WO2023124550A1 - 发光器件的制备方法、发光器件及显示装置 - Google Patents

发光器件的制备方法、发光器件及显示装置 Download PDF

Info

Publication number
WO2023124550A1
WO2023124550A1 PCT/CN2022/130702 CN2022130702W WO2023124550A1 WO 2023124550 A1 WO2023124550 A1 WO 2023124550A1 CN 2022130702 W CN2022130702 W CN 2022130702W WO 2023124550 A1 WO2023124550 A1 WO 2023124550A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
light
preparation
nanoparticles
zns
Prior art date
Application number
PCT/CN2022/130702
Other languages
English (en)
French (fr)
Inventor
郭煜林
吴龙佳
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2023124550A1 publication Critical patent/WO2023124550A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present application relates to the field of display technology, and in particular to a method for preparing a light-emitting device, a light-emitting device manufactured by the method, and a display device including the light-emitting device.
  • OLEDs organic light-emitting devices
  • QLEDs quantum dot light-emitting devices
  • Traditional OLED and QLED device structures generally include an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode. Under the action of the electric field, the holes generated by the anode of the light-emitting device and the electrons generated by the cathode move, inject into the hole transport layer and the electron transport layer respectively, and finally migrate to the light-emitting layer. When the two meet in the light-emitting layer, a Energy excitons, which excite light-emitting molecules and eventually produce visible light.
  • electron transport layers are electron transport layers containing metal oxide nanoparticles. Such electron transport layers have excellent electron transport properties, which can make light-emitting devices including them It has good electron mobility and high luminous efficiency.
  • the present application provides a method for preparing a light emitting device, a light emitting device and a display device.
  • the embodiment of the present application provides a method for preparing a light-emitting device, including the following steps:
  • a cathode is formed on the electron transport layer to obtain a light emitting device.
  • the protic ionic liquid is selected from one or more of 4-picoline trifluoroacetate, phenethylaminoacetic acid, 3-nitroaniline and glycolic acid 1-butylimidazolium salt.
  • the metal oxide nanoparticles are selected from one or more of ZnO nanoparticles, SnO 2 nanoparticles, Al 2 O 3 nanoparticles, and TiO 2 nanoparticles.
  • the metal oxide nanoparticles are doped with doping elements, and the doping elements are selected from one or more of Al, Mg, Li, In, and Ga.
  • the particle size range of the metal oxide nanoparticles is 3-10 nm.
  • the molar ratio of the protic ionic liquid to the metal oxide nanoparticles ranges from 1:(0.5-1).
  • the method for dispersing the metal oxide nanoparticles in the protic ionic liquid is ultrasonication at room temperature for 20-120 min.
  • an annealing step is also included, the temperature range of the annealing is 60-120°C, and the time range is 10min-2h .
  • the metal oxide nanoparticles are ZnO nanoparticles
  • the preparation method of the ZnO nanoparticles includes:
  • the concentration of the zinc salt solution is 0.1-1M.
  • the concentration of the lye is 0.1-1M, and the pH is 12-14.
  • the molar ratio of OH ⁇ in the lye to Zn 2+ in the zinc salt is (1.5 ⁇ 3.0):1.
  • the zinc salt includes one or more of zinc chloride, zinc nitrate, zinc sulfate, and zinc acetate.
  • the organic solvent includes one or more of N,N-dimethylformamide and dimethyl sulfoxide.
  • the alkali in the lye includes one or more of sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide.
  • the step of providing an anode and forming a quantum dot light-emitting layer on the anode includes: sequentially forming a stacked hole transport layer and a quantum dot light-emitting layer on the anode.
  • the material of the hole transport layer is selected from poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], 2,2',7,7'-tetra [N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene, 4,4'-cyclohexylbis[N,N-bis(4-methylphenyl)aniline ], N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'-diamine, 4,4'-bis(N- carbazole)-1,1'-biphenyl, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(p-butylphenyl )) diphenylamine)], poly(9-vinylcarbazole), polytriphenylamine, poly[
  • the material of the quantum dot light-emitting layer is selected from one or more of single-structure quantum dots and core-shell structure quantum dots, and the single-structure quantum dots are selected from group II-VI compounds, group III-V One or more of compound and I-III-VI compound
  • the II-VI compound is selected from CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, One or more of ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeTe and CdZnSTe
  • the III-V group compound is selected from InP, InAs, GaP, GaAs, GaSb, AlN, AlP, InAsP, InNP, InNSb, GaAlNP and One or more of InAlNP, the I-III-VI group
  • the anode is selected from a doped metal oxide electrode, a composite electrode, a graphene electrode or a carbon nanotube electrode, and the material of the doped metal oxide electrode is selected from indium-doped tin oxide, fluorine-doped tin oxide, antimony-doped One or more of mixed tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, magnesium-doped zinc oxide and aluminum-doped magnesium oxide, the composite electrode is selected from AZO/Ag /AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS /Ag/ZnS or ZnS/Al/ZnS;
  • the material of the cathode is selected from one or more of Ag, Al, Au, Pt, Ca, Ba and alloys.
  • the present application also provides a light emitting device, which is manufactured by the above method for preparing a light emitting device.
  • the present application also provides a display device, which includes the above-mentioned light emitting device.
  • the preparation method of the light-emitting device of the present application first disperses the metal oxide nanoparticles in the proton-type ionic liquid to obtain a metal oxide nanoparticle dispersion, and then sets the metal oxide nanoparticle dispersion on the quantum dot to emit light.
  • the proton-type ionic liquid has an active proton hydrogen and a closed-loop conjugated system, and the active proton hydrogen and the closed-loop conjugated system are prone to electrophilic reactions, and are easy to react with the surface of the metal oxide nanoparticle Negatively charged substances are electrostatically adsorbed to form ionic bonds; the active proton hydrogen can easily form hydrogen bonds with metal oxide nanoparticles, and the proton-type ionic liquid itself can easily form microstructures such as hydrogen bond aggregates.
  • a proton-type ionic liquid film is formed on the surface of the metal oxide nanoparticles, thereby controlling crystal growth and inhibiting crystal agglomeration, which is conducive to maintaining the spherical shape of the crystal growth unit during the annealing process and avoiding the growth of other irregular
  • the formation of a proton-type ionic liquid film on the surface of the metal oxide nanoparticles can also prevent the unsaturated coordination atoms on the surface of the metal oxide nanoparticles from being adsorbed on the ligands of the quantum dots on the surface of the quantum dot light-emitting layer.
