WO2023078233A1 - 发光器件的制备方法、发光器件及显示装置 - Google Patents

发光器件的制备方法、发光器件及显示装置 Download PDF

Info

Publication number
WO2023078233A1
WO2023078233A1 PCT/CN2022/128927 CN2022128927W WO2023078233A1 WO 2023078233 A1 WO2023078233 A1 WO 2023078233A1 CN 2022128927 W CN2022128927 W CN 2022128927W WO 2023078233 A1 WO2023078233 A1 WO 2023078233A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
thermal annealing
solution
annealing treatment
transport layer
Prior art date
Application number
PCT/CN2022/128927
Other languages
English (en)
French (fr)
Inventor
敖资通
张建新
严怡然
洪佳婷
杨帆
莫新娣
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023078233A1 publication Critical patent/WO2023078233A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present application relates to the field of display technology, in particular to a method for preparing a light emitting device, a light emitting device and a display device.
  • Electroluminescence also known as electric field luminescence, is a physical phenomenon in which electrons excited by the electric field collide with the luminescence center by applying a voltage to two electrodes to generate an electric field, which causes the transition, change, and recombination of electrons between energy levels to cause luminescence.
  • Light-emitting devices can be divided into quantum dot light-emitting devices (QLED) and organic light-emitting devices (OLED) according to the different materials of the light-emitting layer.
  • QLED quantum dot light-emitting devices
  • OLED organic light-emitting devices
  • the present application provides a method for preparing a light emitting device, a light emitting device and a display device.
  • An embodiment of the present application provides a method for preparing a light-emitting device, the method comprising:
  • At least one of the one or more functional layers is obtained by performing a second thermal annealing treatment on a solution of the corresponding functional layer material after the first thermal annealing treatment.
  • the thermal annealing temperature is 60°C to 120°C.
  • the thermal annealing time is 5 minutes to 10 minutes.
  • the first solvent is used to cool the functional layer by means of coating or immersion, and then the next layer is set.
  • the polarity of the first solvent is smaller than that of the solvent in the solution of each functional layer material.
  • the first solvent is a non-polar solvent.
  • the solvents in the solution of each functional layer material are orthogonal, and the polarity of the first solvent is the same as that of the solvent in the solution of the next functional layer material to be provided.
  • the temperature of the first solvent is less than or equal to 15°C.
  • the one or more functional layers include a light-emitting layer, a hole injection layer, a hole transport layer, and an electron transport layer, and the hole injection layer and the hole
  • the hole transport layer is located between the light-emitting layer and the first electrode, the hole injection layer is set close to the first electrode, the hole transport layer is set close to the second electrode, and the electron transport layer Located between the light-emitting layer and the second electrode, wherein one or more layers of the hole injection layer, the hole transport layer, the light-emitting layer and the electron transport layer are subjected to the second thermal annealing treatment .
  • the preparation method includes:
  • a solution of a hole injection layer material is provided on the first electrode, and a first thermal annealing treatment and a second thermal annealing treatment are performed to form a hole injection layer;
  • a solution of a hole transport layer material is provided on the hole injection layer, and a first thermal annealing treatment and a second thermal annealing treatment are performed to form a hole transport layer;
  • a solution of light-emitting layer materials is arranged on the hole transport layer, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form a light-emitting layer;
  • a second electrode is prepared on the electron transport layer.
  • the preparation method includes:
  • a solution of electron transport layer material is provided on the first electrode, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form the electron transport layer;
  • a solution of a light-emitting layer material is arranged on the electron transport layer, and a first thermal annealing treatment and a second thermal annealing treatment are performed to form a light-emitting layer;
  • a solution of a hole transport layer material is provided on the light-emitting layer, and a first thermal annealing treatment and a second thermal annealing treatment are performed to form a hole transport layer;
  • a hole injection layer material solution is provided on the hole transport layer, and a first thermal annealing treatment and a second thermal annealing treatment are performed to form a hole injection layer;
  • a second electrode is prepared on the hole injection layer.
  • the first solvent in the second thermal annealing treatment, is used to cool the functional layer by means of coating or immersion;
  • the solution of the hole injection layer material contains The solvent contained in the solution of the hole transport layer material is the second solvent, the solvent contained in the solution of the hole transport layer material is the third solvent, the solvent contained in the solution of the light emitting layer material is the fourth solvent, and the solvent contained in the solution of the electron transport layer material is It is the fifth solvent, and the solvent polarity configuration is: the second solvent ⁇ the third solvent ⁇ the fourth solvent ⁇ the fifth solvent;
  • the polarity of the first solvent is smaller than that of the fifth solvent.
  • the first solvent in the second thermal annealing treatment, is used to cool the functional layer by means of coating or immersion, and the solution of the hole injection layer material contains
  • the solvent contained in the solution of the hole transport layer material is the second solvent
  • the solvent contained in the solution of the hole transport layer material is the third solvent
  • the solvent contained in the solution of the light emitting layer material is the fourth solvent
  • the solvent contained in the solution of the electron transport layer material is is the fifth solvent
  • the solvent polarity configuration is: second solvent ⁇ third solvent ⁇ fourth solvent ⁇ fifth solvent
  • the first solvent is a non-polar solvent.
  • the first solvent is used to cool the functional layer by means of coating or immersion
  • the solution of the hole injection layer material contains
  • the solvent contained in the solution of the hole transport layer material is the second solvent
  • the solvent contained in the solution of the hole transport layer material is the third solvent
  • the solvent contained in the solution of the light emitting layer material is the fourth solvent
  • the solvent contained in the solution of the electron transport layer material is is the fifth solvent
  • the first solvent in the second thermal annealing treatment of the hole injection layer, is the same as the third solvent; in the second thermal annealing treatment of the hole transport layer, the first solvent the same as the fourth solvent; and in the second thermal annealing treatment of the light emitting layer, the first solvent is the same as the fifth solvent.
  • the temperature of the first solvent is less than or equal to 15°C.
  • the thermal annealing temperature is 60°C to 120°C.
  • the thermal annealing time is 10 minutes to 30 minutes.
  • the light-emitting layer material includes a direct bandgap compound semiconductor or a perovskite semiconductor
  • the direct bandgap compound semiconductor includes a II-VI compound, a III-V compound , II-V group compound, III-VI compound, IV-VI group compound, I-III-VI group compound, II-IV-VI group compound and IV group simple substance, said II-VI
  • the group compound is selected from CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS; one or more of CdZnSeS, CdZnSeTe and CdZnSTe;
  • the III-V group compound is selected from one or more of InP, InAs, GaP,
  • the hole injection layer material includes: one or more of PEDOT:PSS, CuPc, F4-TCNQ, HATCN, transition metal oxides and transition metal chalcogenides;
  • the hole transport layer material includes: poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinylcarbazole, poly(N,N'bis(4 -butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1,4-phenylenediamine ), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine,15N,N'-diphenyl-N,N'-(1-naphthyl)-1, One or more of 1'-biphenyl
  • the electron transport layer material includes: one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO and InSnO.
  • the embodiment of the present application also provides a light emitting device prepared by the above preparation method.
  • an embodiment of the present application further provides a display device, including the above-mentioned light emitting device.
  • the functional layer of the light-emitting device is subjected to two thermal annealing treatments, so as to remove the internal stress of the functional layer, improve the problem that the functional layer is easy to crack, and improve the yield and photoelectric performance of the device.
  • Fig. 1 is a schematic flow chart of the first embodiment of the method for manufacturing a light-emitting device provided in the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of the second embodiment of the method for manufacturing a light-emitting device provided in the embodiment of the present application;
  • Fig. 3 is a schematic flow chart of the third embodiment of the method for manufacturing a light-emitting device provided in the embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of an embodiment of a light-emitting device provided in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another embodiment of a light-emitting device provided by the embodiment of the present application.
  • Fig. 6 is a shot view of the topography of each light emitting device provided in the embodiment of the present application.
  • one or more layers means one or more, and “multiple” means two or more.
