WO2023078138A1 - 一种光电器件及其制备方法、显示装置 - Google Patents
一种光电器件及其制备方法、显示装置 Download PDFInfo
- Publication number
- WO2023078138A1 WO2023078138A1 PCT/CN2022/127684 CN2022127684W WO2023078138A1 WO 2023078138 A1 WO2023078138 A1 WO 2023078138A1 CN 2022127684 W CN2022127684 W CN 2022127684W WO 2023078138 A1 WO2023078138 A1 WO 2023078138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tio
- electrode
- azo
- ito
- zns
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims abstract description 133
- 229910052901 montmorillonite Inorganic materials 0.000 claims abstract description 129
- 239000002135 nanosheet Substances 0.000 claims abstract description 129
- 239000000463 material Substances 0.000 claims abstract description 91
- 238000002347 injection Methods 0.000 claims abstract description 56
- 239000007924 injection Substances 0.000 claims abstract description 56
- 239000010410 layer Substances 0.000 claims description 179
- 239000002096 quantum dot Substances 0.000 claims description 86
- 239000002346 layers by function Substances 0.000 claims description 85
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 72
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 70
- 239000000243 solution Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 52
- 230000004048 modification Effects 0.000 claims description 48
- 238000012986 modification Methods 0.000 claims description 48
- 230000005693 optoelectronics Effects 0.000 claims description 42
- 239000004065 semiconductor Substances 0.000 claims description 40
- 150000001875 compounds Chemical class 0.000 claims description 38
- 239000002131 composite material Substances 0.000 claims description 37
- 229920000642 polymer Polymers 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- -1 sodium halide salts Chemical class 0.000 claims description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 27
- 230000005525 hole transport Effects 0.000 claims description 27
- 239000011575 calcium Substances 0.000 claims description 25
- 229910052791 calcium Inorganic materials 0.000 claims description 25
- 150000001768 cations Chemical class 0.000 claims description 19
- 239000011777 magnesium Substances 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 19
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 18
- 239000011258 core-shell material Substances 0.000 claims description 17
- 229910044991 metal oxide Inorganic materials 0.000 claims description 17
- 150000004706 metal oxides Chemical class 0.000 claims description 17
- 239000007822 coupling agent Substances 0.000 claims description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 15
- 229910052736 halogen Inorganic materials 0.000 claims description 14
- 150000007524 organic acids Chemical class 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000000178 monomer Substances 0.000 claims description 12
- 239000004094 surface-active agent Substances 0.000 claims description 12
- 229910021389 graphene Inorganic materials 0.000 claims description 11
- 229910004613 CdTe Inorganic materials 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 150000007522 mineralic acids Chemical class 0.000 claims description 10
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- 229910052709 silver Inorganic materials 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 9
- 239000002041 carbon nanotube Substances 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 239000011734 sodium Substances 0.000 claims description 9
- 229910052708 sodium Inorganic materials 0.000 claims description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- FAPCZAUMFXUDMS-UHFFFAOYSA-N 4-bromo-3-(dibromomethyl)-2-hydroxy-2h-furan-5-one Chemical group OC1OC(=O)C(Br)=C1C(Br)Br FAPCZAUMFXUDMS-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims description 6
- 239000011257 shell material Substances 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims description 5
- 229910017083 AlN Inorganic materials 0.000 claims description 5
- 229910017115 AlSb Inorganic materials 0.000 claims description 5
- 229910004611 CdZnTe Inorganic materials 0.000 claims description 5
- 229910002601 GaN Inorganic materials 0.000 claims description 5
- 229910005540 GaP Inorganic materials 0.000 claims description 5
- 229910005542 GaSb Inorganic materials 0.000 claims description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 5
- 229910004262 HgTe Inorganic materials 0.000 claims description 5
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 5
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 5
- 241000764773 Inna Species 0.000 claims description 5
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 claims description 5
- 229910002665 PbTe Inorganic materials 0.000 claims description 5
- 229910005642 SnTe Inorganic materials 0.000 claims description 5
- 229910007709 ZnTe Inorganic materials 0.000 claims description 5
- 229910001417 caesium ion Inorganic materials 0.000 claims description 5
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 claims description 5
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 5
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- VEUACKUBDLVUAC-UHFFFAOYSA-N [Na].[Ca] Chemical compound [Na].[Ca] VEUACKUBDLVUAC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 239000003945 anionic surfactant Substances 0.000 claims description 3
- 150000007942 carboxylates Chemical class 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 239000003093 cationic surfactant Substances 0.000 claims description 3
- UHPJWJRERDJHOJ-UHFFFAOYSA-N ethene;naphthalene-1-carboxylic acid Chemical compound C=C.C1=CC=C2C(C(=O)O)=CC=CC2=C1 UHPJWJRERDJHOJ-UHFFFAOYSA-N 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 239000002736 nonionic surfactant Substances 0.000 claims description 3
- 235000005985 organic acids Nutrition 0.000 claims description 3
- 235000021317 phosphate Nutrition 0.000 claims description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 claims description 3
- 150000003871 sulfonates Chemical class 0.000 claims description 3
- 150000003467 sulfuric acid derivatives Chemical class 0.000 claims description 3
- 229910052861 titanite Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 239000011593 sulfur Substances 0.000 claims description 2
- 150000003566 thiocarboxylic acids Chemical class 0.000 claims 1
- 239000011787 zinc oxide Substances 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000006185 dispersion Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 16
- 239000000758 substrate Substances 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 10
- 230000000903 blocking effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000011162 core material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000002707 nanocrystalline material Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 238000002715 modification method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052956 cinnabar Inorganic materials 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000004299 exfoliation Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- LGDCSNDMFFFSHY-UHFFFAOYSA-N 4-butyl-n,n-diphenylaniline Polymers C1=CC(CCCC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 LGDCSNDMFFFSHY-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 2
- JAAGVIUFBAHDMA-UHFFFAOYSA-M rubidium bromide Chemical compound [Br-].[Rb+] JAAGVIUFBAHDMA-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 1
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N EtOH Substances CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- CQBLUJRVOKGWCF-UHFFFAOYSA-N [O].[AlH3] Chemical compound [O].[AlH3] CQBLUJRVOKGWCF-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001579 aluminosilicate mineral Inorganic materials 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Substances ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002055 nanoplate Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- ATGUVEKSASEFFO-UHFFFAOYSA-N p-aminodiphenylamine Chemical compound C1=CC(N)=CC=C1NC1=CC=CC=C1 ATGUVEKSASEFFO-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/18—Carrier blocking layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K99/00—Subject matter not provided for in other groups of this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present application relates to the field of display technology, in particular to an optoelectronic device, a manufacturing method thereof, and a display device.
- QLED Quantum-Dot Light Emitting Diode
- QLED is an electroluminescent diode based on quantum dot technology. It has self-illumination, no backlight module, wide viewing angle, high contrast, full curing, suitable for flexible panels, good temperature characteristics, and responsive A series of excellent characteristics such as fast speed, energy saving and environmental protection have become the research hotspot and key development direction of new display technology.
- QLED is a thin film stack device structure, usually composed of anode, hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, and cathode.
- the commonly used materials such as hole injection layer, hole transport layer, light-emitting layer, and electron transport layer are organic small molecule materials or inorganic nanomaterials, which are very suitable for depositing thin films by solution method. Therefore, based on factors such as flexibility, large size, and cost reduction, solution methods such as inkjet printing are gradually becoming new manufacturing technologies for mass production and development of QLED display technology.
- the preparation of QLEDs by the solution method faces many problems that need to be solved urgently.
- the typical problems are the consistency of device performance and the stability of device aging.
- the problem of device performance consistency is mainly reflected in uneven luminescence, which is essentially due to factors such as uneven film thickness, film surface defects (pinholes, agglomeration, etc.), film stress release, adhesion between films, and material uniformity.
- the resulting differences in the conductivity of each region of the film that is, the current preferentially passes through the region with low in-plane resistance of the film, causing the luminous brightness of this region to be higher than that of other regions.
- the uneven luminescence of the device and the imbalance of charge injection affect the performance consistency of the device and the aging stability of the device.
- the present application provides an optoelectronic device, a manufacturing method thereof, and a display device.
- An embodiment of the present application provides a photoelectric device, including an anode, a light-emitting layer, an electronic functional layer, and a cathode that are stacked; wherein, the material of the electronic functional layer includes two-dimensional montmorillonite nanosheets.
- the material of the electronic functional layer is the two-dimensional montmorillonite nanosheet.
- the two-dimensional montmorillonite nanosheets are selected from calcium-based two-dimensional montmorillonite nanosheets, sodium-based two-dimensional montmorillonite nanosheets, sodium-calcium-based two-dimensional One or more of montmorillonite nanosheets and magnesium-based two-dimensional montmorillonite nanosheets.
- the two-dimensional montmorillonite nanosheets include two-dimensional montmorillonite nanosheets obtained through inorganic modification or organic modification; wherein, the inorganic modification includes using inorganic One or more of acid and inorganic salt for modification; the organic modification includes one or more of organic acid, surfactant, polymer monomer and coupling agent for modification.
- the inorganic acid is selected from one or more of sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid;
- the organic acid is selected from carboxylic acid, sulfonic acid, sulfinic acid, sulfur One or more of carboxylic acids;
- the inorganic salt is selected from halide salts, nitrates, sulfates, phosphates, carboxylates, sulfonates, and sulfinates of aluminum, magnesium, zinc, copper, and sodium , one or more of thiocarboxylates;
- the surfactant is selected from one or more of cationic surfactants, anionic surfactants and nonionic surfactants;
- the polymer monomer is selected from one or more of methyl methacrylate, N-vinylpyrrolidone, pyrrole, ethylene terephthalate, and ethylene naphthalate; the coupling The agent is selected from one or more of silane coupling agents, titanate coupling agents, and polyurethane coupling agents.
- the material of the electronic functional layer is a composite material comprising the two-dimensional montmorillonite nanosheets and a polymer; the polymer is selected from PMMA, PI, PAI, One or more of PE.
- the mass ratio of the polymer to the two-dimensional montmorillonite nanosheets is greater than 0:1 and less than or equal to 5:1.
- the anode is selected from one or more of metal electrodes, silicon carbon electrodes, doped or non-doped metal oxide electrodes, and composite electrodes; wherein, the The material of the metal electrode is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca and Mg; the material of the silicon carbon electrode is selected from silicon, graphite, carbon nanotubes, graphene and carbon fiber One or more of them; the material of the doped or non-doped metal oxide electrode is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO and AMO; the composite The electrode material is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO One or more of
- the photoelectric device further includes a hole transport layer, and the hole transport layer is located between the anode and the light-emitting layer; the photoelectric device further includes a hole An injection layer, the hole injection layer is located on the surface of the anode facing the cathode side.
- the photoelectric device further includes an electron transport layer, and the electron transport layer is located between the electron functional layer and the cathode.
- the photoelectric device further includes an electron injection layer, and the electron injection layer is located on the surface of the cathode facing the anode.
- the electronic functional layer has a thickness of 1 nm-50 nm.
- the embodiment of the present application also provides a method for manufacturing a photoelectric device, including: providing a first electrode; forming a light emitting layer, the light emitting layer is formed on the first electrode; forming a second electrode, the second The electrode is formed on the luminescent layer; the preparation method also includes: setting a solution including two-dimensional montmorillonite nanosheets by a solution method to obtain an electronic functional layer, and the lamination of the electronic functional layer and the luminescent layer is arranged Between the first electrode and the second electrode.
- the first electrode is an anode
- the second electrode is a cathode
- the solution comprising two-dimensional montmorillonite nanosheets is set by a solution method in the formation of the second electrode.