  • Fig. 1 is a flow chart of a method for preparing a light-emitting device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of another light-emitting device provided by an embodiment of the present application.
  • Fig. 4 is a graph showing spectral characteristics of the light-emitting devices of Example 1 and Comparative Example of the present application, and the ZnO nanoparticle dispersions of Example 1 and Comparative Example respectively placed in the air for 5 days.
  • expressions such as “one or more” refer to one or more of the listed items, and “multiple” refers to any combination of two or more of these items, including single items (species) ) or any combination of plural items (species), for example, "at least one (species) of a, b, or c" or "at least one (species) of a, b, and c" can mean: a ,b,c,a-b (that is, a and b),a-c,b-c, or a-b-c, where a,b,c can be single or multiple.
  • the embodiment of the present application provides a method for manufacturing a light emitting device 100, including the following steps:
  • Step S11 providing an anode 10, and forming a quantum dot light-emitting layer 20 on the anode 10;
  • Step S12 dispersing the metal oxide nanoparticles in the protic ionic liquid to obtain a metal oxide nanoparticle dispersion
  • Step S13 disposing the metal oxide nanoparticle dispersion on the quantum dot light-emitting layer 20, annealing, evaporating the proton-type ionic liquid, and recrystallizing the metal oxide nanoparticles to obtain the electron transport layer 30;
  • Step S14 forming a cathode 40 on the electron transport layer 30 to obtain a light emitting device 100 .
  • the metal oxide nanoparticles may be selected from but not limited to one or more of ZnO nanoparticles, SnO 2 nanoparticles, Al 2 O 3 nanoparticles, and TiO 2 nanoparticles. It can be understood that the metal oxide nanoparticles may also be doped with one or more of Al, Mg, Li, In, Ga, that is, the metal oxide nanoparticles are doped metal oxide nanoparticles. As an example, the doped metal oxide nanoparticles may be aluminum-doped zinc oxide (AZO) nanoparticles, lithium-doped zinc oxide (LZO) nanoparticles, magnesium-doped zinc oxide (MZO) nanoparticles, and the like.
  • AZO aluminum-doped zinc oxide
  • LZO lithium-doped zinc oxide
  • MZO magnesium-doped zinc oxide
  • the protic ionic liquid can be selected from but not limited to one or more of 4-picoline trifluoroacetate, phenethylaminoacetic acid, 3-nitroaniline, and glycolic acid 1-buimidazole .
  • glycolic acid 1-butimidazole salt The structural formula of described glycolic acid 1-butimidazole salt is:
  • the proton-type ionic liquid has active proton hydrogen and a closed-ring conjugated system (that is, has aromaticity).
  • the active proton hydrogen and the closed-loop conjugated system are prone to electrophilic reactions, and are prone to electrostatic adsorption with negatively charged substances on the surface of metal oxide nanoparticles, thereby forming ionic bonds; the active proton hydrogen is easy to form with metal oxide nanoparticles Hydrogen bonding, and the proton-type ionic liquid itself is very easy to form microstructures such as hydrogen bond aggregates.
  • a proton-type ionic liquid film is formed on the surface of the metal oxide nanoparticles, thereby controlling crystal growth and inhibiting crystal agglomeration, which is conducive to maintaining the spherical shape of the crystal growth unit during the annealing process and avoiding the growth of other irregular
  • the formation of a proton-type ionic liquid film on the surface of the metal oxide nanoparticles can also prevent the unsaturated coordination atoms on the surface of the metal oxide nanoparticles from being adsorbed on the ligands of the quantum dots on the surface of the quantum dot light-emitting layer.
  • metal oxide nanoparticles that is, inhibit the accumulation of metal oxide nanoparticles nanoparticles, so that the metal oxide nanoparticles tend to spread evenly on the surface of the quantum dot light-emitting layer, and the proton-type ionic liquid will evaporate during annealing In this way, an electron transport layer film with good flatness, density and good crystallinity can be obtained, and a light-emitting device with high luminous efficiency can be obtained.
  • the molar ratio of the protic ionic liquid to the metal oxide nanoparticles ranges from 1:(0.5 ⁇ 1). Within the stated range, the metal oxide nanoparticles can be fully dispersed and uniform, so that the proton-type ionic liquid film formed by the proton-type ionic liquid can fully wrap the metal oxide nanoparticles, and is beneficial to the metal oxide nanoparticle dispersion liquid. film forming.
  • the method of dispersing the metal oxide nanoparticles in the protic ionic liquid is ultrasonic dispersion.
  • the ultrasonic dispersion condition is ultrasonic at room temperature for 20-120 min. Within the stated range, the dispersion of the metal oxide nanoparticles in the proton-type ionic liquid can be accelerated, which is beneficial to improving the uniformity and flatness of the electron transport layer film.
  • the particle size range of the metal oxide nanoparticles is 3-10 nm. Within the particle size range, the metal oxide nanoparticles are not easy to agglomerate, are easy to store, and are conducive to the energy level matching of the electron transport layer 30 and the quantum dot light emitting layer 20 .
  • the method for disposing the metal oxide nanoparticle dispersion on the quantum dot light-emitting layer 20 is a solution method.
  • the solution method can be spin coating method, printing method, inkjet printing method, scraping method, printing method, dipping and pulling method, soaking method, spraying method, roller coating method, casting method, slit coating method and Strip coating method, etc.
  • the method of disposing the metal oxide nanoparticle dispersion on the quantum dot light-emitting layer 20 is a spin coating method, that is, spin coating the metal oxide nanoparticle dispersion on the quantum dot light emitting layer 20. on the luminescent layer 20.
  • the spin-coating speed is 3000-5000 rpm
  • the spin-coating time is 30-90 s. In this way, an electron transport layer 30 with a proper thickness and no cracks can be produced.
  • the temperature range of the annealing is 60-120°C, and the time range is 10min-2h. Within the above range, a film with good performance can be obtained without causing damage to the quantum dot light-emitting layer 20 .
  • the metal oxide nanoparticles are synthesized by a conventional solution method.