  • “One or more”, “at least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • “at least one item (unit) of a, b, or c”, or “at least one item (unit) of a, b, and c” can mean: a, b, c, a-b( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • the embodiment of the present application provides a method for preparing a light-emitting device, the method includes:
  • One or more functional layers are arranged on the first electrode, wherein at least one layer of the one or more functional layers is treated by the solution of the corresponding functional layer material through the first thermal annealing, and then Obtained by performing a second thermal annealing treatment;
  • the light-emitting device may be a light-emitting device with an upright structure, or a light-emitting device with an inverted structure.
  • the first electrode may be a cathode or an anode.
  • the second The electrodes can be either anodes or cathodes.
  • the number of functional layers is one or more, such as two layers, three layers, four layers or more, and the functional layer material of each functional layer same or different species.
  • Figure 2 provides a method for preparing a light-emitting device with an upright structure.
  • the first electrode is an anode
  • the second electrode is a cathode.
  • the device includes a bottom-up anode, a functional layer and a cathode.
  • the specific steps of the preparation method in this embodiment include:
  • FIG. 3 provides a method for manufacturing a light emitting device with an inverted structure.
  • the first electrode is a cathode
  • the second electrode is an anode.
  • the light emitting device with an inverted structure includes a self- A cathode, a functional layer and an anode from the bottom up, the specific steps of the preparation method in this embodiment include:
  • the first thermal annealing can remove the solvent in the solution of the functional layer material, that is, the functional layer is cured from a wet film to a dry film
  • the second thermal annealing can remove the solvent. Stress existing inside the functional layer after the first thermal annealing. Therefore, the problem that the functional layer is easy to crack is improved, and the performance of the device is improved.
  • the annealing temperature is less than 120°C (Celsius), for example: 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, etc. If the temperature is too low, the residual solvent cannot be effectively removed. If the temperature is too high, the structure of the light-emitting layer of the device will be easily damaged, which will affect the photoelectric performance of the device.
  • the annealing time is 10min to 30min (minutes), such as 10min, 12min, 15min, 18min, 20min, 22min, 25min, 27min, 30min, etc. , or other values not listed between 10min and 30min. If the time is too short, the residual solvent cannot be effectively removed, and if the temperature is too high, the light-emitting layer structure of the device will be easily damaged, affecting the photoelectric performance of the device.
  • the temperature of thermal annealing is sub-high temperature, and the temperature in this range can avoid the influence of heating on the device to the greatest extent on the basis of removing the stress of the functional layer .
  • the heating temperature is 60°C to 120°C, such as 60°C, 70°C, 80°C, 90°C, 100°C, 110°C, 120°C, etc. , or other values not listed between 60°C and 120°C. If the temperature is too low, the effect of stress relief will not be good; if the temperature is too high, the structure of the light-emitting layer of the device will be easily damaged, affecting the photoelectric performance of the device.
  • the thermal annealing time is 5min to 10min, such as 5min, 6min, 7min, 8min, 9min, 10min, etc., or between 5min and 10min Other values not listed. If the time is too short, the effect of stress relief is not good, and if the time is too long, the production efficiency will be affected.
  • the solution of the functional layer material may be disposed above the anode or the cathode by a spin coating method.
  • the spin coating method has the characteristics of mild process conditions, simple operation, energy saving and environmental protection, and its preparation of light-emitting devices has the advantages of high carrier mobility and precise thickness.
  • the solution of each functional layer material needs to be prepared first by using the spin coating method, the sheet to be spin-coated is placed on the spin coater, and the configured solution is dripped on the top of the spin coater to Spin-coating is performed at a preset rotational speed, and after the solution is evenly spin-coated, the subsequent first heating annealing and second heating annealing processes can be carried out.
  • the number of the functional layers is two or more, and the preparation method of the light-emitting device with the upright structure includes:
  • a solution of two or more functional layer materials is arranged above the anode, and after the first thermal annealing treatment is performed on the solution of at least any one layer of the functional layer material to form a film, the second thermal annealing treatment is performed on the any one layer of the functional layer. annealing;
  • the number of the functional layers is two or more, and the preparation method of the light-emitting device with an inverted structure includes:
  • a solution of two or more functional layer materials is arranged above the cathode, and after the first thermal annealing treatment is performed on the solution of at least any one layer of the functional layer material to form a film, the second thermal annealing treatment is performed on the any one layer of the functional layer. annealing;
  • a cathode is prepared on the functional layer farthest from the cathode to obtain the light-emitting device.
  • the number of the functional layer is one or more layers
  • the one or more functional layers include a light emitting layer, a hole injection layer, a hole transport layer and an electron transport layer, and the hole
  • the injection layer and the hole transport layer are located between the light-emitting layer and the anode, the hole injection layer is disposed close to the anode, the hole transport layer is disposed close to the cathode, and the electron transport layer located between the light-emitting layer and the cathode.
  • the functional layer in the embodiment of the present application may also include other structures known in the art.
  • the steps of the method for manufacturing a light-emitting device with an upright structure include:
  • the solution of the hole injection layer material is set on the anode, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form the hole injection layer;
  • a solution of a hole transport layer material is provided on the hole injection layer, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form a hole transport layer;
  • a solution of a light-emitting layer material is arranged on the hole transport layer, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form a light-emitting layer;
  • the steps of the method for manufacturing a light-emitting device with an inverted structure include:
  • the solution of the electron transport layer material is arranged on the cathode, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form the electron transport layer;
  • a solution of a hole transport layer material is provided on the light-emitting layer, and the first thermal annealing treatment and the second thermal annealing treatment are performed to form a hole transport layer;
  • the internal stress of each functional layer in the device can be removed, the problem of cracking can be improved, the performance of the device is better, and the yield better.
  • the first solvent is used to cool the functional layer by means of coating or soaking, and then the next functional layer is set.
  • the purpose of rapidly reducing the temperature of each functional layer can be achieved; in addition, rapid cooling can also play a role in improving carrier migration to a certain extent, which has an impact on devices. The same is positive.
  • the temperature of the first solvent is less than or equal to 15°C.
  • the first solvent is a non-polar solvent.
  • the polarity of the first solvent is smaller than that of the solvent in the solution of each functional layer material.
  • the number of the functional layers is multi-layer, and the multi-layer functional layers are arranged sequentially from bottom to top, the solvents in the solution of each functional layer material are orthogonal, and the polarity of the first solvent is the same as that of the bottom solvent.
  • the solvents in the solutions of the functional layer materials to be provided in one layer are the same. This can prevent the first solvent from damaging the functional layer to be cooled during the cooling process.
  • the solvent of the hole injection layer material solution is the second solvent
  • the solvent of the hole transport layer material solution is the third solvent
  • the The solvent of the light-emitting layer material solution is the fourth solvent
  • the solvent of the electron transport layer material solution is the fifth solvent, wherein the polarity of the solvents: the second solvent ⁇ the third solvent ⁇ the fourth solvent ⁇ the fifth solvent, so as to ensure that the new The old film will not be affected when the film is prepared.
  • the first solvent is a non-polar solvent, or the first solvent is less polar than the fifth solvent.
  • the first solvent is n-octane
  • the second solvent is water
  • the third solvent is methanol
  • the fourth solvent is ethyl acetate
  • the fifth solvent is toluene.
  • the polarity of the first solvent is the same as that of the solvent in the solution of the next layer of functional layer material, that is, after the preparation of each layer of functional layer is completed, the next layer of functional layer is prepared using The solvent in the solution is used for coating, so as to achieve the purpose of pre-spin coating. Due to the preparation of the device film by the solution method, the main factors affecting the uniformity include the uniformity of the underlying film and the contact angle between the material of the underlying film and the solvent, and the process of conventional spin coating after pre-spin coating is equivalent to two spins.
  • pre-spin coating will remove part of the surface impurities of the previous film layer, and the residual solvent of pre-spin coating will make the solution of the same solvent have better spreadability during spin coating process, that is, the contact angle can be optimized, so that The film shape of the functional layer is more uniform, which further reduces the internal stress of the device.
  • the solvent of the hole injection layer material solution is the second solvent
  • the solvent of the hole transport layer material solution is the third solvent
  • the The solvent of the light-emitting layer material solution is the fourth solvent
  • the solvent of the electron transport layer material solution is the fifth solvent
  • the solvent polarity is: second solvent ⁇ third solvent ⁇ fourth solvent ⁇ fifth solvent, in the space
  • the first solvent is the same as the third solvent
  • the first solvent is the same as the fourth solvent
  • the first solvent is the same as the fifth solvent
  • the second solvent is water
  • the third solvent is methanol
  • the fourth solvent is ethyl acetate
  • the fifth solvent is toluene.