- the second electrode is performed before, and includes: setting the solution including two-dimensional montmorillonite nanosheets on the light-emitting layer by a solution method.
- the first electrode is a cathode
- the second electrode is an anode
- the solution comprising two-dimensional montmorillonite nanosheets is set by a solution method to emit light in the formation. layering, and includes: disposing the solution comprising two-dimensional montmorillonite nanosheets on the first electrode by a solution method.
- the two-dimensional montmorillonite nanosheets include two-dimensional montmorillonite nanosheets obtained through inorganic modification or organic modification; wherein, the inorganic modification includes using inorganic One or more of acid and inorganic salt for modification; the organic modification includes one or more of organic acid, surfactant, polymer monomer and coupling agent for modification.
- the solution comprising two-dimensional montmorillonite nanosheets is a solution comprising a composite material of the two-dimensional montmorillonite nanosheets and a polymer, and the polymer is selected from One or more of PMMA, PI, PAI, PE.
- the mass ratio of the polymer to the two-dimensional montmorillonite nanosheets is greater than 0:1 and less than or equal to 5:1.
- the first electrode is selected from one or more of metal electrodes, silicon carbon electrodes, doped or non-doped metal oxide electrodes, and composite electrodes; wherein, The material of the metal electrode is selected from one or more of Al, Ag, Cu, Mo, Au, Ba, Ca and Mg; the material of the silicon carbon electrode is selected from silicon, graphite, carbon nanotubes, graphene And one or more of carbon fibers; the material of the doped or non-doped metal oxide electrode is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO and AMO; The material of the composite electrode is selected from AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , one or more of TiO 2
- an embodiment of the present application further provides a display device, the display device including the above optoelectronic device.
- the optoelectronic device of the present application includes an anode, a light-emitting layer, an electronic functional layer and a cathode that are stacked; wherein, the material of the electronic functional layer includes two-dimensional montmorillonite nanosheets.
- the two-dimensional montmorillonite nanosheets have anisotropic conductivity, which makes the electronic functional layer have a large band gap perpendicular to the film layer and good conductivity in the direction of the film layer. On the one hand, it hinders the passage of charges.
- the interface acts as a charge blocking layer to improve the charge injection balance of the device; on the other hand, it induces the conduction of the charge along the extension direction of the interface, and uniformly transfers the charge to the light-emitting layer along the surface direction, avoiding local accumulation of charges, thereby improving the uniformity of light emission of the device.
- Fig. 1 is a schematic structural diagram of an optoelectronic device provided by an embodiment of the present application
- FIG. 2 is a schematic flow diagram of an embodiment of a method for preparing a photoelectric device provided by the present application
- Fig. 3 is a schematic flow diagram of a specific embodiment of the preparation method of the photoelectric device provided by the present application.
- Fig. 4 is a schematic flowchart of another specific embodiment of the method for preparing a photoelectric device provided by the present application. Embodiment of this application
- Embodiments of the present application provide a hole transport thin film, a preparation method thereof, and a photoelectric device. Each will be described in detail below. It should be noted that the description sequence of the following embodiments is not intended to limit the preferred sequence of the embodiments. In addition, in the description of the present application, the term “including” means “including but not limited to”. Various embodiments of the present application may exist in the form of a range; it should be understood that the description in the form of a range is only for convenience and brevity, and should not be construed as a rigid limitation on the scope of the application; therefore, the described range should be regarded as The description has specifically disclosed all possible subranges as well as individual values within that range.
- a description of a range from 1 to 6 should be considered to have specifically disclosed subranges, such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6, etc., and Single numbers within the stated ranges, eg 1, 2, 3, 4, 5 and 6, apply regardless of the range. Additionally, whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range.
- At least one means one or more, and “multiple” means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- At least one means two or more.
- an embodiment of the present application provides a photoelectric device 100 , which includes an anode 20 , a light emitting layer 30 , an electronic functional layer 10 and a cathode 40 stacked in sequence.
- the material of the electronic functional layer 10 includes two-dimensional montmorillonite nanosheets.
- Montmorillonite is a 2:1 type aluminosilicate mineral, that is, two layers of silicon-oxygen tetrahedron sandwich a layer of aluminum-oxygen octahedron, and its crystal structure is M x (Al 2 -xMg x )[Si 4 O 10 ](OH) 2 .
- Montmorillonite can be prepared into two-dimensional nanosheet materials by mechanical exfoliation and other methods. Two-dimensional nanosheet materials have excellent mechanical, optical and electrical properties.
- the two-dimensional montmorillonite nanosheets also have the characteristics of electrical conductivity anisotropy, with a large band gap (4-9eV) in the direction perpendicular to the plane, but a high conductivity in the direction along the plane (greater than 10 - 3 S/m).
- the electronic functional layer 10 comprising two-dimensional montmorillonite nanosheets prevents charges from passing through the interface connected to the light-emitting layer 30 on the one hand, acts as a charge blocking layer, and improves the charge injection balance of the optoelectronic device 100; on the other hand , inducing conduction of charges extending along the direction of the interface, uniformly transporting the charges to the light-emitting layer 30 along the surface direction, avoiding local accumulation of charges, thereby improving the uniformity of light emission of the optoelectronic device 100 . Improving the charge injection balance and luminescence uniformity of the optoelectronic device 100 further improves the performance consistency, aging stability and lifespan of the optoelectronic device 100 .
- the material of the electronic functional layer 10 may only be two-dimensional montmorillonite nanosheets without other materials.
- the material of the electronic functional layer 10 may include other materials, such as electron blocking materials known in the art, in addition to the two-dimensional montmorillonite nanosheets.
- the material of the electronic functional layer is a composite material comprising two-dimensional montmorillonite nanosheets and a polymer.
- the polymer can be selected from one or more of PMMA, PI, PAI, and PE.
- the two-dimensional montmorillonite nanosheets are oriented and arranged on the surface or inside of the polymer film, and the direction of the two-dimensional montmorillonite nanosheets is parallel to the surface of the polymer film.
- the polymer is used as the loading matrix of the two-dimensional montmorillonite nanosheets in the composite material to regulate and widen the bandgap width of the functional layer.
- the mass ratio of the polymer to the two-dimensional nanosheets in the composite material is greater than 0:1 and less than or equal to 5:1. Excessive polymer content in the composite material leads to poor conductivity of the functional layer, which is not conducive to carrier migration.
- the two-dimensional montmorillonite nanosheets can be selected from calcium-based two-dimensional montmorillonite nanosheets, sodium-based two-dimensional montmorillonite nanosheets, sodium-calcium-based two-dimensional montmorillonite nanosheets, magnesium-based two-dimensional montmorillonite nanosheets, and magnesium-based two-dimensional montmorillonite nanosheets.
- soil-removing nanosheets calcium base, sodium base, sodium-calcium base and magnesium base are classified according to the types of exchangeable cations between natural montmorillonite layers.
- Two-dimensional montmorillonite nanosheets with different cation bases all have good anisotropic conductive properties, but there may be some differences in other properties. For example, sodium-based montmorillonite has better expansion than calcium-based montmorillonite. properties, thermal stability, etc.
- the two-dimensional montmorillonite nanosheets in this example can be two-dimensional nanosheet materials prepared by natural montmorillonite through mechanical exfoliation, etc., or can be obtained by performing different modification treatments on two-dimensional nanosheet materials Modification of two-dimensional montmorillonite nanosheets to adjust the cation concentration, conductivity, and hydrophobicity of two-dimensional montmorillonite nanosheets, so as to improve the preparation of electronic functional layers including two-dimensional montmorillonite nanosheets by solution method10 feasibility, as well as improving the thermal stability and conductivity of the electronic functional layer 10 .
- the two-dimensional montmorillonite nanosheets include two-dimensional montmorillonite nanosheets obtained through inorganic modification or organic modification; wherein the inorganic modification includes using one or more of inorganic acids and inorganic salts Carry out modification; organic modification includes using one or more of organic acids, surfactants, polymer monomers, and coupling agents for modification.
- the modified two-dimensional montmorillonite nanosheets corresponding to different modification methods can be purchased directly from the market, or can be prepared by modification methods known in the art.
- inorganic acid or organic acid is used for modification, that is, two-dimensional montmorillonite nanosheets can be modified by inorganic acid or organic acid.
- the inorganic acid can be selected from one or more of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, and the organic acid in the organic acid modification is selected from one or more of carboxylic acid, sulfonic acid, sulfinic acid, sulfuric acid Various.
- Inorganic acid or organic acid modification makes some cations between the layers of two-dimensional montmorillonite nanosheets change into acid-soluble salts and dissolve, thus weakening the original interlayer bonding force and improving the interlayer distance and thermal stability.
- the inorganic salts modified with inorganic salts can be selected from halogen salts, nitrates, sulfates, phosphates, carboxylates, sulfonates, sulfinates, etc. of aluminum, magnesium, zinc, copper, sodium, etc.
- halogen salts nitrates, sulfates, phosphates, carboxylates, sulfonates, sulfinates, etc.
- thiocarboxylates One or more of thiocarboxylates.
- Inorganic salt modification can perform cation exchange on two-dimensional montmorillonite nanosheets.
- the modified two-dimensional montmorillonite nanosheets are dispersed
- the performance in terms of properties, thermal stability, and electrical conductivity is better, and the two-dimensional montmorillonite nanosheets modified by inorganic salts can improve the feasibility of preparing the electronic functional layer 10 by the solution method and the thermal stability and thermal stability of the electronic functional layer 10. Thin film conductivity.
- the organic modification includes modifying the two-dimensional montmorillonite nanosheets by using one or more organic substances in surfactants, polymer monomers, and coupling agents. Since the inorganic ions in montmorillonite are oleophobic, which is not conducive to their dispersion in the polymer matrix, organic modification such as surfactants, polymer monomers or coupling agents aims to change the larger surface of montmorillonite.
- the polarity makes the interlayer of montmorillonite change from hydrophilic to lipophilic, reduces its surface energy, and at the same time increases the interlayer distance of montmorillonite, which is beneficial to the preparation of electronic functional layer 10 by solution method.
- the surfactant can be selected from one or more of cationic surfactants, anionic surfactants and nonionic surfactants.
- the polymer monomer can be selected from one or more of methyl methacrylate, N-vinylpyrrolidone, pyrrole, ethylene terephthalate, and ethylene naphthalate. The polymer monomer does not undergo polymerization, and its effect is consistent with that of a surfactant, and properties such as solubility will not have a negative impact on the device.
- the coupling agent may be selected from one or more of silane coupling agents, titanate coupling agents, and polyurethane coupling agents.
- the thickness range of the electronic functional layer can be 1nm-50nm, for example, the thickness can be 5nm-50nm, 5nm-40nm, 10nm-40nm, 20nm-40nm, 20nm-30nm, 5nm, 10nm, 20nm, 50nm, etc. . If the thickness of the electronic functional layer is too thick, the conductivity of the device may be affected, and if the thickness is too small, it may not be possible to form a uniform electronic functional layer and achieve uniform conductance anisotropy.
- the material of the anode 20 is a material known in the art for an anode
- the material of the cathode 40 is a material known in the art for a cathode.
- the anode 20 and the cathode 40 can each be independently selected from one or more of metal electrodes, silicon carbon electrodes, doped or non-doped metal oxide electrodes, and composite electrodes; wherein, the material of the metal electrodes is selected from Al , one or more of Ag, Cu, Mo, Au, Ba, Ca and Mg; the material of the silicon carbon electrode is selected from one or more of silicon, graphite, carbon nanotubes, graphene and carbon fibers
- the material of the doped or non-doped metal oxide electrode is selected from one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO and AMO; the material of the composite electrode is selected from AZO/ Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO
- the composite electrode AZO/Ag/AZO represents an electrode of a composite structure composed of three layers of AZO layer, Ag layer and AZO layer.