  • the preparation method of the ZnO nanoparticles includes the following steps:
  • Step S21 adding the zinc salt into the organic solvent to obtain a zinc salt solution with a concentration ranging from 0.1 to 1M;
  • Step S22 adding dropwise a lye with a concentration of 0.1-1M and a pH of 12-14 into the zinc salt solution, wherein the range of the molar ratio of OH- in the lye to Zn 2+ in the zinc salt is ( 1.5 to 3.0): 1. Continue to stir for 1 to 4 hours to obtain a clear and transparent solution, analyze with acetone, and centrifuge to obtain ZnO nanoparticles.
  • the zinc salt is a zinc salt commonly used in the preparation of metal oxide nanoparticles, for example, one or more selected from but not limited to zinc chloride, zinc nitrate, zinc sulfate, and zinc acetate.
  • the organic solvent is an organic solvent conventionally used to prepare metal oxide nanoparticles, for example, it can be selected from but not limited to one or more of N,N-dimethylformamide (DMF) and dimethyl sulfoxide .
  • DMF N,N-dimethylformamide
  • the lye is the lye conventionally used to prepare metal oxide nanoparticles, such as the lye of ethanol, and the alkali can be selected from but not limited to sodium hydroxide, potassium hydroxide and tetramethylammonium hydroxide. one or more species.
  • the step S11 is: provide an anode 10, and sequentially form a stacked hole transport layer 50 and a quantum dot light-emitting layer 20 on the anode 10 .
  • the preparation method of the light-emitting device 100 also includes The step of forming each functional layer.
  • a step of encapsulating the light emitting device 100 may also be included.
  • the encapsulation process can be performed by commonly used machine encapsulation, or manual encapsulation.
  • both the oxygen content and the water content in the encapsulation environment are lower than 0.1 ppm, so as to ensure the stability of the light emitting device.
  • the methods for the quantum dot light-emitting layer 20, the cathode 40, and the hole transport layer 50 can be realized by conventional techniques in the art, such as chemical or physical methods.
  • the chemical method can be chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodic oxidation method, electrolytic deposition method and co-precipitation method, etc.
  • the physical method can be physical coating method or solution method, and the physical coating method can be thermal evaporation coating method CVD, electron beam evaporation coating method, magnetron sputtering method, multi-arc ion coating method, physical vapor deposition method PVD, atomic layer deposition method And pulse laser deposition method, etc.; the solution method refers to the above, and will not be repeated here.
  • the anode 10 may be selected from, but not limited to, doped metal oxide electrodes, composite electrodes, graphene electrodes, and carbon nanotube electrodes.
  • the material of the doped metal oxide electrode can be selected from but not limited to indium doped tin oxide (ITO), fluorine doped tin oxide (FTO), antimony doped tin oxide (ATO), aluminum doped zinc oxide (AZO ), gallium-doped zinc oxide (GZO), indium-doped zinc oxide (IZO), magnesium-doped zinc oxide (MZO) and aluminum-doped magnesium oxide (AMO).
  • ITO indium doped tin oxide
  • FTO fluorine doped tin oxide
  • ATO antimony doped tin oxide
  • AZO aluminum doped zinc oxide
  • GZO gallium-doped zinc oxide
  • IZO indium-doped zinc oxide
  • MZO magnesium-doped zinc oxide
  • AMO aluminum-doped magnesium oxide
  • the composite electrode is a composite electrode with a metal sandwiched between doped or non-doped transparent metal oxides, such as AZO/Ag/AZO, AZO/Al/AZO, ITO/Ag/ITO, ITO/Al/ITO, ZnO/Ag/ZnO, ZnO/Al/ZnO, TiO 2 /Ag/TiO 2 , TiO 2 /Al/TiO 2 , ZnS/Ag/ZnS, ZnS/Al/ZnS, etc.
  • "/" indicates a laminated structure
  • AZO/Ag/AZO indicates a composite electrode with a laminated structure formed by sequentially laminating an AZO layer, an Ag layer and an AZO layer.
  • the material of the quantum dot light-emitting layer 20 may be selected from, but not limited to, one or more of single-structure quantum dots and core-shell structure quantum dots.
  • the single-structure quantum dots may be selected from, but not limited to, one or more of II-VI compounds, III-V compounds and I-III-VI compounds.
  • the II-VI group compound can be selected from but not limited to CdSe, CdS, CdTe, ZnSe, ZnS, CdTe, ZnTe, CdZnS, CdZnSe, CdZnTe, ZnSeS, ZnSeTe, ZnTeS, CdSeS, CdSeTe, CdTeS, CdZnSeTe and One or more of CdZnSTe;
  • the III-V group compound can be selected from but not limited to one or Various;
  • the I-III-VI compound may be selected from but not limited to one or more of CuInS 2 , CuInSe 2 and AgInS 2 .
  • the quantum dots of the core-shell structure can be selected from but not limited to CdSe/ZnS, CdSe/ZnSe/ZnS, ZnCdSe/ZnSe/ZnS, ZnSe/ZnS, ZnSeTe/ZnS, CdSe/CdZnSeS/ZnS, InP/ZnSe/ZnS and One or more of InP/ZnSeS/ZnS.
  • the cathode 40 may be selected from but not limited to one or more of Ag, Al, Au, Pt, Ca, Ba and alloys.
  • the material of the hole transport layer 50 can be selected from but not limited to poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2′,7, 7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-omeTAD), 4,4'-cyclohexylbis[N,N-di (4-methylphenyl)aniline](TAPC), N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-diphenyl-4,4'- Diamine (NPB), 4,4'-bis(N-carbazole)-1,1'-biphenyl (CBP), poly[(9,9-dioctylfluorenyl-2,7-diyl) -co-(4,4'-(N-(p-butylphenyl))dip
  • each layer of the light emitting device 100 can be adjusted according to the light emitting requirement of the light emitting device 100 .
  • the present application also relates to a light emitting device 100 , which includes the anode 10 , the quantum dot light emitting layer 20 , the electron transport layer 30 and the cathode 40 stacked in sequence.
  • the light emitting device 100 further includes a hole transport layer 50 disposed between the anode 10 and the quantum dot light emitting layer 20 .
  • the light-emitting device 100 can also add some functional layers that are conventionally used in light-emitting diodes to help improve the performance of light-emitting diodes, such as hole injection layer, electron blocking layer, hole blocking layer, electron injection layer and interface modification. layers etc.