  • each functional layer is a material known in the art for the corresponding functional layer, for example:
  • the material of the anode is selected from but not limited to: ITO (Indium Tin Oxide).
  • the material of the light-emitting layer is a direct bandgap compound semiconductor with light-emitting ability, selected from but not limited to II-VI compound, III-V compound, II-V compound, III-VI compound, IV-VI compound , I-III-VI compounds, II-IV-VI compounds or one or more of IV simple substances.
  • the semiconductor material used in the light-emitting layer is selected from but not limited to nanocrystals of II-VI semiconductors, such as CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, PbS, PbSe, PbTe and other Binary, ternary, and quaternary II-VI compounds; nanocrystals of III-V semiconductors, such as GaP, GaAs, InP, InAs and other binary, ternary, and quaternary III-V compounds; the luminescence
  • the semiconductor material used in the layer can also be selected from, but not limited to, II-V compound, III-VI compound, IV-VI compound, I-III-VI compound, II-IV-VI compound, IV simple substance, etc.
  • the quantum dot light-emitting layer material can also be a doped or non-doped inorganic perovskite semiconductor, and/or an organic-inorganic hybrid perovskite semiconductor; specifically, the inorganic perovskite
  • the general structural formula of mineral semiconductors is AMX 3 , where A is Cs + ions, and M is divalent metal cations, including but not limited to Pb 2+ , Sn 2+ , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ , X is a halogen anion, including but not limited to Cl - , Br - , I - ; the organic-
  • the general structural formula of inorganic hybrid perovskite semiconductor is BMX 3 , where B is an organic amine cation, including but not limited to CH 3 (CH 2 ) n-2 NH
  • the inorganic metal halide octahedron MX 6 4- is connected by a common top, the metal cation M is located at the body center of the halogen octahedron, and the organic amine cation B fills the gap between the octahedrons, forming an infinite extension
  • the three-dimensional structure; when n>2, the inorganic metal halide octahedron MX 6 4- connected in a common top way extends in the two-dimensional direction to form a layered structure, and an organic amine cation bilayer (protonated monolayer) is inserted between the layers.
  • M is a divalent metal cation, including but not limited to Pb 2+ , Sn 2 + , Cu 2+ , Ni 2+ , Cd 2+ , Cr 2+ , Mn 2+ , Co 2+ , Fe 2+ , Ge 2+ , Yb 2+ , Eu 2+ ;
  • X is a halogen anion, including but not Limited to Cl - , Br - , I.
  • the material of the hole injection layer is selected from but not limited to: PEDOT:PSS (poly 3,4-ethylenedioxythiophene/polystyrene sulfonate), CuPc, F4-TCNQ, HATCN, transition metal oxides and One or more of transition metal chalcogenide compounds.
  • the material of the hole transport layer is selected from but not limited to: poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine), polyvinylcarbazole, poly(N, N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine), poly(9,9-dioctylfluorene-co-bis-N,N-phenyl-1, 4-phenylenediamine), 4,4',4"-tris(carbazol-9-yl)triphenylamine, 4,4'-bis(9-carbazole)biphenyl, N,N'-diphenyl -N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine, 15N,N'-diphenyl-N,N'-(1-naphthalene one or more of -1,1'-b
  • the material of the electron transport layer is selected from but not limited to: one or more of ZnO, TiO 2 , SnO 2 , Ta 2 O 3 , ZrO 2 , NiO, TiLiO, ZnAlO, ZnMgO, ZnSnO, ZnLiO and InSnO.
  • the material of the cathode is selected from but not limited to: one or more of metal materials, carbon materials, and metal oxides.
  • the metal material includes one of Al (aluminum), Ag (silver), Cu (copper), Mo (molybdenum), Au (gold), Ba (barium), Ca (calcium), and Mg (magnesium). or more.
  • the carbon material includes one or more of graphite, carbon nanotubes, graphene, and carbon fibers.
  • the metal oxide can be doped or non-doped metal oxide, including one or more of ITO, FTO, ATO, AZO, GZO, IZO, MZO, AMO, also including doped or non-doped transparent
  • a composite electrode with metal sandwiched between metal oxides wherein the composite electrode includes AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO /Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 one or more.
  • "/" indicates a laminated structure, for example, AZO/Ag/AZO indicates a composite electrode with a laminate
  • the present application also provides a light emitting device, which is made by the method for the light emitting device described in any of the above embodiments.
  • the light emitting device is a QLED device.
  • Fig. 4 shows a schematic diagram of an upright structure of the light emitting device 10 according to the embodiment of the present application.
  • the upright structure light emitting device 10 includes a substrate 1, a Anode 2, a hole injection layer 3 arranged on the surface of the anode 2, a hole transport layer 4 arranged on the surface of the hole injection layer 3, a light emitting layer 5 arranged on the surface of the hole transport layer 4, The electron transport layer 6 on the surface of the light-emitting layer 5 and the cathode 7 provided on the surface of the electron transport layer 6 .
  • Figure 5 shows a schematic diagram of an inverted structure of the light emitting device 10 according to the embodiment of the present application.
  • the electron transport layer 6 arranged on the surface of the cathode 7, the light emitting layer 5 arranged on the surface of the electron transport layer 6, the hole transport layer 4 arranged on the surface of the light emitting layer 5, the hole transport layer 4 arranged on the surface of the hole transport
  • the present application further provides a display device, including the light emitting device described in the above embodiments. Its structure, implementation principle and effect are similar and will not be repeated here.
  • the display device may be: a lighting fixture and a backlight, or any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • a lighting fixture and a backlight or any product or component with a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • Embodiment 1 provides a light-emitting device and a preparation method, the method specifically includes the following steps:
  • PEDOT:PSS 10mg/mL aqueous solution at a speed of 5000rpm for 30 seconds, then heat at 100°C for 15 minutes, and let it cool for 5 minutes;
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Ag, the speed is 1 Angstrom/second, the time is 200 seconds, and the thickness is 20nm to obtain a top-emission positive light-emitting device, and the device for encapsulation.
  • Embodiment 2 provides a light-emitting device and a preparation method, the method specifically includes the following steps:
  • PEDOT:PSS 10mg/mL aqueous solution at a speed of 5000rpm for 30 seconds, then heat at 100°C for 15 minutes, and let it cool for 5 minutes;
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Ag, the speed is 1 angstrom/second, the time is 200 seconds, and the thickness is 20nm to obtain a top-emission positive light-emitting device, and the device is carried out encapsulation.
  • Comparative example 1 provides a light-emitting device and a preparation method, the method specifically includes the following steps:
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Ag, the speed is 1 Angstrom/second, the time is 200 seconds, and the thickness is 20nm to obtain a top-emission positive light-emitting device, and the device is carried out encapsulation.
  • Comparative example 2 provides a light-emitting device and a preparation method, the method specifically includes the following steps:
  • TFB is heat-treated at 120°C for 5 minutes to complete the preparation of the hole transport layer
  • the vacuum degree is not higher than 3 ⁇ 10 -4 Pa, evaporate Ag, the speed is 1 angstrom/second, the time is 200 seconds, and the thickness is 20nm to obtain a top-emission positive light-emitting device, and the device is carried out encapsulation.
  • the present application also provides a verification example.
  • examples 1 to 2 were tested respectively.
  • the JVL data of the light-emitting devices prepared in Comparative Example 1 and Comparative Example 2 the electrical properties of the device were determined, and the device electroluminescent topography was taken (the topography of the light-emitting layer was taken using an optical microscope). The results are shown in Table 1 and Fig. 6.
  • L means the brightness of the device. Under the same current, the higher the brightness of the device, the better the efficiency of the device; T95 means the time it takes for the brightness of the device to decay from 100% to 95%. Under the same current, the longer the T95 time of the device means the performance of the device The better the stability, the better the stability; T95-1K means when the device is at 1000nit brightness, the time it takes for the brightness to decay from 100% to 95%, this value is calculated from the value of L and T95; C.E means the current efficiency of the device, in Under the premise that the area of the light emitting area is consistent with the driving current, the higher the C.E, the better the performance of the device; C.E-1000nit indicates the current efficiency of the device at a brightness of 1000nit. On the premise that the area of the light emitting area is consistent with the driving current, the higher the C.E. The better the performance.
