备得到的量子点的粒径标准差较对比例3制备得到 的量子点的粒径标准差更小,且峰宽更窄;
由此可知,本申请实施例所提供的量子点的制备方法,无论是制备发射红光的量子点、发射绿光的量子点还是发射蓝光的量子点,通过在加入量子点壳层前驱体进行壳层生长前对待反应溶液进行真空处理,均可有效降低制备得到的量子点的粒径标准差,即提升制备得到的量子点的粒径均一性,进而一定程度地缩窄制备得到的量子点的峰宽。
比对实施例1与实施例4的数据,发现实施例4制备得到的量子点的粒径标准差较实施例1制备得到的量子点的粒径标准差更小,且峰宽更窄;
由此可知,在本申请实施例所提供的量子点的制备方法中,通过对量子点壳层前驱体同样进行真空处理,可进一步减小制备得到的量子点的粒径标准差,进而可进一步缩窄制备得到的量子点的峰宽。
如下结合具体的发光器件实施例对本申请实施例制备得到的量子点进行进一步验证。
实施例5
利用上述实施例1制备得到的量子点进行单空穴发光器件制备,具体按照如下的制备步骤重复制备得到10个单空穴发光器件:
在衬底上依次形成阳极层、空穴注入层、第一空穴传输层、发光层、第二空穴传输层和阴极层。其中,所述衬底为玻璃基底;所述阳极层的材料为ITO,厚度为110nm;所述空穴注入层的材料为PEDOT:PSS,厚度为80nm;所述第一空穴传输层的材料为TFB,厚度为90nm;所述发光层的材料为实施例1制备得到的量子点,厚度为25nm;所述第二空穴传输层的材料为MoO3,厚度为100nm;所述阴极层的材料为Ag,厚度为70nm。各层制备完成后,将制得的单空穴发光器件在空气气氛下置于120℃下热处理10min。
实施例6
与实施例5类似,唯一的区别在于将所述发光层的材料替换为实施例2制备得到的量子点,制备得到10个单空穴发光器件。
实施例7
与实施例5类似,唯一的区别在于将所述发光层的材料替换为实施例3制备得到的量子点,制备得到10个单空穴发光器件。
实施例8
与实施例5类似,唯一的区别在于将所述发光层的材料替换为实施例4制备得到的量子点,制备得到10个单空穴发光器件。
对比例4
与实施例5类似,唯一的区别在于将所述发光层的材料替换为对比例1制备得到的量子点,制备得 到10个单空穴发光器件。
对比例5
与实施例5类似,唯一的区别在于将所述发光层的材料替换为对比例2制备得到的量子点,制备得到10个单空穴发光器件。
对比例6
与实施例5类似,唯一的区别在于将所述发光层的材料替换为对比例3制备得到的量子点,制备得到10个单空穴发光器件。
对上述实施例5-实施例8以及对比例4-对比例6制备得到的所有单空穴发光器件,按照如下方法,进行电流密度的测试:
通过LabView控制QEPRO光谱仪、Keithley 2400、Keithley 6485搭建的效率测试系统进行测试,得到电压在8V下对应的电流密度数据。
测得的电流密度数据汇总如下表2:
表2
将上述数据绘制箱式图,其中,实施例5与对比例4的箱式图对比如图2,实施例6与对比例5的箱式图对比如图3,实施例7与对比例6的箱式图对比如图4,以及比对实施例8与实施例5的箱式图对比如图5。
对比实施例5与对比例4的数据,可知实施例5制备得到的10个单空穴发光器件之间的电流密度标准差小于对比例4制备得到的10个单空穴发光器件之间的电流密度标准差,即实施例5测得的各电流密度的数据相较于对比例4分布得更为收敛;
对比实施例6与对比例5的数据,可知实施例6制备得到的10个单空穴发光器件之间的电流密度标准差小于对比例5制备得到的10个单空穴发光器件之间的电流密度标准差,即实施例6测得的各电流密度的 数据相较于对比例5分布得更为收敛;
对比实施例7与对比例6的数据,可知实施例7制备得到的10个单空穴发光器件之间的电流密度标准差小于对比例6制备得到的10个单空穴发光器件之间的电流密度标准差,即实施例7测得的各电流密度的数据相较于对比例6分布得更为收敛;
对比实施例8与实施例5的数据,可知实施例8制备得到的10个单空穴发光器件之间的电流密度标准差小于实施例5制备得到的10个单空穴发光器件之间的电流密度标准差,即实施例8测得的各电流密度的数据相较于实施例5分布得更为收敛。
根据上述对比可知,采用本申请实施例提供的量子点的制备方法制备得到的量子点作为发光层材料制备发光器件时,由于其相较于对比例制备得到的量子点具有更好的粒径均一性,进而采用其作为发光层材料制备多个发光器件时,不同器件之间的电流密度差异更小,即不同器件之间的器件性能差异更小。
另外,实施例8制备得到的10个单空穴发光器件之间的电流密度标准差小于实施例5制备得到的10个单空穴发光器件之间的电流密度标准差,其原因在于实施例8中的发光层材料采用了实施例4制备得到的具有更好粒径均一性的量子点。
补充说明的是,实施例5-实施例8以及对比例4-对比例6所制备的发光器件为单空穴发光器件,是为了避免电子传输层材料的不稳定因素给上述对比验证造成影响。