- the thickness of the anode 20 can be, for example, 10nm to 100nm, such as 10nm, 30nm, 40nm, 50nm, 60nm, 80nm, 100nm, etc.; the thickness of the cathode 40 can be, for example, 15nm to 100nm, such as 15nm, 30nm, 40nm, 50nm, 60nm, 80nm , 100nm, etc.
- the light emitting layer 30 may be a quantum dot light emitting layer, and in this case the optoelectronic device 100 may be a quantum dot light emitting device.
- the thickness of the light-emitting layer 30 can be the thickness range of the light-emitting layer in a conventional quantum dot light-emitting device, for example, it can be 10nm to 60nm, such as 10nm, 15nm, 20nm, 25nm, 30nm, 40nm, 50nm, 60nm, etc., or the thickness of the light-emitting layer 30 Can be 10-25nm.
- the material of the quantum dot light-emitting layer is quantum dots known in the art to be used in the quantum dot light-emitting layer, for example, one of red quantum dots, green quantum dots and blue quantum dots.
- the quantum dots can be selected from at least one of single-structure quantum dots, core-shell quantum dots and perovskite semiconductor materials, and the single-structure quantum dots are selected from II-VI group compounds, IV-VI group compounds, One or more of the III-V group compound and the I-III-VI group compound, the II-VI group compound is selected from CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSe
- CdZnSe only means that it is composed of three elements: Cd, Zn and Se. If it indicates the content of each element, it corresponds to Cd x Zn 1-x Se, 0 ⁇ x ⁇ 1.
- the perovskite semiconductor material is selected from doped or non-doped inorganic perovskite semiconductor, organic perovskite semiconductor or organic-inorganic hybrid perovskite semiconductor; the inorganic perovskite semiconductor
- the general structural formula is AMX 3 , where A is Cs + ion, M is a divalent metal cation, selected from Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ one or more, X is a halogen anion, selected from one or more of Cl - , Br - , I - ;
- the general structural formula of the organic perovskite semiconductor is CMX 3 , wherein, C is formamidinyl, M is a divalent metal cation, and M includes but is not limited to Pb 2+ , S
- the photoelectric device 100 may further include a hole transport layer 50 located between the anode 20 and the light emitting layer 30 .
- the material of the hole transport layer 50 can be selected from organic materials with hole transport capability, including but not limited to poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl) diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (poly-TPD), poly( 9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine) (PFB), 4,4',4"-tris(carbazol-9-yl)tri Aniline (TCATA), 4,4'-bis(9-carbazole)biphenyl (CBP), N,N,N
- the material of the hole transport layer 50 can also be selected from inorganic materials with hole transport capabilities, including but not limited to It is one or more of doped or undoped NiO, WO 3 , MoO 3 and CuO.
- the thickness of the hole transport layer 50 is the thickness of a conventional hole transport layer, for example, it can be 10nm to 100nm, such as 10nm , 20nm, 30nm, 40nm, 50nm, 60nm, 100nm, etc. Alternatively, the thickness of the hole transport layer 50 may range from 20-60nm.
- the photoelectric device 100 may further include a hole injection layer 60 , and the hole injection layer 60 is located on the surface of the anode 20 facing the cathode 40 .
- the hole injection layer 60 is located between the anode 20 and the hole transport layer 50;
- the hole injection layer 60 is located between the anode 20 and the light emitting layer 30 .
- the hole injection layer 60 is located on the surface of the anode 20 facing the cathode 40 , and is in contact with the anode 20 .
- the material of the hole injection layer 60 is a material known in the art for the hole injection layer, and the material of the hole injection layer 60 can be selected from materials with hole injection capabilities, including but not limited to poly(3,4- Ethylenedioxythiophene) (PEDOT), poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS), 2,3,5,6-tetrafluoro-7,7 ',8,8'-tetracyanoquinone-dimethyl (F4-TCNQ), 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaaza One or more of triphenylene (HATCN), polyester copper carbonate (CuPc), transition metal oxides, and transition metal chalcogenides.
- PEDOT poly(3,4- Ethylenedioxythiophene)
- PEDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrenes
- the thickness of hole injection layer 60 can be the thickness of conventional hole injection layer, for example can be 20nm to 80nm, such as 20nm to 70nm, 20 to 60nm, 30nm to 70nm, 30nm to 60nm, 40nm to 60nm, 40nm to 50nm, 20nm , 30nm, 40nm, 50nm, 60nm, 80nm, etc. In a specific embodiment, the thickness of the hole injection layer 60 ranges from 20 nm to 60 nm.
- the optoelectronic device 100 may further include an electron transport layer 70 , and the electron transport layer 70 is located between the electronic functional layer 10 and the cathode 40 .
- the material of the electron transport layer 70 may be a material known in the art for electron transport layers. For example, it may be selected from but not limited to one or more of inorganic nanocrystalline materials, doped inorganic nanocrystalline materials, and organic materials.
- Inorganic nanocrystalline materials may include: ZnO, NiO, W 2 O 3 , Mo 2 O 3 , TiO 2 , SnO, ZrO 2 , Ta 2 O 3 , Ga 2 O 3 , SiO 2 , Al 2 O 3 , CaO
- doped inorganic nanocrystalline material includes one or more of zinc oxide dopant, titanium dioxide dopant, tin dioxide dopant, wherein, doped inorganic nanocrystalline material is doping other elements
- doping elements are selected from Mg, Ca, Li, Ga, Al, Co, Mn, etc.
- organic materials can include one or both of polymethyl methacrylate and polyvinyl butyral.
- the thickness of the electron transport layer 70 can be the thickness of a conventional electron transport layer, for example, it can be 20nm to 60nm, such as 20nm to 50nm, 30nm to 50nm, 30nm to 40nm, 20nm, 30nm, 40nm, 50nm, 60nm, etc. In a specific embodiment, the thickness of the electron transport layer 70 may range from 25 to 60 nm.
- the optoelectronic device 100 may further include an electron injection layer 80 , and the electron injection layer 80 is located between the electronic functional layer 10 and the cathode 40 . Further, one surface of the electron injection layer 80 is connected to the surface of the cathode 40 facing the anode 20 .
- the optoelectronic device 100 includes the electron transport layer 70 and the electron injection layer 80, the electron injection layer 80 is located between the cathode 40 and the electron transport layer 70, that is, the electron injection layer 80 is arranged near the cathode 40 side, and the electron transport layer 70 is close to the electron One side of the functional layer 10 is provided.
- the material of the electron injection layer 80 may be a material known in the art for electron injection layers.
- the thickness of the electron injection layer 80 can be the thickness of a conventional electron injection layer, for example, it can be 10nm to 30nm, such as 10nm to 25nm, 15nm to 25nm, 15nm to 20nm, 10nm, 20nm, 30nm and so on.
- the optoelectronic device 100 may also add some functional layers commonly used in optoelectronic devices that help to improve the performance of optoelectronic devices, such as hole blocking layers and interface modification layers.
- each layer of the optoelectronic device 100 can be adjusted according to the light emission requirements of the optoelectronic device 100 .
- the optoelectronic device 100 is a quantum dot light emitting diode
- the optoelectronic device 100 may be a quantum dot light emitting diode with an upright structure, or a quantum dot light emitting diode with an inverted structure.
- the substrate of the quantum dot light emitting diode with the upright structure is connected with the anode
- the substrate of the quantum dot light emitting diode with the inverted structure is connected with the cathode.
- the embodiment of the present application also provides a display device, including the optoelectronic device provided in the present application.
- the display device can be any electronic product with a display function, including but not limited to smart phones, tablet computers, laptops, digital cameras, digital video cameras, smart wearable devices, smart weighing electronic scales, car monitors, TVs Or an e-book reader, wherein the smart wearable device may be, for example, a smart bracelet, a smart watch, a virtual reality (Virtual Reality, VR) helmet, and the like.
- VR Virtual Reality
- Figure 2 is a schematic flow diagram of an embodiment of a method for preparing a photoelectric device provided by the present application, which specifically includes the following steps:
- Step S11 providing a first electrode
- Step S12 forming a light emitting layer, the light emitting layer is formed on the first electrode;
- Step S13 forming a second electrode, the second electrode is formed on the light-emitting layer
- the preparation method also includes: setting a solution including two-dimensional montmorillonite nanosheets by a solution method to obtain an electronic functional layer, and the stack of the electronic functional layer and the light-emitting layer is arranged on the first electrode and the second electrode. between the electrodes.
- the first electrode and the second electrode are a pair of electrodes.
- the first electrode is an anode
- the second electrode is a cathode.
- the first electrode is a cathode
- the second electrode is an anode.
- the first electrode is an anode
- the second electrode is a cathode
- the solution method is used to provide a solution comprising two-dimensional montmorillonite nanosheets before forming the second electrode, and includes : disposing the solution comprising two-dimensional montmorillonite nanosheets on the light-emitting layer by a solution method.
- FIG. 3 is a schematic flowchart of a specific embodiment of a method for preparing a photoelectric device provided in the present application.
- the first electrode is a cathode
- the second electrode is an anode
- the solution method is used to set the solution comprising two-dimensional montmorillonite nanosheets before the formation of the light-emitting layer, and includes : setting the solution comprising two-dimensional montmorillonite nanosheets on the first electrode by a solution method.
- Fig. 4 is a schematic flow diagram of another specific embodiment of the method for preparing a photoelectric device provided by the present application.
- the embodiment of the present application provides a method for preparing a photoelectric device.
- the photoelectric device is a positive quantum dot light-emitting diode, which specifically includes the following steps:
- Step S21 providing a substrate, on which an anode and a light emitting layer are sequentially formed.
- Step S22 disposing a solution including two-dimensional montmorillonite nanosheets on the light-emitting layer by a solution method to obtain an electronic functional layer.
- Step S23 forming a cathode on the electronic functional layer.
- the two-dimensional montmorillonite nanosheets in step S22 can be purchased from the market, or can be prepared by common methods.
- the preparation method of two-dimensional montmorillonite nanosheets can be: provide bulk montmorillonite, obtain the primary product of two-dimensional montmorillonite nanosheets by mechanical exfoliation or ball milling, and use N,N-dimethylformamide, N - Organic solvents such as methylpyrrolidone, acetone or ether dissolve and disperse the initial product, and perform preliminary filtration to obtain the filtrate as the initial liquid of the two-dimensional montmorillonite nanosheet dispersion liquid; ultrasonically treat the initial liquid of the dispersion liquid, and filter again to obtain Two-dimensional montmorillonite nanosheets.
- the filter mesh of the first filtration process is larger to filter and remove larger unstripped solids
- the filter mesh of the second filtration is smaller to remove the filtrate
- the obtained filter cake is relatively uniform in size and high in purity two-dimensional montmorillonite nanosheets.
- the obtained two-dimensional montmorillonite nanosheets can also be treated with acid modification, inorganic salt modification or organic modification to obtain two-dimensional montmorillonite nanosheets.
- the modification method can be a conventional modification method, which is not limited here.
- step S21 is: providing a substrate, and sequentially forming an anode, a hole injection layer and/or a hole transport layer, and a light emitting layer on the substrate.
- step S23 is: sequentially forming an electron transport layer and/or an electron injection layer and a cathode on the electron functional layer.
- the methods for forming the anode, light-emitting layer, cathode, hole transport layer, hole injection layer, electron transport layer, and electron injection layer can be implemented using conventional techniques in the art, including but not limited to It is a solution method and a deposition method.
- the solution method includes but is not limited to spin coating, coating, inkjet printing, scraping, dipping, soaking, spraying, rolling or casting;
- the deposition method includes chemical and physical methods.