  • the present application also relates to a display device, which includes the light emitting device 100 .
  • This embodiment is basically the same as Embodiment 1, the difference is that the preparation method of the electron transport layer 30 of this embodiment is:
  • ZnO nanoparticles are dispersed in phenylethylaminoacetic acid, wherein the molar ratio of phenylethylaminoacetic acid to ZnO nanoparticles is 0.05:1, and ultrasonic 60min is obtained at room temperature to obtain a ZnO nanoparticle dispersion;
  • the ZnO nanoparticle dispersion was spin-coated on the quantum dot light-emitting layer 20 , wherein the spin-coating speed was 4000 rpm, the spin-coating time was 60 s, and then annealed at 100° C. for 30 min to obtain the electron transport layer 30 .
  • This embodiment is basically the same as Embodiment 1, the difference is that the preparation method of the electron transport layer 30 of this embodiment is:
  • This comparative example is basically the same as Example 1, the difference is that in this comparative example, ZnO nanoparticles are dispersed in ethanol to obtain a ZnO nanoparticle dispersion.
  • the light emitting performance test was carried out on the light emitting devices of Example 1 and the comparative example, and the spectral characteristic curve was obtained (refer to FIG. 4 ). Specifically, after the ZnO nanoparticle dispersions of Example 1 and the comparative example were placed in the air for 5 days, respectively, the light-emitting devices were prepared by the preparation methods of the light-emitting devices of Example 1 and the comparative example, and the light-emitting properties of the devices were tested. Get the spectral characteristic curve (see Figure 4).
  • the turn-on voltage and external quantum efficiency EQE of the light-emitting devices of Examples 1-3 and Comparative Examples were tested. Wherein, the external quantum efficiency and the turn-on voltage are measured by EQE optical testing equipment. Refer to Table 1 for test results.
  • the light-emitting devices of Examples 1-3 Compared with the light-emitting devices of the comparative example, the light-emitting devices of Examples 1-3 have lower turn-on voltage and higher luminous efficiency. It can be seen that the light-emitting device prepared by the preparation method of the present application has lower turn-on voltage and higher luminous efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开了一种发光器件及其制备方法、显示装置,所述制备方法包括:提供阳极,在所述阳极上形成量子点发光层;将金属氧化物纳米颗粒分散在质子型离子液体中,得到金属氧化物纳米颗粒分散液;将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上,退火,得到电子传输层;在所述电子传输层上形成阴极,得到发光器件。

Description

发光器件的制备方法、发光器件及显示装置
本申请要求于2021年12月30日在中国专利局提交的、申请号为202111653185.2、申请名称为“发光器件的制备方法、发光器件及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种发光器件的制备方法、由所述制备方法制得的发光器件、及包括所述发光器件的显示装置。
背景技术
目前广泛使用的发光器件为有机发光器件(OLED)和量子点发光器件(QLED)。传统的OLED和QLED器件结构一般包括阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层及阴极。在电场的作用下,发光器件的阳极产生的空穴和阴极产生的电子发生移动,分别向空穴传输层和电子传输层注入,最终迁移到发光层,当二者在发光层相遇时,产生能量激子,从而激发发光分子最终产生可见光。
现有的发光器件,尤其是量子点发光器件,常用的电子传输层为包含金属氧化物纳米颗粒的电子传输层,此类的电子传输层具有优异的电子传输性能,可以使得包括其的发光器件具有良好的电子迁移率,而具有较高的发光效率。
使用溶液法制备所述电子传输层时,在制备过程中易出现颗粒堆积、成膜不均匀、膜层出现裂纹及空洞等现象,而导致发光器件的发光效率较低。
技术解决方案
因此,本申请提供一种发光器件的制备方法、发光器件及显示装置。
本申请实施例提供一种发光器件的制备方法,包括如下步骤:
提供阳极,在所述阳极上形成量子点发光层;
将金属氧化物纳米颗粒分散在质子型离子液体中,得到金属氧化物纳米颗粒分散液;
将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上,得到电子传输层;
在所述电子传输层上形成阴极,得到发光器件。
可选的,所述质子型离子液体选自4-甲基吡啶三氟乙酸盐、苯乙胺基乙酸、3-硝基苯胺及乙醇酸1-丁咪唑盐中的一种或多种。
可选的,所述金属氧化物纳米颗粒选自ZnO纳米颗粒、SnO 2纳米颗粒、Al 2O 3纳米颗粒、TiO 2纳米颗粒中的一种或多种。
可选的,所述金属氧化物纳米颗粒中掺杂有掺杂元素,所述掺杂元素选自Al、Mg、Li、In、Ga中的一种或多种。
可选的,所述金属氧化物纳米颗粒的粒径范围为3~10nm。
可选的,所述质子型离子液体与所述金属氧化物纳米颗粒的摩尔比的范围为1:(0.5~1)。
可选的,所述将金属氧化物纳米颗粒分散在质子型离子液体中的方法为室温下超声20~120min。
可选的,所述将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上后还包括退火的步骤,所述退火的温度范围为60~120℃,时间范围为10min~2h。
可选的,所述金属氧化物纳米颗粒为ZnO纳米颗粒,所述ZnO纳米颗粒的制备方法包括:
将锌盐加入到有机溶剂中,得到锌盐溶液;
向所述锌盐溶液中滴加碱液,得到ZnO纳米颗粒。
可选的,所述锌盐溶液的浓度为0.1~1M。
可选的,所述碱液的浓度为0.1~1M,PH为12~14。
可选的,所述碱液中的OH -与锌盐中的Zn 2+的摩尔比为(1.5~3.0):1。
可选的,所述锌盐包括氯化锌、硝酸锌、硫酸锌、醋酸锌中的一种或多种。
可选的,所述有机溶剂包括N,N-二甲基甲酰胺及二甲基亚砜中的一种或多种。
可选的,所述碱液中的碱包括氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种。
可选的,所述提供阳极,在所述阳极上形成量子点发光层的步骤包括:在所述阳极上依次形成层叠的空穴传输层及量子点发光层。
可选的,所述空穴传输层的材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺、4,4'-双(N-咔唑)-1,1'-联苯、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)]、聚(9-乙烯基咔唑)、聚三苯胺、及4,4',4”-三(咔唑-9-基)三苯胺中的一种或多种。
可选的,所述量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种,所述核壳结构的量子点选自CdSe/ZnS、CdSe/ZnSe/ZnS、ZnCdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的一种或多种;
所述阳极选自掺杂金属氧化物电极、复合电极、石墨烯电极或碳纳米管电极,所述掺杂金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS或ZnS/Al/ZnS;
所述阴极的材料选自Ag、Al、Au、Pt、Ca、Ba及合金中的一种或多种。
相应的,本申请还提供一种发光器件,所述发光器件由上述发光器件的制备方法制得。
相应的,本申请还提供一种显示装置,所述显示装置包括上述发光器件。
本申请的发光器件的制备方法先将金属氧化物纳米颗粒分散在质子型离 子液体中,得到金属氧化物纳米颗粒分散液,然后将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上,形成电子传输层薄膜,所述质子型离子液体中具有活泼质子氢及闭环共轭体系,所述活泼质子氢及闭环共轭体系易发生亲电反应,易与金属氧化物纳米颗粒表面带负电的物质发生静电吸附,进而形成离子键;所述活泼质子氢易与金属氧化物纳米颗粒形成氢键作用,而且质子型离子液体自身极易形成氢键聚集体等微结构。如此,在金属氧化物纳米颗粒的表面形成质子型离子液体薄膜,进而控制晶体生长并抑制晶体团聚,有利于在退火过程中使晶体生长单元保持球形的形貌,而避免生长为其它不规则的形貌;同时,在金属氧化物纳米颗粒的表面形成质子型离子液体薄膜,还可以阻止金属氧化物纳米颗粒表面的未饱和配位原子吸附在量子点发光层表面的量子点的配体上而造成金属氧化物纳米颗粒堆积,即抑制金属氧化物纳米颗粒纳米颗堆积,从而使得金属氧化物纳米颗粒趋向于均匀铺展在量子点发光层的表面,得到平整度好、致密且结晶性良好的电子传输层薄膜,进而得到发光效率较高的发光器件。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种发光器件的制备方法流程图;
图2是本申请实施例提供的一种发光器件的结构示意图;
图3是本申请实施例提供的另一种发光器件的结构示意图;
图4是本申请实施例1及对比例的发光器件、实施例1及对比例的ZnO纳米颗粒分散液分别在空气中放置5天后制备的发光器件的光谱特性曲线图。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是 全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。另外,在本申请的描述中,术语“包括”是指“包括但不限于”。
本申请中“一种或多种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合,例如,“a、b或c中的至少一项(种)”或“a、b和c中的至少一项(种)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
本申请的各种实施例可以以一个范围的型式存在;应当理解,以一范围型式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
请参阅图1-2,本申请实施例提供一种发光器件100的制备方法,包括如下步骤:
步骤S11:提供阳极10,在所述阳极10上形成量子点发光层20;
步骤S12:将金属氧化物纳米颗粒分散在质子型离子液体中,得到金属氧化物纳米颗粒分散液;
步骤S13:将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层20上,退火,使质子型离子液体蒸发,使金属氧化物纳米颗粒重结晶,得到电子传输层30;
步骤S14:在所述电子传输层30上形成阴极40,得到发光器件100。
所述步骤S12中:
所述金属氧化物纳米颗粒可以选自但不限于ZnO纳米颗粒、SnO 2纳米颗粒、Al 2O 3纳米颗粒、及TiO 2纳米颗粒中的一种或多种。可以理解,所述金属氧化物纳米颗粒中还可以掺杂有Al、Mg、Li、In、Ga中的一种或多种,即所述金属氧化物纳米颗粒为掺杂金属氧化物纳米颗粒。作为列举,所述掺杂金属氧化物纳米颗粒可以为掺铝氧化锌(AZO)纳米颗粒、掺锂氧化锌(LZO)纳米颗粒及掺镁氧化锌(MZO)纳米颗粒等。
所述质子型离子液体可以选自但不限于4-甲基吡啶三氟乙酸盐、苯乙胺基乙酸、3-硝基苯胺、及乙醇酸1-丁咪唑盐中的一种或多种。
所述4-甲基吡啶三氟乙酸盐的结构式为:
Figure PCTCN2022130702-appb-000001
所述苯乙胺基乙酸的结构式为:
Figure PCTCN2022130702-appb-000002
所述3-硝基苯胺的结构式为:
Figure PCTCN2022130702-appb-000003
所述乙醇酸1-丁咪唑盐的结构式为:
Figure PCTCN2022130702-appb-000004
所述质子型离子液体中具有活泼质子氢及闭环共轭体系(即具有芳香性)。所述活泼质子氢及闭环共轭体系易发生亲电反应,易与金属氧化物纳米颗粒表面带负电的物质发生静电吸附,进而形成离子键;所述活泼质子氢易与金属氧化物纳米颗粒形成氢键作用,而且质子型离子液体自身极易形成氢键聚集体等微结构。如此,在金属氧化物纳米颗粒的表面形成质子型离子液体薄膜,进而控制晶体生长并抑制晶体团聚,有利于在退火过程中使晶体生长单元保持球形的形貌,而避免生长为其它不规则的形貌;同时,在金属氧化物纳米颗粒的表面形成质子型离子液体薄膜,还可以阻止金属氧化物纳米颗粒表面的未饱和配位原子吸附在量子点发光层表面的量子点的配体上而造成金属氧化物纳米颗粒堆积,即抑制金属氧化物纳米颗粒纳米颗堆积,从而使得金属氧化物纳米颗粒趋向于均匀铺展在量子点发光层的表面,且所述质子型离子液体在退火时会蒸发,如此,可以得到平整度好、致密且结晶性良好的电子传输层薄膜,进而得到发光效率较高的发光器件。
在一些实施例中,所述质子型离子液体与所述金属氧化物纳米颗粒的摩尔比的范围为1:(0.5~1)。在所述范围内,可以使所述金属氧化物纳米颗粒充分的分散均匀,使质子型离子液体形成的质子型离子液体薄膜充分包裹金属氧化物纳米颗粒,且有利于金属氧化物纳米颗粒分散液成膜。
在一些实施例中,将金属氧化物纳米颗粒分散在质子型离子液体中的方法为超声分散。在至少一实施例中,所述超声分散的条件为室温下超声20~120min。在所述范围内,可以加快所述金属氧化物纳米颗粒在质子型离子液体中的分散,有利于提高电子传输层薄膜的均匀性和平整度。
所述金属氧化物纳米颗粒的粒径范围为3~10nm。在所述粒径范围内,所述金属氧化物纳米颗粒不易团聚,易于存放,且有利于电子传输层30与量子点发光层20的能级匹配。
所述步骤S13中:
将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层20上的方法为溶液法。所述溶液法可以为旋涂法、印刷法、喷墨打印法、刮涂法、打印法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法及条状涂布法等。
在至少一实施例中,将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层20上的方法为旋涂法,即将所述金属氧化物纳米颗粒分散液旋涂在所述量子点发光层20上。在一些实施例中,旋涂速度为3000~5000rpm,旋涂时间为30~90s,如此,可以制得厚度合适且无裂纹的电子传输层30。
所述退火的温度范围为60~120℃,时间范围为10min~2h。在所述范围内即可以获得性能良好的膜,又不会对量子点发光层20造成损伤。
在一些实施例中,所述金属氧化物纳米颗粒通过常规的溶液法合成得到。以ZnO纳米颗粒为例,所述ZnO纳米颗粒的制备方法包括如下步骤:
步骤S21:将锌盐加入到有机溶剂中,得到浓度范围为0.1~1M的锌盐溶液;
步骤S22:向所述锌盐溶液中滴加浓度为0.1~1M、PH=12~14的碱液,其中,碱液中的OH -与锌盐中的Zn 2+的摩尔比的范围为(1.5~3.0):1,继续搅拌1~4h得到一种澄清透明溶液,用丙酮解析,离心分离,得到ZnO纳米颗粒。
所述锌盐为常规用于制备金属氧化物纳米颗粒的锌盐,例如可以选自但不限于氯化锌、硝酸锌、硫酸锌、醋酸锌中的一种或多种。
所述有机溶剂为常规用于制备金属氧化物纳米颗粒的有机溶剂,例如可以选自但不限于N,N-二甲基甲酰胺(DMF)及二甲基亚砜中的一种或多种。
所述碱液为常规用于制备金属氧化物纳米颗粒的碱液,例如乙醇的碱液,所述碱可以选自但不限于氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种。
请参阅图3,在所述发光器件还包括空穴传输层50时,所述步骤S11为:提供阳极10,在所述阳极10上依次形成层叠的空穴传输层50及量子点发光层20。
可以理解,所述发光器件100还包括空穴注入层、电子阻挡层、空穴阻挡层、电子注入层、和/或界面修饰层等其它功能层时,所述发光器件100的制备方法还包括形成所述各功能层的步骤。
可以理解,所述步骤S14后还可以包括对发光器件100进行封装处理的步骤。所述封装处理可采用常用的机器封装,也可以采用手动封装。在至少一实 施例中,所述封装处理的环境中的氧含量和水含量均低于0.1ppm,以保证发光器件的稳定性。
所述量子点发光层20、阴极40、空穴传输层50的方法可采用本领域常规技术实现,例如可以为化学法或物理法。其中,化学法可以为化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法及共沉淀法等。物理法可以为物理镀膜法或溶液法,物理镀膜法可以为热蒸发镀膜法CVD、电子束蒸发镀膜法、磁控溅射法、多弧离子镀膜法、物理气相沉积法PVD、原子层沉积法及脉冲激光沉积法等;溶液法参上文所述,在此不再赘述。
所述阳极10可以选自但不限于掺杂金属氧化物电极、复合电极、石墨烯电极和碳纳米管电极等。所述掺杂金属氧化物电极的材料可以选自但不限于铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)、镓掺杂氧化锌(GZO)、铟掺杂氧化锌(IZO)、镁掺杂氧化锌(MZO)及铝掺杂氧化镁(AMO)中的一种或多种。所述复合电极为掺杂或非掺杂的透明金属氧化物之间夹着金属的复合电极,如AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS、ZnS/Al/ZnS等。其中,“/”表示叠层结构,例如,AZO/Ag/AZO表示由AZO层、Ag层和AZO层依次层叠形成的具有层叠结构的复合电极。
所述量子点发光层20的材料可以选自但不限于单一结构量子点及核壳结构量子点中的一种或多种。所述单一结构量子点可以选自但不限于II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种。作为举例,所述II-VI族化合物可以选自但不限于CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeTe及CdZnSTe中的一种或多种;所述III-V族化合物可以选自但不限于InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种;所述I-III-VI族化合物可以选自但不限于CuInS 2、CuInSe 2及AgInS 2中的一种或多种。所述核壳结构的量子点可以选自但不限于CdSe/ZnS、CdSe/ZnSe/ZnS、ZnCdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的一种或多种。
所述阴极40可以选自但不限于Ag、Al、Au、Pt、Ca、Ba及合金中的一种或多种。
所述空穴传输层50的材料可以选自但不限于聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(spiro-omeTAD)、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺(NPB)、4,4'-双(N-咔唑)-1,1'-联苯(CBP)、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)](TFB)、聚(9-乙烯基咔唑)(PVK)、聚三苯胺(Poly-TPD)、及4,4',4”-三(咔唑-9-基)三苯胺(TCTA)中的一种或多种。