本申请一实施例提供了一种量子点,由前述实施例提供的量子点的制备方法制备得到。
本申请一实施例还提供了一种材料筛选方法,参阅图6,所述材料筛选方法包括:
S21:提供待筛选材料,所述待筛选材料选自阳极层材料、阴极层材料、空穴传输层材料、空穴注入层材料、空穴阻隔层材料、电子传输层材料、电子注入层材料、电子阻隔层材料或者界面修饰层材料;
S22:提供量子点材料,所述量子点材料为前述的量子点的制备方法制备而得的量子点或前述的量子点;
S23:以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件;
S24:获取所述发光器件的性能参数和/或目标参数;
S25:根据所述发光器件的性能参数和/或目标参数从所述待筛选材料中筛选得到目标材料。
在本申请实施例所提供的材料筛选方法中,由于所述发光层的材料采用前述实施例所提供的量子点的制备方法制备而得的量子点,根据前述实施例可知,本申请实施例提供的量子点的制备方法而得的量子点具有较好的粒径均一性,当将其作为发光层材料制备发光器件时,可使得制得的多个发光器件间 的器件性能差异较小;
因而进一步将其作为发光层材料制备发光器件对其他待筛选功能层进行材料筛选时,可有效避免因发光层材料的不稳定而影响材料筛选结果的准确度的问题,即使得本申请实施例提供的材料筛选方法具有较佳的筛选准确度,有利于准确地筛选出所需材料进而制备得到具有更佳性能的发光器件。
在一些实施例中,所述阳极层材料包括不限于为具有相对高功函数的导电材料,可以由掺杂或未掺杂的金属氧化物组成,如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟锡锌(ITZO)、氧化锡(SnO2)、氧化铟(In2O3)、掺镉氧化锌(Cd:ZnO)、掺氟氧化锡(F:SnO2)、掺铟氧化锡(In:SnO2)、掺镓氧化锡(Ga:SnO2)或掺铝氧化锌(AZO)等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成。
在一些实施例中,所述阴极层材料包括不限于为具有相对低功函数的导电材料组成,可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF2/Al、CsF/Al、CaCO3/Al、BaF2/Ca/Al、Al、Mg、Au/Mg或Ag/Mg。
在一些实施例中,所述空穴传输层材料包括不限于为有机材料和无机材料中,所述有机材料选自芳基胺,例如4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺(DNTPD)、4,4',4'-三(N-咔唑基)-三苯胺(TCTA)、三(3-甲基苯基苯基氨基)-三苯胺(m-MTDATA)、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)和聚(4-丁基苯基-二苯基胺)(聚-TPD);聚苯胺;聚吡咯;聚(对)亚苯基亚乙烯基及其衍生物,例如聚(亚苯基亚乙烯基)(PPV)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MOMO-PPV);铜酞菁;芳香族叔胺或多核芳香叔胺;4,4'-双(对咔唑基)-1,1'-联苯化合物;N,N,N',N'-四芳基联苯胺;PEDOT:PSS及其衍生物;聚(N-乙烯基咔唑)(PVK)及其衍生物;聚甲基丙烯酸酯及其衍生物;聚(9,9-辛基芴)及其衍生物;聚(螺芴)及其衍生物;N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB);螺NPB;所述无机材料选自金属氧化物,例如可以为NiO、MoO3、Cr2O3、Bi2O3和p型ZnO;未氧化的等价物,例如硫氰酸亚铜(CuSCN)、Mo2S和p型GaN;以及它们的组合。
在一些实施例中,所述空穴注入层材料包括不限于为聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4 ',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN)。
在一些实施例中,所述空穴阻隔层材料包括不限于为Liq、2-甲基-8-羟基喹啉对羟基联苯合铝、BCP及LiF等。
在一些实施例中,所述电子传输层材料包括不限于为掺杂有异金属元素或未掺杂的氧化锌、氧化钛、硫化锌或硫化镉中,其中,掺杂的异金属元素包括铝、镁、锂、镧、钇、锰、镓、铁、铬、钴中至少一种。
在一些实施例中,所述电子注入层材料包括不限于为低功函数的Ca、Ba等金属,CsF、LiF、CsCO3等化合物或其它电解质型电子注入层材料。