- Chemical methods include but are not limited to chemical vapor deposition, continuous ion layer adsorption and reaction, anodic oxidation, electrolytic deposition or co-precipitation.
- Physical methods include but are not limited to thermal evaporation coating method, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method, atomic layer deposition method or pulsed laser deposition method.
- the drying treatment may be an annealing treatment.
- annealing process includes all treatment processes that can make the wet film obtain higher energy, thereby changing from a wet film state to a dry state.
- the "annealing process” can also include a sequential heat treatment process and cooling process, that is, the wet film is heated to a specific temperature, and then kept for a specific time to make the first wet film The solvent in the film is fully volatilized, and then cooled at an appropriate speed to eliminate residual stress and reduce the risk of layer deformation and cracks in the dry hole transport film.
- the materials of the anode, light-emitting layer, cathode, hole transport layer, hole injection layer, electron transport layer and electron injection layer can refer to the relevant description above, and will not be repeated here.
- the embodiment of the present application provides another method for preparing a photoelectric device.
- the photoelectric device is an inverted quantum dot light-emitting diode, which specifically includes the following steps:
- Step S31 providing a substrate, and forming a cathode on the substrate.
- Step S32 disposing a solution including two-dimensional montmorillonite nanosheets on the cathode by a solution method to obtain an electronic functional layer.
- Step S33 sequentially forming a light-emitting layer and an anode on the electronic functional layer.
- step S33 is: sequentially forming a light emitting layer, a hole transport layer and/or a hole injection layer, and an anode on the electronic functional layer.
- step S31 is: provide a substrate, form a cathode on the substrate, and sequentially form an electron transport layer and/or an electron injection layer, and a cathode on the electronic functional layer.
- the methods for forming the anode, light emitting layer, cathode, hole transport layer, hole injection layer, electron transport layer and electron injection layer in this embodiment can refer to the relevant description in the previous embodiment, and will not be repeated here.
- the method for preparing the optoelectronic device further includes the step of forming each functional layer.
- the preparation method of the photoelectric device can also include a packaging step
- the packaging material can be acrylic resin or epoxy resin
- the packaging can be machine packaging or manual packaging
- ultraviolet curing glue can be used for sealing.
- concentrations of water and water are lower than 0.1ppm to ensure the stability of optoelectronic devices.
- the solution comprising two-dimensional montmorillonite nanosheets used in the preparation method of the electronic functional layer in this embodiment, wherein the two-dimensional montmorillonite nanosheets may include inorganic or organic modification
- inorganic modification includes using at least one of inorganic acid, inorganic salt to modify
- Organic modification includes using organic acid, surfactant, polymer monomer, coupling agent At least one is modified.
- the solution for preparing two-dimensional montmorillonite nanosheets can also be a solution comprising a composite material of two-dimensional montmorillonite nanosheets and a polymer, so that the electronic functional layer 10 formed includes two-dimensional montmorillonite nanosheets and two-dimensional montmorillonite nanosheets.
- Polymer composites wherein, the polymer is selected from at least one of PMMA, PI, PAI, and PE.
- the specific description of the modified two-dimensional montmorillonite nanosheet and the composite material of the two-dimensional montmorillonite nanosheet and the polymer can refer to the relevant description above, and will not be repeated here.
- This embodiment provides a quantum dot electroluminescent diode, which is a positive structure, and its preparation method includes the following steps:
- An ITO substrate is provided, the thickness of the substrate glass is 0.55 mm, and the thickness of the ITO is 50 nm. After the ITO substrate is cleaned and dried, it is treated with ultraviolet and ozone for 15 minutes to serve as the anode 20 and the substrate.
- the PEDOT solution was spin-coated on one side of the ITO substrate, and then placed at 150° C. for constant temperature heat treatment for 15 minutes to obtain the hole injection layer 60 with a thickness of 35 nm.
- Silver Ag was deposited on the electron transport layer 70 by vacuum evaporation method to obtain the cathode 40 with a thickness of 50 nm.
- the positive quantum dot electroluminescent diode is obtained by packaging.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference between the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 includes
- the two-dimensional montmorillonite nanosheets are montmorillonite nanosheets modified by acetic acid.
- the preparation method is as follows: prepare the acetic acid-modified montmorillonite nanosheet-N,N-dimethylformamide dispersion with a concentration of 35 mg/mL, and spin it on the light-emitting layer 30 under a nitrogen environment at normal temperature and pressure. Apply the nanosheet dispersion, and then place it at 120° C. for constant temperature heat treatment for 30 minutes to obtain the electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference between the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 includes
- the two-dimensional montmorillonite nanosheets are NaCl modified montmorillonite nanosheets.
- the preparation method is as follows: prepare NaCl-modified montmorillonite nanosheet-N,N-dimethylformamide dispersion solution with a concentration of 35 mg/mL, and spin-coat it on the light-emitting layer 30 under a nitrogen environment at normal temperature and pressure. The nanosheet dispersion was then heat-treated at a constant temperature of 120° C. for 30 minutes to obtain an electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference between the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 includes
- the two-dimensional montmorillonite nanosheets are montmorillonite nanosheets modified by octadecyl trimethyl quaternary ammonium salt.
- the preparation method is as follows: prepare a dispersion of montmorillonite nanosheets-N,N-dimethylformamide modified by octadecyl trimethyl quaternary ammonium salt with a concentration of 35 mg/mL, and prepare the dispersion in a nitrogen environment at normal temperature and pressure. Next, the nanosheet dispersion was spin-coated on the light-emitting layer 30, and then heat-treated at a constant temperature of 120° C. for 30 minutes to obtain an electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode. Compared with the quantum dot electroluminescent diode of embodiment 1, the difference between the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 includes The two-dimensional montmorillonite nanosheets are N-vinylpyrrolidone modified montmorillonite nanosheets.
- the preparation method is as follows: prepare N-vinylpyrrolidone-modified montmorillonite nanosheet-N,N-dimethylformamide dispersion liquid with a concentration of 35 mg/mL, and in the light-emitting layer under a nitrogen environment at normal temperature and pressure, The nanosheet dispersion was spin-coated on 30° C., and then heat-treated at a constant temperature of 120° C. for 30 minutes to obtain an electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference between the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 includes
- the two-dimensional montmorillonite nanosheets are vinyltriethoxysilane-modified montmorillonite nanosheets.
- the preparation method is as follows: prepare a dispersion of montmorillonite nanosheets-N,N-dimethylformamide modified by vinyltriethoxysilane with a concentration of 35 mg/mL, and in a nitrogen environment at normal temperature and pressure, in The nanosheet dispersion was spin-coated on the luminescent layer 30 , and then heat-treated at a constant temperature of 120° C. for 30 minutes to obtain the electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference of the quantum dot electroluminescent diode of this embodiment is that the electronic functional layer 10 electrons
- the material of the functional layer is a composite material including calcium-based two-dimensional montmorillonite nanosheets and PMMA polymer.
- the preparation method is as follows: prepare a mixed solution of PMMA and montmorillonite nanosheets-N,N-dimethylformamide at a concentration of 35 mg/mL, and spin-coat the nanosheets on the light-emitting layer 30 under a nitrogen environment at normal temperature and pressure. The sheet dispersion liquid was then heat-treated at a constant temperature of 120° C. for 30 minutes to obtain an electronic functional layer 10 with a thickness of 15 nm.
- This embodiment provides a quantum dot electroluminescent diode. Compared with the quantum dot electroluminescent diode of embodiment 1, the difference of the quantum dot electroluminescent diode of this embodiment is only: the thickness of the electronic functional layer 10 5nm.
- This embodiment provides a quantum dot electroluminescent diode. Compared with the quantum dot electroluminescent diode of embodiment 1, the difference of the quantum dot electroluminescent diode of this embodiment is only: the thickness of the electronic functional layer 10 50nm.
- This embodiment provides a quantum dot electroluminescent diode.
- the difference of the quantum dot electroluminescent diode of this embodiment is only that: in the light emitting layer 30 and The electron functional layer 10 is not included between the electron transport layers 70 .
- the preparation method does not include the preparation process of the electronic functional layer 10 , and the electron transport layer 70 is directly formed on the light emitting layer 30 .
- the quantum dot electroluminescence diode of embodiment 1 to embodiment 9 and comparative ratio is carried out performance detection by silicon photoelectricity test instrument and imaging luminance meter, and the project of performance test is: external quantum efficiency (EQE, %), electroluminescence (EL) uniformity and the time required for the brightness of the quantum dot electroluminescent diode to decay from 100% to 95% at 1000 nits (T95@1000 nits, h), the performance test results are shown in Table 1 below.
- the performance of the quantum dot electroluminescent diodes in Examples 1 to 9 has obvious advantage.
- the EQE of the quantum dot light-emitting diode can reach 18.1% to 23.8%
- the EL uniformity can reach 92.1% to 99.2%
- the T95@1000nits can reach 8000h to 14500h.
- the overall luminous efficiency of the device Compared with the comparative example, many aspects such as the uniformity of light emission and the lifetime of the device are significantly improved.
- the electronic functional layers of the light emitting diodes in embodiment 1, embodiment 8 and embodiment 9 include calcium-based two-dimensional montmorillonite nanosheets, and the electronic functional layers of the light emitting diodes in embodiment 2 to embodiment 6 respectively include acid Modified two-dimensional montmorillonite nanosheets obtained by modifying calcium-based two-dimensional montmorillonite nanosheets in various ways such as modification and inorganic salt modification.
- the electronic functional layer of the light-emitting diode in Example 7 is composed of calcium The composite material based on two-dimensional montmorillonite nanosheets and PMMA polymer can improve the external quantum efficiency, luminous uniformity and lifetime of light-emitting diodes.
- the quantum dot electroluminescent diode including the electronic functional layer of the present application can improve the charge injection balance of the device to improve the luminous efficiency, and induce the conduction of the charge along the extension direction of the interface, and uniformly transport the charge to the light-emitting layer along the surface direction, avoiding The charge is locally accumulated, thereby improving the uniformity of light emission and the lifetime of the device, wherein the material of the electronic functional layer includes two-dimensional montmorillonite nanosheets.
- the electronic functional layers of the light-emitting diodes in Example 1, Example 8 and Example 9 all include calcium-based two-dimensional montmorillonite nanosheets, and the thicknesses of the electronic functional layers are 15nm, 5nm and 50nm respectively, and the EL uniformity of the light-emitting device At the same level, it shows that the thickness of the electronic functional layer has little influence on the uniformity of light emission when the thickness of the electronic functional layer satisfies the uniform conductance anisotropy everywhere.