  • the data of embodiment 2 are all greater than embodiment 1
  • the data of embodiment 1 All are greater than those of Comparative Example 2
  • the data of Comparative Example 2 are all greater than those of Comparative Example 1.
  • the light-emitting layer of Comparative Example 1 had film cracking and uneven morphology. Although the light emitting layer of Comparative Example 2 avoids cracking, the light emission is not uniform. Although the light-emitting layer of Example 1 avoids cracking, the light emission is uneven, and the appearance is slightly better than that of Comparative Example 2. The light-emitting layer in Example 2 not only avoids cracking, but also has a good appearance.
  • Comparative Example 2 is better than Comparative Example 1, indicating that secondary annealing of the functional layer will reduce device stress and improve device performance and certainty. To a certain extent, the cracking of the functional layer is avoided.
  • Example 1 Comparing the device performance and morphology of Comparative Example 2 and Example 1, Example 1 is better than Comparative Example 2, indicating that using a solvent to quickly cool the device functional layer will reduce device stress, improve device performance, and can also The cracking of the functional layer is avoided, and the yield of the device is improved.
  • Example 2 is better than Example 1, wherein, after the second thermal annealing in Example 1, the same solvent treatment was used, while Example 2 In 2, the same solvent as the next layer (orthogonal solvent) is used, which shows that the use of orthogonal solvent to cool the device functional layer will further reduce stress, improve device performance, and make the film shape of the functional layer more uniform.
  • the cracking of the functional layer is avoided, and the yield of the device is improved. This is because the stress of the functional layer is reduced, which can reduce the impact of the short circuit of the device on the electrical performance of the device, especially the measured working life of the device due to the direct contact between the upper functional layer and the lower functional layer of the cracked functional layer.
  • the T95 value of the device When the electrical performance of the device decreases , the T95 value of the device also decreased significantly.
  • the uniformity of the film of the device will affect the L value and C.E value of the device. The more uniform the film of the device, the better the optical performance of the device, the higher the brightness, the higher the efficiency, and the higher the performance of the device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种发光器件的制备方法、发光器件及显示装置。本申请的发光器件的制备方法通过将发光器件的功能层进行两次热退火处理,从而去除功能层的内应力,改善功能层容易开裂的问题,提升器件的成品率和光电性能。

Description

发光器件的制备方法、发光器件及显示装置
本申请要求于2021年11月03日在中国专利局提交的、申请号为202111294610.3、申请名称为“电致发光器件的制备方法、电致发光器件及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种发光器件的制备方法、发光器件及显示装置。
背景技术
电致发光又称电场发光,是通过加在两电极的电压产生电场,被电场激发的电子碰击发光中心,而引致电子在能级间的跃迁、变化、复合导致发光的一种物理现象。发光器件根据发光层材料的不同,可以分为量子点发光器件(QLED)和有机发光器件(OLED)。
然而,发光器件在研发过程中依旧存在着很多问题。其中,在实验开发或工业生产中,常用旋涂工艺或喷墨打印工艺进行器件的制备,而在使用溶液制备功能层的过程中,常会出现功能层开裂的情况,这是由于功能层内应力导致的,所谓内应力,是指当外部荷载去掉以后,仍残存在物体内部的应力,它是由于材料内部宏观或微观的组织发生了不均匀的体积变化而产生的。没有外力存在时,弹性物体内所保存的应力叫做内应力,它的特点是在物体内形成一个平衡的力系,即遵守静力学条件。按性质和范围大小可分为宏观应力、微观应力和超微观应力,按引起原因可分为热应力和组织应力,按存在时间可分为瞬时应力和残余应力,按作用方向可分为纵向应力和横向应力。
技术问题
现有的发光器件的光电性能还需进行提升。
技术解决方案
因此,本申请提供一种发光器件的制备方法、发光器件及显示装置。
本申请实施例提供一种发光器件的制备方法,所述制备方法包括:
在第一电极上设置一层或多层功能层;
在所述一层或多层功能层上制备第二电极;以及
其中,所述一层或多层功能层中的至少一层由相应的功能层材料的溶液通过第一次热退火处理后,再进行第二次热退火处理得到。
可选的,在本申请的一些实施例中,在所述第二次热退火处理中,热退火的温度为60℃至120℃。
可选的,在本申请的一些实施例中,在所述第二次热退火处理中,热退火的时间为5min至10min。
可选的,在本申请的一些实施例中,在所述第二次热退火处理后,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,然后再进行下一层的设置。
可选的,在本申请的一些实施例中,所述第一溶剂的极性小于每一功能层材料的溶液中的溶剂的极性。
可选的,在本申请的一些实施例中,所述第一溶剂为非极性溶剂。
可选的,在本申请的一些实施例中,各功能层材料的溶液中的溶剂正交,所述第一溶剂的极性与下一层待设置的功能层材料的溶液中的溶剂相同。
可选的,在本申请的一些实施例中,所述第一溶剂的温度小于等于15℃。
可选的,在本申请的一些实施例中,所述一层或多层功能层包括发光层、空穴注入层、空穴传输层及电子传输层,所述空穴注入层和所述空穴传输层位于所述发光层和所述第一电极之间,所述空穴注入层靠近所述第一电极设置,所述空穴传输层靠近所述第二电极设置,所述电子传输层位于所述发光层和所述第二电极之间,其中,所述空穴注入层、空穴传输层、发光层以及电子传输层中的一层或多层经过所述第二次热退火处理。
可选的,在本申请的一些实施例中,所述制备方法包括:
在第一电极上设置空穴注入层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
在所述空穴注入层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
在所述空穴传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
在所述发光层上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;以及
在所述电子传输层上制备第二电极。
可选的,在本申请的一些实施例中,所述制备方法包括:
在第一电极上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;
在所述电子传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
在所述发光层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
在所述空穴传输层上设置空穴注入层材料溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