在一些实施例中,所述电子阻隔层材料包括但不限于为掺杂化合物的PVK、Poly-TPD、NPB、TCTA、TAPC、CBP和TFB,掺杂的所述化合物选自Li-TFSI、NiO、CuSCN、MoO3、CuO、V2O5或CuS中的一种等。
在一些实施例中,所述界面修饰层材料用于形成位于特定两结构层之间的界面修饰层,通常用于防止上层结构层制备过程中对已制备好的下层结构层造成腐蚀与破坏;或用于改善特定两结构层界面的结合状态。
在一些实施例中,提供待筛选材料的步骤包括:提供待筛选的电子传输层材料;
以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件的步骤包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,制备单电子发光器件。
其中,所述单电子发光器件即为不设置空穴载流子功能层如空穴传输层与空穴注入层的发光器件,从而在筛选电子传输层材料时,避免空穴传输材料或空穴注入材料的不稳定对筛选结果的准确度造成影响,因此当进行电子传输层材料筛选时,将所述发光器件设置为单电子发光器件,有利于进一步提升筛选结果的准确度。
在一些实施例中,制备单电子发光器件的步骤具体包括如下:
提供一基板,在所述基板上形成阳极层;
在所述阳极层上形成第一电子传输层,所述第一电子传输层的材料为所述待筛选的电子传输层材料;
在所述第一电子传输层上形成发光层;
在所述发光层上形成第二电子传输层,所述第二电子传输层的材料为所述待筛选的电子传输层材 料;
在所述第二电子传输层上形成阴极层;
以及在所述阴极层上形成密封胶层。
其中,所述衬底包括钢性衬底与柔性衬底,具体包括玻璃、硅晶片、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合。
所述阳极层由具有相对高功函数的导电材料组成,可以由掺杂或未掺杂的金属氧化物组成,如ITO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2或AZO等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成。
所述电子传输层的材料为所述待筛选材料,所述待筛选材料通常包括未掺杂及掺杂有异金属元素的氧化锌、氧化钛、硫化锌、硫化镉中的至少一种。其中,异金属元素包括铝、镁、锂、镧、钇、锰、镓、铁、铬、钴中至少一种。
所述发光层的材料为本申请实施例提供的量子点的制备方法制备得到的量子点;该量子点的具体材料选自选自II-VI族的CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;或III-V族的GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb中以上任意一种或多种的组合。
所述阴极层由具有相对低功函数的导电材料组成,可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF2/Al、CsF/Al、CaCO3/Al、BaF2/Ca/Al、Al、Mg、Au/Mg或Ag/Mg。
所述封装胶层的材料选自UV胶、金属薄膜和玻璃胶等中的至少一种。
所述阳极层的厚度为20-200nm;所述第一电子传输层的厚度为20-200nm;所述发光层的厚度为10-50nm;所述第二电子传输层的厚度为20-200nm;所述阴极的厚度为40-190nm。
在一些实施例中,由于现有的电子传输材料通常是基于低温溶液法制备,使得制备得到的电子传输材料的导带性非常不稳定,其导带性难以较好地重现,从而对发光器件性能的稳定性以及对发光器件研究优化的进程均产生不利影响,因此在对电子传输材料进行筛选时需要重点评估电子传输层材料的稳定性;
具体地,在进行筛选时,以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,重复制备得到多个所述单电子发光器件;,根据具体需求,重复制备10-50个所述单电子发光器件;
进一步地,获取所述发光器件的性能参数和/或目标参数的步骤包括:
分别对多个所述单电子发光器件进行性能测试得到相应的性能参数;
计算得到的多个所述性能参数的离散度作为所述目标参数。其筛选的原理为,离散度越小,由该待筛选的电子传输层材料作为电子传输层材料制备得到的多个所述单电子发光器件的性能差异越小,则说明待筛选的电子传输层材料的导电性越稳定。
在一些实施例中,所述离散度包括但不限于为标准差、极差、方差以及变异系数等。
在一些实施例中,所述性能参数包括但不限于为发光亮度、发光效率、电流密度、启亮电压以及发光寿命等。
示例性地,所述性能参数为电流密度,根据发光器件具体可以为在4-8V的电压下的电流密度。
在一些实施例中,获取所述发光器件的目标参数的步骤包括如下:
分别对多个所述单电子发光器件进行电流密度测试得到多个的电流密度;