- the increase in the thickness of the electronic functional layer may have a certain negative impact on the EQE and life of the device.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Luminescent Compositions (AREA)
Abstract
本申请公开一种光电器件及其制备方法、显示装置。本申请的光电器件,包括层叠设置的阳极、发光层、电子功能层和阴极;其中,电子功能层的材料包括具有各向异性导电的特性的二维蒙脱土纳米片,使电子功能层在垂直于膜层具有较大禁带宽度而在膜层沿面方向具有良好的导电性,从而提高器件电荷注入平衡和发光均匀性。
Description
本申请要求于2021年11月04日在中国专利局提交的、申请号为202111302002.2、申请名称为“一种光电器件及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,尤其涉及一种光电器件及其制备方法、显示装置。
QLED(Quantum-Dot Light Emitting Diode)是基于量子点技术的电致发光二极管,具有自发光、无需背光模组、视角宽、对比度高、全固化、适用于挠曲性面板、温度特性好、响应速度快和节能环保等一系列优异特性,已经成为新型显示技术的研究热点和重点发展方向。QLED为薄膜叠层器件结构,通常由阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层、阴极构成。其中,常用的空穴注入层、空穴传输层、发光层、电子传输层等材料为有机小分子材料或无机纳米材料,非常适合通过溶液法沉积薄膜。因此,基于柔性、大尺寸、降低成本等因素考量,喷墨打印等溶液法正逐渐成为QLED显示技术进行量产开发的新型制造技术。
但是,溶液法制备QLED面临诸多问题亟待解决,比较典型的问题是器件性能一致性、器件老化稳定性等。器件性能一致性问题主要体现为发光不均匀,其本质上是由于薄膜厚度不均匀、薄膜表面缺陷(针孔、团聚等)、薄膜应力释放、薄膜间的粘合程度以及材料本身均一性等因素导致的薄膜各区域导电性差异,即电流优先从薄膜面内电阻低的区域通过而造成该区域发光亮度高于其他区域。目前,技术开发主要聚焦于通过材料稳定性提升、墨水工艺优化等来提高成膜质量,进而提高器件发光均匀性。关于器件老化稳定性,从QLED器件本身的角度,诸多研究总结指出,器件寿命退化主要源于空穴功能层退化、界面电荷聚集、电子功能层表面缺陷态抑制或电荷迁移率改变等因素,而电荷 注入不平衡则是引起上述因素的重要原因之一。
器件的发光不均匀以及电荷注入不平衡,影响了器件的性能一致性以及器件老化稳定性等。
因此,本申请提供一种光电器件及其制备方法、显示装置。
本申请实施例提供光电器件,包括层叠设置的阳极、发光层、电子功能层和阴极;其中,所述电子功能层的材料包括二维蒙脱土纳米片。
可选的,在本申请的一些实施例中,所述电子功能层的材料为所述二维蒙脱土纳米片。
可选的,在本申请的一些实施例中,所述二维蒙脱土纳米片选自钙基二维蒙脱土纳米片、钠基二维蒙脱土纳米片、钠-钙基二维蒙脱土纳米片、镁基二维蒙脱土纳米片中的一种或多种。
可选的,在本申请的一些实施例中,所述二维蒙脱土纳米片包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,所述无机改性包括使用无机酸、无机盐中的一种或多种进行改性;所述有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的一种或多种进行改性。
可选的,在本申请的一些实施例中,述无机酸选自硫酸、盐酸、硝酸、磷酸中的一种或多种;所述有机酸选自羧酸、磺酸、亚磺酸、硫羧酸中的一种或多种;所述无机盐选自铝、镁、锌、铜、钠的卤盐、硝酸盐、硫酸盐、磷酸盐、羧酸盐、磺酸盐、亚磺酸盐、硫羧酸盐中的一种或多种;所述表面活性剂选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或多种;
所述聚合物单体选自甲基丙烯酸甲酯、N-乙烯基吡咯烷酮、吡咯、对苯二甲酸乙二醇酯、萘二甲酸乙二醇酯中的一种或多种;所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂、聚氨酯偶联剂中的一种或多种。
可选的,在本申请的一些实施例中,所述电子功能层的材料为包括所述二维蒙脱土纳米片与聚合物的复合材料;所述聚合物选自PMMA、PI、PAI、PE 中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料中,所述聚合物与所述二维蒙脱土纳米片的质量比大于0:1且小于等于5:1。
可选的,在本申请的一些实施例中,所述阳极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO
2/Ag/TiO
2以及TiO
2/Al/TiO
2中的一种或多种;所述阴极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO
2/Ag/TiO
2以及TiO
2/Al/TiO
2中的一种或多种;所述发光层的材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、 SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS
2、CuInSe
2及AgInS
2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种;所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、有机钙钛矿半导体或有机-无机杂化钙钛矿型半导体;所述无机钙钛矿型半导体的结构通式为AMX
3,其中A为Cs
+离子,M为二价金属阳离子,选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的一种或多种;所述有机钙钛矿半导体的结构通式为CMX
3,其中,C为甲脒基,M为二价金属阳离子,M选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+或Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-或I
-中的一种或多种;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX
3,其中B为有机胺阳离子,选自CH
3(CH
2)
n-2NH
3
+或[NH
3(CH
2)
nNH
3]
2+,其中n≥2,M为二价金属阳离子,选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的一种或多种。
可选的,在本申请的一些实施例中,所述光电器件还包括空穴传输层,所述空穴传输层位于所述阳极与所述发光层之间;所述光电器件还包括空穴注入层,所述空穴注入层位于所述阳极面向阴极一侧的表面。
可选的,在本申请的一些实施例中,所述光电器件还包括电子传输层,所述电子传输层位于所述电子功能层与所述阴极之间。
可选的,在本申请的一些实施例中,所述光电器件还包括电子注入层,所述电子注入层位于所述阴极面向阳极一侧的表面。
可选的,在本申请的一些实施例中,所述电子功能层的厚度为1nm-50nm。
相应的,本申请实施例还提供一种光电器件的制备方法,包括:提供第一电极;形成发光层,所述发光层形成在所述第一电极上;形成第二电极,所述第二电极形成在所述发光层上;所述制备方法还包括:通过溶液法设置包括二维蒙脱土纳米片的溶液,得到电子功能层,所述电子功能层与所述发光层的叠层设置于所述第一电极和第二电极之间。
可选的,在本申请的一些实施例中,所述第一电极为阳极,所述第二电极为阴极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成第二电极之前进行,且包括:通过溶液法在所述发光层上设置所述包括二维蒙脱土纳米片的溶液。
可选的,在本申请的一些实施例中,所述第一电极为阴极,所述第二电极为阳极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成发光层之前进行,且包括:通过溶液法在所述第一电极上设置所述包括二维蒙脱土纳米片的溶液。
可选的,在本申请的一些实施例中,所述二维蒙脱土纳米片包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,所述无机改性包括使用无机酸、无机盐中的一种或多种进行改性;所述有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的一种或多种进行改性。
可选的,在本申请的一些实施例中,所述包括二维蒙脱土纳米片的溶液为包括所述二维蒙脱土纳米片与聚合物的复合材料的溶液,所述聚合物选自PMMA、PI、PAI、PE中的一种或多种。
可选的,在本申请的一些实施例中,所述复合材料中,所述聚合物与所述二维蒙脱土纳米片的质量比大于0:1且小于等于5:1。
可选的,在本申请的一些实施例中,所述第一电极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选 自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO
2/Ag/TiO
2以及TiO
2/Al/TiO
2中的一种或多种;所述第二电极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO
2/Ag/TiO
2以及TiO
2/Al/TiO
2中的一种或多种;所述发光层的材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS
2、CuInSe
2及AgInS
2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种; 所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、有机钙钛矿半导体或有机-无机杂化钙钛矿型半导体;所述无机钙钛矿型半导体的结构通式为AMX
3,其中A为Cs
+离子,M为二价金属阳离子,选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的一种或多种;所述有机钙钛矿半导体的结构通式为CMX
3,其中,C为甲脒基,M为二价金属阳离子,M选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+或Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-或I
-中的一种或多种;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX
3,其中B为有机胺阳离子,选自CH
3(CH
2)
n-2NH
3
+或[NH
3(CH
2)
nNH
3]
2+,其中n≥2,M为二价金属阳离子,选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的一种或多种。
相应的,本申请实施例还提供一种显示装置,所述显示装置包括上述的光电器件。
本申请的光电器件,包括层叠设置的阳极、发光层、电子功能层和阴极;其中,电子功能层的材料包括二维蒙脱土纳米片。其中,二维蒙脱土纳米片具有各向异性导电的特性,使电子功能层在垂直于膜层具有较大禁带宽度而在膜层沿面方向具有良好的导电性,一方面阻碍电荷穿过界面,起到电荷阻挡层作用,提高器件电荷注入平衡;另一方面,诱导电荷延界面延展方向导通,将电荷沿面方向均匀传输至发光层,避免电荷局部聚集,从而提高器件发光均匀性。
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种光电器件的结构示意图;
图2为本申请提供的一种光电器件的制备方法一实施例的流程示意图;
图3是本申请提供的光电器件的制备方法一具体实施例的流程示意图;
图4是本申请提供的光电器件的制备方法另一具体实施例的流程示意图。本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
本申请实施例提供一种空穴传输薄膜及其制备方法、光电器件。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。
在本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“至少一种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
请参阅图1,本申请实施例提供一种光电器件100,光电器件100包括依次层叠的阳极20、发光层30、电子功能层10及阴极40。
电子功能层10的材料包括二维蒙脱土纳米片。其中,蒙脱土 (Montmorillonite,MMT)是一种2:1型铝硅酸盐矿物,即两层硅氧四面体中间夹一层铝氧八面体,其晶体结构式为M
x(Al
2-xMg
x)[Si
4O
10](OH)
2。蒙脱土可通过机械剥离等方法制备为二维纳米片材料,二维纳米片材料具有优异的机械、光学以及电学性能。且二维蒙脱土纳米片还具有电导各向异性的特性,在垂直于面方向具有较大的禁带宽度(4-9eV),而在沿面方向却有较高的电导率(大于10
-3S/m)。
本实施例中,包括二维蒙脱土纳米片的电子功能层10一方面阻碍电荷穿过与发光层30连接的界面,起到电荷阻挡层作用,提高光电器件100电荷注入平衡;另一方面,诱导电荷延界面延展方向导通,将电荷沿面方向均匀传输至发光层30,避免电荷局部聚集,从而提高光电器件100发光均匀性。而提高光电器件100电荷注入平衡和发光均匀性也进一步提高了光电器件100性能一致性、老化稳定性和寿命。
可以理解的,电子功能层10的材料可以仅为二维蒙脱土纳米片,不包含其他材料。在其他实施例中,电子功能层10的材料除了包括二维蒙脱土纳米片之外,还可以包括其他材料,比如本领域已知的电子阻挡材料等。