在所述空穴注入层上制备第二电极。
可选的,在本申请的一些实施例中,在所述第二次热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层;所述空穴注入层材料的溶液包含的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性配置为:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;
其中,所述第一溶剂的极性小于第五溶剂。
可选的,在本申请的一些实施例中,在所述第二次热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,所述空穴注入层材料的溶液包含的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性配置为:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;所述第一溶剂为非极性溶剂。
可选的,在本申请的一些实施例中,在所述第二次热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,所述空穴注入层材料的溶液包含 的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;
其中,在所述空穴注入层的第二次热退火处理中,所述第一溶剂与第三溶剂相同;在所述空穴传输层的第二次热退火处理中,所述第一溶剂与第四溶剂相同;以及在所述发光层的第二次热退火处理中,所述第一溶剂与第五溶剂相同。
可选的,在本申请的一些实施例中,所述第一溶剂的温度小于等于15℃。
可选的,在本申请的一些实施例中,在所述第一次热退火处理中,热退火的温度为60℃至120℃。
可选的,在本申请的一些实施例中,在所述第一次热退火处理中,热退火的时间为10min至30min。
可选的,在本申请的一些实施例中,所述发光层材料包括直接带隙化合物半导体或者钙钛矿型半导体,所述直接带隙化合物半导体包括II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物和IV族单质中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS;CdZnSeS、CdZnSeTe和CdZnSTe中的一种或多种;所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP和InAlNP中的一种或多种;所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述钙钛矿型半导体包括掺杂的无机钙钛矿型半导体、非掺杂的无机钙钛矿型半导体及有机-无机杂化钙钛矿型半导体的一种或多种,所述无机钙钛矿型半导体的结构通式为AMX 3,所述有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中,A为Cs +离子,B为有机胺阳离子,所述有机胺阳离子包括CH 3(CH 2) n-2NH 3+(n≥2)或NH 3(CH 2) nNH 3 2+(n≥2),M为二价金属阳离子,所述二价金属阳离子包括Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种,X为卤素阴离子,所述卤素阴离子包括Cl -、Br -、I -中的一种;
所述空穴注入层材料包括:PEDOT:PSS、CuPc、F4-TCNQ、HATCN、过渡金属氧化物及过渡金属硫系化合物中的一种或多种;
所述空穴传输层材料包括:聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、15N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、石墨烯、C 60中的一种或多种;以及,
所述电子传输层材料包括:ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO及InSnO中的一种或多种。
相应的,本申请实施例还提供一种由上述制备方法制备的发光器件。
相应的,本申请实施例还提供一种显示装置,包括上述的发光器件。
有益效果
本申请通过将发光器件的功能层进行两次热退火处理,从而去除功能层的内应力,改善功能层容易开裂的问题,提升器件的成品率和光电性能。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的发光器件的制备方法的第一实施例中的流程示意图;
图2是本申请实施例提供的发光器件的制备方法的第二实施例中的流程示意图;
图3是本申请实施例提供的发光器件的制备方法的第三实施例中的流程示意图;
图4是本申请实施例提供的一种发光器件的一个实施例的结构示意图;
图5是本申请实施例提供的一种发光器件的另一个实施例的结构示意图;
图6是本申请实施例提供的各发光器件形貌拍摄图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
在本申请中,“一层或多层”是指一个或者多个,“多个”是指两个或两个以上。“一种或多种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
请参阅图1,本申请实施例提供一种发光器件的制备方法,所述制备方法包括:
S1.在第一电极上设置一层或多层功能层,其中,所述一层或多层功能层中的至少一层由相应的功能层材料的溶液通过第一次热退火处理后,再进行第二次热退火处理得到;
S2.在所述一层或多层功能层上制备第二电极。
本申请实施例中,所述发光器件可以是正置结构的发光器件,也可以是倒置结构的发光器件,根据其结构的不同,第一电极可以是阴极,也可以是阳极,相应的,第二电极可以是阳极,也可以是阴极。
此外,可以理解的是,在一些实施例中,所述功能层的数量为一层或一层以上,例如为两层、三层、四层或更多,各层功能层的功能层材料的种类相同或不同。
如图2所示,图2提供一种正置结构的发光器件的制备方法,所述正置结构的发光器件中,第一电极为阳极,第二电极为阴极,所述正置结构的发光器件包括自下向上的阳极、一层功能层和阴极,本实施例制备方法的具体步骤包括:
S10.在阳极上方设置一层功能层材料的溶液,进行第一次热退火处理形成一层功能层,然后对所述功能层进行第二次热退火处理;以及
S20.在所述功能层上制备阴极,获得所述发光器件。
如图3所示,图3提供一种倒置结构的发光器件的制备方法,所述倒置结构的发光器件中,第一电极为阴极,第二电极为阳极,所述倒置结构的发光器件包括自下向上的阴极、一层功能层和阳极,本实施例制备方法的具体步骤包括:
S100.在阴极上方设置一层功能层材料的溶液,进行第一次热退火处理形成一层功能层,然后对所述功能层进行第二次热退火处理;以及
S200.在所述功能层上制备阳极,获得所述发光器件。
本申请实施例中,一共经过了两次热退火处理过程,第一次热退火可以去除功能层材料的溶液中的溶剂,即将功能层由湿膜固化成干膜,第二次热退火可以去除第一次热退火后存在于功能层内部的应力。从而改善功能层容易开裂的问题,提高器件的性能。
作为示例性实施方案,本实施例在所述第一次热退火处理中,退火的温度小于120℃(摄氏度),例如:60℃、70℃、80℃、90℃、100℃、110℃、120℃等,若温度过低,则不能有效的去除残余的溶剂,若温度过高,则容易破坏器件发光层结构,影响器件的光电性能。
作为示例性实施方案,本实施例在所述第一次热退火处理中,退火的时间为10min至30min(分钟),例如10min、12min、15min、18min、20min、22min、25min、27min、30min等,或者在10min至30min之间其他未列出的数值。若时 间过短,则不能有效的去除残余的溶剂,若温度过高,则容易破坏器件发光层结构,影响器件的光电性能。
在一些实施例中,本申请在第二次热退火过程中,热退火的温度为亚高温,此范围内的温度在去除功能层应力的基础上,还可以最大程度上避免加热对器件的影响。在一些具体实施例中,在所述第二次热退火处理中,加热的温度为60℃至120℃,例如60℃、70℃、80℃、90℃、100℃、110℃、120℃等,或者在60℃至120℃之间其他未列出的数值。若温度过低,则去应力的效果不好,若温度过高,容易破坏器件发光层结构,影响器件的光电性能。
作为示例性实施方案,本实施例在所述第二次热退火处理中,热退火的时间为5min至10min,例如5min、6min、7min、8min、9min、10min等,或者在5min至10min之间其他未列出的数值。若时间多短,则去应力的效果不好,若时间过长,则影响生产效率。
在一些实施例中,在所述步骤S10或S100中,所述功能层材料的溶液具体可通过旋涂法设置于所述阳极或阴极的上方。旋涂法具有工艺条件温和、操作简单、节能环保等特点,其制备发光器件具有载流子迁移率高、厚度精确等优势。在本申请具体实施例中,利用旋涂法需要先配置好各功能层材料的溶液,将待旋涂的片子置于旋涂仪上,将配置好的溶液滴加至旋涂仪上方,以预设的转速进行旋涂,待将溶液旋涂均匀后,可进行后续第一次加热退火和第二次加热退火的工艺。
在一些实施例中,所述功能层的数量为两层或两层以上,所述正置结构的发光器件的制备方法包括:
在阳极上方设置两层或两层以上功能层材料的溶液,在其中至少任意一层功能层材料的溶液进行第一次热退火处理成膜后,对所述任意一层功能层进行第二次退火处理;以及
在距离所述阳极最远的功能层上制备阴极,获得所述发光器件;
或者,在一些实施例中,所述功能层的数量为两层或两层以上,所述倒置结构的发光器件的制备方法包括:
在阴极上方设置两层或两层以上功能层材料的溶液,在其中至少任意一层功能层材料的溶液进行第一次热退火处理成膜后,对所述任意一层功能层进行 第二次退火处理;以及
在距离所述阴极最远的功能层上制备阴极,获得所述发光器件。
在一些实施例中,所述功能层的数量为一层或多层,所述一层或多层功能层包括发光层、空穴注入层、空穴传输层及电子传输层,所述空穴注入层和所述空穴传输层位于所述发光层和所述阳极之间,所述空穴注入层靠近所述阳极设置,所述空穴传输层靠近所述阴极设置,所述电子传输层位于所述发光层和所述阴极之间。可以理解的是,以上仅为举例,本申请实施例中的功能层还可以包括本领域已知的其他结构,例如,在一些实施例中,所述电子传输层和所述阴极之间还设置有电子注入层,其中,所述空穴注入层、空穴传输层、发光层以及电子传输层中的至少一层经过所述第二次热退火处理。
例如:在一些实施例中,正置结构的发光器件的制备方法的步骤包括:
(1)在阳极上设置空穴注入层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
(2)在所述空穴注入层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