计算得到的多个所述电流密度的标准差作为所述目标参数。
如下给出具体的实施例对本申请实施例提供的材料筛选方法进行进一步说明。
实施例9
提供两种氧化锌溶液:氧化锌1和氧化锌2,该两种氧化锌均是采用现有常规技术手段合成。分别以提供的氧化锌1或氧化锌2作为电子传输层材料按照如下方法各制备10个单电子发光器件:
在衬底上依次形成阳极层、第一电子传输层、量子点层、电子传输层和阴极;其中,所述衬底为玻璃基底;所述阳极层的材料为ITO,厚度为120nm;所述第一电子传输层的材料为上述提供的待筛选的氧化锌1或氧化锌2,厚度为100nm;所述发光层的材料为实施例1制备得到的量子点,厚度为25nm,所述第二电子传输层的材料为上述提供的待筛选的氧化锌1或氧化锌2,厚度为100nm;所述阴极层的材料为Ag,厚度为80nm。待各膜层制备完成后,将得到的单电子发光器件置于120℃下热处理10min。
将上述得到的所有单电子发光器件均按照如下方法,进行电流密度的测试:
通过LabView控制QEPRO光谱仪、Keithley 2400、Keithley 6485搭建的效率测试系统进行测试,得到电压在8V下对应的电流密度数据。
测得的电流密度数据汇总如下表3:
表3
根据上述数据,氧化锌1对应的10个单电子发光器件在电压8V下对应的电流密度的标准差为4.6,氧化锌2对应的10个单电子发光器件在电压8V下对应的电流密度的标准差为20.0。因此,可以筛选出氧化锌1可以作为导电性更为稳定的电子传输材料。
本申请的另一实施例还提供了一种发光器件,所述发光器件包括相对设置的阳极层与阴极层,以及设置于所述阳极层与所述阴极层之间的发光层,所述发光层的材料为本申请上述实施例所提供的量子点的制备方法制备得到的量子点。
参阅图7,所述发光器件10包括衬底11,以及层叠设置于所述衬底11上的阳极层12、空穴注入层13、空穴传输层14、发光层15、电子传输层16、阴极层17以及封装胶层18。
所述衬底11包括钢性、柔性衬底,具体包括玻璃、硅晶片、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚酰胺、聚醚砜、或其组合。
所述阳极层12由具有相对高功函数的导电材料组成,可以由掺杂或未掺杂的金属氧化物组成,如ITO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2或AZO等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成。
所述空穴注入层13的材料选自聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN)。
所述空穴传输层14的材料选自有机材料和无机材料中的至少一种,所述有机材料选自芳基胺,例如4,4'-N,N'-二咔唑基-联苯(CBP)、N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、N,N'-二苯基-N,N'-双(3-甲基苯基)-(1,1'-联苯基)-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-双(苯基)-螺(螺-TPD)、N,N'-二(4-(N,N'-二苯基-氨基)苯基)-N,N'-二苯基联苯胺(DNTPD)、4,4',4'-三(N-咔唑基)-三苯胺(TCTA)、三(3-甲基苯基苯基氨基)-三苯胺(m-MTDATA)、聚[(9,9'-二辛基芴-2,7-二基)-co-(4,4'-(N-(4-仲丁基苯基)二苯胺))](TFB)和聚(4-丁基苯基-二苯基胺)(聚-TPD);聚苯胺;聚吡咯;聚(对)亚苯基亚乙烯基及其衍生物,例如聚(亚苯基亚乙烯基)(PPV)、聚[2-甲氧基-5-(2-乙基己氧基)-1,4-亚苯基亚乙烯基](MEH-PPV)和聚[2-甲氧基-5-(3',7'-二甲基辛氧基)-1,4-亚苯基亚乙烯基](MOMO-PPV);铜酞菁;芳香族叔胺或多核芳香叔胺;4,4'-双(对咔唑基)-1,1'-联苯化合物;N,N,N',N'-四芳基联苯胺;PEDOT:PSS及其衍生物;聚(N-乙烯基咔唑)(PVK)及其衍生物;聚甲基丙烯酸酯及其衍生物;聚(9,9-辛基芴)及其衍生物;聚(螺芴)及其衍生物;N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB);螺NPB;所述无机材料选自金属氧化物,例如可以为NiO、MoO3、Cr2O3、Bi2O3和p型ZnO;未氧化的等价物,例如硫氰酸亚铜(CuSCN)、Mo2S和p型GaN;以及它们的组合。
所述发光层15的材料为本申请实施例提供的量子点的制备方法制备得到的量子点;该量子点的具体材料选自选自II-VI族的CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;或III-V族的GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb中以上任意一种或多种的组合。