在一个实施例中,电子功能层的材料为包括二维蒙脱土纳米片与聚合物的复合材料。其中,聚合物可以选自PMMA、PI、PAI、PE中的一种或多种。其中,二维蒙脱土纳米片定向排布在聚合物薄膜表面或内部,二维蒙脱土纳米片面方向与聚合物薄膜表面平行。聚合物在复合材料中作为二维蒙脱土纳米片的负载基体,调控拓宽功能层禁带宽度。进一步的,复合材料中聚合物与二维纳米片质量比大于0:1且小于等于5:1。复合材料中聚合物含量过多导致功能层导电性变差,不利于载流子迁移。
具体的,二维蒙脱土纳米片可以选自钙基二维蒙脱土纳米片、钠基二维蒙脱土纳米片、钠-钙基二维蒙脱土纳米片、镁基二维蒙脱土纳米片中的一种或多种。其中,钙基、钠基、钠-钙基、镁基是根据天然蒙脱土层间可交换阳离子的种类划分的。不同阳离子基的二维蒙脱土纳米片均具有较好的各向异性导电的特性,但其他方面的性质可能具有一些差异,比如钠基蒙脱土比钙基蒙脱土有更好的膨胀性、热稳定性等。
本实施例中的二维蒙脱土纳米片,可以为天然蒙脱土经过机械剥离等方法 制备得到的二维纳米片材料,也可以是对二维纳米片材料进行不同的改性处理得到的改性二维蒙脱土纳米片,以调控二维蒙脱土纳米片中阳离子浓度、导电性能和疏水性等性质,以提高通过溶液法制备包括二维蒙脱土纳米片的电子功能层10的可行性,以及提高电子功能层10的热稳定性和导电性。
在一实施例中,二维蒙脱土纳米片包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,无机改性包括使用无机酸、无机盐中的一种或多种进行改性;有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的一种或多种进行改性。不同改性方式对应的改性二维蒙脱土纳米片,可以通过市售直接购买获得,也可以通过本领域已知的改性方法制备得到。
具体的,使用无机酸或有机酸改性,即可以通过无机酸或有机酸对二维蒙脱土纳米片进行改性。其中,无机酸可以选自硫酸、盐酸、硝酸、磷酸中的一种或多种,有机酸改性中的有机酸选自羧酸、磺酸、亚磺酸、硫羧酸中的一种或多种。无机酸或有机酸改性使二维蒙脱土纳米片层间部分阳离子转变为酸的可溶性盐类而溶出,从而削弱了原来层间的结合力,提高层间距和热稳定性。
其中,使用无机盐进行改性的无机盐可以选自铝、镁、锌、铜、钠等的卤盐、硝酸盐、硫酸盐、磷酸盐、羧酸盐、磺酸盐、亚磺酸盐、硫羧酸盐中的一种或多种。无机盐改性能够对二维蒙脱土纳米片进行阳离子交换,相比于钙基、镁基、钠基二维蒙脱土纳米片,改性后的二维蒙脱土纳米片在溶液分散性、热稳定性和导电性等方面的性能更优,无机盐改性的能够二维蒙脱土纳米片能够提高溶液法制备电子功能层10的可行性以及电子功能层10的热稳定性和薄膜导电性。
其中,有机改性包括使用表面活性剂、聚合物单体、偶联剂中的一种或多种有机物对二维蒙脱土纳米片进行改性。由于蒙脱土中无机离子为疏油性,不利于其在聚合物基体中的分散,通过表面活性剂、聚合物单体或偶联剂等有机改性,旨在改变蒙脱土表面较大的极性,使蒙脱土层间由亲水性转变为亲油性,降低其表面能,同时使蒙脱土的层间距增大,有利于溶液法制备电子功能层10。
其中,表面活性剂可以选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或多种。聚合物单体可以选自甲基丙烯酸甲酯、N-乙烯基吡咯烷酮、吡咯、对苯二甲酸乙二醇酯、萘二甲酸乙二醇酯中的一种或多种。 聚合物单体不进行聚合,其作用与表面活性剂一致,且溶解性等性质对器件不会产生负面影响。其中,偶联剂可以选自硅烷偶联剂、钛酸酯偶联剂、聚氨酯偶联剂中的一种或多种。
在一个实施例中,电子功能层的厚度范围可以为1nm-50nm,比如厚度可以为5nm-50nm、5nm-40nm、10nm-40nm、20nm-40nm、20nm-30nm、5nm、10nm、20nm、50nm等。电子功能层厚度过厚可能会影响器件的导电性,厚度过小可能无法形成均匀的电子功能层,无法起到均匀的电导各向异性。
阳极20的材料为本领域已知用于阳极的材料,阴极40的材料为本领域已知用于阴极的材料。阳极20和阴极40可以各自独立地选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO
2/Ag/TiO
2、TiO
2/Al/TiO
2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO
2/Ag/TiO
2以及TiO
2/Al/TiO
2中的一种或多种。其中,“/”表示层叠结构,例如复合电极AZO/Ag/AZO表示AZO层、Ag层和AZO层组成的三层层叠设置的复合结构的电极。阳极20的厚度例如可以是10nm至100nm,比如10nm、30nm、40nm、50nm、60nm、80nm、100nm等;阴极40的厚度例如可以是15nm至100nm,比如15nm、30nm、40nm、50nm、60nm、80nm、100nm等。
发光层30可以为量子点发光层,此时光电器件100可以为量子点发光器件。发光层30的厚度可以为常规量子点发光器件中发光层的厚度范围,例如可以是10nm至60nm,比如10nm、15nm、20nm、25nm、30nm、40nm、50nm、60nm等,或者发光层30的厚度可以为10-25nm。
其中,量子点发光层的材料为本领域已知用于量子点发光层的量子点,例如,红色量子点、绿色量子点及蓝色量子点中的一种。
所述量子点可以选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的至少一种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合 物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS
2、CuInSe
2及AgInS
2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种。需要说明的是,对于前述单一结构量子点、或者核壳结构量子点的核的材料、或者核壳结构量子点的壳的材料,提供的化学式仅示明了元素组成,并未示明各个元素的含量,例如:CdZnSe仅表示由Cd、Zn和Se三种元素组成,若表示各个元素的含量,则对应为Cd
xZn
1-xSe,0<x<1。
所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、有机钙钛矿半导体或有机-无机杂化钙钛矿型半导体;所述无机钙钛矿型半导体的结构通式为AMX
3,其中A为Cs
+离子,M为二价金属阳离子,选自Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的一种或多种;所述有机钙钛矿半导体的结构通式为CMX
3,其中,C为甲脒基,M为二价金属阳离子,M包括但不限于是Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+或Eu
2+中的一种或多种,X为卤素阴离子,包括但不限于Cl
-、Br
-或I
-中 的一种或多种;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX
3,其中B为有机胺阳离子,包括但不限于是CH
3(CH
2)
n-2NH
3
+或[NH
3(CH
2)
nNH
3]
2+,其中n≥2,M为二价金属阳离子,包括但不限于是Pb
2+、Sn
2+、Cu
2+、Ni
2+、Cd
2+、Cr
2+、Mn
2+、Co
2+、Fe
2+、Ge
2+、Yb
2+、Eu
2+中的一种或多种,X为卤素阴离子,选自Cl
-、Br
-、I
-中的至少一种。
进一步参阅图1,在一实施例中,光电器件100还可以包括空穴传输层50,空穴传输层50位于阳极20与发光层30之间。空穴传输层50的材料可以选自具有空穴传输能力的有机材料,包括但不限于是聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N’-双(4-丁基苯基)-N,N’-双(苯基)联苯胺)(poly-TPD)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)(PFB)、4,4’,4”-三(咔唑-9-基)三苯胺(TCATA)、4,4’-二(9-咔唑)联苯(CBP)、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺(TPD)、N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、掺杂石墨烯、非掺杂石墨烯以及C60中的一种或多种。空穴传输层50的材料还可以选自具有空穴传输能力的无机材料,包括但不限于是掺杂或非掺杂的NiO、WO
3、MoO
3以及CuO中的一种或多种。空穴传输层50的厚度为常规空穴传输层的厚度,例如可以是10nm至100nm,比如10nm、20nm、30nm、40nm、50nm、60nm、100nm等。或者,空穴传输层50的厚度范围可以为20-60nm。
进一步的,在一个实施例中,光电器件100还可以包括空穴注入层60,空穴注入层60位于阳极20面向阴极40一侧的表面。当光电器件100包括空穴注入层60和空穴传输层50时,空穴注入层60位于阳极20和空穴传输层50之间;而当光电器件100包括空穴注入层60而不包括空穴传输层50时,空穴注入层60位于阳极20和发光层30之间。以上两种不同情况下,空穴注入层60均位于阳极20面向阴极40一侧的表面,与阳极20接触连接。
空穴注入层60的材料为本领域已知用于空穴注入层的材料,空穴注入层60的材料可以选自具有空穴注入能力的材料,包括但不限于是聚(3,4-亚乙二氧基噻吩)(PEDOT)、聚(3,4-亚乙二氧基噻吩)-聚苯乙烯磺酸(PEDOT:PSS)、2,3,5,6-四氟-7,7',8,8'-四氰醌-二甲烷(F4-TCNQ)、2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HATCN)、聚酯碳酸铜(CuPc)、过渡金属氧化物、过渡金属硫 系化合物中的一种或多种。空穴注入层60的厚度可以为常规空穴注入层的厚度,例如可以是20nm至80nm,比如20nm至70nm、20至60nm、30nm至70nm、30nm至60nm、40nm至60nm、40nm至50nm、20nm、30nm、40nm、50nm、60nm、80nm等。在一具体实施例中,空穴注入层60的厚度范围为20nm至60nm。
进一步的,在一个实施例中,光电器件100还可以包括电子传输层70,电子传输层70位于电子功能层10与阴极40之间。电子传输层70的材料可以为本领域已知用于电子传输层的材料。例如,可以选自但不限于无机纳米晶材料、掺杂无机纳米晶材料、有机材料中的一种或多种。无机纳米晶材料可以包括:ZnO、NiO、W
2O
3、Mo
2O
3、TiO
2、SnO、ZrO
2、Ta
2O
3、Ga
2O
3、SiO
2、Al
2O
3、CaO中的一种或多种,掺杂无机纳米晶材料包括氧化锌掺杂物、二氧化钛掺杂物、二氧化锡掺杂物的一种或多种,其中,掺杂无机纳米晶材料为掺杂其他元素的无机材料,掺杂元素选自于Mg、Ca、Li、Ga、Al、Co、Mn等;有机材料可以包括聚甲基丙烯酸甲酯、聚乙烯醇缩丁醛中的一种或两种。电子传输层70的厚度可以为常规电子传输层的厚度,例如可以是20nm至60nm,比如20nm至50nm、30nm至50nm、30nm至40nm、20nm、30nm、40nm、50nm、60nm等。在一具体实施例中,电子传输层70的厚度范围可以为25至60nm。
进一步的,在一个实施例中,光电器件100还可以包括电子注入层80,电子注入层80位于电子功能层10与阴极40之间。进一步的,电子注入层80的一侧表面与阴极40面向阳极20一侧的表面连接。在光电器件100包括电子传输层70和电子注入层80时,电子注入层80位于阴极40与电子传输层70之间,即电子注入层80靠近阴极40一侧设置,而电子传输层70靠近电子功能层10一侧设置。电子注入层80的材料可以为本领域已知用于电子注入层的材料。例如,可以选自但不限于LiF、MgP、MgF
2、Al
2O
3、Ga
2O
3、ZnO、Cs
2CO
3、RbBr、Rb
2CO
3、LiF/Yb。电子注入层80的厚度可以为常规电子注入层的厚度,例如可以是10nm至30nm,比如10nm至25nm、15nm至25nm、15nm至20nm、10nm、20nm、30nm等。
可以理解,光电器件100除上述各功能层外,还可以增设一些常规用于光电器件的有助于提升光电器件性能的功能层,例如空穴阻挡层、界面修饰层等。
可以理解,光电器件100的各层的材料以及厚度等,可以依据光电器件100 的发光需求进行调整。
在本申请的一些实施例中,光电器件100为量子点发光二极管,光电器件100可以是正置型结构的量子点发光二极管,也可以是倒置型结构的量子点发光二极管。正置型结构的量子点发光二极管的衬底与阳极连接,倒置型结构的量子点发光二极管的衬底与阴极连接。
本申请实施例还提供一种显示装置,包括本申请提供的光电器件。显示装置可以为任何具有显示功能的电子产品,电子产品包括但不限于是智能手机、平板电脑、笔记本电脑、数码相机、数码摄像机、智能可穿戴设备、智能称重电子秤、车载显示器、电视机或电子书阅读器,其中,智能可穿戴设备例如可以是智能手环、智能手表、虚拟现实(Virtual Reality,VR)头盔等。
请参阅图2,图2为本申请提供的一种光电器件的制备方法一实施例的流程示意图,具体包括如下步骤:
步骤S11:提供第一电极;
步骤S12:形成发光层,所述发光层形成在所述第一电极上;
步骤S13:形成第二电极,所述第二电极形成在所述发光层上;
所述制备方法还包括:通过溶液法设置包括二维蒙脱土纳米片的溶液,得到电子功能层,所述电子功能层与所述发光层的叠层设置于所述第一电极和第二电极之间。
本实施例中,第一电极和第二电极为一对电极。所述第一电极为阳极,则所述第二电极为阴极。所述第一电极为阴极,则所述第二电极为阳极。
在一实施例中,所述第一电极为阳极,所述第二电极为阴极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成第二电极之前进行,且包括:通过溶液法在所述发光层上设置所述包括二维蒙脱土纳米片的溶液。具体的,请参阅图3,图3是本申请提供的光电器件的制备方法一具体实施例的流程示意图。
