WO2024109334A1 - 复合材料、组合物及发光器件 - Google Patents

复合材料、组合物及发光器件 Download PDF

Info

Publication number
WO2024109334A1
WO2024109334A1 PCT/CN2023/121628 CN2023121628W WO2024109334A1 WO 2024109334 A1 WO2024109334 A1 WO 2024109334A1 CN 2023121628 W CN2023121628 W CN 2023121628W WO 2024109334 A1 WO2024109334 A1 WO 2024109334A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
cyano
inorganic particles
functional layer
Prior art date
Application number
PCT/CN2023/121628
Other languages
English (en)
French (fr)
Inventor
郭煜林
吴龙佳
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024109334A1 publication Critical patent/WO2024109334A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • Inorganic semiconductor materials refer to inorganic materials with semiconductor properties.
  • commonly used inorganic semiconductor materials include zinc oxide, titanium dioxide, aluminum oxide, molybdenum sulfide, etc. These materials have the advantages of wide bandgap, low work function, excellent carrier injection or transport performance, good stability, etc., and are widely used in semiconductor devices.
  • the present application provides a composite material comprising inorganic particles and a cyanoacrylic acid compound.
  • the cyanoacrylate compound includes one or more of 2-cyano-3-(3-methoxyphenyl)acrylic acid, 2-cyano-3-(4-methoxyphenyl)acrylic acid ethyl ester, 2-cyano-3-phenylacrylate methyl ester, 2-cyano-3-phenylacrylate ethyl ester, and 2-cyano-3-aminoacrylate.
  • the molar ratio of the inorganic particles to the cyanoacrylic acid compound is 1:(0.1-2).
  • the inorganic particles include one or more of MoO 3 , WO 3 , NiO, V 2 O 5 , CuO, P-type gallium nitride and CrO 3 .
  • the composite material consists of inorganic particles and cyanoacrylic acid compounds.
  • the present application also provides a composition comprising a solvent and a composite material, wherein the composite material comprises inorganic particles and a cyanoacrylic acid compound.
  • the cyanoacrylate compound includes 2-cyano-3-(3-methoxyphenyl)acrylic acid, 2-cyano-3-(4-methoxyphenyl)acrylic acid ethyl ester, 2-cyano-3-phenylacrylic acid methyl ester, 2-cyano-3-phenylacrylic acid methyl ester, One or more of ethyl acrylate, 2-cyano-3-aminoacrylate.
  • the molar ratio of the inorganic particles to the cyanoacrylic acid compound is 1:(0.1-2).
  • the inorganic particles include one or more of silicon, germanium, metal oxides, doped metal oxides, Group IIB-VIA materials, Group IIIB-VA materials, and Group IB-IIIB-VIA materials;
  • the metal oxides include one or more of ZnO, TiO 2 , SnO 2 , Al 2 O 3 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , BaO, MoO 3 , CdO, BaO, Ta 2 O 5 , BaTiO 3 , and PbCrO 4 ;
  • the metal oxides in the doped metal oxides include ZnO, TiO 2 , SnO 2 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , and PbCrO
  • the inorganic particles include one or more of MoO 3 , WO 3 , NiO, V 2 O 5 , CuO, P-type gallium nitride and CrO 3 .
  • the solvent includes one or more of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, ethers, esters, ketones, DMF, acetonitrile, pyridine, and phenol;
  • the aromatic hydrocarbons include one or more of benzene, toluene, and xylene;
  • the aliphatic hydrocarbons include one or more of pentane, hexane, and octane;
  • the halogenated hydrocarbons include one or more of chlorobenzene, dichlorobenzene, and dichloromethane;
  • the alicyclic hydrocarbons include one or more of cyclohexane, cyclohexanone, toluene, and cyclohexanone;
  • the alcohols include one or more of methanol, ethanol, butanol, and isopropanol;
  • the ethers include one or more of e
  • the concentration of the inorganic particles is 15 to 40 mg/mL.
  • the present application further proposes a light-emitting device, comprising a cathode, a functional layer and an anode, wherein the functional layer comprises a light-emitting layer and one or more carrier functional layers, the material of the carrier functional layer comprises the composite material described above, or the carrier functional layer is made of the above composition.
  • the one or more carrier functional layers include a first carrier functional layer, the first carrier functional layer is located between the light-emitting layer and the cathode, and the inorganic particles in the material of the first carrier functional layer are selected from one or more of silicon, germanium, metal oxides, doped metal oxides, IIB-VIA group materials, IIIB-VA group materials and IB-IIIB-VIA group materials.
  • the one or more carrier functional layers include a second carrier functional layer, the second carrier functional layer is located between the light-emitting layer and the anode, and the inorganic particles in the material of the second carrier functional layer are selected from one or more of MoO3 , WO3 , NiO , V2O5 , CuO, P-type gallium nitride and CrO3 .
  • the one or more carrier functional layers include a third carrier functional layer and a fourth carrier functional layer
  • the third carrier functional layer is located between the light-emitting layer and the cathode
  • the fourth carrier functional layer is located between the light-emitting layer and the anode
  • the inorganic particles in the material of the third carrier functional layer are selected from one or more of silicon, germanium, metal oxides, doped metal oxides, IIB-VIA group materials, IIIB-VA group materials and IB-IIIB-VIA group materials
  • the inorganic particles in the material of the fourth carrier functional layer are selected from one or more of MoO3 , WO3 , NiO, V2O5 , CuO, P-type gallium nitride and CrO3 .
  • the material of the light-emitting layer includes one or more of single-structure quantum dots and core-shell structure quantum dots
  • the single-structure quantum dots are selected from one or more of II-VI group compounds, IV-VI group compounds, III-V group compounds and I-III-VI group compounds
  • the II-VI group compounds are selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, One or more of HgZnSe, HgZnTe, CdZ
  • the cathode is selected from a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode.
  • the material of the metal electrode is selected from one or more of Ag, Al, Mg, Au, Cu, Mo, Pt, Ca and Ba.
  • the material of the carbon silicon material electrode is selected from one or more of silicon, graphite, carbon nanotubes, graphene and carbon fiber.
  • the material of the metal oxide electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide.
  • the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS or ZnS/Al/ZnS; and/or,
  • the anode is selected from a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode.
  • the material of the metal electrode is selected from one or more of Ag, Al, Mg, Au, Cu, Mo and Pt.
  • the material of the carbon silicon material electrode is selected from one or more of silicon, graphite, carbon nanotubes, graphene and carbon fiber.
  • the material of the metal oxide electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide.
  • the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS or ZnS/Al/ZnS.
  • FIG1 is a schematic structural diagram of a light emitting device according to an embodiment of the present application.
  • FIG2 is a schematic structural diagram of a light emitting device proposed in another embodiment of the present application.
  • FIG3 is a schematic structural diagram of a light emitting device proposed in another embodiment of the present application.
  • FIG4 is a schematic flow diagram of a method for preparing a composition according to an embodiment of the present application.
  • Reference numerals 100-light-emitting device; 10-anode; 20-light-emitting layer; 30-electron transport layer; 40-cathode; 50-hole transport layer; 60-hole injection layer.
  • the term “including” means “including but not limited to”.
  • the various embodiments of the present application may be in the form of a range; it should be understood that the description in the form of a range is only for convenience and brevity, and should not be understood as a rigid limitation on the scope of the present application; therefore, it should be considered that the range description has specifically disclosed all possible sub-ranges and single numerical values within the range.
  • the range description from 1 to 6 has specifically disclosed sub-ranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., as well as single numbers within the range, such as 1, 2, 3, 4, 5 and 6, which applies regardless of the range.
  • a numerical range is indicated in this document, it is meant to include any cited numbers (fractions or integers) within the indicated range.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • a and B can be singular or plural.
  • At least one means one or more
  • plural means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one means two or more.
  • At least one of the following or similar expressions refer to any combination of these items, including any combination of single items or plural items.
  • “at least one of a, b, or c” can all mean: a, b, c, a-b (i.e. a and b), a-c, b-c, or a-b-c, where a, b, c can be single or multiple, respectively.
  • the present application provides a composite material comprising inorganic particles and a cyanoacrylic acid compound.
  • the light-emitting device 100 utilizes cyanoacrylate compounds to modify inorganic particles, and forms ionic bonds between carbonyl groups and cations on the surface of inorganic particles that are not involved in coordination, thereby passivating surface defects; by introducing cyano groups, it adjusts the work function and promotes electron injection, thereby improving the carrier transport performance of the composite material; by introducing acrylic acid structures, it promotes the forward aging of the device; in addition, the addition of cyanoacrylate compounds helps to reduce the surface energy of inorganic particles, increase the degree of crystallization of their surface crystals, and achieve the effect of secondary crystallization. When it is used to make a film layer, it helps to improve the quality of the film layer and enhance the luminescence performance and stability of the device to which the film layer is applied.
  • the composite material consists of inorganic particles and a cyanoacrylate compound.
  • the cyanoacrylate compound includes one or more of 2-cyano-3-(3-methoxyphenyl)acrylic acid (CAS: 126058-00-2), 2-cyano-3-(4-methoxyphenyl)ethyl acrylate (CAS: 2286-29-5), 2-cyano-3-phenylacrylate methyl ester (CAS: 3695-84-9), 2-cyano-3-phenylacrylate ethyl ester (CAS: 2169-69-9), and 2-cyano-3-aminoacrylate, wherein the 2-cyano-3-aminoacrylate can be selected from one or both of 2-cyano-3-(dimethylamino)methyl acrylate (CAS: 1187-27-5) and 2-cyano-3-(dimethylamino)ethyl acrylate (CAS: 16849-87-9).
  • the molar ratio of the inorganic particles to the cyanoacrylate compound is 1:(0.1-2), for example, the molar ratio can be 1:0.1, 1:0.2, 1:0.5, 1:0.8, 1:1, 1:1.1, 1:1.2, 1:1.5, 1:1.8, 1:1.9, 1:2 and values between any two of the above listed values. Controlling the molar ratio within this range helps to improve the carrier transport performance while enhancing the passivation effect on the surface defects of the inorganic particles and improving the degree of crystallization of the surface crystals.