可以理解,所述发光器件100的各层的材料可以依据发光器件100的发光需求进行调整。
请参阅图2,本申请还涉及一种发光器件100,所述发光器件100包括依次层叠的所述阳极10、所述量子点发光层20、所述电子传输层30及所述阴极40。
请参阅图3,在一些实施例中,所述发光器件100还包括设置在所述阳极10与所述量子点发光层20之间的空穴传输层50。
可以理解,所述发光器件100还可以增设一些常规用于发光二极管的有助于提升发光二极管性能的功能层,例如空穴注入层、电子阻挡层、空穴阻挡层、电子注入层及界面修饰层等。
本申请还涉及一种显示装置,所述显示装置包括所述发光器件100。
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。
实施例1
提供厚度为55nm的ITO阳极10;
在所述阳极10上旋涂TFB材料,100℃退火15min,得到厚度为30nm的空穴传输层50;
在所述空穴传输层50上旋涂CdZnSe量子点材料,得到厚度为30nm的量子点发光层20;
将氯化锌加入到DMF中形成浓度为0.5M的锌盐溶液,室温下滴加0.6M的氢氧化钠的乙醇溶液,继续搅拌1.5h得到澄清透明溶液,用丙酮解析,离心后收集,得到ZnO纳米颗粒;将ZnO纳米颗粒分散在4-甲基吡啶三氟乙酸盐中,其中,4-甲基吡啶三氟乙酸盐与ZnO纳米颗粒的摩尔比为0.05:1,室温下超声120min,得到ZnO纳米颗粒分散液;将所述ZnO纳米颗粒分散液旋涂在所述量子点发光层20上,其中,旋涂速度为5000rpm,旋涂时间为90s,然后120℃退火2h,得到电子传输层30;
在所述电子传输层30上蒸镀Ag,得到阴极40;
封装,得到发光器件100。
实施例2
本实施例与实施例1基本相同,区别在于,本实施例的电子传输层30的制备方法为:
将硝酸锌加入到DMF中形成浓度为0.5M的锌盐溶液,室温下滴加0.6M的氢氧化钾的乙醇溶液,继续搅拌1.5h得到澄清透明溶液,用丙酮解析,离心后收集,得到ZnO纳米颗粒;将ZnO纳米颗粒分散在苯乙胺基乙酸中,其中,苯乙胺基乙酸与ZnO纳米颗粒的摩尔比为0.05:1,室温下超声60min,得到ZnO纳米颗粒分散液;将所述ZnO纳米颗粒分散液旋涂在所述量子点发光层20上,其中,旋涂速度为4000rpm,旋涂时间为60s,然后100℃退火30min,得到电子传输层30。
实施例3
本实施例与实施例1基本相同,区别在于,本实施例的电子传输层30的制备方法为:
将醋酸锌加入到DMF中形成浓度为0.5M的锌盐溶液,室温下滴加0.6M的四甲基氢氧化铵的乙醇溶液,继续搅拌1.5h得到澄清透明溶液,用丙酮解析,离心后收集,得到ZnO纳米颗粒;将ZnO纳米颗粒分散在3-硝基苯胺中,其中,3-硝基苯胺与ZnO纳米颗粒的摩尔比为0.05:1,室温下超声20min,得到ZnO纳米颗粒分散液;将所述ZnO纳米颗粒分散液旋涂在所述量子点发光层20上,其中,旋涂速度为3000rpm,旋涂时间为30s,然后60℃退火10min,得到电子传输层30。
对比例
本对比例与实施例1基本相同,区别在于,本对比例将ZnO纳米颗粒分散在乙醇中,得到ZnO纳米颗粒分散液。
对实施例1及对比例的发光器件进行发光性能性测试,得到光谱特性曲线(参图4)。具体的,将实施例1及对比例的ZnO纳米颗粒分散液分别在空气中放置5天后,分别采用实施例1及对比例的发光器件的制备方法制备发光器件,并测试器件的发光性能性,得到光谱特性曲线(参图4)。
由图4可知,实施例1的ZnO纳米颗粒分散液制备完成后第1天制得的发光器件与制备完成后在空气中放置第5天后制得的发光器件的发光性能几乎不变,而对比例的ZnO纳米颗粒分散液制备完成后第1天制得的发光器件与制备完成后在空气中放置第5天后制得的发光器件发光性能明显衰减。主要原因是对比例的ZnO纳米颗粒分散液在常温常压下存放,易受空气中的水氧的影响,进而影响所制得的发光器件的发光性能。
对实施例1-3及对比例的发光器件开启电压及外量子效率EQE进行测试。其中,外量子效率及开启电压采用EQE光学测试仪器测定。检测结果参表一。
表一:
  开启电压/V 发光效率/%
实施例1 3.57 11.45
实施例2 3.23 12.67
实施例3 3.86 11.09
对比例 5.64 6.90
由表一可知:
相较于对比例的发光器件,实施例1-3的发光器件具有更低的开启电压及更高的发光效率。可见,由本申请的制备方法制得的发光器件具有更低的开启电压及更高的发光效率。
以上对本申请实施例所提供的发光器件及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人 员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种发光器件的制备方法,包括如下步骤:
    提供阳极,在所述阳极上形成量子点发光层;
    将金属氧化物纳米颗粒分散在质子型离子液体中,得到金属氧化物纳米颗粒分散液;
    将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上,得到电子传输层;
    在所述电子传输层上形成阴极,得到发光器件。
  2. 如权利要求1所述的制备方法,其中,所述质子型离子液体选自4-甲基吡啶三氟乙酸盐、苯乙胺基乙酸、3-硝基苯胺及乙醇酸1-丁咪唑盐中的一种或多种。
  3. 如权利要求1所述的制备方法,其中,所述金属氧化物纳米颗粒选自ZnO纳米颗粒、SnO 2纳米颗粒、Al 2O 3纳米颗粒、TiO 2纳米颗粒中的一种或多种。
  4. 如权利要求1或3所述的制备方法,其中,所述金属氧化物纳米颗粒中掺杂有掺杂元素,所述掺杂元素选自Al、Mg、Li、In、Ga中的一种或多种。
  5. 如权利要求1所述的制备方法,其中,所述金属氧化物纳米颗粒的粒径范围为3~10nm。
  6. 如权利要求1所述的制备方法,其中,所述质子型离子液体与所述金属氧化物纳米颗粒的摩尔比的范围为1:(0.5~1)。
  7. 如权利要求1所述的制备方法,其中,所述将金属氧化物纳米颗粒分散在质子型离子液体中的方法为室温下超声20~120min。
  8. 如权利要求1所述的制备方法,其中,所述将所述金属氧化物纳米颗粒分散液设置在所述量子点发光层上后还包括退火的步骤,所述退火的温度范围为60~120℃,时间范围为10min~2h。
  9. 如权利要求1所述的制备方法,其中,所述金属氧化物纳米颗粒为ZnO纳米颗粒,所述ZnO纳米颗粒的制备方法包括:
    将锌盐加入到有机溶剂中,得到锌盐溶液;
    向所述锌盐溶液中滴加碱液,得到ZnO纳米颗粒。
  10. 如权利要求9所述的制备方法,其中,
    所述锌盐溶液的浓度为0.1~1M;
    所述碱液的浓度为0.1~1M,PH为12~14。
  11. 如权利要求9所述的制备方法,其中,所述碱液中的OH -与锌盐中的Zn 2+的摩尔比为(1.5~3.0):1。
  12. 如权利要求9所述的制备方法,其中,
    所述锌盐包括氯化锌、硝酸锌、硫酸锌、醋酸锌中的一种或多种;
    所述有机溶剂包括N,N-二甲基甲酰胺及二甲基亚砜中的一种或多种;
    所述碱液中的碱包括氢氧化钠、氢氧化钾及四甲基氢氧化铵中的一种或多种。
  13. 如权利要求1所述的制备方法,其中,所述提供阳极,在所述阳极上形成量子点发光层的步骤包括:在所述阳极上依次形成层叠的空穴传输层及量子点发光层。
  14. 如权利要求13所述的制备方法,其中,