在另一实施例中,所述第一电极为阴极,所述第二电极为阳极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成发光层之前进行,且包括:通过溶液法在所述第一电极上设置所述包括二维蒙脱土纳米片的溶液。具体的,参阅图4,图4是本申请提供的光电器件的制备方法另一具体实施例的流 程示意图。
在一具体实施例中,请参阅图3,本申请实施例提供一种光电器件的制备方法,光电器件为正置型量子点发光二极管,具体包括如下步骤:
步骤S21:提供基板,在基板上依次形成阳极和发光层。
步骤S22:通过溶液法在发光层上设置包括二维蒙脱土纳米片的溶液,得到电子功能层。
步骤S23:在电子功能层上形成阴极。
进一步地,步骤S22中二维蒙脱土纳米片,可以通过市售购买得到,也可以通过常用方法制备得到。二维蒙脱土纳米片的制备方法可以为:提供块体蒙脱土,通过机械剥离法或球磨法得到二维蒙脱土纳米片初产物,利用N,N-二甲基甲酰胺、N-甲基吡咯烷酮、丙酮或乙醚等有机溶剂对其初产物进行溶解分散,进行初步过滤,得到滤液为二维蒙脱土纳米片分散液初液;超声处理分散液初液,并再次过滤,得到二维蒙脱土纳米片。第一次过滤处理的过滤网孔较大,是为了过滤去除较大的未剥离的固体,第二次过滤的过滤网孔较小,去除滤液,得到的滤饼为尺寸相对均一且纯度较高的二维蒙脱土纳米片。进一步的,还可以对此得到的二维蒙脱土纳米片进行酸改性、无机盐改性或有机改性等改性方式处理得到的二维蒙脱土纳米片。而改性的方法可以为常规改性方法,此处不进行限定。
可以理解,在光电器件还包括空穴传输层和/或空穴注入层时,步骤S21为:提供基板,在基板上依次形成阳极、空穴注入层和/或空穴传输层、发光层。在光电器件还包括电子传输层和/或电子注入层时,步骤S23为:在电子功能层上依次形成电子传输层和/或电子注入层、阴极。
具体的,步骤S1和步骤S23中,形成阳极、发光层、阴极、空穴传输层、空穴注入层、电子传输层和电子注入层的方法,可采用本领域常规技术实现,包括但不限于是溶液法和沉积法,其中,溶液法包括但不限于是旋涂、涂布、喷墨打印、刮涂、浸渍提拉、浸泡、喷涂、滚涂或浇铸;沉积法包括化学法和物理法,化学法包括但不限于是化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法或共沉淀法。物理法包括但不限于是热蒸发镀膜法、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法、原子层 沉积法或脉冲激光沉积法。当采用溶液法制备包括电子功能层10在内的各层结构时,需增设干燥处理工序。其中,干燥处理,可以为退火工艺处理。其中,“退火工艺”包括所有能使湿膜获得更高能量,从而由湿膜状态转变为干燥状态的处理工艺,例如“退火工艺”可以仅指热处理工艺,即将湿膜加热至特定温度,然后保持特定时间以使湿膜中的溶剂充分挥发;又如“退火工艺”还可以包括依序进行的热处理工艺和冷却工艺,即将湿膜加热至特定温度,然后保持特定时间以使第一湿膜中的溶剂充分挥发,再以适宜的速度冷却以消除残余应力而减少干燥的空穴传输薄膜发生层变形与裂纹的风险。
其中,阳极、发光层、阴极、空穴传输层、空穴注入层、电子传输层和电子注入层各层的材料,可以参考上文中的相关描述,此处不进行赘述。
在另一具体实施例中,请参阅图4,本申请实施例提供另一种光电器件的制备方法,光电器件为倒置型量子点发光二极管,具体包括如下步骤:
步骤S31:提供基板,在基板上形成阴极。
步骤S32:通过溶液法在阴极上设置包括二维蒙脱土纳米片的溶液,得到电子功能层。
步骤S33:在电子功能层上依次形成发光层及阳极。
可以理解,在光电器件还包括空穴传输层和/或空穴注入层时,步骤S33为:在电子功能层上依次形成发光层、空穴传输层和/或空穴注入层、阳极。在光电器件还包括电子传输层和/或电子注入层时,步骤S31为:提供基板,在基板上形成阴极在电子功能层上依次形成电子传输层和/或电子注入层、阴极。
本实施例中形成阳极、发光层、阴极、空穴传输层、空穴注入层、电子传输层和电子注入层的方法可以参阅上一实施例中的相关描述,此处不进行赘述。
可以理解,在光电器件还包括电子阻挡层、空穴阻挡层和/或界面修饰层等其它功能层时,所述光电器件的制备方法还包括形成所述各功能层的步骤。
可以理解的是,光电器件的制备方法还可以包括封装步骤,封装材料可以是丙烯酸树脂或环氧树脂,封装可以是机器封装或手动封装,可以采用紫外固化胶封,进行封装步骤的环境中氧气和水的浓度均低于0.1ppm,以保证光电 器件的稳定性。
需要说明的是,本实施例中电子功能层的制备方法中使用的包括二维蒙脱土纳米片的溶液,其中的二维蒙脱土纳米片可以包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,无机改性包括使用无机酸、无机盐中的至少一种进行改性;有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的至少一种进行改性。另外,制备包括二维蒙脱土纳米片的溶液也可以为包括二维蒙脱土纳米片与聚合物的复合材料的溶液,从而形成的电子功能层10中包括二维蒙脱土纳米片与聚合物的复合材料。其中,聚合物选自PMMA、PI、PAI、PE中的至少一种。其中,改性二维蒙脱土纳米片以及二维蒙脱土纳米片与聚合物的复合材料的具体描述可以参考上文中的相关描述,此处不进行赘述。
下面通过具体实施例、对比例和实验例对本申请的技术方案及技术效果进行详细说明,以下实施例仅仅是本申请的部分实施例,并非对本申请作出具体限定。
实施例1
本实施例提供一种量子点电致发光二极管,为正置型结构,其制备方法包括如下步骤:
提供ITO基板,衬底玻璃厚度为0.55mm,ITO厚度为50nm,将ITO基板清洗干净并烘干后,紫外臭氧处理15min,以作为阳极20和衬底。
在常温常压的大气环境下,在ITO基板的一侧旋涂PEDOT溶液,然后置于150℃下恒温热处理15min,得到空穴注入层60,其厚度为35nm。
在常温常压的氮气环境下,在空穴注入层60上旋涂浓度为9mg/mL的TFB-氯苯溶液,然后置于150℃下恒温热处理30min,得到空穴传输层50,其厚度为40nm。
在常温常压的氮气环境下,在空穴传输层50上旋涂浓度为10mg/mL的绿色量子点CdSe/ZnS-正辛烷溶液,然后置于80℃下恒温热处理10min,得到发光层30,其厚度为15nm。
准备浓度为35mg/mL的钙基蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃ 下恒温热处理30min,得到电子功能层10,其厚度为15nm。
在常温常压的氮气环境下,在电子功能层10上旋涂浓度为30mg/mL的纳米氧化锌-乙醇溶液,然后置于80℃下热处理30min,得到电子传输层70,其厚度为40nm。
采用真空蒸镀法在电子传输层70上沉积银Ag,得到阴极40,厚度为50nm。
封装得到正置量子点电致发光二极管。
实施例2
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10包括的二维蒙脱土纳米片为经乙酸改性的蒙脱土纳米片。其制备方法为:准备浓度为35mg/mL的经乙酸改性的蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例3
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10包括的二维蒙脱土纳米片为NaCl改性的蒙脱土纳米片。其制备方法为:准备浓度为35mg/mL的NaCl改性的蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例4
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10包括的二维蒙脱土纳米片为十八烷基三甲基季铵盐改性的蒙脱土纳米片。其制备方法为:准备浓度为35mg/mL的十八烷基三甲基季铵盐改性的蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例5
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10包括的二维蒙脱土纳米片为N-乙烯基吡咯烷酮改性的蒙脱土纳米片。其制备方法为:准备浓度为35mg/mL的N-乙烯基吡咯烷酮改性的蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例6
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10包括的二维蒙脱土纳米片为乙烯基三乙氧基硅烷改性的蒙脱土纳米片。其制备方法为:准备浓度为35mg/mL的乙烯基三乙氧基硅烷改性的蒙脱土纳米片-N,N-二甲基甲酰胺分散液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例7
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10电子功能层的材料为包括钙基二维蒙脱土纳米片与PMMA聚合物的复合材料。其制备方法为:准备浓度为35mg/mL的PMMA与蒙脱土纳米片-N,N-二甲基甲酰胺混合溶液,在常温常压的氮气环境下,在发光层30上旋涂此纳米片分散液,然后置于120℃下恒温热处理30min,得到电子功能层10,其厚度为15nm。
实施例8
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10厚度为5nm。
实施例9
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电 致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:电子功能层10厚度为50nm。
对比例
本实施例提供了一种量子点电致发光二极管,相较于实施例1的量子点电致发光二极管,本实施例的量子点电致发光二极管的区别之处仅在于:在发光层30和电子传输层70之间不包括电子功能层10。其制备方法中也相应不包括电子功能层10的制备过程,直接在发光层30上形成电子传输层70。
通过硅光电测试仪器和成像亮度计对实施例1至实施例9以及对比例的量子点电致发光二极管进行性能检测,性能测试的项目为:外量子效率(EQE,%)、电致发光(EL)均匀性以及在量子点电致发光二极管在1000nits下亮度由100%衰减至95%所需的时间(T95@1000nits,h),性能测试结果详见下表1。
表1:
EQE(%) | EL均匀性(%) | T95@1000nits(h) | |
对比例 | 11.2 | 85.1 | 4500 |
实施例1 | 19.6 | 94.3 | 9000 |
实施例2 | 20.7 | 92.1 | 8000 |
实施例3 | 23.5 | 94.3 | 12000 |
实施例4 | 19.8 | 94.8 | 9600 |
实施例5 | 20.7 | 96.5 | 13000 |
实施例6 | 22.6 | 97.6 | 12500 |
实施例7 | 21.6 | 96.9 | 14000 |
实施例8 | 23.8 | 98.9 | 14500 |
实施例9 | 18.1 | 99.2 | 8500 |
由表1可知,相较于对比例EQE为11.2%、EL均匀性为85.1%、T95为4500h的量子点电致发光二极管,实施例1至实施例9的量子点电致发光二极管的性能具有明显优势。实施例1至实施例9中,量子点发光二极管的EQE可达18.1%至23.8%,EL均匀性可达92.1%至99.2%,T95@1000nits可达8000h至14500h,在 器件整体的发光效率、发光均匀性以及器件寿命等多个方面相对于对比例而言均显著提高。
实施例1、实施例8和实施例9中发光二极管的电子功能层中包括钙基二维蒙脱土纳米片,实施例2至实施例6中的发光二极管的电子功能层中分别包括的酸改性、无机盐改性等多种不同方式对钙基二维蒙脱土纳米片进行改性得到的改性二维蒙脱土纳米片,实施例7中发光二极管的电子功能层为包括钙基二维蒙脱土纳米片与PMMA聚合物的复合材料,均能够提高发光二极管的外量子效率、发光均匀性和寿命。因此,可以说明本申请的包括电子功能层的量子点电致发光二极管能够提高器件电荷注入平衡从而提高发光效率、以及诱导电荷延界面延展方向导通,将电荷沿面方向均匀传输至发光层,避免电荷局部聚集,从而提高器件发光均匀性和器件寿命,其中,电子功能层的材料包括二维蒙脱土纳米片。
实施例1、实施例8和实施例9中发光二极管的电子功能层中均包括钙基二维蒙脱土纳米片,电子功能层的厚度分别为15nm、5nm和50nm,发光器件的EL均匀性处在同一水平,说明电子功能层厚度在满足各处具备均匀电导各向异性的情况下,厚度的变化对发光均匀性的影响较小。而电子功能层厚度增大,可能会对器件EQE和寿命产生一定的负面影响。
以上对本申请实施例所提供的光电器件及其制备方法、显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (18)
- 一种光电器件,其中,包括层叠设置的阳极、发光层、电子功能层和阴极;其中,所述电子功能层的材料包括二维蒙脱土纳米片。
- 根据权利要求1所述的光电器件,其中,所述电子功能层的材料为所述二维蒙脱土纳米片。
- 根据权利要求1或2所述的光电器件,其中,所述二维蒙脱土纳米片选自钙基二维蒙脱土纳米片、钠基二维蒙脱土纳米片、钠-钙基二维蒙脱土纳米片、镁基二维蒙脱土纳米片中的一种或多种。
- 根据权利要求1或2所述的光电器件,其中,所述二维蒙脱土纳米片包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,所述无机改性包括使用无机酸、无机盐中的一种或多种进行改性;所述有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的一种或多种进行改性。