所述电子传输层16的材料选自掺杂有异金属元素或未掺杂的氧化锌、氧化钛、硫化锌、硫化镉中的至少一种,其中,掺杂的异金属元素包括铝、镁、锂、镧、钇、锰、镓、铁、铬、钴中至少一种。
所述阴极层17的材料选自具有相对低功函数的导电材料组成,例如可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF2/Al、CsF/Al、CaCO3/Al、BaF2/Ca/Al、Al、Mg、Au:Mg或Ag:Mg。
所述封装胶层18的材料选自UV胶、金属薄膜和玻璃胶等中的至少一种。
所述阳极层12的厚度为20-200nm;所述空穴注入层13的厚度为20-200nm;所述空穴传输层14的厚度为30-180nm;所述发光层15的厚度为10-50nm;所述电子传输层16的厚度为20-200nm;所述阴极层17的厚度为40-190nm。
在本申请提供的发光器件中,由于所述发光层15的材料采用本申请实施例所提供的量子点的制备方法制备而得的量子点,该量子点的粒径大小具有较好的均一性,使得不同批次的发光器件间发光层15中的量子点层数的均一性更高,进而使得不同批次的发光器件具有大致相同的空穴注入水平,即大大减小了不同批次的发光器件的器件性能差异。
进一步地,在一些实施例中,所述阳极层12、所述空穴注入层13、所述空穴传输层14、所述电子传输层16以及所述阴极层17中的任意一种由本申请上述实施例所提供的材料筛选方法筛选得到。
示例性地,所述电子传输层16的材料由本申请上述实施例所提供的材料筛选方法筛选得到。
如下给出具体的实施例对本申请实施例提供的发光器件进行进一步说明。
实施例10
采用实施例1制备得到的量子点作为发光层的材料,实施例9筛选出的氧化锌1作为电子传输层的材料,并按照如下方法重复制备得到10个发光器件:
在衬底上依次沉积阳极层、空穴注入层、空穴传输层、发光层、电子传输层和阴极层。其中,所述衬底为玻璃基底;所述阳极层的材料为ITO,厚度为120nm;所述空穴注入层的材料为PEDOT:PSS,厚度为90nm;所述空穴传输层的材料为TFB,厚度为80nm;所述发光层的材料为实施例1制备得到的量子点,厚度为15nm;所述电子传输层的材料为实施例5筛选出的氧化锌1,厚度为80nm;所述阴极层的材料为Ag,厚度为60nm。待前述膜层制备完成后,将制得的发光器件置于120℃下热处理15min。
对制备得到的10个发光器件均按照如下方法进行寿命测试:
发光器件在恒定电流或电压驱动下,亮度减少至最高亮度的一定比例时所需的时间,亮度下降至最高亮度的95%的时间定义为T95,该寿命为实测寿命。为缩短测试周期,器件寿命测试通常是参考OLED器件测试在高亮度下通过加速器件老化进行,并通过延伸型指数衰减亮度衰减拟合公式拟合得到高亮度下的寿命,比如:1000nit下的寿命计为T951000nit。具体计算公式如下:
T951000nit=T95H*(LH/LL)A
式中T951000nit为亮度为1000nit下的寿命,T95H为高亮度下的实测寿命,LH为器件加速至最高亮度,LL为1000nit,A为加速因子,本实验通过测得若干组绿色QLED器件在额定亮度下的寿命得出A值为1.7。
根据上述方法测得的寿命值汇总如下表4:
表4

根据上述数据,以本申请实施例所提供的量子点的制备方法制备得到的量子点作为发光层材料,去搭配本申请实施例所提供的材料筛选方法所筛选出的材料作为电子传输材料,所制备的多个发光器件具有较高的寿命重复性,即由于申请实施例所提供的量子点的制备方法制备得到的量子点以及本申请实施例所提供的材料筛选方法所筛选出的电子传输材料均具有较好的稳定性,进而形成的发光器件具有较高的性能稳定性。
补充说明的是,在本申请上述实施例进行的各项测试中,均是在室温以及空气湿度为30-60%的环境中进行。
本申请另一实施例还提供了一种显示装置,所述显示装置包括上述实施例所提供的发光器件。
参阅图8,所述显示装置20包括基板21、间隔设置于所述基板21上的多个所述发光器件10,以及设置于多个所述发光器件10上的封装层22。
以上对本申请实施例所提供的一种量子点的制备方法、材料筛选方法与发光器件进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种量子点的制备方法,其中,所述制备方法包括:
    提供量子点核溶液;
    向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长,得到量子点溶液,其中,在加入所述量子点壳层前驱体之前,对所述量子点核溶液进行真空处理;