  • the inorganic particles include one or more of silicon, germanium, metal oxides, doped metal oxides, Group IIB-VIA materials, Group IIIB-VA materials, and Group IB-IIIB-VIA materials;
  • the metal oxides include one or more of ZnO, TiO 2 , SnO 2 , Al 2 O 3 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , BaO, MoO 3 , CdO, BaO, Ta 2 O 5 , BaTiO 3 , and PbCrO 4 ;
  • the metal oxides in the doped metal oxides include ZnO, TiO 2 , SnO 2 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , BaO, MoO 3
  • the The composite material can be used to prepare the electronic functional layer of the light-emitting device 100.
  • the electronic functional layer made of the composite material not only has high transmission efficiency and stability, but also has better interface contact effect with other functional layers.
  • the inorganic particles include one or more of MoO 3 , WO 3 , NiO, V 2 O 5 , CuO, P-type gallium nitride and CrO 3. Accordingly, when the inorganic particles are selected from the above materials, the composite material can be used to prepare the hole functional layer of the light-emitting device 100.
  • the hole functional layer made of the composite material not only has better stability, but also has better interface contact effect with other functional layers.
  • the present application also proposes a composition, including a solvent and the composite material as described above.
  • the composition can be used to prepare a carrier functional layer of the light-emitting device 100 , wherein the carrier functional layer includes but is not limited to an electron transport layer 30 and/or a hole transport layer 50 .
  • the solvent may be any common solvent that can dissolve inorganic particles and cyanoacrylate compounds, for example, one or more of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, ethers, esters, ketones, DMF, acetonitrile, pyridine, and phenol.
  • the aromatic hydrocarbons include one or more of benzene, toluene, and xylene; the aliphatic hydrocarbons include one or more of pentane, hexane, and octane; the halogenated hydrocarbons include one or more of chlorobenzene, dichlorobenzene, and dichloromethane; the alicyclic hydrocarbons include one or more of cyclohexane, cyclohexanone, toluene, and cyclohexanone; the alcohols include one or more of methanol, ethanol, butanol, and isopropanol; the ethers include one or more of ethyl ether, propylene oxide, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; the esters include one or more of methyl acetate, ethyl acetate, and propyl acetate;
  • the use of the above solvents can well disperse the inorganic particles and the cyanoacrylate compound to form a liquid composition, which not only allows the cyanoacrylate compound and the inorganic particles to fully contact and interact with each other, but also helps to improve the dispersibility of the material.
  • the liquid composition is more conducive to preparing the carrier functional layer by a solution method.
  • the concentration of the inorganic particles is 15 to 40 mg/mL, for example, the concentration of the inorganic particles can be 15 mg/mL, 16 mg/mL, 20 mg/mL, 21 mg/mL, 25 mg/mL, 28 mg/mL, 30 mg/mL, 32 mg/mL, 35 mg/mL, 38 mg/mL, 40 mg/mL, and values in the range between any two of the above values, etc. Within this range, it is helpful to improve the carrier transport performance of the composition while taking into account the film-forming property of the composition.
  • the present application further proposes a method for preparing a composition.
  • the method for preparing the composition comprises the following steps:
  • Step S10 providing inorganic particles, cyanoacrylic acid compound and solvent
  • Step S20 mixing the inorganic particles, the cyanoacrylic acid compound, and the solvent to obtain a composition.
  • the cyanoacrylate compound includes one or more of 2-cyano-3-(3-trimethoxyphenyl)acrylic acid, 2-cyano-3-(4-methoxyphenyl)acrylic acid ethyl ester, 2-cyano-3-phenylacrylate methyl ester, 2-cyano-3-phenylacrylate ethyl ester, and 2-cyano-3-aminoacrylate.
  • the solvent can be selected from but not limited to one or more of aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, ethers, esters, ketones, DMF, acetonitrile, pyridine, and phenol;
  • the aromatic hydrocarbons include one or more of benzene, toluene, and xylene;
  • the aliphatic hydrocarbons include one or more of pentane, hexane, and octane;
  • the halogenated hydrocarbons include one or more of chlorobenzene, dichlorobenzene, and dichloromethane;
  • the alicyclic hydrocarbons include one or more of cyclohexane, cyclohexanone, toluene, and cyclohexanone;
  • the alcohols include one or more of methanol, ethanol, butanol, and isopropanol;
  • the ethers
  • the addition amounts of the inorganic particles, the cyanoacrylic acid compound and the solvent satisfy: in the composition, the concentration of the inorganic particles is 15 to 40 mg/mL, for example, the concentration of the inorganic particles can be 15 mg/mL, 16 mg/mL, 20 mg/mL, 21 mg/mL, 25 mg/mL, 28 mg/mL, 30 mg/mL, 32 mg/mL, 35 mg/mL, 38 mg/mL, 40 mg/mL and values in the range between any two of the above values, etc.
  • the molar ratio of the inorganic particles to the cyanoacrylic acid compound is 1:(0.1-2), for example, the molar ratio can be 1:0.1, 1:0.2, 1:0.5, 1:0.8, 1:1, 1:1.1, 1:1.2, 1:1.5, 1:1.8, 1:1.9, 1:2 and values between any two of the above values.
  • the step of dispersing the inorganic particles and the cyanoacrylate compound in the solvent is carried out under ultrasonic conditions, and the ultrasonic time is 10 to 240 minutes.
  • the ultrasonic time can be 10 minutes, 20 minutes, 30 minutes, 50 minutes, 100 minutes, 150 minutes, 180 minutes, 200 minutes, 220 minutes, 230 minutes, 240 minutes, and values between any two of the values listed above. This helps to fully disperse the inorganic particles and the cyanoacrylate compound in the solvent.
  • the present application also proposes a light-emitting device 100, please refer to Figures 1 to 3, the light-emitting device 100 includes a cathode 40, a functional layer and an anode 10, the functional layer includes a light-emitting layer 20 and one or more carrier functional layers, the material of the carrier functional layer includes the composite material described above, or the carrier functional layer is made of a composition, the composition includes the composition described above, or the composition is prepared by the preparation method described above.
  • the light-emitting device 100 provided in the present application is made of a composite material or a composition to form a carrier functional layer.
  • the cyanoacrylic acid compound modifies the inorganic particles, and forms an ionic bond with the cations on the surface of the inorganic particles that are not involved in the coordination through the carbonyl group, which plays a role in passivating surface defects; its cyano group plays a role in adjusting the work function and promoting electron injection, thereby improving the carrier transport performance of the composite material; its acrylic structure has the effect of promoting the positive aging of the device; in addition, the addition of cyanoacrylic acid compounds helps to reduce the surface energy of the inorganic particles, improve the crystallization degree of the surface crystals, and achieve the effect of secondary crystallization.
  • the composite material When it is used to make a film layer, it helps to improve the quality of the film layer. Therefore, the composite material has better carrier transport performance and stability, and using it to make a carrier functional layer helps to improve the luminescence performance and stability of the light-emitting device 100; at the same time, this carrier functional layer has a better interface contact effect with the adjacent film layer, which also improves the luminescence performance of the light-emitting device 100 to a certain extent.
  • the light-emitting layer 20 may be an organic light-emitting layer or a quantum dot light-emitting layer.
  • the light-emitting device 100 may be an organic light-emitting device; when the light-emitting layer 20 is a quantum dot light-emitting layer, the light-emitting device 100 may be a quantum dot light-emitting device.
  • the material of the organic light-emitting layer is a material known in the art for the organic light-emitting layer of the light-emitting device 100, for example, it can be selected from but not limited to one or more of diaromatic anthracene derivatives, distilbene aromatic derivatives, pyrene derivatives, fluorene derivatives, TBPe fluorescent materials emitting blue light, TTPX fluorescent materials emitting green light, TBRb fluorescent materials emitting orange light, and DBP fluorescent materials emitting red light.
  • the material of the quantum dot light-emitting layer is a quantum dot material known in the art for the quantum dot light-emitting layer of the light-emitting device 100, for example, it can be selected from but not limited to one or more of single structure quantum dots and core-shell structure quantum dots.
  • the material of the single structure quantum dot, the material of the core of the core-shell structure quantum dot and the material of the shell of the core-shell structure quantum dot can be selected from but not limited to one or more of II-VI group compounds, III-V group compounds and I-III-VI group compounds.
  • the II-VI group compound can be selected from, but not limited to, one or more of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe and HgZnSTe, Cd
  • the core-shell structured quantum dots may be selected from, but not limited to, CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS, CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS, InP/ZnSeS/ZnS, CdZnSe/ZnSe/ZnS, One or more of CdSeS/ZnSeS/ZnS, CdSe/ZnS, CdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS and InP/ZnSe/ZnS.
  • the anode 10 may be an anode 10 for a light-emitting device 100 known in the art, for example, may be selected from but not limited to a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode, the material of the metal electrode being selected from one or more of Ag, Al, Mg, Au, Cu, Mo, Pt, Ca and Ba, the material of the carbon silicon material electrode being selected from one or more of silicon, graphite, carbon nanotubes, graphene and carbon fiber, the material of the metal oxide electrode being selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, and the composite electrode being selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/
  • the cathode 40 may be a cathode 40 for the light emitting device 100 known in the art, for example, may be selected from but not limited to a metal electrode, a carbon silicon material electrode, a metal oxide electrode or a composite electrode, wherein the material of the metal electrode is selected from one or more of Ag, Al, Mg, Au, Cu, Mo and Pt, the material of the carbon silicon material electrode is selected from one or more of silicon, graphite, carbon nanotubes, graphene and carbon fiber, the material of the metal oxide electrode is selected from one or more of indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, and the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/
  • the functional layer may also include one or more transport film layers, as shown in FIG3 , the one or more transport film layers include but are not limited to one or more of an electron functional layer and a hole functional layer.
  • the electron functional layer is located between the cathode 40 and the light-emitting layer 20, and the hole functional layer is located between the anode 10 and the light-emitting layer 20; the electron functional layer includes an electron transport layer 30 and/or an electron injection layer; the hole functional layer includes a hole transport layer 50 and/or a hole injection layer 60.
  • at least one film layer is named as the carrier functional layer, and the material of the carrier functional layer includes the composite material, or the carrier functional layer is made of the composition.
  • the electron transport layer 30 is used as a carrier functional layer and is prepared using a corresponding composite material or composition.
  • the one or more carrier functional layers include a first carrier functional layer, the first carrier functional layer is located between the light-emitting layer 20 and the cathode 40, and the inorganic particles in the material of the first carrier functional layer are selected from one or more of silicon, germanium, metal oxides, doped metal oxides, IIB-VIA group materials, IIIB-VA group materials and IB-IIIB-VIA group materials.
  • the hole transport layer 50 is used as a carrier functional layer and is prepared by using a corresponding composite material or composition.
  • the one or more carrier functional layers include a second carrier functional layer, the second carrier functional layer is located between the light-emitting layer 20 and the anode 10, and the inorganic particles in the material of the second carrier functional layer are selected from one or more of MoO 3 , WO 3 , NiO, V 2 O 5 , CuO, P-type gallium nitride and CrO 3 .
  • the electron transport layer 30 and the hole transport layer 50 are both used as carrier functional layers and are prepared using corresponding composite materials or compositions.
  • the one or more carrier functional layers include a third carrier functional layer and a fourth carrier functional layer, the third carrier functional layer is located between the light-emitting layer and the cathode, the fourth carrier functional layer is located between the light-emitting layer and the anode, the inorganic particles in the material of the third carrier functional layer are selected from one or more of silicon, germanium, metal oxides, doped metal oxides, IIB-VIA group materials, IIIB-VA group materials and IB-IIIB-VIA group materials, and the inorganic particles in the material of the fourth carrier functional layer are selected from one or more of MoO 3 , WO 3 , NiO, V 2 O 5 , CuO, P-type gallium nitride and CrO 3 .
  • first transport film layers are named first transport film layers.
  • the number of the first transport film layers can be 0, or 1 or more.
  • the material of the first transport film layer can be selected from the materials conventionally used in the art for preparing functional film layers, such as electron transport materials, electron injection materials, hole transport materials, etc. Transport materials, hole injection materials, etc.
  • the light-emitting device 100 includes an anode 10, a hole transport layer 50, a hole injection layer 60, a light-emitting layer 20, an electron transport layer 30 and a cathode 40, wherein the electron transport layer 30 is a carrier functional layer, and its material is the composite material, and the remaining hole transport layer 50 and the hole injection layer 60 are used as the first transport film layer, and its material can be selected from conventional hole transport materials and hole injection materials in the art; in other embodiments, the light-emitting device 100 includes an anode 10, a hole transport layer 50, a hole injection layer 60, a light-emitting layer 20, an electron transport layer 30 and a cathode 40, wherein the electron transport layer 30 and the hole transport layer 50 are 0 are all carrier functional layers, and their materials are the corresponding composite materials, that is, the composite material used to prepare the electron transport layer 30 includes a cyanoacrylate compound, and inorganic particles with electron transport performance and suitable for the electron transport layer 30 material, and the
  • the first transport film layer may be an electron transport layer 30, and accordingly, the material of the first transport film layer may be selected from but not limited to one or more of metal oxides, doped metal oxides, IIB-VIA group materials, IIIB-VA group materials and IB-IIIB-VIA group materials.
  • the metal oxide includes one or more of ZnO, TiO 2 , SnO 2 , Al 2 O 3 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , BaO, MoO 3 , CdO, BaO, Ta 2 O 5 , BaTiO 3 , and PbCrO 4 ;
  • the metal oxide in the doped metal oxide includes ZnO, TiO 2 , SnO 2 , V 2 O 5 , V 3 O 8 , CrO 3 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , CuO, MoO 2 , Nb 2 O 5 , BaO, MoO 3 , CdO, BaO, Ta 2 O 5 , BaTiO 3 , PbCrO 4
  • the doping element may be selected from but not limited to one or more of Al, Mg, Li, In, Ga.
  • the doped metal oxide may be aluminum zinc oxide (AZO), lithium-doped zinc oxide (LZO) and magnesium-doped zinc oxide (MZO);
  • the IIB-VIA semiconductor material includes one or more of ZnS, ZnSe, CdS, and CdSe;
  • the IIIB-VA semiconductor material includes one or more of InP and GaP;
  • the IB-IIIB-VIA semiconductor material includes one or more of CuInS and CuGaS.
  • the first transport film layer may be an electron injection layer.
  • the material of the first transport film layer may be selected from materials known in the art for electron injection layers, for example, may be selected from but not limited to one or more of LiF, MgP, MgF2, Al2O3 , Ga2O3 , LiF/ Yb , ZnO, Cs2CO3 , RbBr , and Rb2CO3 .
  • the first transport film layer can be a hole injection layer 60.
  • the material of the first transport film layer can be selected from materials known in the art for the hole injection layer 60, such as but not limited to poly(ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly(9,9-dioctyl-fluorene-co-N-(4-butylphenyl)-diphenylamine) (TFB), polyarylamine, poly(N-vinylcarbazole), polyaniline, polypyrrole, N,N,N',N'-tetrakis(4-methoxyphenyl)-benzidine (TPD), 4-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl ( ⁇ -NPD), 4,4',4"-tris[phenyl(m-tolyl)amino]triphenylamine (m-
  • the first transport film layer may be a hole transport layer 50.
  • the material of the first transport film layer may be selected from materials known in the art for the hole transport layer 50, for example, may be selected from but not limited to poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-omeTAD), 4,4'-cyclohexylbis[N,N-di(4-methylphenyl)aniline] (TAPC), N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine (NPB), 4,4'-bis(N-carbazole)-1,1'-biphenyl (CBP), poly[(9,9-
  • each layer of the light emitting device 100 can be adjusted according to the light emitting requirements of the light emitting device 100 .
  • the light emitting device 100 can be a positive light emitting device or an inverted light emitting device.
  • the present application further proposes a method for preparing the light-emitting device 100 .
  • the preparation method comprises the following steps:
  • Step S100 providing a first electrode
  • Step S200 forming a functional layer on the first electrode, the functional layer comprising a light-emitting layer 20 and a carrier functional layer, the preparation of the carrier functional layer comprising: providing a composition, and arranging the composition on the upper film layer to form the carrier functional layer;
  • Step S300 forming a second electrode on the functional layer.
  • the first electrode is one of the cathode 40 and the anode 10
  • the second electrode is the other of the cathode 40 and the anode 10.
  • the light emitting device 100 is a positive light emitting device, and accordingly, the first electrode is the anode 10, and the second electrode is the cathode 40; in other embodiments, the light emitting device 100 is an inverted light emitting device, and accordingly, the first electrode is the cathode 40, and the second electrode is the anode 10.
  • the functional layer also includes a first transmission film layer. Accordingly, the method for preparing the first transmission film layer includes: providing the material of the first transmission film layer, and arranging the material of the first transmission film layer on the previous film layer to form the first transmission film layer.
  • the upper film layer mentioned above is determined according to the structure of the light-emitting device 100 actually prepared.
  • the light-emitting device 100 is a positive light-emitting device, which includes an anode 10, a hole transport layer 50, a hole injection layer 60, a light-emitting layer 20, an electron transport layer 30 and a cathode 40 stacked in sequence from bottom to top, then the upper film layer of the electron transport layer 30 is the light-emitting layer 20.
  • the preparation method of the anode 10, the hole transport layer 50, the light-emitting layer 20, the electron transport layer 30, the cathode 40 and the hole injection layer 60 can be achieved by conventional techniques in the art, such as chemical methods or physical methods.
  • the chemical method includes chemical vapor deposition, continuous ion layer adsorption and reaction, anodization, electrolytic deposition, and coprecipitation.
  • the physical method includes physical plating and solution method, among which the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.; the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip pulling, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the physical plating method includes: thermal evaporation coating, electron beam evaporation coating, magnetron sputtering, multi-arc ion plating, physical vapor deposition, atomic layer deposition, pulsed laser deposition, etc.
  • the solution method can be spin coating, printing, inkjet printing, blade coating, printing, dip pulling, immersion, spraying, roll coating, casting, slit coating, and strip coating.
  • the present application further proposes a display device, comprising a light-emitting device 100, wherein the light-emitting device 100 comprises the light-emitting device 100 described above.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, the cyanoacrylate compound is changed from 2-cyano-3-(3-methoxyphenyl)acrylic acid to 2-cyano-3-(4-methoxyphenyl)ethyl acrylate (CAS: 2286-29-5).
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, the cyanoacrylate compound is changed from 2-cyano-3-(3-methoxyphenyl)acrylate to 2-cyano-3-phenylacrylate (CAS: 3695-84-9).
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, the cyanoacrylate compound is changed from 2-cyano-3-(3-methoxyphenyl)acrylic acid to 2-cyano-3-phenylacrylate (CAS: 2169-69-9).
  • the scheme of this embodiment is basically the same as that of Embodiment 1, except that, in this embodiment, the cyanoacrylate compound is changed from 2-cyano-3-(3-methoxyphenyl)acrylic acid to 2-cyano-3-(3-trimethoxyphenyl)acrylic acid and 2-cyano-3-(dimethylamino)methyl acrylate (CAS: 1187-27-5), and the molar ratio is 1:1.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that, in this embodiment, the molar ratio of the cyanoacrylic acid compound to ZnO is changed from 0.1:1 to 0.5:1.
  • the scheme of this embodiment is basically the same as that of embodiment 1, except that in this embodiment, the molar ratio of the cyanoacrylic acid compound to ZnO is changed from 0.1:1 to 2:1.
  • step (2) ZnO is replaced by MoO 3 ;
  • step (1) The preparation steps of step (1) are as follows: 0.25 g of molybdate is dissolved in 10 mL of ethanol, stirred until dissolved, H 2 O 2 (30%, 0.5 mL) is added and stirred for 24 h, and then the stirring is stopped and the mixture is allowed to stand for 1 h. After centrifugal washing, the precipitate is dispersed in ethanol to obtain an ethanol solution of MoO 3 .
  • This comparative example is basically the same as Example 1, except that:
  • the product is an ethanol solution of ZnO with a concentration of 30 mg/mL.
  • This comparative example is basically the same as Example 1, except that in this comparative example: the cyanoacrylate compound is changed from 2-cyano-3-(3-methoxyphenyl)acrylate to 2-cyano-3,3'-diphenyl ethyl acrylate.
  • This comparative example is substantially the same as Example 1, except that in this comparative example, the molar ratio of the cyanoacrylic acid compound to ZnO is changed from 0.1:1 to 2.5:1.
  • An ITO anode 10 having a thickness of 100 nm is provided.
  • Example 1 The composition prepared in Example 1 was spin-coated on the light-emitting layer 20 and annealed at 100° C. for 20 min to form an electron transport layer 30 with a thickness of 30 nm.
  • the device embodiment scheme of this device is basically the same as device embodiment 1, except that, in this device embodiment, the electron transport The material of layer 30 was changed to the composition prepared in Example 2.
  • the device embodiment scheme is basically the same as device embodiment 1, and the only difference is that in the device embodiment, the material of the electron transport layer 30 is changed to the composition prepared in embodiment 3.
  • the device embodiment scheme is basically the same as device embodiment 1, and the only difference is that in the device embodiment, the material of the electron transport layer 30 is changed to the composition prepared in embodiment 4.
  • the device embodiment scheme is basically the same as device embodiment 1, and the only difference is that in the device embodiment, the material of the electron transport layer 30 is changed to the composition prepared in embodiment 5.
  • the device embodiment scheme is basically the same as device embodiment 1, and the only difference is that in the device embodiment, the material of the electron transport layer 30 is changed to the composition prepared in embodiment 6.
  • the device embodiment scheme is basically the same as device embodiment 1, and the only difference is that in the device embodiment, the material of the electron transport layer 30 is changed to the composition prepared in embodiment 7.
  • the device embodiment scheme is basically the same as device embodiment 1, except that, in the device embodiment:
  • step (3) the TFB material is replaced with the composition prepared in Example 9.
  • step (5) the composition prepared in Example 1 is replaced with the ethanol solution of ZnO prepared in Example 1.
  • This comparative example is basically the same as device embodiment 1, except that:
  • step (5) the composition prepared in Example 1 is replaced by the ethanol solution of ZnO prepared in Comparative Example 1.
  • This comparative example is basically the same as device embodiment 1, except that:
  • step (5) the composition prepared in Example 1 is replaced by the composition prepared in Comparative Example 2.
  • This comparative example is basically the same as device embodiment 1, except that:
  • Step (5) is adjusted to:
  • the ethanol solution of ZnO prepared in Example 1 was spin-coated on the light-emitting layer 20 and annealed at 100° C. for 20 min to form an electron transport layer 30 with a thickness of 30 nm.
  • a 3 mg/mL 2-cyano-3-(3-methoxyphenyl)acrylic acid ethanol solution is provided, and then the solution is spin-coated on the surface of the electron transport layer 30 and annealed at 100° C. for 20 min to form a modified layer with a thickness of 30 nm.
  • the surface of the modified layer is used to form the cathode 40.
  • the device comparative example scheme is basically the same as the device embodiment 1, and the only difference is that in the device comparative example, the material of the electron transport layer 30 is changed to the composition prepared in comparative example 3.
  • the devices prepared in the above device examples 1-8 and device comparative examples 1-4 were tested for luminous efficiency and turn-on voltage, and the results were recorded in Table 1; then, the device examples 1-5 and device comparative examples 1-3 were stored at room temperature and natural light for 10 days, and the luminous efficiency and turn-on voltage were tested again, and the results were recorded in Table 2.
  • the test method is as follows:
  • the detection method of luminous efficiency EQE is as follows: using FPD optical property measurement equipment, controlling QE PRO spectrometer, Keithley 2400, and Keithley 6485 through LabView, measuring parameters such as voltage, current, brightness, and luminous spectrum, and calculating the external quantum efficiency EQE.
  • the brightness of the light-emitting diode device reaches The voltage when it reaches 1nite is the turn-on voltage.
  • the device embodiments have higher luminous efficiency, and compared with the device comparison example, the luminous efficiency and turn-on voltage of device embodiments 1 to 5 change less on the 1st day and the 10th day.
  • the present application significantly improves the luminescent performance and stability of the device by using a composite material as an electron transport layer or a hole transport layer material.
  • the carbonyl group of the cyanoacrylate compound can form an ionic bond with the uncoordinated zinc atoms or molybdenum atoms on the surface of the nanoparticles, which plays a role in passivating the surface defects of the particles; at the same time, the cyano and acrylic acid structures contained therein improve the carrier transport performance, promote the positive aging effect of the device, and improve the luminescent performance of the device; in addition, the cyanoacrylate compound also helps to reduce the surface energy of inorganic particles, increase the degree of crystallization of the surface crystals, improve the quality of the film layer, and improve the interface contact effect between the film layers, thereby significantly improving the luminescent performance and stability of the device as a whole.
  • device example 1 has significantly higher luminous efficiency, shorter turn-on voltage and better stability.
  • the method of incorporating cyanoacrylate compounds into the functional layer material has a more significant effect on improving device performance and stability. This may be because mixing cyanoacrylate compounds and inorganic particles to form a composite material can allow the two substances to contact more fully and interact with each other to form a connection relationship, making the modification effect of cyanoacrylate compounds on inorganic particles more significant, which is further reflected in the significant improvement of device performance and stability.
  • the degree of improvement of the effect of the embodiments is better than that of the comparative example, and among device embodiments 1 to 7, the effects of device embodiments 1 and 2 are better, indicating that when the cyanoacrylate compound is selected from one or more of 2-cyano-3-(3-methoxyphenyl)acrylic acid, 2-cyano-3-(4-methoxyphenyl)acrylic acid ethyl ester, 2-cyano-3-phenylacrylate methyl ester, 2-cyano-3-phenylacrylate ethyl ester, and 2-cyano-3-aminoacrylate, the composite material prepared therefrom has a better gain effect on the device, and the cyanoacrylate compound is further preferably 2-cyano-3-(3-methoxyphenyl)acrylic acid and 2-cyano-3-(4-methoxyphenyl)acrylic acid ethyl ester.
  • the degree of improvement of the device embodiments is better than that of the comparative example, indicating that controlling the molar ratio of the inorganic particles to the cyanoacrylate compound to be 1:(0.1-2) is helpful to the overall improvement of the device luminous efficiency and the turn-on voltage, and the improvement effect is better. This may be because, when the amount of cyanoacrylate compound added is too high, the proportion of inorganic particles is relatively small, thereby affecting the carrier transport performance of the composite material.
  • the light-emitting device utilizes cyanoacrylate compounds to modify inorganic particles, and forms ionic bonds between carbonyl groups and cations on the surface of inorganic particles that are not involved in coordination, thereby passivating surface defects; by introducing cyano groups, it plays a role in adjusting the work function and promoting electron injection, thereby improving the carrier transport performance of the composite material; by introducing acrylic acid structures, it plays a role in promoting positive aging of the device; in addition, the addition of cyanoacrylate compounds helps to reduce the surface energy of inorganic particles, increase the degree of crystallization of their surface crystals, and achieve the effect of secondary crystallization. When it is used to make a film layer, it helps to improve the quality of the film layer and enhance the luminescence performance and stability of the device to which the film layer is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种复合材料、组合物及发光器件,所述复合材料包括无机粒子和氰基丙烯酸化合物,本申请旨在钝化现有无机半导体材料表面缺陷。

Description

复合材料、组合物及发光器件
本申请要求于2022年11月24日在中国专利局提交的、申请号为202211482662.8、申请名称为“复合材料、组合物及其制备方法、发光器件及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示领域,尤其涉及一种复合材料、组合物及发光器件。
背景技术
无机半导体材料是指具有半导体性能的无机材料。目前常用的无机半导体材料有氧化锌、二氧化钛、氧化铝、硫化钼等,这些材料具有宽禁带、低功函、优异的载流子注入或传输性能、稳定性好、等优点,被广泛应用于半导体器件中。
然而,现有的无机半导体材料表面存在大量缺陷,易形成电子捕获中心及激子复合中心,降低了载流子传输效率,进而影响使用其制得的器件的发光性能。
技术解决方案
因此,本申请提供一种复合材料、组合物及发光器件。
第一方面,本申请提供一种复合材料,包括无机粒子和氰基丙烯酸化合物。
可选的,在本申请的一些实施例中,所述氰基丙烯酸化合物的结构式中包括至少一个氰基和至少一个通式为-CH=CH-COO-的基团。
可选的,在本申请的一些实施例中,所述氰基丙烯酸化合物包括2-氰基-3-(3-甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种。
可选的,在本申请的一些实施例中,所述2-氰基-3-氨基丙烯酸酯包括2-氰基-3-(二甲基氨基)丙烯酸甲酯、2-氰基-3-(二甲基氨基)丙烯酸乙酯中的一种或两种。
可选的,在本申请的一些实施例中,所述复合材料中,所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2)。
可选的,在本申请的一些实施例中,所述无机粒子包括硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种;所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素包括Al、Mg、Li、In、Ga中的一种或多种;所述IIB-VIA族半导体材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族半导体材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族半导体材料包括CuInS、CuGaS中的一种或多种。
可选的,在本申请的一些实施例中,所述无机粒子包括MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料由无机粒子和氰基丙烯酸化合物组成。
第二方面,本申请还提出一种组合物,包括溶剂和复合材料,所述复合材料包括无机粒子和氰基丙烯酸化合物。
可选的,在本申请的一些实施例中,所述氰基丙烯酸化合物包括2-氰基-3-(3-甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯 酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料中,所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2)。
可选的,在本申请的一些实施例中,所述无机粒子包括硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种;所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素包括Al、Mg、Li、In、Ga中的一种或多种;所述IIB-VIA族材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族材料包括CuInS、CuGaS中的一种或多种。
可选的,在本申请的一些实施例中,所述无机粒子包括MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
可选的,在本申请的一些实施例中,所述溶剂包括芳香烃类、脂肪烃类、脂环烃类、卤化烃类、醇类、醚类、酯类、酮类、DMF、乙腈、吡啶、苯酚中的一种或多种;所述芳香烃类包括苯、甲苯、二甲苯中的一种或多种;所述脂肪烃类包括戊烷、己烷、辛烷中的一种或多种;所述卤化烃类包括氯苯、二氯苯、二氯甲烷中的一种或多种;所述脂环烃类包括环己烷、环己酮、甲苯环己酮中的一种或多种;所述醇类包括甲醇、乙醇、丁醇、异丙醇中的一种或多种;所述醚类包括乙醚、环氧丙烷、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚中的一种或多种;所述酯类包括醋酸甲酯、醋酸乙酯、醋酸丙酯中的一种或多种;所述酮类包括丙酮、甲基丁酮、甲基异丁酮中的一种或多种;和/或,
所述组合物中,所述无机粒子的浓度为15~40mg/mL。
第三方面,本申请还提出一种发光器件,包括包括阴极、功能层和阳极,所述功能层包括发光层以及一个或多个载流子功能层,所述载流子功能层的材料包括上文所述的复合材料,或者,所述载流子功能层由上述组合物制成。
可选的,在本申请的一些实施例中,所述一个或多个载流子功能层包括第一载流子功能层,所述第一载流子功能层位于所述发光层和所述阴极之间,所述第一载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种。
可选的,在本申请的一些实施例中,所述一个或多个载流子功能层包括第二载流子功能层,所述第二载流子功能层位于所述发光层和所述阳极之间,所述第二载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
可选的,在本申请的一些实施例中,所述一个或多个载流子功能层包括第三载流子功能层和第四载流子功能层,所述第三载流子功能层位于所述发光层和所述阴极之间,所述第四载流子功能层位于所述发光层和所述阳极之间,所述第三载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种,所述第四载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
可选的,在本申请的一些实施例中,所述发光层的材料包括单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、 HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种;和/或,
所述阴极选自金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS;和/或,
所述阳极选自金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提出的一种发光器件的结构示意图;
图2是本申请另一实施例提出的一种发光器件的结构示意图;
图3是本申请又一实施例提出的一种发光器件的结构示意图;
图4是本申请一实施例提出的一种组合物的制备方法的流程示意图;
附图标记:
100-发光器件;10-阳极;20-发光层;30-电子传输层;40-阴极;50-空穴传输层;60-空穴注
入层。。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。在本申请中,在未作相反说明的情况下,使用的方位词如 “上”和“下”具体为附图中的图面方向。另外,在本申请说明书的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请的技术方案是这样实施的:
第一方面,本申请提供一种复合材料,包括无机粒子和氰基丙烯酸化合物。
如本申请所用,氰基丙烯酸化合物是指含有氰基(-CN)和丙烯酸基团结构(-CH=CH-COO-)的化合物;在一些实施例中,所述氰基丙烯酸化合物的结构式中包括至少一个氰基和至少一个通式为-CH=CH-COO-的基团。
本申请提供的发光器件100,利用氰基丙烯酸化合物对无机粒子进行改性,通过羰基与无机粒子表面未参与配位的阳离子形成离子键,起到钝化表面缺陷的作用;通过引入氰基,起到调节功函,促进电子注入的作用,从而改善复合材料的载流子传输性能;通过引入丙烯酸结构,起到促进器件正向老化的作用;此外,添加氰基丙烯酸化合物有助于降低无机粒子表面能,提高其表面晶体的结晶程度,实现二次结晶的效果,使用其制成膜层时,有助于改善膜层的质量,提升应用膜层的器件的发光性能和稳定性。
在一些实施例中,所述复合材料由无机粒子和氰基丙烯酸化合物组成。
在一些实施例中,所述氰基丙烯酸化合物包括2-氰基-3-(3-甲氧基苯基)丙烯酸(CAS:126058-00-2)、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯(CAS:2286-29-5)、2-氰基-3-苯丙烯酸甲酯(CAS:3695-84-9)、2-氰基-3-苯丙烯酸乙酯(CAS:2169-69-9)、2-氰基-3-氨基丙烯酸酯中的一种或多种,其中,所述2-氰基-3-氨基丙烯酸酯可以选自2-氰基-3-(二甲基氨基)丙烯酸甲酯(CAS:1187-27-5)、2-氰基-3-(二甲基氨基)丙烯酸乙酯(CAS:16849-87-9)中的一种或两种。
在一些实施例中,所述复合材料中,所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2),例如,摩尔比可以为1:0.1、1:0.2、1:0.5、1:0.8、1:1、1:1.1、1:1.2、1:1.5、1:1.8、1:1.9、1:2以及上述列举的任意两个值之间的数值,控制摩尔比在此范围内,有助于在改善载流子传输性能的同时,提升对无机粒子表面缺陷的钝化效果,提升表面晶体的结晶程度。
在一些实施例中,所述无机粒子包括硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种;所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素包括Al、Mg、Li、In、Ga中的一种或多种;所述IIB-VIA族材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族材料包括CuInS、CuGaS中的一种或多种。相应的,所述无机粒子选自上述材料时,所述 复合材料可以用于制备发光器件100的电子功能层,使用本复合材料制成的电子功能层不仅具有较高的传输效率和稳定性,且其与其它功能层之间的界面接触效果较佳。
在另一些实施例中,所述无机粒子包括MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。相应的,所述无机粒子选自上述材料时,所述复合材料可以用于制备发光器件100的空穴功能层,使用本复合材料制成的空穴功能层不仅具有较佳的稳定性,且其与其它功能层之间的界面接触效果较佳。
第二方面,本申请还提出一种组合物,包括溶剂和如上文所述的复合材料。使用所述组合物可以制备出发光器件100的载流子功能层,所述载流子功能层包括但不限于电子传输层30和/或空穴传输层50。
其中,所述溶剂可以是任意能够溶解无机粒子和氰基丙烯酸化合物的常见溶剂,例如,芳香烃类、脂肪烃类、脂环烃类、卤化烃类、醇类、醚类、酯类、酮类、DMF、乙腈、吡啶、苯酚中的一种或多种。在一些实施例中,所述芳香烃类包括苯、甲苯、二甲苯中的一种或多种;所述脂肪烃类包括戊烷、己烷、辛烷中的一种或多种;所述卤化烃类包括氯苯、二氯苯、二氯甲烷中的一种或多种;所述脂环烃类包括环己烷、环己酮、甲苯环己酮中的一种或多种;所述醇类包括甲醇、乙醇、丁醇、异丙醇中的一种或多种;所述醚类包括乙醚、环氧丙烷、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚中的一种或多种;所述酯类包括醋酸甲酯、醋酸乙酯、醋酸丙酯中的一种或多种;所述酮类包括丙酮、甲基丁酮、甲基异丁酮中的一种或多种,使用上述溶剂能够很好地分散无机粒子和氰基丙烯酸化合物,形成液体组合物,不仅使得氰基丙烯酸化合物和无机粒子充分接触而发生相互作用,而且有助于提高材料分散性,同时,液体组合物更利于通过溶液法制成载流子功能层。
在一些实施例中,所述组合物中,所述无机粒子的浓度为15~40mg/mL,例如,所述无机粒子的浓度可以为15mg/mL、16mg/mL、20mg/mL、21mg/mL、25mg/mL、28mg/mL、30mg/mL、32mg/mL、35mg/mL、38mg/mL、40mg/mL以及上述任意两个数值之间的范围内的数值等。在此范围内,有助于在提高组合物的载流子传输性能的同时,兼顾组合物的成膜性。
第三方面,本申请还提出一种组合物的制备方法,请参阅图4,所述组合物的制备方法包括以下步骤:
步骤S10,提供无机粒子、氰基丙烯酸化合物和溶剂;
步骤S20,将所述无机粒子、所述氰基丙烯酸化合物、所述溶剂混合,得到组合物。
在一些实施例中,步骤S10中,所述氰基丙烯酸化合物包括2-氰基-3-(3-三甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种。
在一些实施例中,所述溶剂可以选自但不限于包括芳香烃类、脂肪烃类、脂环烃类、卤化烃类、醇类、醚类、酯类、酮类、DMF、乙腈、吡啶、苯酚中的一种或多种;所述芳香烃类包括苯、甲苯、二甲苯中的一种或多种;所述脂肪烃类包括戊烷、己烷、辛烷中的一种或多种;所述卤化烃类包括氯苯、二氯苯、二氯甲烷中的一种或多种;所述脂环烃类包括环己烷、环己酮、甲苯环己酮中的一种或多种;所述醇类包括甲醇、乙醇、丁醇、异丙醇中的一种或多种;所述醚类包括乙醚、环氧丙烷、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚中的一种或多种;所述酯类包括醋酸甲酯、醋酸乙酯、醋酸丙酯中的一种或多种;所述酮类包括丙酮、甲基丁酮、甲基异丁酮中的一种或多种;进一步地,在一些实施例中,所述溶剂选自甲醇、乙醇、丁醇、乙腈中的一种或多种,这些溶剂不仅价廉易得,而且分散效果好。
在一些实施例中,步骤S10中,无机粒子、氰基丙烯酸化合物和溶剂的添加量满足:所述组合物中,所述无机粒子的浓度为15~40mg/mL,例如,所述无机粒子的浓度可以为15mg/mL、16mg/mL、20mg/mL、21mg/mL、25mg/mL、28mg/mL、30mg/mL、32mg/mL、 35mg/mL、38mg/mL、40mg/mL以及上述任意两个数值之间的范围内的数值等。所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2),例如,摩尔比可以为1:0.1、1:0.2、1:0.5、1:0.8、1:1、1:1.1、1:1.2、1:1.5、1:1.8、1:1.9、1:2以及上述列举的任意两个值之间的数值。
在一些实施例中,将所述无机粒子、所述氰基丙烯酸化合物分散在所述溶剂中的步骤在超声条件下进行,超声的时间为10~240min,例如,超声时间可以为10min、20min、30min、50min、100min、150min、180min、200min、220min、230min、240min以及上述列举的任意两个值之间的数值,如此,有助于使得无机粒子和氰基丙烯酸化合物充分分散在溶剂中。
第四方面,本申请还提出一种发光器件100,请参阅图1至图3,所述发光器件100包括阴极40、功能层和阳极10,所述功能层包括发光层20以及一个或多个载流子功能层,所述载流子功能层的材料包括上文所述的复合材料,或者,所述载流子功能层由组合物制成,所述组合物包括上文所述的组合物,或者所述组合物由上文所述的制备方法制得。
本申请提供的发光器件100,利用复合材料或组合物制成载流子功能层,复合材料中:氰基丙烯酸化合物对无机粒子进行改性,通过羰基与无机粒子表面未参与配位的阳离子形成离子键,起到钝化表面缺陷的作用;其氰基起到了调节功函,促进电子注入的作用,从而改善复合材料的载流子传输性能;其丙烯酸结构具有促进器件正向老化的作用;此外,添加氰基丙烯酸化合物有助于降低无机粒子表面能,提高其表面晶体的结晶程度,实现二次结晶的效果,使用其制成膜层时,有助于改善膜层的质量。因此,所述复合材料具有较佳的载流子传输性能和稳定性,使用其制作载流子功能层有助于提升发光器件100的发光性能和稳定性;同时,这种载流子功能层与相邻膜层之间具有较佳的界面接触效果,这也在一定程度上提升了发光器件100的发光性能。
在一些实施例中,所述发光层20可以为有机发光层或量子点发光层。当所述发光层20为有机发光层时,所述发光器件100可为有机发光器件;当所述发光层20为量子点发光层时,所述发光器件100可以为量子点发光器件。
所述有机发光层的材料为本领域已知用于发光器件100的有机发光层的材料,例如,可以选自但不限于二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物、芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPX荧光材料、发橙色光的TBRb荧光材料及发红色光的DBP荧光材料中的一种或多种。
所述量子点发光层的材料为本领域已知用于发光器件100的量子点发光层的量子点材料,例如,可以选自但不限于单一结构量子点及核壳结构量子点中的一种或多种。所述单一结构量子点的材料、核壳结构量子点的核的材料及核壳结构量子点的壳的材料可以选自但不限于II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种。作为举例,所述II-VI族化合物可以选自但不限于CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种;所述III-V族化合物可以选自但不限于GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种;所述I-III-VI族化合物可以选自但不限于CuInS2、CuInSe2及AgInS2中的一种或多种。
作为示例,所述核壳结构的量子点可以选自但不限于CdZnSe/CdZnSe/ZnSe/CdZnS/ZnS、CdZnSe/CdZnSe/CdZnS/ZnS CdSe/CdSeS/CdS、InP/ZnSeS/ZnS、CdZnSe/ZnSe/ZnS、 CdSeS/ZnSeS/ZnS、CdSe/ZnS、CdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS及InP/ZnSe/ZnS中的一种或多种。
在一些实施例中,所述阳极10可以为本领域已知用于发光器件100的阳极10,例如,可以选自但不限于金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。
所述阴极40可以为本领域已知用于发光器件100的阴极40,例如,可以选自但不限于金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。
除发光层20外,所述功能层还可以包括一个或多个传输膜层,如图3所示,所述一个或多个传输膜层包括但不限于电子功能层和空穴功能层中的一种或多种。所述电子功能层位于阴极40和发光层20之间,空穴功能层位于阳极10和发光层20之间;所述电子功能层包括电子传输层30和/或电子注入层;所述空穴功能层包括空穴传输层50和/或空穴注入层60。所述一个或多个传输膜层中,至少一个膜层命名为所述载流子功能层,所述载流子功能层的材料包括所述复合材料,或者,所述载流子功能层由所述组合物制成。
示例性的,本申请提供的第一实施例中,如图1所示,电子传输层30作为载流子功能层,采用相应的复合材料或组合物制备而成。具体的,所述一个或多个载流子功能层包括第一载流子功能层,所述第一载流子功能层位于所述发光层20和所述阴极40之间,所述第一载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种。
示例性的,本申请提供的第二实施例中,如图2所示,空穴传输层50作为载流子功能层,采用相应的复合材料或组合物制备而成。具体的,所述一个或多个载流子功能层包括第二载流子功能层,所述第二载流子功能层位于所述发光层20和所述阳极10之间,所述第二载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
示例性的,本申请提供的第三实施例中,如图3所示,电子传输层30和空穴传输层50均作为载流子功能层,采用相应的复合材料或组合物制备而成。具体的,所述一个或多个载流子功能层包括第三载流子功能层和第四载流子功能层,所述第三载流子功能层位于所述发光层和所述阴极之间,所述第四载流子功能层位于所述发光层和所述阳极之间,所述第三载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种,所述第四载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
所述一个或多个传输膜层中,除载流子功能层外,剩余的传输膜层命名为第一传输膜层,所述第一传输膜层的数量可以是0,也可以是1个或者1个以上,所述第一传输膜层的材料可以选择本领域常规的制备功能膜层的材料,例如,电子传输材料、电子注入材料、空穴传 输材料、空穴注入材料等等。例如,在一些实施例中,所述发光器件100包括阳极10、空穴传输层50、空穴注入层60、发光层20、电子传输层30和阴极40,其中,电子传输层30为载流子功能层,其材料为所述复合材料,剩下的空穴传输层50和空穴注入层60作为第一传输膜层,其材料可以选择本领域常规的空穴传输材料、空穴注入材料;在另一些实施例中,所述发光器件100包括阳极10、空穴传输层50、空穴注入层60、发光层20、电子传输层30和阴极40,其中,电子传输层30和空穴传输层50均为载流子功能层,其材料分别为相应的所述复合材料,即,用于制备电子传输层30的复合材料包括氰基丙烯酸化合物,以及具有电子传输性能且适用于电子传输层30材料的无机粒子,所述无机粒子例如为,金属氧化物、掺杂金属氧化物、II-VI族半导体材料、III-V族半导体材料及I-III-VI族半导体材料中的一种或多种;用于制备空穴传输层50的复合材料包括氰基丙烯酸化合物、以及具有空穴传输性能且适用于空穴传输层50材料的无机粒子,所述无机粒子例如为MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种;剩下的空穴注入层60作为第一传输膜层,其材料可以选择本领域常规的空穴注入材料。
在一些实施例中,所述第一传输膜层可以是电子传输层30,相应的,所述第一传输膜层的材料可以选自但不限于金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种。具体的,所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素可以选自但不限于Al、Mg、Li、In、Ga中的一种或多种,作为列举,所述掺杂金属氧化物可以为铝氧化锌(AZO)、掺锂氧化锌(LZO)及掺镁氧化锌(MZO)等;所述IIB-VIA族半导体材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族半导体材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族半导体材料包括CuInS、CuGaS中的一种或多种。
在一些实施例中,所述第一传输膜层可以是电子注入层,相应的,所述第一传输膜层的材料可以选自本领域已知用于电子注入层的材料,例如可以选自但不限于LiF、MgP、MgF2、Al2O3、Ga2O3、LiF/Yb、ZnO、Cs2CO3、RbBr、Rb2CO3中的一种或多种。
在一些实施例中,所述第一传输膜层可以是空穴注入层60,相应的,所述第一传输膜层的材料可以选自本领域已知用于空穴注入层60的材料,如可以选自但不限于聚(亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)、聚(9,9-二辛基-芴-共-N-(4-丁基苯基)-二苯基胺)(TFB)、多芳基胺、聚(N-乙烯基咔唑)、聚苯胺、聚吡咯、N,N,N',N'-四(4-甲氧基苯基)-联苯胺(TPD)、4-双[N-(1-萘基)-N-苯基-氨基]联苯(α-NPD)、4,4',4”-三[苯基(间-甲苯基)氨基]三苯基胺(m-MTDATA)、4,4',4”-三(N-咔唑基)-三苯基胺(TCTA)、1,1-双[(二-4-甲苯基氨基)苯基环己烷(TAPC)、掺杂有四氟-四氰基-醌二甲烷(F4-TCNQ)的4,4',4”-三(二苯基氨基)三苯胺(TDATA)、p-掺杂酞菁(例如,F4-TCNQ-掺杂的锌酞菁(ZnPc))、F4-TCNQ掺杂的N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4,4”-二胺(α-NPD)、六氮杂苯并菲-己腈(HAT-CN)、氧化镍、氧化钼、氧化钨、氧化钒、硫化钼、硫化钨及氧化铜中的一种或多种。
在一些实施例中,所述第一传输膜层可以是空穴传输层50,相应的,所述第一传输膜层的材料可以选自本领域已知用于空穴传输层50的材料,例如,可以选自但不限于聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-omeTAD)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺(NPB)、4,4'-双(N-咔唑)-1,1'-联苯(CBP)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚三苯胺(Poly-TPD)、4,4',4”-三(咔唑-9-基)三苯胺(TCTA)、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'- 联苯-4,4'-二胺(TPD)、N,N'-双(3-甲基苯基)-N,N'-二苯基-9,9-螺二芴-2,7-二胺(Spiro-TPD)、N,N'-二-1-萘基-N,N'-二苯基-9,9'-螺二[9H-芴]-2,7-二胺(Spiro-NPB)、MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
可以理解,所述发光器件100的各层的材料可以依据发光器件100的发光需求进行调整。
可以理解,所述发光器件100可以为正置型发光器件或倒置型发光器件。
基于上述发光器件100,本申请进一步提出发光器件100的制备方法。
所述制备方法包括以下步骤:
步骤S100,提供第一电极;
步骤S200,在所述第一电极上形成功能层,所述功能层包括发光层20和载流子功能层,所述载流子功能层的制备包括:提供组合物,在上一膜层上设置组合物,形成载流子功能层;
步骤S300,在所述功能层上形成第二电极。
其中,所述第一电极为阴极40和阳极10中的一个,所述第二电极为阴极40和阳极10中的另一个。在一些实施例中,所述发光器件100为正置型发光器件,相应的,所述第一电极为阳极10,所述第二电极为阴极40;在另一些实施例中,所述发光器件100为倒置型发光器件,相应的,所述第一电极为阴极40,所述第二电极为阳极10。
在一些实施例中,所述功能层还包括第一传输膜层,相应的,所述第一传输膜层的制备方法包括:提供第一传输膜层的材料,在上一膜层上设置第一传输膜层的材料,形成第一传输膜层。
可以理解,上文中所述的上一膜层根据实际制备的发光器件100的结构确定,例如,在一些实施例中,所述发光器件100为正置型发光器件,其包括自下而上依次层叠的阳极10、空穴传输层50、空穴注入层60、发光层20、电子传输层30和阴极40,则电子传输层30的上一膜层为发光层20。
上述发光器件100的制备方法中,所述阳极10、空穴传输层50、发光层20、电子传输层30、阴极40及空穴注入层60的制备方法可采用本领域常规技术实现,例如化学法或物理法。其中,化学法包括化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法。物理法包括物理镀膜法和溶液法,其中,物理镀膜法包括:热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层沉积法、脉冲激光沉积法等;溶液法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。
第五方面,本申请还提出一种显示装置,包括发光器件100,所述发光器件100包括上文所述的发光器件100。
下面通过具体实施例、对比例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
(1)将氯化锌加入到DMF中,形成总浓度为0.5mol/L的氯化锌-DMF溶液,室温下,向所述氯化锌-DMF溶液中滴加浓度为0.6mol/L的NaOH的乙醇溶液,继续搅拌1.5h得到澄清透明溶液。加入丙酮,使ZnO纳米颗粒析出,离心后收集,再用乙醇溶解分散,制得ZnO的乙醇溶液。
(2)按照氰基丙烯酸化合物和ZnO的摩尔比为0.1:1,将2-氰基-3-(3-甲氧基苯基)丙烯酸(CAS:126058-00-2)加入到上述ZnO乙醇溶液,室温下超声分散2h,得到组合物,组合物中,ZnO纳米颗粒的浓度为30mg/mL。
实施例2
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物由2-氰基-3-(3-甲氧基苯基)丙烯酸改为2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯(CAS:2286-29-5)。
实施例3
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物由2-氰基-3-(3-甲氧基苯基)丙烯酸改为2-氰基-3-苯丙烯酸甲酯(CAS:3695-84-9)。
实施例4
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物由2-氰基-3-(3-甲氧基苯基)丙烯酸改为2-氰基-3-苯丙烯酸乙酯(CAS:2169-69-9)。
实施例5
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物由2-氰基-3-(3-甲氧基苯基)丙烯酸改为2-氰基-3-(3-三甲氧基苯基)丙烯酸和2-氰基-3-(二甲基氨基)丙烯酸甲酯(CAS:1187-27-5),摩尔比为1:1。
实施例6
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物和ZnO的摩尔比由0.1:1改为0.5:1。
实施例7
本实施例方案与实施例1基本相同,区别仅在于,本实施例中,氰基丙烯酸化合物和ZnO的摩尔比由0.1:1改为2:1。
实施例8
本实施例方案与实施例1基本相同,区别仅在于,本实施例中:
1、步骤(2)中ZnO改为MoO3
2、步骤(1)的制备步骤为:将0.25g钼酸盐溶于10mL乙醇,搅拌至溶解,加入H2O2(30%,0.5mL)继续搅拌24h,停止搅拌后静置1h。离心清洗后,将沉淀分散于乙醇,制得MoO3的乙醇溶液。
对比例1
本对比例方案与实施例1基本相同,区别仅在于,本对比例中:
不添加2-氰基-3-(3-甲氧基苯基)丙烯酸,即产物为:浓度为30mg/mL的ZnO的乙醇溶液。
对比例2
本对比例方案与实施例1基本相同,区别仅在于,本对比例中:氰基丙烯酸化合物由2-氰基-3-(3-甲氧基苯基)丙烯酸改为2氰基3,3’二苯基丙烯酸乙酯。
对比例3
本对比例方案与实施例1基本相同,区别仅在于,本对比例中,氰基丙烯酸化合物和ZnO的摩尔比由0.1:1改为2.5:1。
器件实施例1
(1)提供厚度为100nm的ITO阳极10。
(2)在所述阳极10上旋涂PEDOT:PSS材料,得到厚度为50nm的空穴注入层60。
(3)在所述空穴注入层60上旋涂TFB材料,得到厚度为50nm的空穴传输层50。
(4)在空穴传输层50上旋涂蓝色量子点CdSe/ZnS的正辛烷溶液,得到厚度为20nm的发光层20。
(5)将实施例1制得的组合物旋涂于发光层20上,100℃下退火20min,形成厚度为30nm的电子传输层30。
(6)在所述电子传输层30上蒸镀Ag,得到厚度为100nm的阴极40,封装,得到QLED器件。
器件实施例2
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输 层30材料改为实施例2制得的组合物。
器件实施例3
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输层30材料改为实施例3制得的组合物。
器件实施例4
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输层30材料改为实施例4制得的组合物。
器件实施例5
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输层30材料改为实施例5制得的组合物。
器件实施例6
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输层30材料改为实施例6制得的组合物。
器件实施例7
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中,电子传输层30材料改为实施例7制得的组合物。
器件实施例8
本器件实施例方案与器件实施例1基本相同,区别仅在于,本器件实施例中:
1、步骤(3)中,将TFB材料改为实施例9制备的组合物。
2、步骤(5)中,将实施例1制得的组合物改为实施例1制得的ZnO的乙醇溶液。
器件对比例1
本对比例方案与器件实施例1基本相同,区别仅在于,本对比例中:
步骤(5)中,将实施例1制得的组合物改为对比例1制得的ZnO的乙醇溶液。
器件对比例2
本对比例方案与器件实施例1基本相同,区别仅在于,本对比例中:
步骤(5)中,将实施例1制得的组合物改为对比例2制得的组合物。
器件对比例3
本对比例方案与器件实施例1基本相同,区别仅在于,本对比例中:
步骤(5)调整为:
将实施例1制得的ZnO的乙醇溶液旋涂于发光层20上,100℃下退火20min,形成厚度为30nm的电子传输层30。
提供浓度为3mg/mL的2-氰基-3-(3-甲氧基苯基)丙烯酸的乙醇溶液,然后将该溶液旋涂于电子传输层30表面,100℃下退火20min,形成厚度为30nm的修饰层。所述修饰层的表面用于形成阴极40。
器件对比例4
本器件对比例方案与器件实施例1基本相同,区别仅在于,本器件对比例中,电子传输层30材料改为对比例3制得的组合物。
取上述器件实施例1-8和器件对比例1-4中制得的器件进行发光效率、开启电压测试,结果记入表1;然后,取器件实施例1-5和器件对比例1-3在常温、自然光下保藏10天,再次进行发光效率、开启电压测试,结果记入表2。测试方法如下:
发光效率EQE的检测方法为:采用弗士达FPD光学特性测量设备,通过LabView控制QE PRO光谱仪、Keithley 2400、Keithley 6485搭建的效率测试系统,测量得到电压、电流、亮度、发光光谱等参数,并通过计算得到外量子效率EQE,其中,发光二极管器件的亮度达 到1nite时的电压即为开启电压。
表1
表2
请参阅表1和2,可知:
对比器件实施例1至8和器件对比例1,可以看出,器件实施例具有更高的发光效率,且相较于器件对比例,器件实施例1至5的发光效率、开启电压在第1天和第10天变化较小,显然,本申请通过采用复合材料作为电子传输层或空穴传输层材料,显著提升了器件的发光性能和稳定性,这可能是因为:氰基丙烯酸化合物的羰基能够与纳米颗粒表面未配位的锌原子或钼原子形成了离子键,起到了钝化颗粒表面缺陷的作用;同时,其含有的氰基和丙烯酸结构起到了改善载流子传输性能,促进器件正向老化效应,提升器件发光性能的作用;此外,氰基丙烯酸化合物还有助于降低无机粒子表面能,提高其表面晶体的结晶程度,起到了改善膜层质量,改善膜层之间界面接触效果的作用,从而整体上显著提升了器件的发光性能和稳定性。
对比器件实施例1和器件对比例3,器件实施例1的发光效率明显更高,开启电压更短且稳定性更佳,显然,相较使用氰基丙烯酸化合物在功能层表面形成修饰层的方式,采用在功能层材料中掺入氰基丙烯酸化合物的方式,对器件性能和稳定性的改善效果更显著,这可能是因为,将氰基丙烯酸化合物和无机粒子混合制成复合材料,能够让两种物质更充分的接触,并相互作用形成连接关系,使得氰基丙烯酸化合物对无机粒子的改性效果更加显著,进而体现在器件性能和稳定性的明显改善上。
对比器件实施例1至7以及器件对比例2,可以看出实施例效果改善程度优于对比例,且器件实施例1至7中,又以器件实施例1和2的效果更佳,说明氰基丙烯酸化合物选自2-氰基-3-(3-甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种时,其制成的复合材料对器件的增益效果更佳,且氰基丙烯酸化合物进一步优选为2-氰基-3-(3-甲氧基苯基)丙烯酸和2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯。