- 根据权利要求4所述的光电器件,其中,所述无机酸选自硫酸、盐酸、硝酸、磷酸中的一种或多种;所述有机酸选自羧酸、磺酸、亚磺酸、硫羧酸中的一种或多种;所述无机盐选自铝、镁、锌、铜、钠的卤盐、硝酸盐、硫酸盐、磷酸盐、羧酸盐、磺酸盐、亚磺酸盐、硫羧酸盐中的一种或多种;所述表面活性剂选自阳离子表面活性剂、阴离子表面活性剂和非离子表面活性剂中的一种或多种;所述聚合物单体选自甲基丙烯酸甲酯、N-乙烯基吡咯烷酮、吡咯、对苯二甲酸乙二醇酯、萘二甲酸乙二醇酯中的一种或多种;所述偶联剂选自硅烷偶联剂、钛酸酯偶联剂、聚氨酯偶联剂中的一种或多种。
- 根据权利要求1所述的光电器件,其中,所述电子功能层的材料为包括所述二维蒙脱土纳米片与聚合物的复合材料;所述聚合物选自PMMA、PI、PAI、PE中的一种或多种。
- 根据权利要求6所述的光电器件,其中,所述复合材料中,所述聚合物与所述二维蒙脱土纳米片的质量比大于0:1且小于等于5:1。
- 根据权利要求1所述的光电器件,其中,所述阳极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种;所述阴极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种;所述发光层的材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、 PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种;所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、有机钙钛矿半导体或有机-无机杂化钙钛矿型半导体;所述无机钙钛矿型半导体的结构通式为AMX 3,其中A为Cs +离子,M为二价金属阳离子,选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -、I -中的一种或多种;所述有机钙钛矿半导体的结构通式为CMX 3,其中,C为甲脒基,M为二价金属阳离子,M选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+或Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -或I -中的一种或多种;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中B为有机胺阳离子,选自CH 3(CH 2) n-2NH 3 +或[NH 3(CH 2) nNH 3] 2+,其中n≥2,M为二价金属阳离子,选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -、I -中的一种或多种。
- 根据权利要求1所述的光电器件,其中,所述光电器件还包括空穴传输层,所述空穴传输层位于所述阳极与所述发光层之间;所述光电器件还包括空穴注入层,所述空穴注入层位于所述阳极面向阴极一侧的表面;所述光电器件还包括电子传输层,所述电子传输层位于所述电子功能层与所述阴极之间;所述光电器件还包括电子注入层,所述电子注入层位于所述阴极面向阳极一侧的表面。
- 根据权利要求1所述的光电器件,其中,所述电子功能层的厚度为 1nm-50nm。
- 一种光电器件的制备方法,其中,包括:提供第一电极;形成发光层,所述发光层形成在所述第一电极上;形成第二电极,所述第二电极形成在所述发光层上;所述制备方法还包括:通过溶液法设置包括二维蒙脱土纳米片的溶液,得到电子功能层,所述电子功能层与所述发光层的叠层设置于所述第一电极和第二电极之间。
- 根据权利要求11所述的制备方法,其中,所述第一电极为阳极,所述第二电极为阴极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成第二电极之前进行,且包括:通过溶液法在所述发光层上设置所述包括二维蒙脱土纳米片的溶液。
- 根据权利要求11所述的制备方法,其中,所述第一电极为阴极,所述第二电极为阳极,所述通过溶液法设置包括二维蒙脱土纳米片的溶液在所述形成发光层之前进行,且包括:通过溶液法在所述第一电极上设置所述包括二维蒙脱土纳米片的溶液。
- 根据权利要求11所述的制备方法,其中,所述二维蒙脱土纳米片包括无机改性或有机改性得到的二维蒙脱土纳米片;其中,所述无机改性包括使用无机酸、无机盐中的一种或多种进行改性;所述有机改性包括使用有机酸、表面活性剂、聚合物单体、偶联剂中的一种或多种进行改性。
- 根据权利要求11所述的制备方法,其中,所述包括二维蒙脱土纳米片的溶液为包括所述二维蒙脱土纳米片与聚合物的复合材料的溶液,所述聚合物选自PMMA、PI、PAI、PE中的一种或多种。
- 根据权利要求15所述的制备方法,其中,所述复合材料中,所述聚合物与所述二维蒙脱土纳米片的质量比大于0:1且小于等于5:1。
- 根据权利要求11所述的制备方法,其中,所述第一电极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳 纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种;所述第二电极选自金属电极、硅碳电极、掺杂或非掺杂金属氧化物电极以及复合电极中的一种或多种;其中,所述金属电极的材料选自Al、Ag、Cu、Mo、Au、Ba、Ca以及Mg中的一种或多种;所述硅碳电极的材料选自硅、石墨、碳纳米管、石墨烯以及碳纤维中的一种或多种;所述掺杂或非掺杂金属氧化物电极的材料选自ITO、FTO、ATO、AZO、GZO、IZO、MZO以及AMO中的一种或多种;所述复合电极的材料选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2以及TiO 2/Al/TiO 2中的一种或多种;所述发光层的材料选自单一结构量子点、核壳结构量子点及钙钛矿型半导体材料中的一种或多种,所述单一结构量子点选自II-VI族化合物、IV-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe及HgZnSTe中的一种或多种,所述IV-VI族化合物选自SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe中的一种或多种,所述III-V族化合物选自GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs及InAlPSb中的 一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述核壳结构的量子点的核选自上述单一结构量子点中的任意一种,所述核壳结构的量子点的壳层材料选自CdS、CdTe、CdSeTe、CdZnSe、CdZnS、CdSeS、ZnSe、ZnSeS和ZnS中的一种或多种;所述钙钛矿型半导体材料选自掺杂或非掺杂的无机钙钛矿型半导体、有机钙钛矿半导体或有机-无机杂化钙钛矿型半导体;所述无机钙钛矿型半导体的结构通式为AMX 3,其中A为Cs +离子,M为二价金属阳离子,选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -、I -中的一种或多种;所述有机钙钛矿半导体的结构通式为CMX 3,其中,C为甲脒基,M为二价金属阳离子,M选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+或Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -或I -中的一种或多种;所述有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中B为有机胺阳离子,选自CH 3(CH 2) n-2NH 3 +或[NH 3(CH 2) nNH 3] 2+,其中n≥2,M为二价金属阳离子,选自Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种或多种,X为卤素阴离子,选自Cl -、Br -、I -中的一种或多种。
- 一种显示装置,其中,所述显示装置包括权利要求1-10任意一项所述的光电器件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111302002.2A CN116096121A (zh) | 2021-11-04 | 2021-11-04 | 一种光电器件及其制备方法、显示装置 |
CN202111302002.2 | 2021-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023078138A1 true WO2023078138A1 (zh) | 2023-05-11 |
Family
ID=86205012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/127684 WO2023078138A1 (zh) | 2021-11-04 | 2022-10-26 | 一种光电器件及其制备方法、显示装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116096121A (zh) |
WO (1) | WO2023078138A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013766A (zh) * | 2007-02-26 | 2007-08-08 | 清华大学 | 一种准固态电解质及其制备方法与应用 |
US20130040204A1 (en) * | 2011-08-08 | 2013-02-14 | Battelle Memorial Institute | Functional Nanocomposite Materials, Electrodes, and Energy Storage Systems |
CN108568926A (zh) * | 2017-11-21 | 2018-09-25 | 中国科学院金属研究所 | 一种高效制备高定向、高致密二维材料薄膜的方法 |
-
2021
- 2021-11-04 CN CN202111302002.2A patent/CN116096121A/zh active Pending
-
2022
- 2022-10-26 WO PCT/CN2022/127684 patent/WO2023078138A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101013766A (zh) * | 2007-02-26 | 2007-08-08 | 清华大学 | 一种准固态电解质及其制备方法与应用 |
US20130040204A1 (en) * | 2011-08-08 | 2013-02-14 | Battelle Memorial Institute | Functional Nanocomposite Materials, Electrodes, and Energy Storage Systems |
CN108568926A (zh) * | 2017-11-21 | 2018-09-25 | 中国科学院金属研究所 | 一种高效制备高定向、高致密二维材料薄膜的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN116096121A (zh) | 2023-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023078138A1 (zh) | 一种光电器件及其制备方法、显示装置 | |
CN116987298A (zh) | 薄膜、发光器件与显示装置 | |
WO2023197658A1 (zh) | 发光器件、发光器件的制备方法及显示装置 | |
WO2024093747A1 (zh) | 复合材料、复合材料的制备方法与包含复合材料的光电器件 | |
WO2023197659A1 (zh) | 发光器件的制备方法、发光器件与显示装置 | |
WO2023088022A1 (zh) | 发光器件、发光器件的制备方法及显示装置 | |
WO2023056838A1 (zh) | 薄膜及其制备方法、光电器件 | |
WO2024099114A1 (zh) | 光电器件的制备方法、光电器件与电子设备 | |
WO2023078233A1 (zh) | 发光器件的制备方法、发光器件及显示装置 | |
WO2024067203A1 (zh) | 复合材料、光电器件及其制备方法 | |
WO2024109341A1 (zh) | 复合电极及其制备方法、发光器件 | |
CN117998949A (zh) | 复合材料及包含其的发光器件与显示设备 | |
CN117135980A (zh) | 发光器件的制备方法、发光器件与显示装置 | |
CN116425711A (zh) | 化合物、发光器件及其制备方法与显示装置 | |
CN117430092A (zh) | 复合材料、复合材料的制备方法、光电器件与电子设备 | |
CN116437690A (zh) | 发光器件的制备方法、发光器件及显示装置 | |
CN116437686A (zh) | 发光器件、发光器件的制备方法及显示装置 | |
CN116981311A (zh) | 发光器件的制备方法、发光器件与显示装置 | |
CN116981310A (zh) | 发光器件的制备方法、发光器件与显示装置 | |
CN117222244A (zh) | 复合材料、薄膜、发光器件与显示装置 | |
CN118284088A (zh) | 量子点发光器件及其制备方法、显示装置 | |
CN118057942A (zh) | 复合材料的制备方法、发光器件及其制备方法与电子设备 | |
CN117651462A (zh) | 薄膜的制备方法、薄膜、光电器件以及电子设备 | |
CN118632603A (zh) | 薄膜及其制备方法、光电器件及其制备方法、显示装置 | |
CN118284114A (zh) | 电致发光器件及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22889163 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |