WO2024067203A1 - 复合材料、光电器件及其制备方法 - Google Patents

复合材料、光电器件及其制备方法 Download PDF

Info

Publication number
WO2024067203A1
WO2024067203A1 PCT/CN2023/119400 CN2023119400W WO2024067203A1 WO 2024067203 A1 WO2024067203 A1 WO 2024067203A1 CN 2023119400 W CN2023119400 W CN 2023119400W WO 2024067203 A1 WO2024067203 A1 WO 2024067203A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
electron transport
composite material
layer
metal oxide
Prior art date
Application number
PCT/CN2023/119400
Other languages
English (en)
French (fr)
Inventor
罗强
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2024067203A1 publication Critical patent/WO2024067203A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds

Definitions

  • the present application relates to the field of display technology, and in particular to composite materials, optoelectronic devices and methods for preparing the same.
  • metal oxides are prone to aging, resulting in a decrease in material performance; on the other hand, metal oxides are prone to photohydration reactions under light, causing the material to fail.
  • the present application provides a composite material, an optoelectronic device and a preparation method thereof.
  • the present application provides a composite material, which includes a metal oxide and a glycerol-based metal compound.
  • the composite material consists of a metal oxide and a glycerol-based metal compound.
  • the metal element in the glyceryl metal compound is selected from one or more of Zn, Sn, In, Fe, Cr, Ti, W, Cd, Cu, and Mo; and/or
  • the metal oxide is selected from one or more of ZnO, SnO2 , ITO, Fe2O3 , CrO3 , TiO2 , WO3 , CdO , CuO, and MoO2 .
  • the glyceryl metal compound is glycerol zinc.
  • the glyceryl metal compound and the metal oxide The molar ratio is (1-9):100; and/or
  • the metal oxide is metal oxide nanoparticles, and the average particle size of the metal oxide nanoparticles is 3 to 5 nm.
  • a hydrophobic group is bonded to the surface of the metal oxide and/or the glyceryl metal compound.
  • the hydrophobic group is selected from one or more of vinyl groups, nitro groups, and halogen atoms.
  • a first hydrophobic group is bonded to the surface of the metal oxide
  • a second hydrophobic group is bonded to the surface of the glyceryl metal compound
  • the first hydrophobic group and the second hydrophobic group are each independently selected from one or more of vinyl groups, nitro groups, and halogen atoms.
  • a photoelectric device includes a cathode, an anode, and a functional layer disposed between the cathode and the anode, wherein the functional layer includes an electron transport layer, and the material of the electron transport layer includes the above-mentioned composite material.
  • the material of the cathode is selected from one or more of metal materials, carbon materials, and metal oxides; the metal material is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca, and Mg; the carbon material is selected from one or more of graphite, carbon nanotubes, graphene, and carbon fibers; and the metal oxide is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO; and/or
  • the material of the anode is selected from one or more of ITO, FTO, IZO, ITZO, ICO, SnO 2 , In 2 O 3 , Cd:ZnO, F:SnO 2 , In:SnO 2 , Ga:SnO 2 , AZO, Ni, Pt, Au, Ag, and Ir.
  • the functional layer further includes a light-emitting layer, and the light-emitting layer is disposed between the electron transport layer and the anode.
  • the material of the light-emitting layer is selected from one or more of a single component and/or a core-shell structure of II-VI compounds, a single component and/or a core-shell structure of III-V compounds, a single component and/or a core-shell structure of IV-VI compounds, a single component and/or a core-shell structure of I-III-VI compounds, inorganic perovskite quantum dots, organic perovskite quantum dots, and organic-inorganic hybrid perovskite quantum dots;
  • the II-VI group compound is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, One or more of HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSTe, HgZnSeS, HgZnSeTe, and HgZnSTe, and the III-V compound is selected
  • the general structural formula of the inorganic perovskite quantum dots is AMX 3 , where A is a Cs + ion, M is a divalent metal cation, M is selected from one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion;
  • the general structural formula of the organic perovskite quantum dots is CMX 3 , where C is a carboxamidine group, M is a divalent metal cation, M is selected from one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion;
  • the general structural formula of the organic-inorganic hybrid perovskite quantum dots is BMX 3 , where B is selected from an organic amine cation, the organic amine cation is selected from CH 3 (CH 2 ) n-2 NH 3+ (n ⁇ 2) or NH 3 (CH 2 ) n NH 3 2+ (n ⁇ 2), M is a divalent metal cation, M is selected from one of Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , and Eu 2+ , and X is a halogen anion.
  • the functional layer further includes a hole functional layer, the hole functional layer is arranged between the light-emitting layer and the anode, and the hole functional layer includes one or more of a hole injection layer and a hole transport layer.
  • the material of the hole injection layer is selected from one or more of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid, 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzoquinone, copper phthalocyanine, 1,4,5,8,9,11-hexaazabenzonitrile, NiO x , MoO x , WO x , CrO x , CuO, MoS x , MoSe x , WS x , WSe x , CuS, and the value range of x is one or more of 1 to 3; and/or
  • the material of the hole transport layer is selected from one or more of poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinyl carbazole, poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), 4,4',4"-tri(carbazole-9-yl)triphenylamine, 4,4'-di(9-carbazole)biphenyl, N,N'-diphenyl-N,N'-di(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, and N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine.
  • a method for preparing a photoelectric device comprises:
  • the first substrate comprising a first electrode
  • the first film-forming solution comprising a solvent and a solute, the solute comprising a metal oxide and a glyceryl metal compound, and disposing the first film-forming solution on a first substrate to form an electron transport layer;
  • a second electrode is formed on the electron transport layer to obtain a photoelectric device.
  • the first substrate includes a stacked anode and a light-emitting layer; the first film-forming solution is disposed on a side of the light-emitting layer away from the anode to form an electron transport layer; a cathode is formed on the electron transport layer to obtain a photoelectric device.
  • the first substrate includes a cathode, and the first film-forming solution is disposed on the cathode to form an electron transport layer; a light-emitting layer and an anode are sequentially formed on the electron transport layer to obtain a photoelectric device.
  • the metal element in the glyceryl metal compound is selected from one or more of Zn, Sn, In, Fe, Cr, Ti, W, Cd, Cu, and Mo; and/or
  • the metal oxide is selected from one or more of ZnO, SnO 2 , ITO, Fe 2 O 3 , CrO 3 , TiO 2 , WO 3 , CdO, CuO, and MoO 2 .
  • the glyceryl metal compound is glycerol zinc.
  • the molar ratio between the glyceryl metal compound and the metal oxide is (1-9):100;
  • the solvent in the first membrane-forming solution is selected from one or more of ethanol, propanol, 2-propanol, n-butanol, 2-butanol, tert-butanol, n-pentanol, N,N-dimethylformamide, and dimethyl sulfoxide.
  • the introduction of glycerol metal oxide in the composite material provided by the present application can effectively improve the thermal stability of the composite material, so that the composite material can still maintain good performance even after being stored at a high temperature above 60°C or working at a high temperature above 60°C.
  • the glycerol-based metal compound also has the advantages of being non-toxic, environmentally friendly and low-cost, which is conducive to large-scale mass production applications.
  • FIG1 is a schematic diagram of the structure of an optoelectronic device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of another optoelectronic device provided in an embodiment of the present application.
  • FIG3 is a flow chart of a method for preparing a photoelectric device provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the bonding of nitro groups to the ZnO surface in Example 6 of the present application.
  • Anode 10 light-emitting layer 20; electron transport layer 30; cathode 40; hole functional layer 50.
  • the embodiments of the present application provide composite materials, optoelectronic devices and methods for preparing the same. The following are described in detail. It should be noted that the order of description of the following embodiments does not limit the preferred order of the embodiments. In addition, in the description of the present application, the term “including” means “including but not limited to”. The terms first, second, third, etc. are used only as labels and do not impose numerical requirements or establish an order.
  • a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • a and B may be singular or plural.
  • the expressions "one or more” and the like refer to one or more of the listed items. “Multiple” refers to any combination of two or more of these items, including any combination of a single item (type) or plural items (types). For example, “at least one of a, b or c" or “at least one of a, b and c” can all mean: a, b, c, ab (i.e. a and b), ac, bc, or abc, where a, b, c It can be single or multiple.
  • an embodiment of the present application provides a composite material, the composite material comprising a metal oxide and a glycerol-based metal compound.
  • the combination of metal oxide and glyceryl metal compound can improve the thermal stability and storage stability of the composite material.
  • the optoelectronic device has better performance in terms of efficiency and lifespan.
  • the metal element in the glycerol-based metal compound can be selected from one or more of the elements Zn, Sn, In, Fe, Cr, Ti, W, Cd, Cu, and Mo. That is, the glycerol-based metal compound can be selected from one or more of glycerol zinc, glycerol tin, glycerol indium, glycerol iron, glycerol chromium, glycerol titanium, glycerol tungsten, glycerol cadmium, glycerol copper, and glycerol molybdenum.
  • the metal oxide may be selected from one or more of ZnO, SnO 2 , ITO, Fe 2 O 3 , CrO 3 , TiO 2 , WO 3 , CdO, CuO, and MoO 2 .
  • the glyceryl metal compound is glycerol zinc.
  • the metal oxide is metal oxide nanoparticles, and the average particle size of the metal oxide nanoparticles is 3-5 nm.
  • hydrophobic groups are bonded to the surface of the metal oxide and/or the glyceryl metal compound.
  • the hydrophobic group is selected from one or more of vinyl groups, nitro groups, and halogen atoms.
  • the hydrophobic group may be bonded to the surface of the metal oxide and/or the glyceryl metal compound in the form of a ligand. After the hydrophobic group is bonded to the surface of the metal oxide and/or the glyceryl metal compound, the metal oxide and/or the glyceryl metal compound may be prevented from Photohydration reaction improves the photostability of composite materials.
  • only the surface of the metal oxide may be bonded with hydrophobic groups, only the surface of the glyceryl metal compound may be bonded with hydrophobic groups, or both the surfaces of the metal oxide and the glyceryl metal compound may be bonded with hydrophobic groups.
  • the surface of the metal oxide has hydrophobic groups bonded thereto.
  • the surfaces of the metal oxide and the glyceryl metal compound are both bonded with hydrophobic groups.
  • the surface of the metal oxide is bonded with a first hydrophobic group
  • the surface of the glyceryl metal compound is bonded with a second hydrophobic group
  • the first hydrophobic group and the second hydrophobic group are each independently selected from one or more of vinyl, nitro, and halogen atoms.
  • the hydrophobic group is selected from one or more of a vinyl group, a nitro group, and a halogen atom.
  • the metal oxide may be subjected to ligand exchange to allow hydrophobic groups to be bonded to the surface of the metal oxide.
  • the metal oxide in order to bond hydrophobic groups to the surface of the metal oxide by ligand exchange, can be first subjected to ligand exchange to bond hydrophobic groups to the surface of the metal oxide and then mixed with the glyceryl metal compound; or the glyceryl metal compound and the metal oxide can be mixed and then ligand exchange can be performed.
  • the ligand exchange includes mixing a metal oxide, a reagent for ligand exchange, and a polar organic solvent.
  • the reagents used for ligand exchange can be different according to the type of hydrophobic group.
  • the reagent used for ligand exchange can be an amino metal compound (such as sodium amide), but it should be noted that when the amino metal compound is used for ligand exchange, the introduced group is an amino group.
  • an oxidant can be added, and the oxidant can be selected from one or more of hydrogen peroxide and persulfate.
  • the hydrophobic group is a vinyl group
  • the reagent used for ligand exchange can be selected from, but not limited to, vinyl chloride.
  • the hydrophobic group is a halogen atom
  • the reagent used for ligand exchange can be selected from, but not limited to, alkali metal halides.
  • the molar ratio between the glyceryl metal compound and the metal oxide is (1-9):100, for example, 2:100, 3:100, 4:100, 5:100, 6:100, 7:100, 8:100, etc.
  • metal oxides and glyceryl metal compounds may be mixed to obtain the above-mentioned composite materials.
  • the metal oxide and the glyceryl metal compound when mixing the metal oxide and the glyceryl metal compound, the metal oxide and the glyceryl metal compound may be directly provided and mixed. Further, the mixing of the metal oxide and the glyceryl metal compound may be carried out in a polar organic solvent.
  • the polar organic solvent may be selected from, but not limited to, one or more of methanol, ethanol, butanol, and isopropanol.
  • mixing the metal oxide, the reagent for ligand exchange, and the polar organic solvent may include: mixing the metal oxide with the polar organic solvent to obtain a cationic solution; mixing the cationic solution with the reagent for ligand exchange to obtain a ligand exchange solution; and mixing the ligand exchange solution with glycerol.
  • mixing the metal oxide, the reagent for ligand exchange, and the polar organic solvent may also include: mixing the metal oxide, glycerol, and the polar organic solvent simultaneously to obtain a mixed solution, and then mixing the mixed solution with the reagent for ligand exchange.
  • an embodiment of the present application also provides a photoelectric device, which includes a cathode 40, an anode 10 and a functional layer arranged between the cathode 40 and the anode 10, the functional layer includes an electron transport layer 30, the material of the electron transport layer 30 includes the above-mentioned composite material, or the material of the electron transport layer 30 includes the composite material obtained by the above-mentioned preparation method.
  • the optoelectronic device may be one of a light emitting diode, a solar cell, and a photodetector.
  • the optoelectronic device may be a light emitting diode
  • the light emitting diode may be one of an organic light emitting diode, a quantum dot light emitting diode, and a micron light emitting diode.
  • the light emitting diode may be a quantum dot light emitting diode.
  • the light emitting diode may be a light emitting diode of a positive structure, or a light emitting diode of an inverted structure; the light emitting diode may be a top emitting device, or a bottom emitting device, or a double-sided emitting device, which is not limited here.
  • the functional layer may further include a light emitting layer 20 , and the light emitting layer 20 may be disposed between the electron transport layer 30 and the anode 10 .
  • the functional layer may further include a hole functional layer 50 , and the hole functional layer 50 is disposed between the light emitting layer 20 and the anode 10 .
  • the hole functional layer 50 includes one or more of a hole injection layer and a hole transport layer.
  • the optoelectronic device may include an anode 10, a hole injection layer, a hole transport layer, a light emitting layer 20, an electron transport layer 30 and a cathode 40 stacked in sequence.
  • the optoelectronic device may also include other functional layers such as an electron injection layer, a hole blocking layer, and an electron blocking layer, which are not limited here.
  • the material of the anode 10 can be selected from one or more of ITO, FTO, IZO, ITZO, ICO, SnO2, In2O3 , Cd :ZnO, F: SnO2 , In: SnO2 , Ga: SnO2 , AZO, Ni, Pt, Au, Ag, and Ir.
  • the ":" in Cd:ZnO indicates doping.
  • the material of the hole transport layer can be selected from one or more of poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (POLY-TPD), 4,4',4"-tri(carbazole-9-yl)triphenylamine (TCTA), 4,4'-di(9-carbazole)biphenyl (DCBP), N,N'-diphenyl-N,N'-di(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD), and N,N'-diphenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine (TPD
  • the material of the light emitting layer 20 may include but is not limited to single component quantum dots, core-shell structure quantum dots, inorganic perovskite quantum dots or organic-inorganic hybrid perovskite quantum dots.
  • the average particle size of the quantum dots may be 5 to 10 nm, for example, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm or 10 nm.
  • the material of the single-component quantum dots, or the material of the core of the core-shell structure quantum dots, or the material of the shell of the core-shell structure quantum dots includes but is not limited to at least one of II-VI group compounds, III-V group compounds, IV-VI group compounds or I-III-VI group compounds, wherein the II-VI group compound is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZ
  • the chemical formula provided only indicates the elemental composition, but does not indicate the content of each element.
  • CdZnSe only indicates that it is composed of three elements, Cd, Zn and Se. If the content of each element is indicated, it corresponds to Cd x Zn 1-x Se, 0 ⁇ x ⁇ 1.
  • inorganic perovskite quantum dots the general structural formula of inorganic perovskite quantum dots is AMX 3 , wherein A is a Cs + ion, M is a divalent metal cation, M includes but is not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ or Eu 2+ , and X is a halogen anion, including but not limited to Cl - , Br - or I - .
  • organic perovskite quantum dots the general structural formula of organic perovskite quantum dots is CMX 3 , wherein C is a carboxamidine group, M is a divalent metal cation, M includes but is not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ or Eu 2+ , and X is a halogen anion, including but not limited to Cl - , Br - or I - .
  • the general structural formula of the organic-inorganic hybrid perovskite quantum dots is BMX 3 , wherein B is selected from organic amine cations, including but not limited to CH 3 (CH 2 ) n-2 NH 3+ (n ⁇ 2) or NH 3 (CH 2 ) n NH 3 2+ (n ⁇ 2), M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ or Eu 2+ , and X is a halogen anion, including but not limited to Cl - , Br - or I - .
  • the material of the light-emitting layer 20 when the material of the light-emitting layer 20 includes quantum dots, the material of the light-emitting layer 20 also includes ligands connected to the surface of the quantum dots, and the ligands include but are not limited to one or more of amine ligands, carboxylic acid ligands, thiol ligands, (oxy)phosphine ligands, phospholipids, phospholipids or polyvinylpyridine, amine
  • the ligand is, for example, selected from one or more of oleylamine, n-butylamine, n-octylamine, octaamine, 1,2-ethylenediamine or octadecylamine;
  • the carboxylic acid ligand is, for example, selected from one or more of oleic acid, acetic acid, butyric acid, valeric acid, caproic acid, arachidic acid, decadecanoic acid, undecylenic
  • the material of the light emitting layer 20 may be an organic light emitting material.
  • the material of the light-emitting layer 20 may be a red light-emitting material, a green light-emitting material, or a blue light-emitting material, which is not limited here.
  • the metal oxide may be selected from one or more of ZnO, SnO 2 , ITO, Fe 2 O 3 , CrO 3 , TiO 2 , WO 3 , CdO, CuO, and MoO 2 .
  • the material of cathode 40 can be selected from one or more of metal materials, carbon materials, and metal oxides.
  • the metal material can include but is not limited to Al, Ag, Cu, Mo, Au, Ba, Ca, and Mg.
  • the carbon material can include but is not limited to graphite, carbon nanotubes, graphene, and carbon fibers.
  • the metal oxide can be a doped or undoped metal oxide, including but not limited to ITO, FTO, ATO, AZO, GZO, IZO, MZO, and AMO.
  • the cathode 40 may be a composite electrode in which a metal is sandwiched between doped or undoped transparent metal oxides.
  • the composite electrode may include but is not limited to AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 .
  • AZO/Ag/AZO means that Ag is sandwiched between AZO.
  • the present application also provides a method for preparing a photoelectric device, including:
  • the photoelectric device is an upright photoelectric device
  • the first substrate includes an anode 10 and a light-emitting layer 20 arranged in a stacked manner; the first film-forming solution is arranged on the side of the light-emitting layer 20 away from the anode 10 to form an electron transport layer 30; a cathode 40 is formed on the electron transport layer 30 to obtain a photoelectric device.
  • the first substrate further includes a hole function layer 50 , and the hole function layer 50 is disposed between the anode 10 and the light emitting layer 20 .
  • the optoelectronic device prepared by this method is an optoelectronic device of an upright structure.
  • other functional layers such as a hole blocking layer, a hole transport layer, and a hole injection layer may be included between the anode 10 and the light-emitting layer 20; other film layers such as an electron blocking layer may also be provided between the light-emitting layer 20 and the electron transport layer 30, which are not limited here.
  • an electron injection layer, a cathode 40, an encapsulation layer, and other film layers may be further formed on the electron transport layer 30 to form a complete optoelectronic device.
  • the photoelectric device is an inverted photoelectric device
  • the first substrate includes a cathode 40
  • the first film-forming solution is set on the cathode 40 to form an electron transport layer 30
  • the light-emitting layer 20 and the anode 10 are sequentially formed on the electron transport layer 30 to obtain a photoelectric device.
  • the hole function layer 50 and the anode 10 are further formed to obtain a photoelectric device.
  • the optoelectronic device prepared by this method is an inverted structure optoelectronic device, and the "on" in the film-forming solution deposited on the cathode is on in a broad sense.
  • an electron injection layer is also provided on the cathode.
  • the film-forming solution is directly deposited on the electron injection layer, but it can still be regarded as depositing the film-forming solution on the cathode.
  • a light-emitting layer 20 after forming the electron transport layer 303, a light-emitting layer 20, a hole blocking layer, a hole transport layer, a hole injection layer, an anode 10 and other film layers can be further formed on the electron transport layer 30 to form a complete optoelectronic device.
  • the anode 10, the light-emitting layer 20, and the cathode 40 may be formed by evaporation, inkjet printing, spin coating, and the like, which are not limited herein.
  • the metal element in the glycerol-based metal compound can be selected from one or more of Zn, Sn, In, Fe, Cr, Ti, W, Cd, Cu, and Mo elements.
  • the metal oxide may be selected from one or more of ZnO, SnO 2 , ITO, Fe 2 O 3 , CrO 3 , TiO 2 , WO 3 , CdO, CuO, and MoO 2 .
  • the glyceryl metal compound is preferably glycerolated zinc.
  • the molar ratio between the glyceryl metal compound and the metal oxide can be (1-9):100, for example, 2:100, 3:100, 4:100, 5:100, 6:100, 7:100, 8:100, etc.
  • the solvent in the first membrane-forming solution can be selected from one or more of ethanol, propanol, 2-propanol, n-butanol, 2-butanol, tert-butanol, n-pentanol, N,N-dimethylformamide, and dimethyl sulfoxide.
  • the solvent in the second membrane-forming solution can be selected from one or more of ethanol, propanol, 2-propanol, n-butanol, 2-butanol, tert-butanol, n-pentanol, N,N-dimethylformamide, and dimethyl sulfoxide.
  • the solvents of the first membrane-forming solution and the second membrane-forming solution may be selected from the same range, but they may be selected from different solvents.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 1:100.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3:100.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 5:100.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 7:100.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 9:100.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3:100.
  • the zinc oxide surface is bonded with nitro groups, and the nitro groups are bonded to the ZnO See Figure 4 for a schematic diagram of the surface.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Vinyl groups are bonded to the surface of the zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. F atoms are bonded to the surface of the zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Cl atoms are bonded to the surface of the zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Br atoms are bonded to the surface of zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Nitro groups and Br atoms are bonded to the surface of zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Vinyl groups and Br atoms are bonded to the surface of zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Vinyl groups and nitro groups are bonded to the surface of zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc and zinc oxide, wherein the molar ratio of glycerol zinc to zinc oxide is 3: 100. Vinyl groups, nitro groups and Br atoms are bonded to the surface of zinc oxide.
  • This embodiment provides a composite material, which includes glycerol zinc, ZnO and SnO 2 , wherein the molar ratio of glycerol zinc, ZnO and SnO 2 is 3:50:50.
  • This embodiment provides a composite material, which includes zinc glycerol and WO 3 , wherein nitro groups are bonded to the surfaces of WO 3 and zinc glycerol, wherein the molar ratio of zinc glycerol to WO 3 is 3:80.
  • This embodiment provides a composite material, which includes glycerol tin and SnO 2 , wherein the molar ratio of glycerol tin to SnO 2 is 3:80.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material O provided in Example 1.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Step 1 providing a substrate, and forming an anode on the substrate by vacuum evaporation of an Ag/ITO/Ag composite electrode;
  • Step 2 Spin-coat MCC on the anode to prepare a hole injection layer
  • Step 3 Spin-coat TFB on the hole injection layer to prepare a hole transport layer
  • Step 4 Spin-coating ZnSe/CdZnSe/CdZnS on the hole transport layer to prepare a quantum dot light-emitting layer;
  • Step 5 Spin-coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer; wherein the solute of the film-forming solution is the composite material provided in Example 1;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 2.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode.
  • the preparation method of this embodiment replaces the solute of the film-forming solution in step 5 of Example 18 with the composite material provided in Example 2, and the other steps are the same as the preparation method provided in Example 18.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode, wherein the electron transport layer
  • the material is the composite material provided in Example 3.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode.
  • the preparation method of this embodiment replaces the solute of the film-forming solution in step 5 of Example 18 with the composite material provided in Example 3, and the other steps are the same as the preparation method provided in Example 18.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 4.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode.
  • the preparation method of this embodiment replaces the solute of the film-forming solution in step 5 of Example 18 with the composite material provided in Example 4, and the other steps are the same as the preparation method provided in Example 18.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 5.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode.
  • the preparation method of this embodiment replaces the solute of the film-forming solution in step 5 of Example 18 with the composite material provided in Example 5, and the other steps are the same as the preparation method provided in Example 18.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 6.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 Spin-coat a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 6, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange includes:
  • a 30 mg/mL ZnO ethanol solution was mixed with sodium amide and then hydrogen peroxide was added to obtain a mixed solution, thereby introducing nitro groups on the surface of ZnO, wherein the molar ratio of sodium amide to ZnO was 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 7.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 7, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with vinyl chloride to obtain a mixed solution, thereby introducing vinyl groups on the surface of ZnO, wherein the molar ratio of vinyl chloride to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 8.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 8, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with NaF to obtain a mixed solution, thereby introducing F atoms on the surface of ZnO, wherein the molar ratio of NaF to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 9.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 Spin-coat a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 9, and the ZnO in the composite material is Ligand exchange
  • the ligand exchange includes: mixing a 30 mg/mL ZnO ethanol solution with NaCl to obtain a mixed solution, thereby introducing Cl atoms on the surface of ZnO, wherein the molar ratio of NaCl to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 10.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 10, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with NaBr to obtain a mixed solution, thereby introducing Br atoms on the surface of ZnO, wherein the molar ratio of NaBr to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 11.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 11, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with NaBr and sodium amide, and then adding hydrogen peroxide to obtain a mixed solution, thereby introducing nitro groups and Br atoms on the surface of ZnO, wherein the molar ratio of NaBr to ZnO is 3:100, and the molar ratio of sodium amide to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 12.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 12, and the ZnO in the composite material is subjected to ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with NaBr and vinyl chloride to obtain a mixed solution, thereby introducing Br atoms and vinyl groups on the surface of ZnO, wherein the molar ratio of NaBr to ZnO is 3:100, and the molar ratio of vinyl chloride to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 13.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 13, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing a 30 mg/mL ZnO ethanol solution with vinyl chloride and sodium amide, and then adding hydrogen peroxide to obtain a mixed solution, thereby introducing nitro and vinyl groups on the surface of ZnO, wherein the molar ratio of vinyl chloride to ZnO is 3:100, and the molar ratio of sodium amide to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer includes the composite material provided in Example 14.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Step 5 Spin-coat a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer;
  • the solute of the film-forming solution is the composite material provided in Example 14, and the ZnO in the composite material undergoes ligand exchange, and the ligand exchange comprises: mixing 30 mg/mL of ZnO ethanol solution with NaBr, vinyl chloride and sodium amide, and then adding hydrogen peroxide to obtain a mixed solution, thereby introducing nitro and Br atoms on the surface of ZnO and vinyl, wherein the molar ratio of NaBr to ZnO is 3:100, the molar ratio of vinyl chloride to ZnO is 3:100, and the molar ratio of sodium amide to ZnO is 3:100;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer includes the composite material provided in Example 15.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Steps 1 to 4 the same as steps 1 to 4 in the preparation method provided in Example 18;
  • Step 5 spin-coating a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare an electron transport layer; the solute of the film-forming solution is the composite material provided in Example 15;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides a quantum dot light-emitting diode, comprising an anode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 1.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Step 1 providing a substrate, and forming an anode on the substrate by vacuum evaporation of an ITO composite electrode;
  • Step 2 Inkjet print TFB on the anode to prepare the hole transport layer
  • Step 3 Inkjet printing ZnSe/CdZnSe/CdZnS on the hole transport layer to prepare a quantum dot light-emitting layer;
  • Step 4 inkjet printing a film-forming solution for preparing an electron transport layer on the quantum dot light-emitting layer to prepare the electron transport layer; wherein the preparation of the film-forming solution includes:
  • the zinc acetate dihydrate and ethanol are mixed and stirred to obtain a 0.04 g/mL zinc acetate dihydrate ethanol solution;
  • the zinc acetate dihydrate ethanol solution and ethanolamine are mixed, and the volume ratio of ethanolamine to the zinc acetate dihydrate ethanol solution is 1:150;
  • the ZnO solution was prepared into a 30 mg/mL ZnO ethanol solution
  • a 30 mg/mL ZnO ethanol solution was mixed with glycerol zinc, wherein the molar ratio of glycerol zinc to ZnO was 3:100;
  • Step 5 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides an organic light emitting diode, comprising an anode, a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 16.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Step 1 providing a substrate, and forming an anode on the substrate by vacuum evaporation of an Ag electrode;
  • Step 2 Inkjet print PEDOT:PSS on the anode to prepare the hole injection layer;
  • Step 3 Inkjet print PVK on the hole injection layer to prepare the hole transport layer;
  • Step 4 Evaporating Alq3 on the hole transport layer to prepare an organic light-emitting layer
  • Step 5 inkjet printing a film-forming solution for preparing an electron transport layer on the organic light-emitting layer to prepare the electron transport layer; wherein the solute of the film-forming solution includes the composite material provided in Example 16;
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • This embodiment provides an organic light emitting diode, comprising a cathode, an electron transport layer, an organic light emitting layer, a hole transport layer and an anode stacked in sequence, wherein the material of the electron transport layer is the composite material provided in Example 17.
  • This embodiment also provides a method for preparing an organic light emitting diode, comprising:
  • Step 1 providing a substrate, and evaporating Ag on the substrate to prepare a cathode
  • Step 2 Spin-coating a film-forming solution for preparing an electron transport layer on the prepared cathode to prepare an electron transport layer; wherein the solute of the film-forming solution is the composite material provided in Example 17;
  • Step 3 evaporating Alq3 on the prepared electron transport layer to prepare an organic light-emitting layer
  • Step 4 Spin-coat PVK on the organic light-emitting layer to prepare a hole transport layer
  • Step 5 Evaporate ITO on the hole transport layer to prepare an anode.
  • the present embodiment provides a quantum dot light emitting diode, comprising an anode, a hole injection layer, a hole transport layer, a quantum dot light emitting layer, an electron transport layer and a cathode stacked in sequence, wherein the material of the electron transport layer is ZnO.
  • This embodiment also provides a method for preparing a quantum dot light-emitting diode, comprising:
  • Step 1 providing a substrate, and forming an anode on the substrate by vacuum evaporation of an Ag/ITO/Ag composite electrode;
  • Step 2 Spin-coat MCC on the anode to prepare a hole injection layer
  • Step 3 Spin-coat TFB on the hole injection layer to prepare a hole transport layer
  • Step 4 Spin-coating ZnSe/CdZnSe/CdZnS on the hole transport layer to prepare a quantum dot light-emitting layer; wherein the "/" in ZnSe/CdZnSe/CdZnS represents a core-shell structure, i.e., CdZnSe is used as an intermediate layer to coat the inner core ZnSe, and CdZnS is used as an outer layer to coat the intermediate layer CdZnSe;
  • Step 5 Spin-coating ZnO on the quantum dot light-emitting layer to prepare an electron transport layer
  • Step 6 Evaporate Ag on the electron transport layer to form a cathode.
  • CE@1000nit indicates the efficiency of the light-emitting diode at 80°C and a brightness of 1000nit, in units of Cd/A.
  • LT95@1000nit indicates the time taken for the brightness of a light-emitting diode to decay to 95% of its original brightness at 80°C and 1000nit, in hours.
  • the addition of glycerol-based metal compounds can greatly improve the luminous efficiency and life of the device, and effectively alleviate the degradation of device performance caused by aging of the electron transport layer under high temperature testing.
  • the introduction of hydrophobic groups as surface ligands on the surface of the electron transport material can further improve the luminous efficiency and life of the device, and the effect of introducing multiple hydrophobic groups is better than that of introducing a single hydrophobic group.
  • the light stability of the light emitting diodes of Examples 16 to 28 and Comparative Example 1 under illumination conditions was tested (25 devices were selected for each condition, and 4 points were tested for each device, i.e., 100 data were tested for each condition).
  • the testing method is: the quenching rate of the test point when the light emitting area of the device was tested for 2h, 24h and 48h under continuous illumination, the lower the quenching rate of the test point in the light emitting area of the device, the better the light stability of the device, and the more difficult it is for the electron transport material in the device to undergo photohydration reaction, and the test results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种复合材料、光电器件及其制备方法,复合材料包括金属氧化物和甘油基金属化合物。通过金属氧化物与甘油基金属化合物的配合,能够提升复合材料的热稳定性与储存稳定性。

Description

复合材料、光电器件及其制备方法
本申请要求于2022年9月29日在中国专利局提交的、申请号为202211199667.X、申请名称为“复合材料、光电器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及复合材料、光电器件及其制备方法。
背景技术
目前的金属氧化物在光照和高温(>60℃)条件下的储存稳定性较差,导致金属氧化物的使用场景受限。经分析,导致金属氧化物在光照和高温下储存稳定性较差的主要原因为金属氧化物的热稳定性和光稳定性较差。
一方面,当储存温度高于60℃时,金属氧化物容易发生老化,导致材料性能下降;另一方面是由于在光照下,金属氧化物容易发生光水合反应,使材料失效。
技术解决方案
本申请提供一种复合材料、光电器件及其制备方法。
本申请提供一种复合材料,复合材料包括金属氧化物和甘油基金属化合物。
可选地,在本申请的一些实施例中,复合材料由金属氧化物和甘油基金属化合物组成。
可选地,在本申请的一些实施例中,甘油基金属化合物中的金属元素选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种;和/或
金属氧化物选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
可选地,在本申请的一些实施例中,甘油基金属化合物为甘油锌。
可选地,在本申请的一些实施例中,甘油基金属化合物与金属氧化物之间 的摩尔比为(1~9):100;和/或
金属氧化物为金属氧化物纳米颗粒,金属氧化物纳米颗粒的平均粒径为3~5nm。
可选地,在本申请的一些实施例中,金属氧化物和/或甘油基金属化合物的表面键结有疏水基团。
可选地,在本申请的一些实施例中,疏水基团选自于乙烯基、硝基、卤素原子中的一种或多种。
可选地,在本申请的一些实施例中,金属氧化物的表面键结有第一疏水基团,甘油基金属化合物的表面键结有第二疏水基团,第一疏水基团和第二疏水基团各自独立地选自于乙烯基、硝基、卤素原子中的一种或多种。
另外,一种光电器件,光电器件包括阴极、阳极、设于阴极和阳极之间的功能层,功能层包括电子传输层,电子传输层的材料包括上述的复合材料。
可选地,在本申请的一些实施例中,阴极的材料选自于金属材料、碳材料、金属氧化物中的一种或多种,金属材料选自于Al、Ag、Cu、Mo、Au、Ba、Ca、Mg中的一种或多种,碳材料选自于石墨、碳纳米管、石墨烯、碳纤维中的一种或多种,金属氧化物选自于ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种;和/或
阳极的材料选自于ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO、Ni、Pt、Au、Ag、Ir中的一种或多种。
可选地,在本申请的一些实施例中,功能层还包括发光层,发光层设置于电子传输层与阳极之间。
可选地,在本申请的一些实施例中,发光层的材料选自于单一组分和/或核壳结构的II-VI族化合物、单一组分和/或核壳结构的III-V族化合物、单一组分和/或核壳结构的IV-VI族化合物、单一组分和/或核壳结构的I-III-VI族化合物、无机钙钛矿量子点、有机钙钛矿量子点、有机-无机杂化钙钛矿量子点中的一种或多种;
II-VI族化合物选自于CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、 HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe中的一种或多种,III-V族化合物选自于GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb中的一种或多种,IV-VI族化合物选自于SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe或SnPbSTe中的一种或多种,I-III-VI族化合物选自于CuInS2、CuInSe2或AgInS2中的一种或多种;
无机钙钛矿量子点的结构通式为AMX3,A为Cs+离子,M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子;
有机钙钛矿量子点的结构通式为CMX3,C为甲脒基,M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子;
有机-无机杂化钙钛矿量子点的结构通式为BMX3,B选自有机胺阳离子,有机胺阳离子选自于CH3(CH2)n-2NH3+(n≥2)或NH3(CH2)nNH3 2+(n≥2),M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子。
可选地,在本申请的一些实施例中,功能层还包括空穴功能层,空穴功能层设置于发光层与阳极之间,空穴功能层包括空穴注入层、空穴传输层中的一种或多种。
可选地,在本申请的一些实施例中,空穴注入层的材料选自于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌、铜酞菁、1,4,5,8,9,11-六氮杂苯甲腈、NiOx、MoOx、WOx、CrOx、CuO、MoSx、MoSex、WSx、WSex、CuS中的一种或多种,x的取值范围为1~3中的一种或多种;和/或
空穴传输层的材料选自于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯基咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、4,4',4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺中的一种或多种。
另外,一种光电器件的制备方法,包括:
提供第一基板,第一基板包括第一电极;
提供第一成膜溶液,第一成膜溶液包括溶剂和溶质,溶质包括金属氧化物和甘油基金属化合物,将第一成膜溶液设置在第一基板上,形成电子传输层;
在电子传输层上形成第二电极,得到光电器件。
可选地,在本申请的一些实施例中,第一基板包括层叠设置的阳极和发光层;将第一成膜溶液设置在发光层的远离阳极的一侧,形成电子传输层;在电子传输层上形成阴极,得到光电器件。
可选地,在本申请的一些实施例中,第一基板包括阴极,将第一成膜溶液设置在阴极上,形成电子传输层;在电子传输层上依次形成发光层和阳极,得到光电器件。
可选地,在本申请的一些实施例中,甘油基金属化合物中的金属元素选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种;和/或
金属氧化物选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
可选地,在本申请的一些实施例中,甘油基金属化合物为甘油锌。
可选地,在本申请的一些实施例中,甘油基金属化合物与金属氧化物之间的摩尔比为(1~9):100;和/或
第一成膜溶液中的溶剂选自于乙醇、丙醇、2-丙醇、正丁醇、2-丁醇、叔丁醇、正戊醇、N,N-二甲基甲酰胺、二甲基亚砜中的一种或多种。
相对现有技术,本申请提供的复合材料中,甘油金属氧化物的引入,能够有效地提高复合材料的热稳定性,使复合材料即使经过60℃以上高温储存或在60℃以上的高温下工作时仍然能够保持良好的性能。此外,甘油基金属化合物还具有无毒无害、环境友好以及成本低廉等优点,有利于大规模的量产应用。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的光电器件的结构示意图;
图2是本申请实施例提供的又一光电器件的结构示意图;
图3是本申请实施例提供的光电器件的制备方法流程图;
图4是本申请实施例6中硝基在ZnO表面键结的示意图。
其中,附图标记说明:
阳极10;发光层20;电子传输层30;阴极40;空穴功能层50。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供复合材料、光电器件及其制备方法。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。用语第一、第二、第三等仅仅作为标示使用,并没有强加数字要求或建立顺序。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
本申请中“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c 分别可以是单个,也可以是多个。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从0.04到0.1的范围描述已经具体公开子范围,例如从0.04到0.05,从0.05到0.06,从0.06到0.07,从0.07到0.09等,以及所数范围内的单一数字,例如0.04、0.05及0.06,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
第一方面,本申请实施例提供一种复合材料,复合材料包括金属氧化物和甘油基金属化合物。
通过金属氧化物与甘油基金属化合物的配合,能够提升复合材料的热稳定性与储存稳定性。将复合材料应用至光电器件的电子传输层30中时,光电器件在效率和寿命等性能方面表现更加优秀。
在一些实施例中,甘油基金属化合物中的金属元素可以选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种。即甘油金属化合物可以选自甘油锌、甘油锡、甘油铟、甘油铁、甘油铬、甘油钛、甘油钨、甘油镉、甘油铜、甘油钼中的一种或多种。
在一些实施例中,金属氧化物可以选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
优选地,甘油基金属化合物为甘油锌。
在一些实施例中,金属氧化物为金属氧化物纳米颗粒,金属氧化物纳米颗粒的平均粒径为3~5nm。
在一些实施例中,金属氧化物和/或甘油基金属化合物的表面键结有疏水基团。
进一步地,疏水基团选自于乙烯基、硝基、卤素原子中的一种或多种。
在一些实施例中,疏水基团可以是以配体的形式键结在金属氧化物和/或甘油基金属化合物的表面。金属氧化物和/或甘油基金属化合物的表面键结疏水基团之后,可以阻止金属氧化物和/或甘油基金属化合物在光照条件下发生 光水合反应,提升复合材料的光稳定性。
在一些实施例中,可以是仅金属氧化物的表面键结有疏水基团,也可以是仅甘油基金属化合物表面键结有疏水基团,还可以是金属氧化物和甘油基金属化合物的表面均键结有疏水基团。
优选地,金属氧化物的表面键结有疏水基团。
优选地,金属氧化物、甘油基金属化合物的表面均键结有疏水基团。具体地,金属氧化物的表面键结有第一疏水基团,甘油基金属化合物的表面键结有第二疏水基团,第一疏水基团和第二疏水基团各自独立地选自于乙烯基、硝基、卤素原子中的一种或多种。
在一些实施例中,疏水基团选自于乙烯基、硝基、卤素原子中的一种或多种。
在一些实施例中,可以对金属氧化物进行配体交换,使金属氧化物的表面键结疏水基团。
需要说明的是,为了通过配体交换的方式使金属氧化物的表面键结有疏水基团,可以是先对金属氧化物进行配体交换,使金属氧化物的表面键结有疏水基团后再与甘油基金属化合物混合;也可以将甘油基金属化合物、金属氧化物混合后,再进行配体交换。
具体地,配体交换包括:将金属氧化物、用于配体交换的试剂以及极性有机溶剂混合。
进一步地,用于配体交换的试剂可以根据疏水基团类型的不同而不同。例如在疏水基团为硝基的情况下,用于配体交换的试剂可以是氨基金属化合物(例如氨基钠),但需要说明的是,利用氨基金属化合物进行配体交换时,引入的基团为氨基,为了使氨基转化为硝基,可以加入氧化剂,氧化剂可以选自于双氧水、过硫酸盐中的一种或多种。在疏水基团为乙烯基的情况下,用于配体交换的试剂可以选自但不限于氯乙烯。在疏水基团为卤素原子的情况下,用于配体交换的试剂可以选自但不限于碱金属卤盐。
在一些实施例中,甘油基金属化合物与金属氧化物之间的摩尔比为(1~9):100,例如可以为2:100、3:100、4:100、5:100、6:100、7:100、8:100等。
在一些实施例中,可以混合金属氧化物以及甘油基金属化合物,以获得上述复合材料。
在一些实施例中,混合金属氧化物以及甘油基金属化合物时,可以直接提供金属氧化物与甘油基金属化合物,并且将金属氧化物与甘油基金属化合物混合。进一步地,金属氧化物以及甘油基金属化合物的混合可以在极性有机溶剂中进行。其中,极性有机溶剂可以选自但不限于甲醇、乙醇、丁醇、异丙醇中的一种或多种。
在一些实施例中,将金属氧化物、用于配体交换的试剂以及极性有机溶剂混合可以包括:将金属氧化物与极性有机溶剂混合,得到阳离子溶液;将阳离子溶液与用于配体交换的试剂混合,得到配体交换溶液;以及将配体交换溶液与甘油混合。
在一些实施例中,将金属氧化物、用于配体交换的试剂以及极性有机溶剂混合也可以包括:将金属氧化物、甘油以及极性有机溶剂同时混合得到混合溶液,再将前述混合溶液于用于配体交换的试剂混合。
第二方面,请参阅图1和图2,本申请实施例还提供一种光电器件,光电器件包括阴极40、阳极10和设于阴极40和阳极10之间的功能层,功能层包括电子传输层30,电子传输层30的材料包括上述复合材料,或者电子传输层30的材料包括上述制备方法制得的复合材料。
在一些实施例中,光电器件可以为发光二极管、太阳能电池、光电探测器中的一种。
在一些实施例中,光电器件可以为发光二极管,发光二极管可以为有机发光二极管、量子点发光二极管、微米发光二极管中的一种。优选地,发光二极管可以为量子点发光二极管。进一步地,发光二极管可以为正置结构的发光二极管,也可以为倒置结构的发光二极管;发光二极管可以为顶发射器件,也可以为底发射器件,还可以为双面发射器件,在此不作限定。
在一些实施例中,功能层还可以包括发光层20,发光层20可以设置在电子传输层30和阳极10之间。
在一些实施例中,功能层还可以包括空穴功能层50,空穴功能层50设置在发光层20和阳极10之间。
空穴功能层50包括空穴注入层、空穴传输层中的一种或多种。
进一步地,光电器件可以包括依次层叠设置的阳极10、空穴注入层、空穴传输层、发光层20、电子传输层30以及阴极40。光电器件还可以包括电子注入层、空穴阻挡层、电子阻挡层等其他功能层,在此不作限定。
在一些实施例中,阳极10的材料可以选自于ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO、Ni、Pt、Au、Ag、Ir中的一种或多种。其中,Cd:ZnO中的“:”表示掺杂。
在一些实施例中,空穴注入层的材料可以选自于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌(F4-TCNQ)、铜酞菁(CuPc)、1,4,5,8,9,11-六氮杂苯甲腈(HATCN)、NiOx、MoOx、WOx、CrOx、CuO、MoSx、MoSex、WSx、WSex、CuS中的一种或多种,所述x的取值范围为1~3中的一种或多种。
在一些实施例中,空穴传输层的材料可以选自于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯基咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(POLY-TPD)、4,4',4”-三(咔唑-9-基)三苯胺(TCTA)、4,4'-二(9-咔唑)联苯(DCBP)、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺(TPD)、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)中的一种或多种。
在一些实施例中,若发光二极管为量子点发光二极管,则发光层20的材料可以包括但不限于是单一组分量子点、核壳结构量子点、无机钙钛矿量子点或有机-无机杂化钙钛矿量子点。量子点的平均粒径可以是5~10nm,例如为5nm、6nm、7nm、8nm、9nm或10nm。
当量子点为单一组分量子点或核壳结构量子点时,单一组分量子点的材料、或者核壳结构量子点的核的材料、或者核壳结构量子点的壳的材料包括但不限于是II-VI族化合物、III-V族化合物、IV-VI族化合物或I-III-VI族化合物中的至少一种,其中,II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、 CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe或HgZnSTe中的至少一种,III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs或InAlPSb中的至少一种,IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe或SnPbSTe中的至少一种,I-III-VI族化合物选自CuInS2、CuInSe2或AgInS2中的至少一种。需要说明的是,对于前述单一组分量子点的材料、或者核壳结构量子点的核的材料、或者核壳结构量子点的壳的材料,提供的化学式仅示明了元素组成,并未示明各个元素的含量,例如:CdZnSe仅表示由Cd、Zn和Se三种元素组成,若表示各个元素的含量,则对应为CdxZn1-xSe,0<x<1。
对于无机钙钛矿量子点,无机钙钛矿量子点的结构通式为AMX3,其中A为Cs+离子,M为二价金属阳离子,M包括但不限于是Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+或Eu2+,X为卤素阴离子,包括但不限于Cl-、Br-或I-
对于有机钙钛矿量子点,有机钙钛矿量子点的结构通式为CMX3,其中,C为甲脒基,M为二价金属阳离子,M包括但不限于是Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+或Eu2+,X为卤素阴离子,包括但不限于Cl-、Br-或I-
对于有机-无机杂化钙钛矿量子点,有机-无机杂化钙钛矿量子点的结构通式为BMX3,其中,B选自有机胺阳离子,有机胺阳离子包括但不限于是CH3(CH2)n-2NH3+(n≥2)或NH3(CH2)nNH3 2+(n≥2),M为二价金属阳离子,M包括但不限于是Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+或Eu2+,X为卤素阴离子,包括但不限于Cl-、Br-或I-
可以理解的是,当发光层20的材料包括量子点时,发光层20的材料还包括连接于量子点表面的配体,配体包括但不限于是胺类配体、羧酸类配体、硫醇类配体、(氧)膦配体、磷脂、软磷脂或聚乙烯基吡啶中的一种或多种,胺类 配体例如选自油胺、正丁胺、正辛胺、八胺、1,2-乙二胺或十八胺中的一种或多种,羧酸类配体例如选自油酸、乙酸、丁酸、戊酸、己酸、花生酸、十酸、十一烯酸、十四酸或硬脂酸中的一种或多种,硫醇类配体例如选自乙硫醇、丙硫醇、巯基乙醇、苯硫醇、辛硫醇、八烷基硫醇、十二烷基硫醇或十八烷基硫醇中的一种或多种,(氧)膦配体选自三辛基膦或三辛基氧膦中的一种或多种。
在一些实施例中,若发光二极管为有机发光二极管,则发光层20的材料可以为有机发光材料。
进一步地,发光层20的材料可以为红光发光材料,也可以为绿光发光材料,还可以为蓝光发光材料,在此不作限定。
在一些实施例中,金属氧化物可以选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
在一些实施例中,阴极40的材料可以选自于金属材料、碳材料、金属氧化物中的一种或多种。进一步地,金属材料可以包括但不限于Al、Ag、Cu、Mo、Au、Ba、Ca、Mg。碳材料可以包括但不限于石墨、碳纳米管、石墨烯、碳纤维。金属氧化物可以是掺杂或非掺杂金属氧化物,包括但不限于ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO。进一步地,当阴极40的材料选自于金属材料、碳材料、金属氧化物中的多种时,阴极40可以为掺杂或非掺杂的透明金属氧化物之间夹着金属的复合电极,具体地,复合电极可以包括但不限于AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO2/Ag/TiO2、TiO2/Al/TiO2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO2/Ag/TiO2、TiO2/Al/TiO2。上述AZO/Ag/AZO的表述表示AZO之间夹有Ag。
第三方面,请参阅图3,本申请实施例还提供一种光电器件的制备方法,包括:
S11、提供第一基板,第一基板包括第一电极;
S12、提供第一成膜溶液,第一成膜溶液包括溶剂和溶质,溶质包括金属氧化物和甘油基金属化合物,将第一成膜溶液设置在第一基板上,形成电子传输层30;
S13、在电子传输层30上形成第二电极,得到光电器件。
在一些实施例中,光电器件为正置型光电器件,第一基板包括层叠设置的阳极10和发光层20;将第一成膜溶液设置在发光层20的远离阳极10的一侧,形成电子传输层30;在电子传输层30上形成阴极40,得到光电器件。
在一些实施例中,第一基板还包括空穴功能层50,空穴功能层50设置在阳极10和发光层20之间。
需要说明的是,通过该方法制备的光电器件为正置结构的光电器件,进一步地,阳极10和发光层20之间还可以包括空穴阻挡层、空穴传输层、空穴注入层等其他功能层;发光层20和电子传输层30之间也可以还设有电子阻挡层等其他膜层,在此不作限定。可以理解的是,当制备正置结构的光电器件时,形成电子传输层30后,还可以进一步在电子传输层30上形成电子注入层、阴极40、封装层等膜层,形成完整的光电器件。
在另一些实施例中,光电器件为倒置型光电器件,第一基板包括阴极40,将第一成膜溶液设置在阴极40上,形成电子传输层30;在电子传输层30上依次形成发光层20和阳极10,得到光电器件。
在一些实施例中,在电子传输层30上形成发光层20后,还包括形成空穴功能层50和阳极10,得到光电器件。
需要说明的是,通过该方法制备的光电器件为倒置结构的光电器件,在所述阴极上沉积成膜溶液中的“上”为广义的上,例如,在一些实施例中,阴极上还设置有电子注入层,此时成膜溶液是直接沉积在电子注入层之上的,但仍然可以视为在阴极上沉积成膜溶液。可以理解的是,在制备倒置结构的光电器件时,在形成电子传输层303后,还可以在电子传输层30上进一步形成发光层20、空穴阻挡层、空穴传输层、空穴注入层、阳极10等膜层,形成完整的光电器件。
在一些实施例中,形成阳极10、发光层20、阴极40可以利用蒸镀、喷墨打印、旋涂等方法,在此不作限定。
在一些实施例中,甘油基金属化合物中的金属元素可以选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种。
在一些实施例中,金属氧化物可以选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
在一些实施例中,甘油基金属化合物优选为甘油锌。
在一些实施例中,甘油基金属化合物与金属氧化物之间的摩尔比可以为(1~9):100,例如可以为2:100、3:100、4:100、5:100、6:100、7:100、8:100等。
在一些实施例中,第一成膜溶液中的溶剂可以选自于乙醇、丙醇、2-丙醇、正丁醇、2-丁醇、叔丁醇、正戊醇、N,N-二甲基甲酰胺、二甲基亚砜中的一种或多种。
第二成膜溶液中的溶剂可以选自于乙醇、丙醇、2-丙醇、正丁醇、2-丁醇、叔丁醇、正戊醇、N,N-二甲基甲酰胺、二甲基亚砜中的一种或多种。
可以理解的是,第一成膜溶液和第二成膜溶液的溶剂可选择的范围相同,但可以各自选自不同的溶剂。
实施例1
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为1:100。
实施例2
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。
实施例3
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为5:100。
实施例4
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为7:100。
实施例5
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为9:100。
实施例6
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有硝基,硝基在ZnO 表面的示意图参见图4。
实施例7
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有乙烯基。
实施例8
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有F原子。
实施例9
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有Cl原子。
实施例10
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有Br原子。
实施例11
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有硝基和Br原子。
实施例12
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有乙烯基和Br原子。
实施例13
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有乙烯基和硝基。
实施例14
本实施例提供一种复合材料,该复合材料包括甘油锌和氧化锌,其中,甘油锌和氧化锌的摩尔比为3:100。其中氧化锌表面键结有乙烯基、硝基以及Br原子。
实施例15
本实施例提供一种复合材料,该复合材料包括甘油锌、ZnO以及SnO2,其中,甘油锌、ZnO以及SnO2的摩尔比是3:50:50。
实施例16
本实施例提供一种复合材料,该复合材料包括甘油锌以及WO3,WO3和甘油锌的表面键结有硝基,其中,甘油锌以及WO3的摩尔比是3:80。
实施例17
本实施例提供一种复合材料,该复合材料包括甘油锡以及SnO2,其中甘油锡和SnO2的摩尔比为3:80。
实施例18
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例1提供的复合材料O。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1:提供衬底,通过真空蒸镀Ag/ITO/Ag复合电极,在衬底上形成阳极;
步骤2:在阳极上旋涂MCC,制备空穴注入层;
步骤3:在空穴注入层上旋涂TFB,制备空穴传输层;
步骤4:在空穴传输层上旋涂ZnSe/CdZnSe/CdZnS,制备量子点发光层;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;其中成膜溶液的溶质为实施例1提供的的复合材料;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例19
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例2提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,本实施例的制备方法将实施例18步骤5中成膜溶液的溶质更换为实施例2提供的复合材料,其他步骤与实施例18提供的制备方法相同。
实施例20
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的 材料为实施例3提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,本实施例的制备方法将实施例18步骤5中成膜溶液的溶质更换为实施例3提供的复合材料,其他步骤与实施例18提供的制备方法相同。
实施例21
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例4提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,本实施例的制备方法将实施例18步骤5中成膜溶液的溶质更换为实施例4提供的复合材料,其他步骤与实施例18提供的制备方法相同。
实施例22
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例5提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,本实施例的制备方法将实施例18步骤5中成膜溶液的溶质更换为实施例5提供的复合材料,其他步骤与实施例18提供的制备方法相同。
实施例23
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例6提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例6提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:
将30mg/mL的ZnO乙醇溶液与氨基钠混合后加入双氧水,得到混合溶液,以此在ZnO表面引入硝基,其中,氨基钠与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例24
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例7提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例7提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与氯乙烯混合,得到混合溶液,以此在ZnO表面引入乙烯基,其中,氯乙烯与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例25
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例8提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例8提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaF混合,得到混合溶液,以此在ZnO表面引入F原子,其中,NaF与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例26
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例9提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例9提供的复合材料,复合材料中的ZnO经 过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaCl混合,得到混合溶液,以此在ZnO表面引入Cl原子,其中,NaCl与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例27
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例10提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例10提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaBr混合,得到混合溶液,以此在ZnO表面引入Br原子,其中,NaBr与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例28
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例11提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例11提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaBr以及氨基钠混合后加入双氧水,得到混合溶液,以此在ZnO表面引入硝基和Br原子,其中,NaBr与ZnO的摩尔比为3:100,氨基钠与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例29
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例12提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例12提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaBr以及氯乙烯混合,得到混合溶液,以此在ZnO表面引入Br原子和乙烯基,其中,NaBr与ZnO的摩尔比为3:100,氯乙烯与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例30
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例13提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例13提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与氯乙烯以及氨基钠混合后加入双氧水,得到混合溶液,以此在ZnO表面引入硝基和乙烯基,其中,氯乙烯与ZnO的摩尔比为3:100,氨基钠与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例31
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料包括为实施例14提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例14提供的复合材料,复合材料中的ZnO经过配体交换,配体交换包括:将30mg/mL的ZnO乙醇溶液与NaBr、氯乙烯以及氨基钠混合后加入双氧水,得到混合溶液,以此在ZnO表面引入硝基、Br原子 以及乙烯基,其中,NaBr与ZnO的摩尔比为3:100,氯乙烯与ZnO的摩尔比为3:100,氨基钠与ZnO的摩尔比为3:100;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例32
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料包括为实施例15提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1~4:与实施例18提供的制备方法中的步骤1~4相同;
步骤5:在量子点发光层上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;成膜溶液的溶质为实施例15提供的复合材料;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例33
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为实施例1提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1:提供衬底,通过真空蒸镀ITO复合电极,在衬底上形成阳极;
步骤2:在阳极上喷墨打印TFB,制备空穴传输层;
步骤3:在空穴传输层上喷墨打印ZnSe/CdZnSe/CdZnS,制备量子点发光层;
步骤4:在量子点发光层上喷墨打印用于制备电子传输层的成膜溶液,制备电子传输层;其中成膜溶液的制备包括:
将二水合乙酸锌和乙醇混合后搅拌,得到0.04g/mL的二水合乙酸锌乙醇溶液;
将上述二水合乙酸锌乙醇溶液和乙醇胺混合,乙醇胺与二水合乙酸锌乙醇溶液的体积比为1:150;
将加入了乙醇胺的二水合乙酸锌乙醇溶液在60℃下搅拌10min,得到ZnO溶液;
静置放置超过24h后将上述ZnO溶液配制为30mg/mL的ZnO乙醇溶液;
将30mg/mL的ZnO乙醇溶液与甘油锌混合,其中甘油锌与ZnO的摩尔比为3:100;
步骤5:在电子传输层上蒸镀Ag,形成阴极。
实施例34
本实施例提供一种有机发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、有机发光层、电子传输层以及阴极,其中电子传输层的材料为实施例16提供的复合材料。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1:提供衬底,通过真空蒸镀Ag电极,在衬底上形成阳极;
步骤2:在阳极上喷墨打印PEDOT:PSS,制备空穴注入层;
步骤3:在空穴注入层上喷墨打印PVK,制备空穴传输层;
步骤4:在空穴传输层上蒸镀Alq3,制备有机发光层;
步骤5:在有机发光层上喷墨打印用于制备电子传输层的成膜溶液,制备电子传输层;其中成膜溶液的溶质包括实施例16提供的复合材料;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
实施例35
本实施例提供一种有机发光二极管,包括依次层叠设置的阴极、电子传输层、有机发光层、空穴传输层以及阳极,其中电子传输层的材料为实施例17提供的复合材料。
本实施例还提供一种有机发光二极管的制备方法,包括:
步骤1:提供衬底,在衬底上蒸镀Ag,制得阴极;
步骤2:在制得的阴极上旋涂用于制备电子传输层的成膜溶液,制备电子传输层;其中成膜溶液的溶质为实施例17提供的复合材料;
步骤3:在制得的电子传输层上蒸镀Alq3,制备有机发光层;
步骤4:在有机发光层上旋涂PVK制备空穴传输层;
步骤5:在空穴传输层上蒸镀ITO,制备阳极。
对比例1
本实施例提供一种量子点发光二极管,包括依次层叠设置的阳极、空穴注入层、空穴传输层、量子点发光层、电子传输层以及阴极,其中电子传输层的材料为ZnO。
本实施例还提供一种量子点发光二极管的制备方法,包括:
步骤1:提供衬底,通过真空蒸镀Ag/ITO/Ag复合电极,在衬底上形成阳极;
步骤2:在阳极上旋涂MCC,制备空穴注入层;
步骤3:在空穴注入层上旋涂TFB,制备空穴传输层;
步骤4:在空穴传输层上旋涂ZnSe/CdZnSe/CdZnS,制备量子点发光层;其中ZnSe/CdZnSe/CdZnS中的“/”表示核壳结构,即CdZnSe作为中间层包覆内核的ZnSe,CdZnS作为外层包覆中间层CdZnSe;
步骤5:在量子点发光层上旋涂ZnO制备电子传输层;
步骤6:在电子传输层上蒸镀Ag,形成阴极。
在80℃的温度条件下对实施例16~29以及对比例1的发光二极管器件的亮度在1000nit下的寿命以及发光效率进行测试,结果参见表1。
表1发光二极管器件在80℃、亮度1000nit下的发光效率与寿命

表中CE@1000nit表示发光二极管在80℃、亮度1000nit下的效率,单位Cd/A。
LT95@1000nit表示发光二极管在80℃、亮度1000nit下,亮度衰减至原亮度95%时所用的时间,单位h。
从表1中可以看出,甘油基金属化合物的加入能很好地提升器件的发光效率与寿命,有效缓解电子传输层在高温测试下老化导致的器件性能下降。同时在电子传输材料表面引入疏水基团作为表面配体,能进一步提升器件的发光效率与寿命,并且引入多种疏水基团的效果要好于引入单种疏水基团的效果。
测试实施例16~28以及对比例1的发光二极管在光照条件下的光稳定性(每个条件选取25片器件,每个器件测试4个点,即每个条件测试100个数据)。测试方法为:在持续光照下测试器件发光区域工作2h、24h和48h时测试点的猝灭率,器件发光区域测试点的猝灭率越低,证明器件光稳定性越好,器件中电子传输材料越难发生光水合反应,测试结果参见表2。
表2

从表2中可以看出,引入疏水基团后,器件测试点的猝灭率有很大幅度的降低。并且随着测试时间增加,一般发光二极管器件的猝灭率上升,但引入有疏水基团的发光二极管器件发光的猝灭率几乎不变。说明引入疏水基团能有效阻止光水合反应对电子传输材料的不利影响,进而提升其光学稳定性。
以上对本申请实施例所提供的复合材料、光电器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种复合材料,其中,所述复合材料包括金属氧化物和甘油基金属化合物。
  2. 根据权利要求1所述的复合材料,其中,所述复合材料由金属氧化物和甘油基金属化合物组成。
  3. 根据权利要求1所述的复合材料,其中,所述甘油基金属化合物中的金属元素选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种;和/或
    所述金属氧化物选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
  4. 根据权利要求3所述的复合材料,其中,所述甘油基金属化合物为甘油锌。
  5. 根据权利要求1所述的复合材料,其中,所述甘油基金属化合物与所述金属氧化物之间的摩尔比为(1~9):100;和/或
    所述金属氧化物为金属氧化物纳米颗粒,所述金属氧化物纳米颗粒的平均粒径为3~5nm。
  6. 根据权利要求1所述的复合材料,其中,所述金属氧化物和/或所述甘油基金属化合物的表面键结有疏水基团。
  7. 根据权利要求6所述的复合材料,其中,所述疏水基团选自于乙烯基、硝基、卤素原子中的一种或多种。
  8. 根据权利要求6所述的复合材料,其中,所述金属氧化物的表面键结有第一疏水基团,所述甘油基金属化合物的表面键结有第二疏水基团,所述第一疏水基团和所述第二疏水基团各自独立地选自于乙烯基、硝基、卤素原子中的一种或多种。
  9. 一种光电器件,其中,所述光电器件包括阴极、阳极、设于所述阴极和所述阳极之间的功能层,所述功能层包括电子传输层,所述电子传输层的材料包括如权利要求1所述的复合材料。
  10. 根据权利要求9所述的光电器件,其中,所述阴极的材料选自于金属材料、碳材料、金属氧化物中的一种或多种,所述金属材料选自于Al、Ag、 Cu、Mo、Au、Ba、Ca、Mg中的一种或多种,所述碳材料选自于石墨、碳纳米管、石墨烯、碳纤维中的一种或多种,所述金属氧化物选自于ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种;和/或
    所述阳极的材料选自于ITO、FTO、IZO、ITZO、ICO、SnO2、In2O3、Cd:ZnO、F:SnO2、In:SnO2、Ga:SnO2、AZO、Ni、Pt、Au、Ag、Ir中的一种或多种。
  11. 根据权利要求9所述的光电器件,其中,所述功能层还包括发光层,所述发光层设置于所述电子传输层与所述阳极之间。
  12. 根据权利要求11所述的光电器件,其中,所述发光层的材料选自于单一组分和/或核壳结构的II-VI族化合物、单一组分和/或核壳结构的III-V族化合物、单一组分和/或核壳结构的IV-VI族化合物、单一组分和/或核壳结构的I-III-VI族化合物、无机钙钛矿量子点、有机钙钛矿量子点、有机-无机杂化钙钛矿量子点中的一种或多种;
    所述II-VI族化合物选自于CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe中的一种或多种,所述III-V族化合物选自于GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb中的一种或多种,所述IV-VI族化合物选自于SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe或SnPbSTe中的一种或多种,所述I-III-VI族化合物选自于CuInS2、CuInSe2或AgInS2中的一种或多种;
    所述无机钙钛矿量子点的结构通式为AMX3,A为Cs+离子,M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子;
    所述有机钙钛矿量子点的结构通式为CMX3,C为甲脒基,M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子;
    所述有机-无机杂化钙钛矿量子点的结构通式为BMX3,B选自有机胺阳离子,所述有机胺阳离子选自于CH3(CH2)n-2NH3+(n≥2)或NH3(CH2)nNH3 2+(n≥2),M为二价金属阳离子,M选自于Pb2+、Sn2+、Cu2+、Ni2+、Cd2+、Cr2+、Mn2+、Co2+、Fe2+、Ge2+、Yb2+、Eu2+中的一种,X为卤素阴离子。
  13. 根据权利要求11所述的光电器件,其中,所述功能层还包括空穴功能层,所述空穴功能层设置于所述发光层与所述阳极之间,所述空穴功能层包括空穴注入层、空穴传输层中的一种或多种。
  14. 根据权利要求13所述的光电器件,其中,
    所述空穴注入层的材料选自于聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸、2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌、铜酞菁、1,4,5,8,9,11-六氮杂苯甲腈、NiOx、MoOx、WOx、CrOx、CuO、MoSx、MoSex、WSx、WSex、CuS中的一种或多种,所述x的取值范围为1~3中的一种或多种;和/或
    所述空穴传输层的材料选自于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯基咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、4,4',4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N'-二苯基-N,N'-二(3-甲基苯基)-1,1'-联苯-4,4'-二胺、N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺中的一种或多种。
  15. 一种光电器件的制备方法,其中,包括:
    提供第一基板,所述第一基板包括第一电极;
    提供第一成膜溶液,所述第一成膜溶液包括溶剂和溶质,所述溶质包括金属氧化物和甘油基金属化合物,将所述第一成膜溶液设置在所述第一基板上,形成电子传输层;
    在所述电子传输层上形成第二电极,得到光电器件。
  16. 根据权利要求15所述的制备方法,其中,所述第一基板包括层叠设置的阳极和发光层;将所述第一成膜溶液设置在所述发光层的远离所述阳极的一侧,形成电子传输层;在所述电子传输层上形成阴极,得到光电器件。
  17. 根据权利要求15所述的制备方法,其中,所述第一基板包括阴极,将 所述第一成膜溶液设置在所述阴极上,形成电子传输层;在所述电子传输层上依次形成发光层和阳极,得到光电器件。
  18. 根据权利要求15所述的制备方法,其中,所述甘油基金属化合物中的金属元素选自于Zn、Sn、In、Fe、Cr、Ti、W、Cd、Cu、Mo元素中的一种或多种;和/或
    所述金属氧化物选自于ZnO、SnO2、ITO、Fe2O3、CrO3、TiO2、WO3、CdO、CuO、MoO2中的一种或多种。
  19. 根据权利要求18所述的制备方法,其中,所述甘油基金属化合物为甘油锌。
  20. 根据权利要求15所述的制备方法,其中,所述甘油基金属化合物与所述金属氧化物之间的摩尔比为(1~9):100;和/或
    所述第一成膜溶液中的溶剂选自于乙醇、丙醇、2-丙醇、正丁醇、2-丁醇、叔丁醇、正戊醇、N,N-二甲基甲酰胺、二甲基亚砜中的一种或多种。
PCT/CN2023/119400 2022-09-29 2023-09-18 复合材料、光电器件及其制备方法 WO2024067203A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211199667.XA CN117858531A (zh) 2022-09-29 2022-09-29 复合材料、光电器件及其制备方法
CN202211199667.X 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024067203A1 true WO2024067203A1 (zh) 2024-04-04

Family

ID=90476150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119400 WO2024067203A1 (zh) 2022-09-29 2023-09-18 复合材料、光电器件及其制备方法

Country Status (2)

Country Link
CN (1) CN117858531A (zh)
WO (1) WO2024067203A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101704721A (zh) * 2009-10-27 2010-05-12 中南民族大学 甘油锌的制备方法
JP2010168471A (ja) * 2009-01-22 2010-08-05 Kyushu Electric Power Co Inc 有機無機複合半導体材料層形成用塗液および有機el素子
CN104638108A (zh) * 2015-01-23 2015-05-20 华东师范大学 一种修饰型电子传输层及钙钛矿太阳能电池
JP2016020409A (ja) * 2014-07-11 2016-02-04 日立マクセル株式会社 コーティング組成物及び光学部材
CN109336739A (zh) * 2018-11-30 2019-02-15 美轲(广州)化学股份有限公司 甘油金属配合物的制备方法
CN112103406A (zh) * 2020-10-20 2020-12-18 合肥福纳科技有限公司 一种量子点发光器件及其制备方法
CN113130792A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法、发光二极管和制备方法
CN114695696A (zh) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 复合电子传输材料及其制备方法和发光二极管

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168471A (ja) * 2009-01-22 2010-08-05 Kyushu Electric Power Co Inc 有機無機複合半導体材料層形成用塗液および有機el素子
CN101704721A (zh) * 2009-10-27 2010-05-12 中南民族大学 甘油锌的制备方法
JP2016020409A (ja) * 2014-07-11 2016-02-04 日立マクセル株式会社 コーティング組成物及び光学部材
CN104638108A (zh) * 2015-01-23 2015-05-20 华东师范大学 一种修饰型电子传输层及钙钛矿太阳能电池
CN109336739A (zh) * 2018-11-30 2019-02-15 美轲(广州)化学股份有限公司 甘油金属配合物的制备方法
CN113130792A (zh) * 2019-12-31 2021-07-16 Tcl集团股份有限公司 复合材料及其制备方法、发光二极管和制备方法
CN112103406A (zh) * 2020-10-20 2020-12-18 合肥福纳科技有限公司 一种量子点发光器件及其制备方法
CN114695696A (zh) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 复合电子传输材料及其制备方法和发光二极管

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 March 2018, SHANGHAIJIAOTONGUNIVERSITY , CN, article WANG, XINWEI: "Stability Study of Novel Photovoltaic Materials and Devices Based on Oxide Substrates", pages: 1 - 127, XP009554309, DOI: 10.27307/d.cnki.gsjtu.2018.000404 *
LIN QIANG: "Preparation,application and prospect of some metal glycerolate complexes", DETERGENT & COSMETICS, vol. 29, no. 1, 25 January 2008 (2008-01-25), pages 24 - 27, XP093154729, DOI: 10.13222/j.cnki.dc.2006.01.007 *

Also Published As

Publication number Publication date
CN117858531A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024109343A1 (zh) 薄膜及其制备方法、光电器件
WO2024067203A1 (zh) 复合材料、光电器件及其制备方法
CN116987298A (zh) 薄膜、发光器件与显示装置
CN113801648B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024093747A1 (zh) 复合材料、复合材料的制备方法与包含复合材料的光电器件
WO2024109341A1 (zh) 复合电极及其制备方法、发光器件
WO2023082964A1 (zh) 复合物、复合物的制备方法及电致发光器件
WO2023197658A1 (zh) 发光器件、发光器件的制备方法及显示装置
WO2024131279A1 (zh) 发光器件及显示装置
WO2024139692A1 (zh) 发光器件、其制造方法以及显示装置
WO2024104139A1 (zh) 复合材料、包含其的发光器件及其制备方法
WO2024139481A1 (zh) 发光器件及制备方法、显示装置
WO2024139625A1 (zh) 一种薄膜的制备方法、发光器件及其制备方法
CN113809248B (zh) 复合材料及其制备方法和量子点发光二极管
WO2024061102A1 (zh) 复合材料、组合物及发光二极管
WO2023056838A1 (zh) 薄膜及其制备方法、光电器件
WO2023116207A1 (zh) 组合物、组合物的制备方法及发光器件
WO2023078138A1 (zh) 一种光电器件及其制备方法、显示装置
CN117222244A (zh) 复合材料、薄膜、发光器件与显示装置
WO2024139488A1 (zh) 一种复合材料及其制备方法、发光器件
CN117998949A (zh) 复合材料及包含其的发光器件与显示设备
CN118265339A (zh) 复合材料及其制备方法、发光器件及显示装置
CN117430092A (zh) 复合材料、复合材料的制备方法、光电器件与电子设备
CN117693213A (zh) 光电器件、光电器件的制备方法与电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870437

Country of ref document: EP

Kind code of ref document: A1