(3)在所述空穴传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
(4)在所述发光层上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;以及
(5)在所述电子传输层上制备阴极。
例如:在一些实施例中,倒置结构的发光器件的制备方法的步骤包括:
(1)在阴极上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;
(2)在所述电子传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
(3)在所述发光层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
(4)在所述空穴传输层上设置空穴注入层材料溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
(5)在所述空穴注入层上制备阳极。
通过将以上正置结构或倒置结构的发光器件中的功能层均经过第二次热退火处理,因此器件中各功能层均可去除内应力,改善开裂的问题,器件的性能更好,成品率更好。
在一些实施例中,在所述第二次热退火后,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,然后进行下一层功能层的设置。如此,通过利用第一溶剂来冷却各功能层,可以达到快速降低各功能层温度的目的;此外,快速降温还可以起到一定程度的提升载流子迁移的作用,这对器件而言的影响同样是正向的。
在一些实施例中,所述第一溶剂的温度小于或等于15℃。
在一些实施例中,所述第一溶剂为非极性溶剂。
在一些实施例中,所述第一溶剂的极性小于每一功能层材料的溶液中的溶剂的极性。
在一些实施例中,所述功能层的数量为多层,多层所述功能层由下至上依次设置,各功能层材料的溶液中的溶剂正交,所述第一溶剂的极性与下一层待设置的功能层材料的溶液中的溶剂相同。如此可以防止第一溶剂在冷却过程中,对待冷却功能层的破坏。
例如,以正置结构的发光器件为例,在一些实施例中,所述空穴注入层材料溶液的溶剂为第二溶剂,所述空穴传输层材料溶液的溶剂为第三溶剂,所述发光层材料溶液的溶剂为第四溶剂,所述电子传输层材料溶液的溶剂为第五溶剂,其中溶剂极性:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂,以此保证新膜层制备时不会对旧膜层产生影响。在一些实施例中,所述第一溶剂为非极性溶剂,或者第一溶剂的极性小于第五溶剂。在一些具体实施例中,第一溶剂为正辛烷,第二溶剂为水,第三溶剂为甲醇、第四溶剂为乙酸乙酯,第五溶剂为甲苯。
在另一些实施例中,所述第一溶剂的极性与下一层待设置的功能层材料的溶液中的溶剂相同,即在每一层功能层制备完成后,使用制备下一层功能层溶液中的溶剂进行涂覆,以此达到一种预旋涂的目的。由于溶液法制备器件薄膜,影响均匀性的主要因素包括下层薄膜均匀程度与下层薄膜材料与溶剂的接触 角大小,而进行预旋涂后再进行常规旋涂的工艺,相当于进行了两次旋涂,即预旋涂会清除部分上一膜层的表面杂质,并且预旋涂的残留溶剂会使相同溶剂的溶液进行旋涂工艺时具有更好的铺展性,即可以优化了接触角,使功能层膜层形态更均匀,进一步降低器件内应力。
例如,以正置结构的发光器件为例,在一些实施例中,所述空穴注入层材料溶液的溶剂为第二溶剂,所述空穴传输层材料溶液的溶剂为第三溶剂,所述发光层材料溶液的溶剂为第四溶剂,所述电子传输层材料溶液的溶剂为第五溶剂,其中溶剂极性:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂,在所述空穴注入层的第二次热退火中,所述第一溶剂与第三溶剂相同;在所述空穴传输层的第二次热退火中,所述第一溶剂与第四溶剂相同;以及在所述发光层的第二次热退火中,所述第一溶剂与第五溶剂相同。在一些具体实施例中,第二溶剂为水,第三溶剂为甲醇、第四溶剂为乙酸乙酯,第五溶剂为甲苯。
本申请各实施例中,各个功能层的材料为本领域已知用于相应功能层的材料,例如:
所述阳极的材料选自但不限于:ITO(氧化铟锡)。
所述发光层的材料为具备发光能力的直接带隙化合物半导体,选自但不限于II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物或IV族单质中的一种或多种。具体地,所述发光层使用的半导体材料选自但不限于II-VI半导体的纳米晶,比如CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、HgS、HgSe、HgTe、PbS、PbSe、PbTe和其他二元、三元、四元的II-VI化合物;III-V族半导体的纳米晶,比如GaP、GaAs、InP、InAs和其他二元、三元、四元的III-V化合物;所述发光层使用的半导体材料还可以选自但不限于II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物、IV族单质等。其中,所述的量子点发光层材料还可以为掺杂或非掺杂的无机钙钛矿型半导体、和/或有机-无机杂化钙钛矿型半导体;具体地,所述的无机钙钛矿型半导体的结构通式为AMX 3,其中A为Cs +离子,M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+,X为卤素阴离子,包括但不限于Cl -、Br -、I -;所述的有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中 B为有机胺阳离子,包括但不限于CH 3(CH 2) n-2NH 3 +(n≥2)或NH 3(CH 2) nNH 3 2+(n≥2)。当n=2时,无机金属卤化物八面体MX 6 4-通过共顶的方式连接,金属阳离子M位于卤素八面体的体心,有机胺阳离子B填充在八面体间的空隙内,形成无限延伸的三维结构;当n>2时,以共顶的方式连接的无机金属卤化物八面体MX 6 4-在二维方向延伸形成层状结构,层间插入有机胺阳离子双分子层(质子化单胺)或有机胺阳离子单分子层(质子化双胺),有机层与无机层相互交叠形成稳定的二维层状结构;M为二价金属阳离子,包括但不限于Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+;X为卤素阴离子,包括但不限于Cl -、Br -、I。
所述空穴注入层的材料选自但不限于:PEDOT:PSS(聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐)、CuPc、F4-TCNQ、HATCN、过渡金属氧化物及过渡金属硫系化合物中的一种或多种。
所述空穴传输层的材料选自但不限于:聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、15N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、石墨烯、C 60中的一种或多种。
所述电子传输层的材料选自但不限于:ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO及InSnO中的一种或多种。
所述阴极的材料选自但不限于:金属材料、碳材料、金属氧化物中的一种或多种。其中,所述金属材料包括Al(铝)、Ag(银)、Cu(铜)、Mo(钼)、Au(金)、Ba(钡)、Ca(钙)、Mg(镁)中的一种或多种。所述碳材料包括石墨、碳纳米管、石墨烯、碳纤维中的一种或多种。所述金属氧化物可以是掺杂或非掺杂金属氧化物,包括ITO、FTO、ATO、AZO、GZO、IZO、MZO、AMO中的一种或多种,也包括掺杂或非掺杂透明金属氧化物之间夹着金属的复合电极,其中,所述复合电极包括AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2中的一种或多种。其中,“/”表示叠层结构,例如,AZO/Ag/AZO表示由AZO层、Ag层和AZO层依次 层叠形成的具有层叠结构的复合电极。
基于同一申请构思,本申请还提供一种发光器件,所述发光器件由以上任意实施例中所述发光器件的方法制成。在一具体实施例中,所述发光器件为QLED器件。
图4示出了本申请实施例所述发光器件10的一种正置结构示意图,如图4所示,所述正置结构发光器件10包括衬底1、设在所述衬底1表面的阳极2、设在所述阳极2表面的空穴注入层3、设在所述空穴注入层3表面的空穴传输层4、设在所述空穴传输层4表面的发光层5、设在所述发光层5表面的电子传输层6及设在所述电子传输层6表面的阴极7。
图5示出了本申请实施例所述发光器件10的一种倒置结构示意图,如图5所示,所述倒置结构发光器件10包括衬底1、设在所述衬底1表面的阴极7、设在所述阴极7表面的电子传输层6、设在所述电子传输层6表面的发光层5、设在所述发光层5表面的空穴传输层4、设在所述空穴传输层4表面的空穴注入层3、设在所述空穴注入层3表面的阳极2。
在上述实施例基础上,本申请还提供一种显示装置,包括以上实施例中所述的发光器件。其结构、实现原理及效果类似,在此不再赘述。
可选的,所述显示装置可以为:照明灯具和背光源,或者是手机、平板电脑、电视机、显示器、笔记本电脑、数码相框和导航仪等任何具有显示功能的产品或部件。
需要说明的是,本申请实施例附图只涉及本申请实施例涉及到的结构,其他结构可参考通常设计。
下面通过实施例对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。
实施例1
实施例1提供一种发光器件及制备方法,该方法具体包括如下步骤:
(1)在ITO衬底上,旋涂PEDOT:PSS(10mg/mL)水溶液,转速5000rpm,时间30秒,随后100℃加热15分钟,并静置冷却5分钟;
(2)对PEDOT:PSS水溶液进行120℃的热处理5min,热处理结束后涂覆正辛烷,并进行1500rpm的旋转,完成空穴注入层的制备;
(3)旋涂TFB甲醇溶液(8mg/mL),转速3000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(4)对TFB甲醇溶液进行120℃热处理5min,热处理结束后涂覆正辛烷,并进行1500rpm的旋转,完成空穴传输层的制备;
(5)旋涂量子点乙酸乙酯溶液(20mg/mL),转速2000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(6)对量子点乙酸乙酯溶液进行120℃热处理5min,热处理结束后涂覆正辛烷,并进行1500rpm的旋转,完成发光层的制备;
(7)旋涂ZnO甲苯溶液(30mg/mL),转速2000rpm,时间30秒,随后80℃加热20分钟,并静置冷却5分钟;
(8)对该ZnO甲苯溶液进行120℃热处理5min,热处理结束后涂覆正辛烷,并进行1500rpm的旋转,完成电子传输层的制备;
(9)通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间200秒,厚度20nm,得到顶发射的正置型的发光器件,并对器件进行封装。
实施例2
实施例2提供一种发光器件及制备方法,该方法具体包括如下步骤:
(1)在ITO衬底上,旋涂PEDOT:PSS(10mg/mL)水溶液,转速5000rpm,时间30秒,随后100℃加热15分钟,并静置冷却5分钟;
(2)对PEDOT:PSS水溶液进行120℃热处理5min,热处理结束后涂覆甲醇,并进行1500rpm的旋转,完成空穴注入层的制备;
(3)旋涂TFB甲醇溶液(8mg/mL),转速3000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(4)对TFB甲醇溶液进行120℃热处理5min,热处理结束后涂覆乙酸乙酯,并进行1500rpm的旋转,完成空穴传输层的制备;
(5)旋涂量子点乙酸乙酯溶液(20mg/mL),转速2000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(6)对量子点乙酸乙酯溶液进行120℃热处理5min,热处理结束后涂覆甲苯,并进行1500rpm的旋转,完成发光层的制备;
(7)旋涂ZnO甲苯溶液(30mg/mL),转速2000rpm,时间30秒,随后80℃加热20分钟,并静置冷却5分钟;
(8)对ZnO甲苯溶液进行120℃热处理5min,热处理结束后涂覆正辛烷,并进行1500rpm的旋转,完成电子传输层的制备;
(9)通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间200秒,厚度20nm,得到顶发射的正置型发光器件,并对器件进行封装。
对比例1
对比例1提供一种发光器件及制备方法,该方法具体包括如下步骤:
(1)在ITO衬底上,旋涂PEDOT:PSS溶液,转速5000rpm,时间30秒,随后150℃加热15分钟,并静置冷却5分钟,完成空穴注入层的制备;
(2)旋涂TFB溶液(8mg/mL),转速3000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟,完成空穴传输层的制备;
(3)旋涂量子点溶液(20mg/mL),转速2000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟,完成发光层的制备;
(4)旋涂ZnO溶液(30mg/mL),转速2000rpm,时间30秒,随后80℃加热20分钟,并静置冷却5分钟,完成电子传输层的制备;
(5)通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间200秒,厚度20nm,得到顶发射的正置型发光器件,并对器件进行封装。
对比例2:
对比例2提供一种发光器件及制备方法,该方法具体包括如下步骤:
(1)在ITO衬底上,旋涂PEDOT:PSS溶液,转速5000rpm,时间30秒,随后100℃加热15分钟,并静置冷却5分钟;
(2)对PEDOT:PSS溶液进行120℃热处理5min,完成空穴注入层的制备;
(3)旋涂TFB溶液(8mg/mL),转速3000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(4)对TFB进行120℃热处理5min,完成空穴传输层的制备;
(5)旋涂量子点溶液(20mg/mL),转速2000rpm,时间30秒,随后80℃加热10分钟,并静置冷却5分钟;
(6)对量子点进行120℃热处理5min,完成发光层的制备;
(7)旋涂ZnO溶液(30mg/mL),转速2000rpm,时间30秒,随后80℃加热20分钟,并静置冷却5分钟;
(8)对ZnO溶液进行120℃热处理5min,完成电子传输层的制备;
(9)通过热蒸发,真空度不高于3×10 -4Pa,蒸镀Ag,速度为1埃/秒,时间200秒,厚度20nm,得到顶发射的正置型发光器件,并对器件进行封装。
验证例
为了说明本申请实施例在各功能层上经热处理和退火对发光器件的电学性能的影响,本申请还提供了验证例,参照本领域已知的方法,分别测试了实施例1至实施例2,以及对比例1和对比例2所制备的发光器件的JVL数据,确定器件电学性能,并进行器件电致发光形貌拍摄(发光层形貌,使用光学显微镜拍摄),结果如表1和图6所示。
表1
Figure PCTCN2022128927-appb-000001
注:L表示器件亮度,在相同电流下,器件亮度越高表示器件效率越好;T95表示器件亮度由100%衰减至95%所用的时间,在相同电流下,器件T95时间越长表示器件性能越好,稳定性越出色;T95-1K表示当器件在1000nit亮度下,亮度由100%衰减至95%所用时间,此值由L与T95的值计算得出;C.E表示器件的电流效率,在发光区面积和驱动电流一致的前提下,C.E越高器件性能越好;C.E-1000nit表示器件在1000nit亮度下的电流效率,在发光区面积和驱动电流一致的前提下,C.E-1000nit越高器件性能越好。
如表1所示,针对各对比例和实施例的L值、T95值、T95-1K nit值、C.E值以及C.E-1000nit值,实施例2的数据均大于实施例1,实施例1的数据均大于对比例2,对比例2的数据均大于对比例1。
如图6所示,对比例1的发光层出现薄膜开裂,形貌不均匀的情况。对比例2的发光层虽然避免了开裂,但是发光不均匀。实施例1的发光层虽然避免了开 裂,但是发光不均匀,形貌略好于对比例2。实施例2发光层不仅避免了开裂,且形貌良好。
综上,将对比例1与对比例2的器件性能以及形貌作比较,对比例2均优于对比例1,说明对功能层进行二次退火将会降低器件应力,提高器件的性能和一定程度上避免功能层的开裂。
将对比例2与实施例1的器件性能以及形貌作比较,实施例1均优于对比例2,说明利用溶剂快速对器件功能层进行降温将会降低器件应力,提高器件性能,并且还能避免功能层的开裂,提高器件的成品率。
将实施例1与实施例2的器件性能以及形貌作比较,实施例2均优于实施例1,其中,实施例1中第二次热退火之后均使用了相同的溶剂处理,而实施例2中使用了与下一层相同的溶剂(即正交溶剂),说明在利用正交溶剂对器件功能层进行降温将会进一步降低应力,提高器件性能,使功能层的膜层形态更均匀,避免功能层的开裂,提高器件的成品率。这是由于功能层的应力降低,可降低因开裂功能层的上方功能层与下方功能层直接接触导致器件短路对器件的电学性能,尤其对器件的工作寿命实测时长的影响,当器件电学性能降低时,器件T95值也有明显降低。而器件的薄膜均匀性会影响器件的L值与C.E值,器件薄膜越均匀,器件的光学性能越好,亮度越高,效率也随之增高,进而器件性能也会提高。
以上对本申请实施例所提供的一种发光器件的制备方法、发光器件及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种发光器件的制备方法,其中,所述制备方法包括:
    在第一电极上设置一层或多层功能层;
    在所述一层或多层功能层上制备第二电极;以及
    其中,所述一层或多层功能层中的至少一层由相应的功能层材料的溶液通过第一次热退火处理后,再进行第二次热退火处理得到。
  2. 根据权利要求1所述的制备方法,其中,在所述第二次热退火处理中,热退火的温度为60℃至120℃。
  3. 根据权利要求1或2所述的制备方法,其中,在所述第二次热退火处理中,热退火的时间为5min至10min。
  4. 根据权利要求1至3任一项所述的制备方法,其中,在所述第二次热退火处理后,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,然后再进行下一层的设置。
  5. 根据权利要求4所述的制备方法,其中,所述第一溶剂的极性小于每一功能层材料的溶液中的溶剂的极性。
  6. 根据权利要求4或5所述的制备方法,其中,所述第一溶剂为非极性溶剂。
  7. 根据权利要求4所述的制备方法,其中,各功能层材料的溶液中的溶剂正交,所述第一溶剂的极性与下一层待设置的功能层材料的溶液中的溶剂相同。
  8. 根据权利要求4至7任一项所述的制备方法,其中,所述第一溶剂的温度小于等于15℃。
  9. 根据权利要求1至3任一项所述的制备方法,其中,所述一层或多层功能层包括发光层、空穴注入层、空穴传输层及电子传输层,所述空穴注入层和所述空穴传输层位于所述发光层和所述第一电极之间,所述空穴注入层靠近所述第一电极设置,所述空穴传输层靠近所述第二电极设置,所述电子传输层位于所述发光层和所述第二电极之间,其中,所述空穴注入层、空穴传输层、 发光层以及电子传输层中的一层或多层经过所述第二次热退火处理。
  10. 根据权利要求9所述的制备方法,其中,所述制备方法包括:
    在第一电极上设置空穴注入层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
    在所述空穴注入层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
    在所述空穴传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
    在所述发光层上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;以及
    在所述电子传输层上制备第二电极。
  11. 根据权利要求9所述的制备方法,其中,所述制备方法包括:
    在第一电极上设置电子传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成电子传输层;
    在所述电子传输层上设置发光层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成发光层;
    在所述发光层上设置空穴传输层材料的溶液,进行第一次热退火处理和第二次热退火处理,形成空穴传输层;
    在所述空穴传输层上设置空穴注入层材料溶液,进行第一次热退火处理和第二次热退火处理,形成空穴注入层;
    在所述空穴注入层上制备第二电极。
  12. 根据权利要求9至11任一项所述的制备方法,其中,在所述第二次热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层;所述空穴注入层材料的溶液包含的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性配置为:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;
    其中,所述第一溶剂的极性小于第五溶剂。
  13. 根据权利要求9至11任一项所述的制备方法,其中,在所述第二次 热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,所述空穴注入层材料的溶液包含的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性配置为:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;所述第一溶剂为非极性溶剂。
  14. 根据权利要求9至11任一项所述的制备方法,其中,在所述第二次热退火处理中,通过涂敷或浸泡的方式,利用第一溶剂冷却功能层,所述空穴注入层材料的溶液包含的溶剂为第二溶剂,所述空穴传输层材料的溶液包含的溶剂为第三溶剂,所述发光层材料的溶液包含的溶剂为第四溶剂,所述电子传输层材料的溶液包含的溶剂为第五溶剂,溶剂极性:第二溶剂≥第三溶剂≥第四溶剂≥第五溶剂;
    其中,在所述空穴注入层的第二次热退火处理中,所述第一溶剂与第三溶剂相同;在所述空穴传输层的第二次热退火处理中,所述第一溶剂与第四溶剂相同;以及在所述发光层的第二次热退火处理中,所述第一溶剂与第五溶剂相同。
  15. 根据权利要求9至14任一项所述的制备方法,其中,所述第一溶剂的温度小于等于15℃。
  16. 根据权利要求9至15任一项所述的制备方法,其中,在所述第一次热退火处理中,热退火的温度为60℃至120℃。
  17. 根据权利要求9至16任一项所述的制备方法,其中,在所述第一次热退火处理中,热退火的时间为10min至30min。
  18. 根据权利要求9至17任一项所述的制备方法,其中,所述发光层材料包括直接带隙化合物半导体或者钙钛矿型半导体,所述直接带隙化合物半导体包括II-VI族化合物、III-V族化合物、II-V族化合物、III-VI化合物、IV-VI族化合物、I-III-VI族化合物、II-IV-VI族化合物和IV族单质中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS;CdZnSeS、CdZnSeTe和CdZnSTe中的一种或多种;所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP和InAlNP 中的一种或多种;所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种;所述钙钛矿型半导体包括掺杂的无机钙钛矿型半导体、非掺杂的无机钙钛矿型半导体及有机-无机杂化钙钛矿型半导体的一种或多种,所述无机钙钛矿型半导体的结构通式为AMX 3,所述有机-无机杂化钙钛矿型半导体的结构通式为BMX 3,其中,A为Cs +离子,B为有机胺阳离子,所述有机胺阳离子包括CH 3(CH 2) n-2NH 3 +(n≥2)或NH 3(CH 2) nNH 3 2+(n≥2),M为二价金属阳离子,所述二价金属阳离子包括Pb 2+、Sn 2+、Cu 2+、Ni 2+、Cd 2+、Cr 2+、Mn 2+、Co 2+、Fe 2+、Ge 2+、Yb 2+、Eu 2+中的一种,X为卤素阴离子,所述卤素阴离子包括Cl -、Br -、I -中的一种;
    所述空穴注入层材料包括:PEDOT:PSS、CuPc、F4-TCNQ、HATCN、过渡金属氧化物及过渡金属硫系化合物中的一种或多种;
    所述空穴传输层材料包括:聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)、聚乙烯咔唑、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)、聚(9,9-二辛基芴-共-双-N,N-苯基-1,4-苯二胺)、4,4’,4”-三(咔唑-9-基)三苯胺、4,4'-二(9-咔唑)联苯、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺、15N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺、石墨烯、C 60中的一种或多种;以及,
    所述电子传输层材料包括:ZnO、TiO 2、SnO 2、Ta 2O 3、ZrO 2、NiO、TiLiO、ZnAlO、ZnMgO、ZnSnO、ZnLiO及InSnO中的一种或多种。
  19. 一种发光器件,其中,所述发光器件由权利要求1至18任一项所述的制备方法制备得到。
  20. 一种显示装置,其中,包括权利要求19所述的发光器件。
PCT/CN2022/128927 2021-11-03 2022-11-01 发光器件的制备方法、发光器件及显示装置 WO2023078233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111294610.3A CN116096198A (zh) 2021-11-03 2021-11-03 电致发光器件的制备方法、电致发光器件及显示装置
CN202111294610.3 2021-11-03

Publications (1)

Publication Number Publication Date
WO2023078233A1 true WO2023078233A1 (zh) 2023-05-11

Family

ID=86208775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128927 WO2023078233A1 (zh) 2021-11-03 2022-11-01 发光器件的制备方法、发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN116096198A (zh)
WO (1) WO2023078233A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297882A (ja) * 2000-04-14 2001-10-26 Canon Inc 有機発光素子およびその製造方法
JP2010062012A (ja) * 2008-09-04 2010-03-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP2015191792A (ja) * 2014-03-28 2015-11-02 セイコーエプソン株式会社 機能層形成用インク、発光素子の製造方法、発光装置および電子機器
CN107431139A (zh) * 2015-03-30 2017-12-01 默克专利有限公司 包含硅氧烷溶剂的有机功能材料的制剂
US20200259125A1 (en) * 2017-01-30 2020-08-13 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297882A (ja) * 2000-04-14 2001-10-26 Canon Inc 有機発光素子およびその製造方法
JP2010062012A (ja) * 2008-09-04 2010-03-18 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法および有機エレクトロルミネッセンス素子
JP2015191792A (ja) * 2014-03-28 2015-11-02 セイコーエプソン株式会社 機能層形成用インク、発光素子の製造方法、発光装置および電子機器
CN107431139A (zh) * 2015-03-30 2017-12-01 默克专利有限公司 包含硅氧烷溶剂的有机功能材料的制剂
US20200259125A1 (en) * 2017-01-30 2020-08-13 Merck Patent Gmbh Method for forming an organic electroluminescence (el) element

Also Published As

Publication number Publication date
CN116096198A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
US10225907B2 (en) Light emitting device having at least two quantum dot light emitting layers and fabricating method thereof
WO2020134162A1 (zh) 量子点发光二极管及其制备方法
CN106784199A (zh) 全无机qled显示器件及其制备方法
WO2021253923A1 (zh) 量子点发光二极管器件及其制备方法和显示面板
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN114203941B (zh) 薄膜的制备方法和发光二极管
CN109994650B (zh) 一种薄膜及其制备方法、应用
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
CN114203940B (zh) 薄膜的制备方法和发光二极管
WO2023078138A1 (zh) 一种光电器件及其制备方法、显示装置
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2023093494A1 (zh) 电致发光器件及其制备方法、光电装置
CN113122260B (zh) 一种量子点材料及其制备方法、量子点发光二极管
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023124550A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN112635682B (zh) 混合物、发光器件及显示装置
WO2023016345A1 (zh) 量子点发光器件及其制备方法、显示装置
CN116437694A (zh) 电致发光器件及其制备方法、显示装置
CN116997237A (zh) 一种光电器件及其制备方法、显示装置
CN116425711A (zh) 化合物、发光器件及其制备方法与显示装置
CN116096123A (zh) 一种薄膜及其制备方法、光电器件及显示装置
CN116648082A (zh) 一种复合材料及其制备方法、光电器件及显示装置
CN116437682A (zh) 电致发光器件及其制备方法、显示装置
CN116437683A (zh) 量子点发光二极管及其制备方法、光电装置
WO2022252594A1 (zh) 发光器件及其制备方法、显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22889257

Country of ref document: EP

Kind code of ref document: A1