对比器件实施例1、6、7和器件对比例4,器件实施例效果改善程度优于对比例,说明控制所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2),有助于器件发光效率和开启电压的整体改善,且提升效果更佳,这可能是因为,氰基丙烯酸化合物添加量过高时,无机粒子占比相对较小,从而使得复合材料载流子传输性能受到影响。
综上,本申请提供的发光器件,利用氰基丙烯酸化合物对无机粒子进行改性,通过羰基与无机粒子表面未参与配位的阳离子形成离子键,起到钝化表面缺陷的作用;通过引入氰基,起到调节功函,促进电子注入的作用,从而改善复合材料的载流子传输性能;通过引入丙烯酸结构,起到促进器件正向老化的作用;此外,添加氰基丙烯酸化合物有助于降低无机粒子表面能,提高其表面晶体的结晶程度,实现二次结晶的效果,使用其制成膜层时,有助于改善膜层的质量,提升应用膜层的器件的发光性能和稳定性。
以上对本申请实施例所提供的复合材料、组合物及发光器件进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种复合材料,其中,包括无机粒子和氰基丙烯酸化合物。
  2. 根据权利要求1所述的复合材料,其中,所述氰基丙烯酸化合物的结构式中包括至少一个氰基和至少一个通式为-CH=CH-COO-的基团。
  3. 根据权利要求1或2所述的复合材料,其中,所述氰基丙烯酸化合物包括2-氰基-3-(3-甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种。
  4. 根据权利要求3所述的复合材料,其中,所述2-氰基-3-氨基丙烯酸酯包括2-氰基-3-(二甲基氨基)丙烯酸甲酯、2-氰基-3-(二甲基氨基)丙烯酸乙酯中的一种或两种。
  5. 根据权利要求1至4任一项所述的复合材料,其中,所述复合材料中,所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2)。
  6. 根据权利要求1至5任一项所述的复合材料,其中,所述无机粒子包括硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种;所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素包括Al、Mg、Li、In、Ga中的一种或多种;所述IIB-VIA族材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族材料包括CuInS、CuGaS中的一种或多种。
  7. 根据权利要求1至5任一项所述的复合材料,其中,所述无机粒子包括MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
  8. 根据权利要求1至7任一项所述的复合材料,其中,所述复合材料由无机粒子和氰基丙烯酸化合物组成。
  9. 一种组合物,其中,包括溶剂和复合材料,所述复合材料包括无机粒子和氰基丙烯酸化合物。
  10. 根据权利要求9所述的组合物,其中,所述氰基丙烯酸化合物包括2-氰基-3-(3-甲氧基苯基)丙烯酸、2-氰基-3-(4-甲氧基苯基)丙烯酸乙酯、2-氰基-3-苯丙烯酸甲酯、2-氰基-3-苯丙烯酸乙酯、2-氰基-3-氨基丙烯酸酯中的一种或多种。
  11. 根据权利要求9或10所述的组合物,其中,所述复合材料中,所述无机粒子和所述氰基丙烯酸化合物的摩尔比为1:(0.1~2)。
  12. 根据权利要求9至11任一项所述的组合物,其中,所述无机粒子包括硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种;所述金属氧化物包括ZnO、TiO2、SnO2、Al2O3、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种;所述掺杂金属氧化物中的金属氧化物包括ZnO、TiO2、SnO2、V2O5、V3O8、CrO3、WO3、Fe2O3、Fe3O4、CuO、MoO2、Nb2O5、BaO、MoO3、CdO、BaO、Ta2O5、BaTiO3、PbCrO4中的一种或多种,掺杂元素包括Al、Mg、Li、In、Ga中的一种或多种;所述IIB-VIA族材料包括ZnS、ZnSe、CdS、CdSe中的一种或多种;所述IIIB-VA族材料包括InP、GaP中的一种或多种;所述IB-IIIB-VIA族材料包括CuInS、CuGaS中的一种或多种。
  13. 根据权利要求9至11任一项所述的组合物,其中,所述无机粒子包括MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
  14. 根据权利要求9至13任一项所述的组合物,其中,所述溶剂包括芳香烃类、脂肪烃类、 脂环烃类、卤化烃类、醇类、醚类、酯类、酮类、DMF、乙腈、吡啶、苯酚中的一种或多种;所述芳香烃类包括苯、甲苯、二甲苯中的一种或多种;所述脂肪烃类包括戊烷、己烷、辛烷中的一种或多种;所述卤化烃类包括氯苯、二氯苯、二氯甲烷中的一种或多种;所述脂环烃类包括环己烷、环己酮、甲苯环己酮中的一种或多种;所述醇类包括甲醇、乙醇、丁醇、异丙醇中的一种或多种;所述醚类包括乙醚、环氧丙烷、乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚中的一种或多种;所述酯类包括醋酸甲酯、醋酸乙酯、醋酸丙酯中的一种或多种;所述酮类包括丙酮、甲基丁酮、甲基异丁酮中的一种或多种。
  15. 根据权利要求9至14任一项所述的组合物,其中,所述组合物中,所述无机粒子的浓度为15~40mg/mL。
  16. 一种发光器件,其中,包括阴极、功能层和阳极,所述功能层包括发光层以及一个或多个载流子功能层,所述载流子功能层的材料包括权利要求1至8任一项所述的复合材料,或者,所述载流子功能层由权利要求9至15任一项所述的组合物制得。
  17. 根据权利要求16所述的发光器件,其中,所述一个或多个载流子功能层包括第一载流子功能层,所述第一载流子功能层位于所述发光层和所述阴极之间,所述第一载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种。
  18. 根据权利要求16所述的发光器件,其中,所述一个或多个载流子功能层包括第二载流子功能层,所述第二载流子功能层位于所述发光层和所述阳极之间,所述第二载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
  19. 根据权利要求16所述的发光器件,其中,所述一个或多个载流子功能层包括第三载流子功能层和第四载流子功能层,所述第三载流子功能层位于所述发光层和所述阴极之间,所述第四载流子功能层位于所述发光层和所述阳极之间,所述第三载流子功能层的材料中的无机粒子选自硅、锗、金属氧化物、掺杂金属氧化物、IIB-VIA族材料、IIIB-VA族材料及IB-IIIB-VIA族材料中的一种或多种,所述第四载流子功能层的材料中的无机粒子选自MoO3、WO3、NiO、V2O5、CuO、P型氮化镓和CrO3中的一种或多种。
  20. 根据权利要求16至19任一项所述的发光器件,其中,所述发光层的材料包括有机发光材料或量子点发光材料,所述有机发光材料包括二芳香基蒽衍生物、二苯乙烯芳香族衍生物、芘衍生物、芴衍生物、发蓝色光的TBPe荧光材料、发绿色光的TTPX荧光材料、发橙色光的TBRb荧光材料及发红色光的DBP荧光材料中的一种或多种;所述量子点发光材料包括单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS2、CuInSe2及AgInS2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的 壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种;和/或,
    所述阴极选自金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt、Ca及Ba中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS;和/或,
    所述阳极选自金属电极、碳硅材料电极、金属氧化物电极或复合电极,所述金属电极的材料选自Ag、Al、Mg、Au、Cu、Mo、Pt中的一种或多种,所述碳硅材料电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种,所述金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS或ZnS/Al/ZnS。
PCT/CN2023/121628 2022-11-24 2023-09-26 复合材料、组合物及发光器件 WO2024109334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211482662.8 2022-11-24
CN202211482662.8A CN118076133A (zh) 2022-11-24 2022-11-24 复合材料、组合物及其制备方法、发光器件及显示装置

Publications (1)

Publication Number Publication Date
WO2024109334A1 true WO2024109334A1 (zh) 2024-05-30

Family

ID=91108483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121628 WO2024109334A1 (zh) 2022-11-24 2023-09-26 复合材料、组合物及发光器件

Country Status (2)

Country Link
CN (1) CN118076133A (zh)
WO (1) WO2024109334A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668143A (zh) * 2009-09-23 2012-09-12 纳米技术有限公司 封装的基于半导体纳米粒子的材料
US20170373250A1 (en) * 2015-01-27 2017-12-28 King Abdullah University Of Science And Technology Optoelectronic devices, low temperature preparation methods, and improved electron transport layers
CN110739404A (zh) * 2018-07-18 2020-01-31 Tcl集团股份有限公司 量子点发光二极管及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668143A (zh) * 2009-09-23 2012-09-12 纳米技术有限公司 封装的基于半导体纳米粒子的材料
US20170373250A1 (en) * 2015-01-27 2017-12-28 King Abdullah University Of Science And Technology Optoelectronic devices, low temperature preparation methods, and improved electron transport layers
CN110739404A (zh) * 2018-07-18 2020-01-31 Tcl集团股份有限公司 量子点发光二极管及其制备方法

Also Published As

Publication number Publication date
CN118076133A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10961446B2 (en) Quantum dots, production methods thereof, and light emitting device including the same
CN110828681B (zh) 量子点发光器件及包括其的显示设备
US20200035935A1 (en) Quantum dot device and display device
KR20210034953A (ko) 발광소자, 발광소자의 제조 방법과 표시 장치
US11575099B2 (en) Electroluminescent device comprising thermally activated delayed fluorescence material, and display device comprising the same
KR101878615B1 (ko) 수명이 향상된 양자점 발광 다이오드 및 그의 제조방법
WO2024109334A1 (zh) 复合材料、组合物及发光器件
WO2024120060A1 (zh) 复合材料、发光器件及其制备方法
WO2024139483A1 (zh) 量子点组合物和量子点发光器件
WO2024061102A1 (zh) 复合材料、组合物及发光二极管
WO2024114066A1 (zh) 发光器件及其制备方法及显示装置
WO2024139714A1 (zh) 掺杂金属氧化物的制备方法以及包含掺杂金属氧化物的发光器件
WO2024114056A1 (zh) 复合材料及其制备方法及发光器件
WO2024125109A1 (zh) 发光器件及其制备方法、显示装置
WO2024139449A1 (zh) 核壳量子点及其制备方法、量子点电致发光器件
CN113130788B (zh) 复合材料、薄膜、量子点发光二极管
WO2024131279A1 (zh) 发光器件及显示装置
WO2024139488A1 (zh) 一种复合材料及其制备方法、发光器件
WO2024139715A1 (zh) 氧化锌镁的制备方法以及包含氧化锌镁的发光器件
WO2023056838A1 (zh) 薄膜及其制备方法、光电器件
WO2024139625A1 (zh) 一种薄膜的制备方法、发光器件及其制备方法
WO2024061105A1 (zh) 功能膜及其制备方法及发光器件
WO2024139487A1 (zh) 复合材料、发光器件及其制备方法
CN118119238A (zh) 发光器件及其制备方法及显示装置
CN116367583A (zh) 发光器件、发光器件的制备方法及显示装置