    从所述量子点溶液中提取得到量子点。
  2. 根据权利要求1所述的量子点的制备方法,其中,向所述量子点核溶液中加入量子点壳层前驱体进行壳层生长的步骤包括:向所述量子点核溶液中分批加入相应的量子点壳层前驱体进行壳层生长,得到含有n层壳层的量子点溶液,其中,n≥2。
  3. 根据权利要求2所述的量子点的制备方法,其中,在每次加入相应的所述量子点壳层前驱体之前,均对前一次壳层生长后得到待反应溶液进行真空处理。
  4. 根据权利要求1所述的量子点的制备方法,其中,所述量子点壳层前驱体在进行真空处理后加入至所述量子点核溶液中。
  5. 根据权利要求1所述的量子点的制备方法,
    其中,所述真空处理的步骤包括在60℃-200℃以及0.133Pa-133.3Pa的条件下保持0.5h-12h。
  6. 根据权利要求1所述的量子点的制备方法,其中,所述提供量子点核溶液的步骤包括:
    将量子点核阳离子前驱体、配体以及有机溶剂混合形成量子点核阳离子前驱体溶液,在280℃-320℃以及惰性气体气氛下,向所述量子点核阳离子前驱体溶液中加入量子点核阴离子前驱体,反应得到量子点核溶液。
  7. 根据权利要求6所述的量子点的制备方法,其中,所述量子点核阳离子前驱体和所述量子点壳层阳离子前驱体分别选自镉源以及锌源中的至少一种;所述选自镉源以及锌源中的至少一种。
  8. 根据权利要求7所述的量子点的制备方法,其中,所述镉源包括氧化镉、氯化镉、草酸镉、醋酸镉、碳酸镉、硬脂酸镉、乙酰丙酮镉、二乙基镉、十四酸镉、油酸镉;
    和/或,所述锌源包括氧化锌、氯化锌、草酸锌、醋酸锌、碳酸锌、硬脂酸锌、乙酰丙酮锌、二乙基锌、十一烯酸锌、十四酸锌、油酸锌。
  9. 根据权利要求6所述的量子点的制备方法,其中,所述量子点核阴离子前驱体选和量子点壳层阴离子前驱体分别自硒源以及硫源中的至少一种。
  10. 根据权利要求9所述的量子点的制备方法,其中,所述硒源包括包括硒单质、二氧化硒、硒的有机膦配合物、硒的脂肪胺化合物、有机硒化合物、有机硒醇化合物;
    或者,所述硒源包括硒粉、二氧化硒、硒-三辛基膦、硒-三丁基膦、硒的十四烯溶液、硒的十五烯溶液、硒的十六烯溶液、硒的十七烯溶液、硒的十八烯溶液、硒醇、二硒化物、硒醚、硒代酸酯、硒 代酰胺、硒吩、硒唑。
  11. 根据权利要求9所述的量子点的制备方法,其中,所述硫源包括硫单质、硫的有机膦配合物、硫的脂肪胺化合物、有机硫化合物、有机硫醇化合物;
    或者,所述硫源包括硫粉、硫的十四烯溶液、硫的十五烯溶液、硫的十六烯溶液、硫的十七烯溶液、硫的十八烯溶液、硫的正辛胺溶液、硫的三正辛胺溶液、硫-三辛基膦、硫-三丁基膦、1-辛硫醇、1-十二硫醇、1-辛硫醇与三正辛胺的混合物、1-辛硫醇与三丁基膦的混合物。
  12. 根据权利要求6所述的量子点的制备方法,其中,所述配体选自C6-C18的饱和或者不饱和胺、饱和或者不饱和酸中的至少一种;
    或者,所述配体选自C14-C18的饱和或者不饱和酸中的至少一种,包括十四酸、十五酸、十六酸、十七酸、十八酸、十四烯酸、十五烯酸、十六烯酸、十七烯酸、十八烯酸(油酸)中的至少一种。
  13. 一种材料筛选方法,其中,所述材料筛选方法包括:
    提供待筛选材料,所述待筛选材料选自阳极层材料、阴极层材料、空穴传输层材料、空穴注入层材料、空穴阻隔层材料、电子传输层材料、电子注入层材料、电子阻隔层材料或者界面修饰层材料;
    提供量子点材料,所述量子点材料为权利要求1-12任意一项所述的量子点的制备方法制备而得的量子点;
    以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件;
    获取所述发光器件的性能参数和/或目标参数;
    根据所述发光器件的性能参数和/或目标参数从所述待筛选材料中筛选得到目标材料。
  14. 根据权利要求13所述的材料筛选方法,其中,提供待筛选材料的步骤包括:提供待筛选的电子传输层材料;
    以所述待筛选材料作为相应的结构层材料,并以所述量子点材料作为发光层材料,制备发光器件的步骤包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,制备单电子发光器件。
  15. 根据权利要求14所述的材料筛选方法,其中,以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,制备单电子发光器件的步骤包括:以所述待筛选的电子传输层材料作为电子传输层材料,并以所述量子点材料作为发光层材料,重复制备得到多个所述单电子发光器件;
    获取所述发光器件的性能参数和/或目标参数包括:
    分别对多个所述单电子发光器件进行性能测试得到相应的的性能参数;
    计算得到的所述性能参数的离散度作为所述目标参数。
  16. 根据权利要求15所述的材料筛选方法,其中,所述性能参数选自发光亮度、发光效率、电流 密度、启亮电压以及发光寿命中的一种或多种。
  17. 根据权利要求15所述的材料筛选方法,其中,所述离散度选自中的一种标准差、极差、方差以及变异系数中的一种或多种。
  18. 根据权利要求13所述的材料筛选方法,其中,所述阳极层材料包括不限于为具有相对高功函数的导电材料,可以由掺杂或未掺杂的金属氧化物组成,如氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟锡锌(ITZO)、氧化锡(SnO2)、氧化铟(In2O3)、掺镉氧化锌(Cd:ZnO)、掺氟氧化锡(F:SnO2)、掺铟氧化锡(In:SnO2)、掺镓氧化锡(Ga:SnO2)或掺铝氧化锌(AZO)等;或者除上述金属氧化物以外,其可由包括镍(Ni)、铂(Pt)、金(Au)、银(Ag)、铱(Ir)或碳纳米管(CNT)的金属材料组成;
    和/或,所述阴极层材料包括不限于为具有相对低功函数的导电材料组成,可以为Ca、Ba、Ca/Al、LiF/Ca、LiF/Al、BaF2/Al、CsF/Al、CaCO3/Al、BaF2/Ca/Al、Al、Mg、Au/Mg或Ag/Mg;
    和/或,所述空穴注入层材料包括不限于为聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N′-二苯基-N,N′-二(1-萘基)-1,1′-联苯-4,4″-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN);
    和/或,所述空穴阻隔层材料包括不限于为Liq、2-甲基-8-羟基喹啉对羟基联苯合铝、BCP及LiF;
    和/或,所述电子传输层材料包括不限于为掺杂有异金属元素或未掺杂的氧化锌、氧化钛、硫化锌或硫化镉中,其中,掺杂的异金属元素包括铝、镁、锂、镧、钇、锰、镓、铁、铬、钴中至少一种;
    和/或,所述电子注入层材料包括不限于为低功函数的Ca、Ba等金属,CsF、LiF、CsCO3等化合物或其它电解质型电子注入层材料;
    和/或,所述电子阻隔层材料包括但不限于为掺杂化合物的PVK、Poly-TPD、NPB、TCTA、TAPC、CBP和TFB,掺杂的所述化合物选自Li-TFSI、NiO、CuSCN、MoO3、CuO、V2O5或CuS中的一种。
  19. 根据权利要求13所述的材料筛选方法,其中,所述界面修饰层材料用于形成位于特定两结构层之间的界面修饰层。
  20. 一种发光器件,其中,所述发光器件包括相对设置的阳极层与阴极层,以及设置于所述阳极层与所述阴极层之间的发光层,所述发光层的材料为由权利要求1-12任意一项所述的量子点的制备方法制备而得的量子点。
PCT/CN2023/121935 2022-11-30 2023-09-27 量子点的制备方法、材料筛选方法与发光器件 WO2024114078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211515392.6 2022-11-30
CN202211515392.6A CN118109199A (zh) 2022-11-30 2022-11-30 量子点及其制备方法、材料筛选方法、发光器件与显示装置

Publications (1)

Publication Number Publication Date
WO2024114078A1 true WO2024114078A1 (zh) 2024-06-06

Family

ID=91211155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121935 WO2024114078A1 (zh) 2022-11-30 2023-09-27 量子点的制备方法、材料筛选方法与发光器件

Country Status (2)

Country Link
CN (1) CN118109199A (zh)
WO (1) WO2024114078A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676174A (zh) * 2012-06-01 2012-09-19 广东普加福光电科技有限公司 CdZnSeS量子点的制备方法
CN103074068A (zh) * 2013-01-18 2013-05-01 吉林大学 一种核壳结构的热敏量子点材料及其制备方法
CN105670631A (zh) * 2014-12-05 2016-06-15 上海交通大学 一种自钝化量子点及其制备方法
CN109233802A (zh) * 2017-07-11 2019-01-18 Tcl集团股份有限公司 核壳结构量子点及其制备方法及偏振薄膜
CN110964504A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 量子点及其制备方法
CN112608752A (zh) * 2020-12-21 2021-04-06 深圳扑浪创新科技有限公司 一种核壳InP/ZnSe/ZnS量子点及其制备方法
CN116925768A (zh) * 2022-03-29 2023-10-24 Tcl科技集团股份有限公司 一种量子点及其制备方法、发光二极管、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676174A (zh) * 2012-06-01 2012-09-19 广东普加福光电科技有限公司 CdZnSeS量子点的制备方法
CN103074068A (zh) * 2013-01-18 2013-05-01 吉林大学 一种核壳结构的热敏量子点材料及其制备方法
CN105670631A (zh) * 2014-12-05 2016-06-15 上海交通大学 一种自钝化量子点及其制备方法
CN109233802A (zh) * 2017-07-11 2019-01-18 Tcl集团股份有限公司 核壳结构量子点及其制备方法及偏振薄膜
CN110964504A (zh) * 2018-09-30 2020-04-07 Tcl集团股份有限公司 量子点及其制备方法
CN112608752A (zh) * 2020-12-21 2021-04-06 深圳扑浪创新科技有限公司 一种核壳InP/ZnSe/ZnS量子点及其制备方法
CN116925768A (zh) * 2022-03-29 2023-10-24 Tcl科技集团股份有限公司 一种量子点及其制备方法、发光二极管、显示装置

Also Published As

Publication number Publication date
CN118109199A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
JP5706091B2 (ja) 多重量子点層を持つ量子点発光素子
US11171299B2 (en) Quantum dot device and electronic device
EP3683853A1 (en) Quantum dot device and electronic device
CN110828681B (zh) 量子点发光器件及包括其的显示设备
US11038112B2 (en) Electroluminescent device, and display device comprising the same
WO2024114078A1 (zh) 量子点的制备方法、材料筛选方法与发光器件
CN116925768A (zh) 一种量子点及其制备方法、发光二极管、显示装置
CN113054122B (zh) 无机纳米材料的制备方法、无机纳米材料和发光二极管
WO2024139449A1 (zh) 核壳量子点及其制备方法、量子点电致发光器件
WO2024139481A1 (zh) 发光器件及制备方法、显示装置
WO2024139483A1 (zh) 量子点组合物和量子点发光器件
WO2024131279A1 (zh) 发光器件及显示装置
WO2024139475A1 (zh) 量子点、发光模组以及量子点的合成方法
US12016241B2 (en) Quantum dot device, method of manufacturing the same, and electronic device
CN219938867U (zh) 发光器件及显示装置
WO2024139488A1 (zh) 一种复合材料及其制备方法、发光器件
US20230133351A1 (en) Electroluminescent device, production method thereof, and display device including the same
WO2024109334A1 (zh) 复合材料、组合物及发光器件
WO2024120060A1 (zh) 复合材料、发光器件及其制备方法
CN118256224A (zh) 核壳量子点及其制备方法、量子点电致发光器件
CN118284085A (zh) 发光器件及制备方法、显示装置
CN118270734A (zh) 复合材料及其制备方法、发光器件、显示装置
CN118085846A (zh) 一种量子点及其制备方法、发光器件及显示装置
CN114316942A (zh) 复合材料及其制备方法和发光二极管
CN118042905A (zh) 复合材料、组合物及其制备方法、发光器件及显示装置