    所述空穴传输层的材料选自聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、4,4'-环己基二[N,N-二(4-甲基苯基)苯胺]、N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺、4,4'-双(N-咔唑)-1,1'-联苯、聚[(9,9-二辛基芴基-2,7-二基)-co-(4,4'-(N-(对丁基苯基))二苯胺)]、聚(9-乙烯基咔唑)、聚三苯胺、及4,4',4”-三(咔唑-9-基)三苯胺中的一种或多种;
    所述量子点发光层的材料选自单一结构量子点及核壳结构量子点中的一种或多种,所述单一结构量子点选自II-VI族化合物、III-V族化合物和I-III-VI族化合物中的一种或多种,所述II-VI族化合物选自CdSe、CdS、CdTe、ZnSe、ZnS、CdTe、ZnTe、CdZnS、CdZnSe、CdZnTe、ZnSeS、ZnSeTe、ZnTeS、CdSeS、CdSeTe、CdTeS、CdZnSeTe及CdZnSTe中的一种或多种,所述III-V族化合物选自InP、InAs、GaP、GaAs、GaSb、AlN、AlP、InAsP、InNP、InNSb、GaAlNP及InAlNP中的一种或多种,所述I-III-VI族化合物选自CuInS 2、CuInSe 2及AgInS 2中的一种或多种,所述核壳结构的量子点选自CdSe/ZnS、CdSe/ZnSe/ZnS、ZnCdSe/ZnSe/ZnS、ZnSe/ZnS、ZnSeTe/ZnS、 CdSe/CdZnSeS/ZnS、InP/ZnSe/ZnS及InP/ZnSeS/ZnS中的一种或多种;
    所述阳极选自掺杂金属氧化物电极、复合电极、石墨烯电极或碳纳米管电极,所述掺杂金属氧化物电极的材料选自铟掺杂氧化锡、氟掺杂氧化锡、锑掺杂氧化锡、铝掺杂氧化锌、镓掺杂氧化锌、铟掺杂氧化锌、镁掺杂氧化锌及铝掺杂氧化镁中的一种或多种,所述复合电极选自AZO/Ag/AZO、AZO/Al/AZO、ITO/Ag/ITO、ITO/Al/ITO、ZnO/Ag/ZnO、ZnO/Al/ZnO、TiO 2/Ag/TiO 2、TiO 2/Al/TiO 2、ZnS/Ag/ZnS或ZnS/Al/ZnS;
    所述阴极的材料选自Ag、Al、Au、Pt、Ca、Ba及合金中的一种或多种。
  15. 一种发光器件,其中,所述发光器件由权利要求1~14任意一项所述的发光器件的制备方法制得。
  16. 一种显示装置,其中,所述显示装置包括权利要求15所述的发光器件。
PCT/CN2022/130702 2021-12-30 2022-11-08 发光器件的制备方法、发光器件及显示装置 WO2023124550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111653185.2A CN116437769A (zh) 2021-12-30 2021-12-30 发光器件的制备方法、发光器件及显示装置
CN202111653185.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124550A1 true WO2023124550A1 (zh) 2023-07-06

Family

ID=86997526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130702 WO2023124550A1 (zh) 2021-12-30 2022-11-08 发光器件的制备方法、发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN116437769A (zh)
WO (1) WO2023124550A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767132A (zh) * 2018-06-15 2018-11-06 嘉兴纳鼎光电科技有限公司 电子传输层及量子点发光二极管器件的制作方法
CN113809271A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767132A (zh) * 2018-06-15 2018-11-06 嘉兴纳鼎光电科技有限公司 电子传输层及量子点发光二极管器件的制作方法
CN113809271A (zh) * 2020-06-15 2021-12-17 Tcl科技集团股份有限公司 复合材料及其制备方法和量子点发光二极管

Also Published As

Publication number Publication date
CN116437769A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
US20220328781A1 (en) Composite material, quantum dot light-emitting diode and preparation method thereof
CN113903865A (zh) 氧化锌纳米材料及其制备方法、发光器件
CN113130833A (zh) 一种量子点发光二极管及其制备方法
WO2023124550A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN113948647A (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN113838985B (zh) 氧化锌纳米材料及其制备方法、发光器件
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
WO2024021335A1 (zh) 复合材料及其制备方法、发光二极管
WO2023041046A1 (zh) 一种光电器件及其制备方法、显示装置
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
WO2023078233A1 (zh) 发光器件的制备方法、发光器件及显示装置
CN113046077A (zh) 一种复合材料、量子点发光二极管及其制备方法
WO2023056829A1 (zh) 量子点发光层、量子点发光层的制备方法和量子点发光二极管器件
WO2023193427A1 (zh) 一种发光器件及其制备方法、显示装置
WO2023093494A1 (zh) 电致发光器件及其制备方法、光电装置
CN113937227B (zh) 发光器件及其制备方法
WO2023202146A1 (zh) 空穴传输薄膜、光电器件和光电器件的制备方法
US20240107791A1 (en) Optoelectronic device
WO2023056838A1 (zh) 薄膜及其制备方法、光电器件
WO2023159993A1 (zh) 量子点材料及制备方法、发光二极管
WO2023165240A1 (zh) 一种纳米氧化锌溶液的制备方法、光电器件、显示装置
US20240040816A1 (en) Photoelectric devices
CN116156918A (zh) 一种纳米材料及其制备方法、电子传输薄膜及光电器件
CN115835676A (zh) 一种电致发光器件及其制备方法
CN114068296A (zh) ZnS复合材料及其制备方法、ZnS薄膜、发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913813

Country of ref document: EP

Kind code of ref document: A1